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Abstract

Mo-, W- and Ru-based complexes that control the stereochemical outcome of olefin metathesis 

reactions have been recently introduced. However, the complementary nature of these systems 

through their combined use in multistep complex molecule synthesis has not been illustrated. 

Here, we disclose a concise diastereo- and enantioselective route that furnishes the anti-

proliferative natural product neopeltolide. Catalytic transformations are employed to address every 

stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-

metathesis promoted by a Mo monopyrrolide aryloxide (MAP) complex and a macrocyclic ring-

closing metathesis affording a trisubstituted alkene catalyzed by a Mo bis-aryloxide species. 

Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have 

been employed in stereoselective synthesis of the acyclic dienyl moiety of the target molecule.
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Catalytic olefin metathesis (OM) has had a strong impact on the art of complex molecule 

synthesis,[1] an influence all the more remarkable because it has largely been despite the 

lack of related catalyst-controlled stereoselective transformations. For years, the possibility 

of preferential formation of one stereoisomer depended exclusively on thermodynamic 

preferences that are seldom predictable and virtually impossible to alter. Since 2009, Mo, W 
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and Ru catalysts have been introduced that facilitate Z-selective ring-opening/cross-

metathesis (ROCM),[2] cross-metathesis (CM)[3] or macrocyclic ring-closing metathesis 

(MRCM);[4] in some instances, reactions can be enantioselective too.[2a–b,c–d,g] The utility 

of individual Z-selective OM processes have been demonstrated in a limited number of 

cases.[3a,4a–c] There is however no record of a set of multi-step sequences that are 

principally based on the recently introduced stereoselective OM processes, illustrating their 

strengths and weakness or the nuances of any symbiotic relationships.

We now report an enantioselective synthesis of anti-proliferative agent neopeltolide,[5] a 

natural product with the same linear appendage as that of cytotoxic leucascandrolide A[6,7] 

(Scheme 1). The successful route features OM reactions promoted by Mo and W 

monoaryloxide pyrrolide (MAP), Mo bis-aryloxide perfluoroimido as well as 

catechothiolate Ru complexes; it illustrates the complementary nature of different catalyst 

architectures,[8] indicating that catalysts developed for attaining high Z selectivity may also 

be critical for achieving high efficiency.[9]

The overall plan and questions regarding the central catalytic transformations are presented 

in Scheme 2. To access the macrolactone, we envisioned a succession of catalytic MRCM 

(ii→i, Scheme 2a) followed by diastereoselective reduction of the resulting trisubstituted 

alkene by catalytic hydrogenation (peripheral mode of addition).[10] Former studies attest to 

the positive impact of MRCM versus macrolactonization and its attendant protecting group 

manipulations and oxidation state adjustments.[5] Nonetheless, in former approaches to 

neopeltolide formation of a trisubstituted alkene by RCM involved disubstituted olefins and 

required the use of 20–30 mol % of a Ru catalyst at elevated temperatures (80–100 

°C).[5g, 11] It was further demonstrated that formation of the alkene in i proceeds with 

complete Z selectivity due to energetic preferences of the macrocycle, and that subsequent 

hydrogenation can be exceptionally stereoselective.[5g,11] For us, therefore, the main 

challenge was to identify a catalyst that is capable of delivering the requisite olefin more 

efficiently (i.e., ii→i).

Diene ii would be synthesized by the coupling of enantiomerically enriched carboxylic acid 

iii and secondary alcohol vi (Scheme 2a). We would access the necessary segments through 

catalytic enantioselective reactions, with the heterocyclic fragment iv being generated by 

ROCM with unsaturated oxabicycle v.

Preparation of the unsaturated side chain was designed to explore the scope of the state-of-

the-art in Z-selective CM. We decided that it would be strategically advantageous to form 

the more hindered oxazole-substituted alkene first (cf. viii, Scheme 2b); this would lower the 

odds of the Z olefin’s isomerization while the less sterically demanding alkene of the side 

chain is being formed (vi → vii). Direct CM of vinyloxazole (ix) and allylcarbamate could 

deliver viii efficiently and stereoselectively. Another plan would entail Z-selective CM with 

vinyl(pinacolato)boron [vinyl-B(pin)] to afford xi, followed by catalytic cross-coupling 

(CC) with iodooxazole x. An additional question was the identity of the most effective cross 

partner for the second stereoselective CM, one that could provide access to the Z-α,β-

unsaturated ester (i.e., the nature of R in vi in Scheme 2b).
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We first examined the feasibility of the route for the macrocyclic fragment (Scheme 2a). The 

enantioselective boronate conjugate addition to α,β-unsaturated amide 1, accessible in one 

step from commercially available materials, was catalyzed by the chiral N-heterocyclic 

carbene (NHC) derived from imidazolinium salt 2 (Scheme 3).[12,13] Subsequent oxidation 

afforded β-hydroxy amide 3 in 86% overall yield and 95:5 enantiomeric ratio (e.r.). 

