Supporting Information

for Catalytic Asymmetric Synthesis of Nitrogen Analog of Dialkyl Tartrate by Direct Mannich Reaction under Phase-Transfer Conditions

Takashi Ooi, Minoru Kameda, Jun-ichi Fujii, and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto 606-8502, Japan

General Information. Infrared (IR) spectra were recorded on a Shimadzu FT-IR 8200A spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL JNM-FX400 $(400 \mathrm{MHz})$ spectrometer and JMTC-400/54/SS (400 MHz) spectrometer. High performance liquid chromatography (HPLC) was performed on Shimadzu 10A instruments using $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ Daicel Chiralcel AD-H. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$) were used. The products were purified by preparative column chromatography on silica gel (E. Merck 9385). High resolution mass spectra (HRMS) were performed on Applied Biosystems Mariner APITOF workstation and JEOL JMS-HX100.

In experiments requiring dry solvents, ether and tetrahydrofuran (THF) were purchased from Kanto Chemical Co. Inc. as "Dehydrated". Benzene and toluene were dried over sodium metal. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was stored over 4A molecular sieves. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ was stored over potassium hydroxide (KOH) pellet. Other simple chemicals were purchased and used as such.

Enantioselective Direct Mannich Reaction of tert-Butyl Glycinate Benzophenone Schiff Base (3) with Ethyl N-(4-Methoxyphenylimino)acetate (4) under Phase-Transfer Conditions. To a mixture of $\mathbf{3}(1.48 \mathrm{~g}, 5.0 \mathrm{mmol})$ and chiral catalyst (R, R)-2b $(91.5 \mathrm{mg}, 2 \mathrm{~mol} \%)$ in mesitylene (50 mL) $-17 \% \mathrm{NaOH}$ aqueous solution $(15 \mathrm{~mL})$ was added $4(2.07 \mathrm{~g}$, 10.0 mmol) dropwise at $-20^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred vigorously at the same temperature for 6 h . The mixture was then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with ether. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of solvents, the residual oil was dissolved in THF (30 mL) and treated with 1 N HCl (15 mL) at $0^{\circ} \mathrm{C}$ for 2 h . THF was removed under vacuum and the aqueous layer was washed with ether
two times, then neutralized with NaHCO_{3}. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by column chromatography on silica gel (ether/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=1: 8: 4$ then ethyl acetate/hexane $=1: 1$ as eluants) gave ($2 S, 3 S$)-1-tert-butyl 4-ethyl 3-N-(4-methoxyphenyl)amino aspartate (5) as a mixture of diastereomers $[1.48 \mathrm{~g}, 4.38 \mathrm{mmol}, 88 \%$ yield, syn/anti $=4.4: 1,91 \%$ ee $(s y n$ isomer), 64% ee (anti isomer)]. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. The enantiomeric excess was determined by HPLC analysis using chiral column [DAICEL Chiralpak AD-H, hexane/2-propanol $=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention time; anti isomer: $36.7 \mathrm{~min}\left(2 S^{*}, 3 R^{*}\right)$ and 41.1 min $\left(2 R^{*}, 3 S^{*}\right)$, syn isomer: $45.9 \mathrm{~min}(2 S, 3 S)$ and $\left.60.6 \mathrm{~min}(2 R, 3 R)\right]$. The relative configuration was assigned, after conversion to 7 , by ${ }^{1} \mathrm{H}$ NMR analysis, and the absolute configuration of syn isomer was established, after preparation of lactam 6, by Mosher's method and ${ }^{1} \mathrm{H}$ NOE measurement as described later. The absolute configuration of anti isomer was not confirmed: syn isomer $(2 S, 3 S):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.75(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.67(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CHCO), $4.28(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{Ar}-\mathrm{NH}), 4.19\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.96(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$, $\mathrm{CHCO}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 1.44(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.25(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,171.5,152.9,141.0,116.0,114.6,82.2,61.4$, 61.4, 56.7, 55.7, 28.1, 14.3 ppm ; IR (KBr) 3346, 2974, 2833, 1749, 1728, 1512, 1369, 1271, 1236, 1161, 1091, 1037, $824 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}: 361.1734$ ([M+Na] ${ }^{+}$), Found $361.1741\left([\mathrm{M}+\mathrm{Na}]^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{27} 19.8{ }^{\circ}\left(c \quad 0.40, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $)$. anti isomer $\left(2 S^{*}, 3 R^{*}\right):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.69(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.40$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}-\mathrm{NH}$ and CHCO), $4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.81(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{CHCO})$, $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.67\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.7,170.9,152.8,140.5,115.5,114.8,81.9,61.4,61.3,56.6,55.7$, 28.1, 14.3 ppm ; IR (KBr) 3385, 2979, 2833, 1737, 1514, 1369, 1238, 1205, 1153, 1035, $823 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}: 361.1734\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $361.1734\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. $[\alpha]_{\mathrm{D}}{ }^{27}-5.3^{\circ}\left(c 0.47, \mathrm{CHCl}_{3}, 64 \% \mathrm{ee}\right)$.
(4S, 5S)-1-(4-Methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl 5-Ethyl Dicarboxylate (trans-7). To a solution of $\mathbf{5}(1.48 \mathrm{~g}, 4.38 \mathrm{mmol}$, mixture of diastereomers) and triethylamine ($1.36 \mathrm{~mL}, 9.64 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added triphosgene $(1.36 \mathrm{~g}, 4.60 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. This mixture was stirred at the same temperature for 1 h , and then
poured into saturated NaHCO_{3} aqueous solution. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=1: 1.2$ as eluant) to furnish trans-7 ($1.32 \mathrm{~g}, 3.63 \mathrm{mmol} .79 \%, 91 \% \mathrm{ee}$) and cis-7 ($255 \mathrm{mg}, 0.70 \mathrm{mmol}$, 16%, the enantiomeric excess was not determined). The relative configuration was assigned by ${ }^{1} \mathrm{H}$ NMR analysis (see below). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave a optically pure trans-7 (1.04 $\mathrm{g}, 2.85 \mathrm{mmol}, 65 \%$ from 5, $>99 \%$ ee). The enantiomeric excess was determined by HPLC analysis using chiral column [DAICEL Chiralcel AD-H, hexane $/ 2$-propanol $=2: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention time; $24.6 \mathrm{~min}(4 S, 5 S), 44.2 \mathrm{~min}(4 R, 5 R)]: \quad \operatorname{trans}-7:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ $(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{br}, \mathrm{CONH}), 4.91(1 \mathrm{H}, \mathrm{d}, J=$ $3.6 \mathrm{~Hz}, \mathrm{CHCO}), 4.21(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{CHCO}), 4.19\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 1.52(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4$, $168.5,157.8,156.9,130.7,123.7,114.2,83.9,62.2,62.0,55.5,55.4,28.0,14.1 \mathrm{ppm}$; IR (KBr) 3234, 3112, 2983, 1747, 1717, 1514, 1445, 1410, 1367, 1298, 1244, 1159, 1036, $833 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}: 387.1527\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $387.1528\left([\mathrm{M}+\mathrm{Na}]^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{27} 44.9^{\circ}$ (c $0.16, \mathrm{CHCl}_{3},>99 \%$ ee $) . \quad$ cis- $7:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.85(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{br}, \mathrm{CONH}), 4.95(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{CHCO}), 4.53$ (1H, d, $J=9.6 \mathrm{~Hz}, \mathrm{CHCO}), 4.10\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.47(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.13\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,167.2,158.4,156.9$, 130.6, 123.6, 114.1, 83.6, 62.1, 61.7, 55.4, 54.1, 27.9, 13.9 ppm ; IR (KBr) 3418, 2955, 1749, 1720, 1703, 1518, 1439, 1373, 1298, 1245, 1201, 1165, 1034, $831 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}: 387.1527\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $387.1523\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

