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Abstract
With the aid of a chiral nickel catalyst, enantioselective γ- (and δ-) alkylations of carbonyl
compounds can be achieved through the coupling of γ-haloamides with alkylboranes. In addition
to primary alkyl nucleophiles, for the first time for an asymmetric cross-coupling of an un-
activated alkyl electrophile, an arylmetal, a boronate ester, and a secondary (cyclopropyl)
alkylmetal compound are shown to couple with significant enantioselectivity. A mechanistic study
indicates that cleavage of the carbon–halogen bond of the electrophile is irreversible under the
conditions for asymmetric carbon–carbon bond formation.

In comparison with α- and β-alkylation reactions,1 the range of useful methods for the
catalytic enantioselective incorporation of alkyl substituents γ to a carbonyl group is rather
limited.2 One unexplored approach to this objective is the asymmetric coupling of a γ-
halocarbonyl compound with an alkylmetal reagent (eq 1).3,4

(1)

To date, effective enantioselective cross-couplings of unactivated alkyl electrophiles have
only been described for secondary homobenzylic bromides, acylated halohydrins (and one
homologue), and β-haloanilines; in each instance, a primary alkylmetal reagent has served as
the nucleophilic coupling partner.5 In this report, we establish that a chiral nickel catalyst
can achieve stereoconvergent alkylation reactions of γ-halocarbonyl compounds (eq 2), and
we provide the first example of an asymmetric cross-coupling of an unactivated alkyl
electrophile with a secondary (cyclopropyl) alkylmetal reagent.
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(2)

In early studies, we determined that, when the carbonyl group is an N,N-diphenylamide,
good ee’s and yields can be obtained for a range of alkyl–alkyl Suzuki cross-couplings
(Table 1).6 Diphenylamides are attractive carboxylic acid derivatives, since reduction and
acyl transfer reactions proceed smoothly (eq 3–57).

(3)

(4)

(5)

As illustrated in Table 1, asymmetric γ-alkylations of a range of unactivated racemic
secondary γ-chloroamides can be achieved with an array of alkylboranes, furnishing the
alkyl–alkyl Suzuki coupling products with good enantioselectivity. A wide variety of
functional groups are compatible with the reaction conditions, including an acetal, silyl
ether, aryl ether,8 indole, and aryl fluoride.9 Both of the catalyst components
(NiBr2•diglyme and ligand 1) are commercially available.

With respect to the electrophile, the scope of these asymmetric alkylations is not limited to
cross-couplings of γ-chloro diphenylamides. Thus, the corresponding bromides are also
suitable electrophiles (eq 6; not optimized). Furthermore, under the standard conditions,
good ee is observed for the stereoconvergent coupling of a homologue of a γ-chloro amide,
thereby achieving enantioselective δ-alkylation (eq 7).10 Finally, the carbonyl group need
not be a diphenylamide;11 for example, the cross-coupling of a γ-chloro Weinreb amide12
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proceeds with promising ee, and a preliminary study provides evidence that enhanced
enantioselectivity will be possible through further optimization (eq 8).

(6)

(7)

(8)

With respect to the nucleophilic coupling partner, previous studies of asymmetric cross-
couplings of unactivated secondary electrophiles have focused exclusively on primary alkyl-
(9-BBN) derivatives.5 We have obtained encouraging enantioselectivities when coupling a γ-
chloro amide with an arylborane (eq 9), a boronate ester (eq 10), and a secondary
(cyclopropyl) alkylborane (eq 11).13 These data illustrate the potential for an important
expansion in the scope of asymmetric cross-couplings of unactivated alkyl electrophiles.

(9)

(10)
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(11)

Regarding the pathway for these Suzuki reactions, our current working hypothesis is
depicted in Scheme 1. This builds on pioneering mechanistic studies by Vicic and by
Phillips of nickel/terpyridine-catalyzed Negishi cross-couplings of unactivated alkyl
halides.14 Interestingly, the computational investigation of Phillips suggests that the
formation of B may be reversible for the coupling of MeZnI and i-PrI, specifically, that ΔG≠

= 11 kcal/mol for B → A and ΔG≠ = 13 kcal/mol for B → C.

In order to gain insight into whether the initial step of oxidative addition (A → B) is
reversible under our Suzuki cross-coupling conditions, we monitored the reaction of each
enantiomer of a γ-haloamide (eq 12). We observe essentially no erosion in the ee of the
electrophile during the course of the reaction, which is consistent with the conclusion that
halide abstraction (A → B) is irreversible, in contrast to the Phillips study of a Negishi
reaction.15,16

(12)

In conclusion, we have developed a method for the catalytic enantioselective γ- (and δ-)
alkylation of carbonyl compounds through the cross-coupling of γ-haloamides with
alkylboranes. With regard to the family of products that is generated, this study differs from
previous reports of asymmetric couplings of unactivated secondary alkyl electrophiles,
which furnished substituted benzenes, protected alcohols, and anilines. Both alkyl chlorides
and alkyl bromides are suitable electrophilic cross-coupling partners, and, for the first time,
an arylmetal, a boronate ester, and a secondary (cyclopropyl) alkylmetal compound are
shown to serve as nucleophilic partners and to couple with substantial enantioselectivity. A
mechanistic study indicates that carbon–halogen bond cleavage is irreversible under the
reaction conditions. Further investigations of cross-couplings of alkyl electrophiles are
underway.
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Scheme 1.
Outline of a Possible Reaction Pathway (for the sake of simplicity, all of the elementary
steps are drawn as irreversible).
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Table 1

Catalytic Enantioselective γ-Alkylation of N,N-Diphenylamides via Stereoconvergent Suzuki Cross-Couplings
of Secondary Alkyl Chlorides (for the reaction conditions, see eq 2)a

entry R1 R ee (%) yield (%)b

1 Me 85 63

2c Me 90 54

3 Et (CH2)5–OTBS 91 74

4 Et 89 80

5 Et 90 63

6d Et (CH2)5–CN 69 51

7 n-Bu 90 64

8 CH2CH2Ph 88 83

9 i-Bu (CH2)3–Ph 82 61

a
All data are the average of two experiments.

b
Yield of purified product.

c
20% NiBr2 • diglyme and 24% 1 were used.

d
The reaction was conducted in i-Pr2O at 60 °C.
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