Conversion to the β,γ-unsaturated ketone and directed Tishchenko-type reduction in the 

presence of SmI2
[14] generated the anti mono-benzoyl product in >99:1 diastereomeric ratio 

(d.r.). Methyl ether formation and removal of the ester unit afforded alcohol 4 in 53% 

overall yield (four steps; >99:1 d.r., 95:5 e.r.). The above sequence was performed in 

significant scale to furnish more than one gram of β-hydroxy ester 3. It merits note that the 

NHC-catalyzed synthesis of β-hydroxy carbonyl 3 is a more efficient substitute to 

diastereoselective aldol protocols involving a chiral auxiliary, and subsequent conversion to 

the desired amide.[15] Moreover, as far as we are aware, catalytic enantioselective acetate 

aldol processes with Weinreb amide-type reactants remain undisclosed.

Preparation of the pyran moiety commenced with an enantioselective ROCM involving 

oxabicyclic alkene 5[16] and commercially available n-butyl vinyl ether in the presence of 

0.6 mol % Mo MAP complex 6a (Scheme 3a). Within 10 minutes at ambient temperature, 

one gram of 5 was converted to pyran 7 in 88% yield (1.2 g) and 99:1 e.r. as a single alkene 

isomer (>99:1 Z:E; Scheme 3a). Hydrolysis and oxidation of the aldehyde delivered 

carboxylic acid 8 in 86% overall yield. Although we have previously shown that the ROCM 

reaction can be promoted by a chiral Ru carbene,[2d] use of Mo alkylidene 6a led to a more 

efficient process (60–75% yield, 90:10–95:5 e.r. with 5.0 mol % carbene in 24 h).

The union of alcohol 4 and acid 8 delivered diene 9, which was isolated in 88% yield in the 

stereoisomerically pure form (>98:2 d.r. and e.r.).[17] Macrocyclic alkene 11 was obtained in 

89% yield by treatment of 9 with 8.0 mol % Mo bisaryloxide 10 (22 °C, 3.0 h).[4c] The 

superior performance of the perfluoroimido alkylidene is underscored by a comparative 

analysis with selected other catalyst constructs (Scheme 3b). With 10 mol % hexafluoro-t-

butoxide Mo alkylidene 13 [18] there was 65% conversion (64% yield). MAP complexes 

(e.g., 14a)[19] and Ru carbenes (cf. 15a–b)[20] were less effective. When carbenes 15a–b 
were used, the MRCM had to be performed at 80 °C for the trisubstituted olefin to be 

isolated in 49–54% yield (55–65% conv.). Diastereoselective hydrogenation of the 

trisubstituted olefin 11 proceeded with concomitant removal of the benzyl ether to give 

saturated alcohol 12 in 92% yield and 98:2 d.r.[5g,11]

Identifying a short and stereoselective route to the linear diene fragment was next. We 

initially considered direct Z-selective CM of allylic carbamate 16 and the corresponding 

heterocyclic alkene, but found that such a pathway is low yielding and moderately Z-

selective (Scheme 4). The inefficiency arises from facile homocoupling of 16 (vs. CM), 

probably leading to higher ethylene concentration and the somewhat unstable methylidene 

species (despite the use of vacuum). What’s more, the latter complex can readily react with 

the kinetically generated alkene isomer to cause Z-to-E isomerization. We did not consider 

utilizing excess vinyloxazole, a substrate that would have to be prepared in three steps (vs. 

the simpler 16), as a viable option.
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We then explored the feasibility of a CM/CC sequence (Scheme 5). Nearly two grams (86% 

yield) of stereoisomerically pure Z-alkenyl-B(pin) 19 was prepared through stereoselective 

CM involving vinyl-B(pin)[3b] and the less hindered allylcarbamate 16 (vs. vinyloxazole) in 

the presence of 3.0 mol % Mo MAP complex 14b. Phosphine-Pd-catalyzed CC of 19 with 

K3PO4 and heterocyclic iodide 20 delivered Z-disubstituted alkene 21 in 82% yield (>98:2 

Z:E).[21] Use of excess vinyl-B(pin) has several advantages. Formation of the B(pin)-

substituted complex is almost certainly faster than or at least competitive with the alkylidene 

derived from 16; this is likely because the Lewis acidic boron can better stabilize electron 

density at the carbon of the Mo=C unit.[22] In addition, the B(pin)-substituted alkylidene is 

more prone to react with the less hindered allylcarbamate than undergo reaction with another 

sizeable vinyl-B(pin) molecule. Alcohol 21 was converted to terminal alkene 22 in two steps 

(Scheme 5), setting the stage for installment of the second (less congested) Z alkene.