trans-7

cis-7
(4S,5S,1'S)-5-(1'-Cyanohydroxymethyl)-1-(4-methoxyphenyl)-2-oxo-imidazolidine-4-tert-butyl Carboxylate (8). To a solution of trans-7 (547 mg, 1.50 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and ether (12 mL) was added a 2.0 M toluene solution of DIBAH ($2.25 \mathrm{~mL}, 4.50$
mmol) dropwise slowly at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for 1 h , trimethylsilyl cyanide ($600 \mu \mathrm{~L}, 4.50 \mathrm{mmol}$) was added and stirring was continued for additional 1 h. Then, this mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred there for 6 h . The reaction was quenched by addition of 10% citric acid aqueous solution and extracted with ethyl acetate. The organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by column chromatography on silica gel (ethyl acetate/hexane $=1.4: 1$ as eluant) gave ($4 S, 5 S, 1^{\prime} S$)-5-(1'-cyanohydroxymethyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate (8) (167 mg, $0.48 \mathrm{mmol}, 32 \%)$ and $\left(4 S, 5 S, 1^{\prime} R\right)$ isomer (epi-8) $(250 \mathrm{mg}, 0.72 \mathrm{mmol}, 48 \%): 8:{ }^{1} \mathrm{H}$ NMR [400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 7.42(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CONH), $5.99(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{OH}), 4.85(1 \mathrm{H}, \mathrm{dd}, J=6.0,3.2 \mathrm{~Hz}, \mathrm{CHCN}), 4.74(1 \mathrm{H}, \mathrm{t}, J=3.2$ $\mathrm{Hz}, \mathrm{CHCH}(\mathrm{OH}) \mathrm{CN}), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J=3.2,1.2 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.53(9 \mathrm{H}, \mathrm{s}$, t-Bu) ppm; ${ }^{13} \mathrm{C}$ NMR [100 MHz, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ $\delta 170.8,158.5,157.6,131.3,125.3,118.7,114.6,82.8$, $63.1,60.0,55.6,53.5,28.0 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) 3371,2932,1738,1701,1516,1445,1371,1294,1250$, 1157, 1105, 1034, $841 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{5}: 370.1373$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), Found $370.1376\left([\mathrm{M}+\mathrm{Na}]^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{27} 68.1^{\circ}(c 0.24, \mathrm{MeOH})$. epi-8: ${ }^{1} \mathrm{H}$ NMR $\left[400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ $\delta 7.41(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{br} s, \mathrm{CONH}), 6.01(1 \mathrm{H}$, $\mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{OH}), 4.88(1 \mathrm{H}, \mathrm{dd}, J=5.6,4.4 \mathrm{~Hz}, \mathrm{CHCN}), 4.73(1 \mathrm{H}, \mathrm{dd}, J=4.4,3.2 \mathrm{~Hz}$, $\mathrm{C} \underline{\mathrm{HCH}}(\mathrm{OH}) \mathrm{CN}), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J=3.2,1.2 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-$ $\mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left[100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 170.5,158.1,157.7,131.6,125.1,118.3,114.8,82.8$, 62.2, 61.9, 55.6, 54.3, 28.0 ppm ; IR (KBr) 3423, 2968, 1722, 1703, 1518, 1433, 1317, 1256, 1157, 1084, 1031, $833 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{5}: 370.1373\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $370.1380\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \cdot[\alpha]_{\mathrm{D}}{ }^{27} 64.5^{\circ}(c 0.25, \mathrm{MeOH})$.
(4S, 5S, $\mathbf{1}^{\prime} R$)-5-(2'-N-(4-Methoxybenzyl) amino-1'-hydroxyethyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl Carboxylate (10). To a solution of 8 ($167 \mathrm{mg}, 0.48 \mathrm{mmol}$) in acetic acid (5 mL) was added platinum oxide ($41.8 \mathrm{mg}, 25 \%$ by weight) at room temperature under argon atmosphere. Then, argon was replaced by H_{2}, and the reaction mixture was stirred for 2 h . The resulting mixture was filtered to remove the catalyst, and the filtrate was concentrated. The residue was dissolved in water and washed with ethyl acetate two times. The aqueous layer was neutralized with NaHCO_{3} and saturated with NaCl , then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ six times. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude $\left(4 S, 5 S, 1^{\prime} R\right)$ -

