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Abstract: High-efficiency utilization of CO2 facilitates the reduction of CO2 concentration in the
global atmosphere and hence the alleviation of the greenhouse effect. The catalytic hydrogenation of
CO2 to produce value-added chemicals exhibits attractive prospects by potentially building energy
recycling loops. Particularly, methanol is one of the practically important objective products, and the
catalytic hydrogenation of CO2 to synthesize methanol has been extensively studied. In this review,
we focus on some basic concepts on CO2 activation, the recent research advances in the catalytic
hydrogenation of CO2 to methanol, the development of high-performance catalysts, and microscopic
insight into the reaction mechanisms. Finally, some thinking on the present research and possible
future trend is presented.

Keywords: carbon dioxide; hydrogenation; heterogeneous catalysis; methanol synthesis; catalysts;
reaction mechanism

1. Introduction
1.1. Background

CO2 can be used as condensing agent (dry ice), protective gas for fruit preservation,
fizzy gas in carbonated drinks, solvent for homogeneous catalysis (in a supercritical state),
and reactant for the mineralization and carbonate-based chemicals [1,2]. In recent decades,
booming research interests in CO2 were stimulated by its greenhouse effect on global
climate change [3]. The global atmospheric CO2 has been speedily rising since the 1950s
and has doubled nowadays (212 ppm in 1958 vs. 445 ppm in 2021) [4]. Another doubling
was predicted, according to the model of the high emission scenario, to be reached by
the year 2100 [5]. The greenhouse effect of atmospheric gases is originated from their
absorption of infrared (IR) irradiation from the earth’s surface. Any IR-active molecule
such as H2O, CH4, CO2, and NOx can be a candidate for greenhouse gases with the
ability to absorb photons depending on the dynamic transition dipole and the freedom
of vibrations [5]. An exception is H2O, of which the natural greenhouse effect has made
the earth’s temperature appropriate for its biosystem, and equilibrium has been reached
because of the huge surface of oceans [5]. Among other greenhouse gases, CO2 plays the
dominant role because of its overwhelming emission related to modern human life [6].
Control of CO2 emission is urgent to alleviate the greenhouse effect. In recent years, carbon
capture and storage (CCS) technologies have been developed to separate CO2 from either
chemical processes or combustion products, followed by recycling or storage [2]. Recently,
CO2 capture directly from the air also caught some scientific and practical interest [7,8].
However, though effectively reducing the emission of CO2 to some extent, CCS does not
provide the final solution because of the high cost and potential risk of leakage. Conversion
of the captured CO2 to value-added chemicals, in this situation, draws the CO2 back to
carbon recycling, providing a sustainable solution [9].

As the highest oxidation state of carbon element, CO2 shows significant thermody-
namic stability with the formation enthalpy of 396 kJ/mol [10]. Therefore, converting CO2
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to thermodynamically more stable chemicals such as Na2CO3, NaHCO3, NH4HCO3, and
salicylic acid provides a relatively feasible way for manufacturers to deal with massive
CO2 emissions [11–13]. An alternative way is to convert CO2 to energetically undesired
but value-added chemicals such as methanol [14–16], methane [17–19], and hydrocar-
bons [20–24], in processes in which excess energy must be injected into the CO2 molecules.
The candidates possessing energy are generally fossil fuels (petroleum, coal, and natural
gas) or renewable resources (solar energy, wind energy, hydropower, geothermal power,
biomass energy, etc.). For instance, the following reaction:

CO2(g) + 2H2(g)→ CH3OH(g) + H2O(g) ∆H = −49.3 kJ/mol

is thermodynamically favorable. Therefore, technically, the activation (hydrogenation) of
CO2 suffered more likely from kinetics instead of thermodynamics. Similarly, the value
of the extremely high bond energy (about 750 kJ/mol for each C=O bond) makes little
sense unless a thorough decomposition in the gas phase is considered. The limited use of
CO2 in the chemical industry, however, is mainly due to the consideration of economic
factors, such as the investment of equipment, the cost of H2 production, the low yields
of methanol, and accompanied CO2 emission. Particularly, when renewable H2 can be
produced on a large scale, the hydrogenation of CO2 will attract more attention from the
industry [25].

1.2. Bonding Properties and Activation of CO2

A neutral CO2 molecule exhibits a linear geometry with a carbon–oxygen bond length
of 1.17 Å [26]. Figure 1 shows the Walsh diagram of CO2 orbitals, which gives the correlation
between the OCO angle and orbital energies [1]. The highest occupied molecular orbital
(HOMO) is composed of 1πg contributed exclusively from oxygen 2p orbitals. The lowest
unoccupied molecular orbital (LUMO) is a hybrid 2πu. As an electron is transferred to
the LUMO of CO2, the molecule tends to bend according to the change in energy of each
orbital. For instance, the CO2

− anion shows an equilibrium OCO angle of 135◦ and can be
stabilized kinetically (with the activation barrier of 0.4 eV), although its energy is 0.5 eV
higher than that of a neutral CO2 molecule [27,28].