A direct approach to forming the second cis olefin of the side chain fragment would involve 

a Z-selective CM with an α,βunsaturated carbonyl compound, a hitherto unknown process. 

Preliminary studies indicated that CM with 22 and t-butylacrylate is inefficient (≤ 30% 

conv. with 5.0 mol % Mo MAP complexes). In these latter transformations the enoate was 

used in excess (3.0 equiv.) to discourage facile homocoupling of the more valuable terminal 

alkene. Such slow rates probably arise from diminished reactivity of the acrylate-derived 

alkylidene, which is electronically stabilized and suffers from internal chelation of the 

carbonyl group[23] with the transition metal.

As an alternative, we examined the ability of W MAP complex 23 to promote Z-selective 

CM of 22 with allyl-B(pin).[3b] Unlike formation of the more hindered oxazole-substituted 

alkene, where a less active W alkylidene delivered <10% conversion, here, with a more 

accessible Z alkene, a more moderately active catalyst would minimize post-OM 

isomerization and is consequently preferable. In the event, use of 10 mol % 23 led to 60% 

conversion after three hours; longer reaction times did not lead to further conversion. 

Alcohol 24 was obtained after oxidation in 51% overall yield and 90:10 Z:E selectivity 

(Scheme 6).

In pursuit of a more selective and higher yielding transformation, we considered accessing 

the desired allylic alcohol directly by Z-selective CM. However, this type of OM reaction 

that was without precedent. To explore such a possibility, we turned to Ru catechothiolate 

complexes[2e–f] and found that with Ru carbene 25a and commercially available Z-2-

butene-1,4-diol, Z allylic alcohol 24 can be obtained in 55% yield (vs. 51% yield with 23) 

and with improved stereoselectivity (97:3 vs. 91:9 Z:E). Mechanistic studies suggested that 

diminishing electron density at the anionic sulfur ligand sites would increase the longevity 

of the catalytically active species. We therefore performed the CM with dichloro-Ru 

complex 25b (10 mol %), allowing us to isolate 24 in 70% yield and 98:2 Z:E selectivity. 

The higher selectivity attained through Ru complex 25b is critical since separation of the 

alkene isomers of 24 is challenging (this is also the case with the derived carboxylic acid). 

We did not observe any isomerization at the first alkene site.

What remained was the completion of the total synthesis. Oxidation of the primary alcohol 

afforded carboxylic acid 26 in 75% overall yield (Scheme 6).[24] Coupling of the 
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macrocyclic and linear diene fragments 12 and 26, respectively, furnished (+)-neopeltolide 

in 74% yield.

We demonstrate that, together with other catalytic processes, a blend of Mo-, W- and Ru-

catalyzed enantio- and/or Z-selective OM reactions constitute an effective general strategy in 

organic synthesis. The total synthesis, where every problem of stereoselectivity was resolved 

by a catalytic process or a combination thereof,[25] thus stands as the shortest disclosed for 

neopeltolide (28 steps including the preparation of oxabicyclic substrate 5); the longest 

linear sequence is 11 steps (5→12→neopeltolide), proceeding in 20.9% overall yield (vs. 13 

steps and 9.5% overall yield for the most efficient route reported previously[5g]).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Naturally occurring anti-proliferative agent neopeltolide and potent cytotoxic 

leucascandrolide A.
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Scheme 2. 
Retrosynthesis of neopeltolide (and leucascandrolide A side chain) and related issues arising 

from implementation of various catalytic olefin metathesis reactions; RCM = ring-closing 

metathesis, ROCM = ring-opening/cross-metathesis, CM = cross-metathesis, pin = 

pinacolato, CC = cross-coupling.
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Scheme 3. 
Enantioselective synthesis of the macrocyclic fragment of neopeltolide and the effectiveness 

of some of the more commonly used Mo and Ru complexes to promote the macrocyclic 

RCM. Mes = 2,4,6-(Me)3-C6H2. ND = not determined.
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Scheme 4. 
Representative attempts regarding Z-selective CM of allylcarbamate 15 and a vinyloxazole 

16.
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Scheme 5. 
Stereoselective synthesis of the side chain of neopeltolide and leucascandrolide A carried 

out through the use of Mo-, W- and Ru-catalyzed Z-selective CM as well as a Pd-catalyzed 

CC process.
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Scheme 6. 
The final steps of diastereo- and enantioselective synthesis of (+)-neopeltolide.
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