5-(2'-amino-1'-hydroxyethyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate ($152 \mathrm{mg}, 0.43 \mathrm{mmol}, 90 \%$) which was directly used for the following reaction without any purification: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.00$ (1 H , br s, CONH), $4.37\left(1 \mathrm{H}, \mathrm{dd}, J=4.0,3.2 \mathrm{~Hz}, \mathrm{C} \underline{H} \mathrm{NPMP}\right.$), $4.27\left(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.77\left(1 \mathrm{H}, \mathrm{dd}, J=13.2,4.4 \mathrm{~Hz}^{\mathrm{H}} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.66(1 \mathrm{H}, \mathrm{dd}$, $J=13.2,8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), $1.52(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,158.5$, $157.0,129.9,125.1,114.3,83.1,69.5,62.7,55.4,52.1,43.0,28.0 \mathrm{ppm}$; IR (KBr) 3420, 2976, 1722, 1699, 1516, 1441, 1296, 1248, 1155, $837 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{5}$: $374.1686\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $374.1685\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

To a mixture of the crude $9(152 \mathrm{mg}, 0.43 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}(4.3 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added p-anisaldehyde $(62.8 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. This mixture was allowed to warm to room temperature and stirred for 8 h . The resulting mixture was filtered and the filtrate was concentrated. The residue was dissolved in EtOH (2 mL) and sodium borohydride (18.1 $\mathrm{mg}, 0.43 \mathrm{mmol}$) was added to this solution at $0^{\circ} \mathrm{C}$. This mixture was stirred at the same temperature for 1 h and poured into water, then extracted with ethyl acetate. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents and purification of the residue by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10\right.$ as eluant $)$ gave $\left(4 S, 5 S, 1^{\prime} R\right)-5-\left(2^{\prime}-N-(4-\right.$ methoxybenzyl)amino-1'-hydroxyethyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate (10) (144 mg, $0.31 \mathrm{mmol}, 71 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}, \operatorname{Ar}-\mathrm{H}), 7.13(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, Ar-H), 4.99 (1 H , br s, CONH), 4.32 ($1 \mathrm{H}, \mathrm{dd}, J=4.0,2.8 \mathrm{~Hz}$, CHNPMP), $4.24(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, $\left.\mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 3.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HOH}}), 3.79\left(6 \mathrm{H}, \mathrm{s}, 2\left(\mathrm{OCH}_{3}\right)\right), 3.69\left(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{dd}, J=12.4,4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHPMB}\right), 2.57(1 \mathrm{H}, \mathrm{dd}, J=12.4$, $9.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHPMB}$), $1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,158.6,158.6$, $157.0,131.4,130.1,129.2,125.0,114.3,113.8,83.0,67.5,63.1,55.5,55.3,53.2,52.2,50.5$, 28.0 ppm ; IR (KBr) 3337, 2980, 2932, 2837, 1736, 1707, 1514, 1445, 1246, 1157, 1034, $831 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}: 472.2442\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found $472.2439\left([\mathrm{M}+\mathrm{H}]^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{27}$ $37.8^{\circ}\left(c 0.17, \mathrm{CHCl}_{3},>99 \%\right.$ ee $)$.
(4S, 5S, 1'S)-5-(2'-Amino-1'-hydroxyethyl)-1-(4-methoxyphenyl)-2-oxo-imidazolidine-4-tert-butyl Carboxylate (epi-9). This compound was prepared from epi-8 in a similar manner to that described above and directly used for the following reaction without any purification. $\quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}), 4.65(1 \mathrm{H}, \mathrm{dd}, J=4.0,3.2 \mathrm{~Hz}, \mathrm{CH}$ NPMP $), 4.16(1 \mathrm{H}, \mathrm{d}, J=3.2$ $\left.\mathrm{Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HOH}}), 2.81\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $2.61\left(1 \mathrm{H}, \mathrm{dd}, J=12.4,8.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,158.7,156.8,130.8,124.2,114.3,83.1,70.4,62.1,55.4,53.3,41.9,28.0 \mathrm{ppm}$; IR (KBr) 3420, 2978, 2934, 1695, 1514, 1443, 1294, 1246, 1155, $835 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{5}: 374.1686\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $374.1680\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
($4 S, 5 S, 1$ ' S)-5-(2'-N-(4-Methoxybenzyl)amino-1'-hy droxyethyl)-1-(4-methoxy -phenyl)-2-oxoimidazolidine-4-tert-butyl Carboxylate (epi-10). Reductive amination of the crude epi-9 was performed as described before. The residual crude product was purified by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 10\right.$ as eluant $)$ to afford $\left(4 S, 5 S, 1^{\prime} S\right)-5-\left(2^{\prime}-N-\right.$ (4-methox ybenzyl) amino-1'-hydroxyethyl)-1-(4-methox yphenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate (epi-10): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.09(2 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{br}$, CONH), $4.63(1 \mathrm{H}, \mathrm{dd}, J=3.6,2.8 \mathrm{~Hz}, \mathrm{C} \underline{H} N P M P), 4.24\left(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 3.87(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} \underline{\mathrm{HOH}}), 3.79\left(6 \mathrm{H}, \mathrm{s}, 2\left(\mathrm{OCH}_{3}\right)\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.58(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J=12.4,3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.54\left(1 \mathrm{H}, \mathrm{dd}, J=12.4,10.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 1.49$ ($9 \mathrm{H}, \mathrm{s}, t$-Bu) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,158.7,158.7,156.8,130.8,129.3,129.2$, $124.3,114.3,113.8,83.1,68.3,61.9,55.5,55.3,53.2,52.8,48.9,28.0 \mathrm{ppm}$; $\operatorname{IR}(\mathrm{KBr}) 3258$, 2934, 2837, 1736, 1701, 1514, 1443, 1248, 1155, 1036, $829 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}: 472.2442\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found $472.2443\left([\mathrm{M}+\mathrm{H}]^{+}\right) .[\alpha]_{\mathrm{D}}{ }^{27} 14.1^{\circ}\left(c 0.25, \mathrm{CHCl}_{3},>99 \%\right.$ ee $)$.
($4 S, 5 S, 1$ 'R $)-5-\left(2^{\prime}-N-(\right.$ tert - B uto xy carbonyl) $) N-(4-$ methoxy benzy $)$ amino-1'-hydroxyethyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tert-butyl Carboxylate (11). To a solution of epi-10 ($75.4 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added triethylamine ($29.3 \mu \mathrm{~L}$, $0.21 \mathrm{mmol})$ and $(\mathrm{Boc})_{2} \mathrm{O}(45.5 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 5 h and then poured into water. The organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The org anic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