CO2 molecules can be activated on either metal or oxide surfaces. On the metal sur-
face, electrons in the metal are transferred to physisorbed CO2 resulting in a chemisorbed
anionic CO2

δ− which was thought to be the precursor for CO2 dissociation and carbonate
formation [29]. This process, however, is often accompanied by high activation barrier
with the value depending on the metal’s work function [1,30]. Steps [31,32], alkali metal
promotions (e.g., K, Na) [33,34], coadsorption (e.g., H, O) [35,36] may facilitate the elec-
tron transfer. On oxide surfaces, CO2 adsorption becomes more complicated due to the
amphoteric nature of CO2 and the structural and electronic complexity of oxide surfaces.
In general, the carbon atom of the CO2 molecule, which is more electropositive, tends
to bond to the Lewis basic sites (usually the oxygen sites), and the oxygen atoms of the
CO2 molecule to the Lewis acidic sites (usually the cationic sites) [37,38]. As a result, a
common adsorbed surface species, besides a physisorbed CO2, is carbonate with the ge-
ometry of monodentate, bidentate, or even a tridentate, depending on the surface atomic
arrangement [39]. For instance, on an oxygen terminated surface, only monodentate
carbonate is formed, while bidentate species is usually obtained on mixed-terminated or
defective surfaces [40].

The first step of CO2 activation is typically the adsorption of CO2 on catalyst surfaces
which lowers the total energy of the system. The binding energy of CO2 to the surface
strongly influences the coverage of CO2 on the catalyst surface, as well as the reaction
barrier [41]. Stronger binding of CO2 on the catalyst’s surface promotes the surface coverage,
but more energy must be injected to activate the intermediate. Therefore, the activation of
CO2 makes sense only if a whole reaction is considered.
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Figure 1. Walsh diagram of CO2 orbital energies in linear and bent geometries. Reprinted with per-
mission from [1]. Copyright 1996 Elsevier. 
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permission from [1]. Copyright 1996 Elsevier.

1.3. Conversion Route of CO2 to Value-Added Chemicals

The possible catalytic conversion routes are shown in Figure 2, and the representative
reactions along with the typical catalysts are summarized in Table 1. The ultimate products
are distributed from methane and formic acid to hydrocarbons (light olefins, liquefied
petroleum gas (LPG), gasoline, aromatics, etc.). The most conspicuous intermediates are
CH3OH and CO, owing to the relatively mature technologies of methanol to hydrocarbons
(MTH) (including methanol to olefin (MTO), methanol to aromatics (MTA), methanol to
gasoline (MTG), etc.) and Fischer Tropsch synthesis (FTS) adopted in the current chemical
industry. Methanol often serves as the starting feedstock for several useful chemicals such
as gasoline, dimethyl ether, oxymethylene ethers, or as an additive or fuel in engines and
fuel cells [42,43]. Recently, methanol was proposed to be the candidate alternative to oil
and gas to generate a “methanol economy” [44]. In this situation, the hydrogenation of CO2
to produce methanol would be one of the key reactions for building energy recycling loops.
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Table 1. Detailed reactions shown in Figure 2.

Symbol Representative Reactions Reaction Equations Typical Catalysts and References

1© Reverse Water Gas Shift (RWGS) CO2 + H2 → CO + H2O
∆H = 41.5 kJ/mol

Cu/ZnO/ZrO2/Ga2O3 [45]
Carbon FY5 catalyst [46]

2© CO2-Based Methanol Synthesis CO2 + 3H2 → CH3OH + H2O
∆H = −49.5 kJ/mol

Cu-based catalysts [14]
In2O3 based catalysts [16]

3© CO2-Based Fischer-Tropsch Synthesis
(CO2 FTS)

CO2 + 2H2 → (-CH2-) + H2O
∆H = −111 kJ/mol

Fe-Co catalyst [22], xFeyKzCo(Ru)
[21] Mn-Fe-O nanocomposites [47]

4© Dry Reforming of Methane (DRM) CO2 + CH4 → 2CO + 2H2
∆H = 247.1 kJ/mol

Ni/ZSM-5 [48]
Ag-La/pCNNT [49]

5© CO2 Methanation CO2 + 4H2 → CH4 + 2H2O
∆H = −165.0 kJ/mol

Ni/CeO2 [17,19]
Ni-M/Al@Al2O3 [18]