After evaporation of solvents, the res idual crude products were purified by column chromatography on silica gel (ethyl acetate/hexane $=3: 1$ as eluant) to afford $\left(4 S, 5 S, 1^{\prime} R\right)-5-\left(2^{\prime}-N\right.$-(tert-butoxycarbonyl)- $N-$ (4-methox ybenzyl) amino-1'-hydroxyethyl)-1-(4-methox yphenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate (epi-11) ($89.6 \mathrm{mg}, 0.16 \mathrm{mmol}, 98 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.95(2 \mathrm{H}, \mathrm{br}, \mathrm{Ar}-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $4.99(1 \mathrm{H}, \mathrm{br}, \mathrm{CONH}), 4.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.63(1 \mathrm{H}, \mathrm{dd}, J=3.6,3.6 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPMP}), 4.26(1 \mathrm{H}, \mathrm{br}$ d, $J=15.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), 4.09-4.13 ($2 \mathrm{H}, \mathrm{br}, \mathrm{CHCO}_{2} t-\mathrm{Bu}$ and ArCH_{2}), $3.98(1 \mathrm{H}, \mathrm{br}, \mathrm{C} \underline{\mathrm{HOH}}), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.60\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.54\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $1.49(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.45(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,158.7,158.1$, $156.6,130.4,129.0,128.5,123.5,114.3,113.8,83.0,81.3,70.5,61.6,55.4,55.1,52.5,51.9$, 48.8, 28.3, 27.9 ppm; IR (KBr) 3373, 2976, 2932, 1701, 1514, 1441, 1414, 1367, 1248, 1159, 1036, $833 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NaO}_{8}$: 594.2786 ([M+Na] ${ }^{+}$), Found 594.2784 $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \cdot[\alpha]_{\mathrm{D}}{ }^{27} 52.3^{\circ}\left(c 0.17, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)$.

To a solution of oxalyl chloride ($29.4 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DMSO ($45.4 \mathrm{~mL}, 0.64 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring for 15 min , a solution of epi-11 ($89.6 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 1 h and then treated with N, N-diisopropylethylamine ($287 \mu \mathrm{~L}, 1.6 \mathrm{mmol}$) at the same temperature. The reaction mixture was stirred for 3 h and quenched by addition of water. Extractive workup was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents and purification of the residue by column chromatography on silica gel (ethyl acetate/hexane $=2: 1$ as eluant) gave ($4 S, 5 S$)-5-(2'-N-(tert-butoxycarbonyl)- N-(4-methoxybenzyl)aminoacetyl)-1-(4-methoxyphenyl)-2-oxoimidazolidine-4-tertbutyl carboxylate (12) ($87.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.2:1 ratio of rotamers: $\delta 7.24(1.1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21(0.9 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.98(0.9 \mathrm{H}, \mathrm{d}, J=$ 8.8 Hz, Ar-H), $6.95(1.1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.82-6.85(2 \mathrm{H}, \mathrm{m}, ~ A r-H), 6.75-6.79(2 \mathrm{H}, \mathrm{m}, ~ A r-$ H), 5.46 (0.45 H , br, CONH), 5.39 (0.55 H , br, CONH), 4.93 ($0.55 \mathrm{H}, \mathrm{d}, J=3.6, \mathrm{~Hz}, \mathrm{CHCO}$), 4.80 $(0.45 \mathrm{H}, \mathrm{d}, J=3.6, \mathrm{~Hz}, \mathrm{CHCO}), 4.39\left(0.45 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.35(0.55 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 4.24\left(0.45 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.23\left(0.55 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.18(0.55 \mathrm{H}$, d, $\left.J=3.6 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 4.10\left(0.55 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CO}\right), 4.03(0.45 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 3.87\left(0.45 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.82\left(0.55 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.79$
$\left(6 \mathrm{H}, \mathrm{s}, 2\left(\mathrm{OCH}_{3}\right)\right), 3.74\left(0.45 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{CHCO}_{2} t-\mathrm{Bu}\right), 1.49(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.47(4.95 \mathrm{H}, \mathrm{s}, t-$ $\mathrm{Bu}), 1.37(4.05 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.0$, 201.6, 168.4, 168.2, 158.8, $158.8,157.5,156.5,156.4,155.3,155.0,130.7,130.4,129.7,128.9,128.7,128.4,122.0,121.9$, $114.4,114.3,113.7,113.7,84.1,83.8,80.6,80.4,65.3,55.4,55.3,55.2,55.1,53.9,53.6,53.6$, 52.4, 52.2, 51.1, 50.2, 28.3, 28.1, 27.8 ppm ; IR (KBr) 3402, 2970, 1751, 1706, 1690, 1518, 1437, 1369, 1308, 1246, 1159, 1132, 1034, $827 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{NaO}_{8}$: $592.2629\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $592.2632\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \cdot[\alpha]_{\mathrm{D}}{ }^{27} 45.9^{\circ}\left(c 0.15, \mathrm{CHCl}_{3},>99 \%\right.$ ee $)$.

To a solution of $12(87.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (0.4 mL) and toluene (1.6 mL) was added freshly prepared 0.5 M ether solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(900 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred at the same temperature for 6 h and then quenched with 10% citric acid. The aqueous phase was extracted with ethyl acetate. The organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=3: 1$ as eluant) to afford $\left(4 S, 5 S, 1^{\prime} R\right)-5-\left(2^{\prime}-N\right.$-(tert-butoxycarbonyl)-$N$-(4-methoxybenzyl)amino-1'-hydroxyethyl)-1-(4-methoxy-phenyl)-2-oxoimidazolidine-4-tert-butyl carboxylate (11) ($45.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 53 \%$) and epi-11 ($37.7 \mathrm{mg}, 0.066 \mathrm{mmol}, 44 \%$): 11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.05(2 \mathrm{H}, \mathrm{br}, \mathrm{Ar}-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}), 4.30(2 \mathrm{H}, \mathrm{br}), 4.21(3 \mathrm{H}, \mathrm{br})$, $3.79(8 \mathrm{H}, \mathrm{br}), 3.45\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.99\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.46(18 \mathrm{H}, \mathrm{s}, 2(t-\mathrm{Bu}))$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,158.8,158.3,157.7,156.9,129.9,129.2,128.6,125.0$, $114.3,113.8,83.0,81.1,70.0,63.0,55.4,55.1,52.2,51.7,50.2,28.3,27.9 \mathrm{ppm}$; IR (KBr) 3431, 2976, 2932, 1697, 1514, 1456, 1414, 1367, 1248, 1159, $1036 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NaO}_{8}: 594.2786\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found $594.2786\left([\mathrm{M}+\mathrm{Na}]^{+}\right) .[\alpha]_{\mathrm{D}}^{27} 23.5^{\circ}\left(c 0.16, \mathrm{CHCl}_{3}\right.$, $>99 \%$ ee).

Lactam 6. Route A (from 10). A solution of $\mathbf{1 0}$ ($144 \mathrm{mg}, 0.31 \mathrm{mmol}$) in formic acid $(1.5 \mathrm{~mL})$ was heated to $60^{\circ} \mathrm{C}$ and stirred for 8 h under argon atmosphere. The solvents were removed under reduced pressure, and the residue was evaporated with toluene twice to remove the residual formic acid completely. The resulting solid was dissolved in DMF (3 mL) and triethylamine ($109 \mu \mathrm{~L}$, $0.78 \mathrm{mmol})$ and DPPA ($87.7 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was allowed to warm to room temperature and stirred for 20 h . The resulting solution was poured into water and extracted with ethyl acetate. The organic extracts were washed with brine and
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents and purification of the residue by column chromatography on silica gel (ethyl acetate/hexane $=6: 1$ as eluant) gave $6(80.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 65 \%)$.

Route B (from 11). Preparation of $\mathbf{6}$ from 11 was performed in a similar manner to that described above (Route A) (61%): 6: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.16(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $5.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}), 4.69\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{dd}, J=12.8,1.2 \mathrm{~Hz}$, $\mathrm{CHC}=\mathrm{O}), 4.43(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOH}), 4.29\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J=12.8,2.4$ $\mathrm{Hz}, \mathrm{CHNPMP}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, J=14.0,5.6 \mathrm{~Hz}$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\right), 3.35\left(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\right), 2.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,160.8,159.0,157.7,130.0,129.4,127.9,124.8,114.5,114.0,62.4,61.1$, 55.5, 55.2, 53.2, 50.1, 49.5 ppm ; IR (KBr) 3425, 3287, 2932, 1717, 1641, 1514, 1300, 1244, 1177, 1030, $826 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}: 398.1711\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found 398.1709 $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \cdot[\alpha]_{\mathrm{D}}{ }^{27}-87.0^{\circ}(c 0.20, \mathrm{MeOH},>99 \%$ ee $)$. The absolute configuration was determined, after protection of hydroxyl moiety $\left[(R)\right.$ - and (S)-MTPA-Cl, triethylamine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$], by Mosher's method. The relative configuration was assigned by ${ }^{1} \mathrm{H}$ NOE measurement as shown below.

observed

not observed
(\boldsymbol{R})-MTPA-lactam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.13(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.06(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=$ 8.8 Hz, Ar-H), $5.67(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOMTPA}), 5.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}), 4.56(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.25(1 \mathrm{H}, \mathrm{dd}, J=13.2,1.2 \mathrm{~Hz}, \mathrm{CHC}=\mathrm{O}), 4.06(1 \mathrm{H}, \mathrm{dd}$, $J=13.2,2.4 \mathrm{~Hz}, \mathrm{CHCH}(\mathrm{OMTPA})), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.15.2,5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) \mathrm{ppm}$.
(\boldsymbol{S})-MTPA-lactam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 7.16(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.94(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{d}, J=$ $9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOMTPA}), 5.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}), 4.53(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}$,
$\left.\mathrm{ArCH}_{2}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.23(1 \mathrm{H}, \mathrm{dd}, J=13.2,1.6 \mathrm{~Hz}, \mathrm{CHC}=\mathrm{O}), 4.01(1 \mathrm{H}, \mathrm{dd}$, $J=13.2,2.4 \mathrm{~Hz}, \mathrm{CHCH}(\mathrm{OMTPA})), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.15.2,5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.43\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) \mathrm{ppm}$.