6© CO2-Based Formic Acid Synthesis CO2 + H2 → HCOOH
H = −31.2 kJ/mol

Cu/ZnO/Al2O3 [50]
Pb2O [51]

7© CO2-Based Dimethyl Ether Synthesis

CO2 +3H2 → CH3OH+ H2O
∆H = −49.5 kJ/mol

2CH3OH→ CH3OCH3 + H2O
∆H = −23.5 kJ/mol

CuO-Fe2O3-CeO2/HZSM-5 [52]
modified Cu/ZnO/Al2O3 [53]

8© Methanol to Hydrocarbons (MTH)

2CH3OH→ C2H4 + 2H2O
∆H = −11.72 kJ/mol

3CH3OH→ C3H6 + 3H2O
∆H = −30.98 kJ/mol

SAPO-34/HZSM-5 [54]
SAPO-34 [55]

9© Methanol Synthesis from Syngas CO + 2H2 → CH3OH
∆H = −90.4 kJ/mol

Topsøe MK-121 [56]
Cu/ZnO/Al2O3 [14]

10© CO-Based Fischer-Tropsch Synthesis
(CO FTS)

CO + 2H2 →(-CH2-) + H2O
∆H = −152 kJ/mol

Iron-based catalysts [57]
Cobalt-based catalysts [58]
Carbon-based catalysts [59]

11© Dimethyl ether to Hydrocarbons nCH3OCH3 → 2n[CH2] + nH2O
∆H < 0 ZSM-5 [60]

2. Recent Advances in Catalyst Research for CO2 Hydrogenation to Methanol

The main formal difference between the methanol synthesis from CO2 hydrogenation
and CO hydrogenation is the formation of H2O vapor in the products, as shown in Table 1.
The catalysts for catalytic hydrogenation of CO2 to methanol along with the recently
reported reaction promoters are summarized in Table 2. For Cu/ZnO/Al2O3 catalyst, the
presence of water vapor was reported to cause a notable weakening of the stability of the
Zn promoter or surface Zn-Cu alloy [61–63]. In addition, despite the fact that the WGS
reaction is beneficial to the CH3OH synthesis from syngas (mainly CO), its reverse reaction
converts CO2 to CO, lowering the yield of methanol [61]. Therefore, a good catalyst for
CO2 hydrogenation to produce methanol must be stable under high water partial pressure
and superior against RWGS reaction [64], though water vapor was thought to have a strong
influence on the methanol selectivity [65].

Table 2. Summarized catalysts for CO2 hydrogenation to methanol.

Catalysts P (MPa) T (◦C) CO2:H2
WHSV

(mL·g−1h−1)
ConvCO2

(%)
Sel.CH3OH

(%)
STYCH3OH

g·gcat−1·h−1 Ref.

1 wt%
AuCuO/CeO2

3 240 1:3 a 6.7 29.6 a [66]

CuO-ZnO/Al2O3 1 227 1:6 684 13.7 74 a [67]

Cu/CeO2 3 250 1:3 30,000 1 53 0.045 [68]

60 wt% Cu/AlCeO 3 260 1:3 14,400 ~17 b ~45 b 0.381 [43]
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Table 2. Cont.

Catalysts P (MPa) T (◦C) CO2:H2
WHSV

(mL·g−1h−1)
ConvCO2

(%)
Sel.CH3OH

(%)
STYCH3OH

g·gcat−1·h−1 Ref.

Cu-ZrO2 1 230 1:3 50,000 1.6 72.2 ~0.017 b [69]

CuZnZr/CuBr2 5 250 1:3 3000 10.7 97.1 ~0.1 b [70]

0.5% CuZnZr 4.5 290 1:3 10,800 9.5 76 ~0.28 b [71]

co-
RhIn/(5In5Al)O 4.5 270 1:3 36,000 7.2 90.8 0.84 [72]

CuZnAlCe 3 250 1:3 12,000 14.2 37.8 0.213 [73]

20% ZnO-ZrO2 2 320 1:3 24,000 6.4 78.5 0.413 [74]

inverse-ZrO2/Cu 3 220 1:3 48,000 <5 ~70 0.524 [75]

3DOM
Cu-ZnO-ZrO2

4 180 1:3 18,000 3.5 98 0.217 [65]

CuO/Ce0.4Zr0.6O2 3 220 1:3 10,000 7 96.4 a [76]

In2O3 4 200 1:4 9000 0.15 100 ~0.004 b [77]

In2O3/Co3O4 5 285 1:4 15,600 17.3 75 0.65 [78]

In2O3/ZrO2 5 300 1:4 20,000 5.2 99.8 0.295 [79]

Auδ+-In2O3−x 5 300 1:4 21,000 11.7 67.8 0.47 [80]

P-In2O3 3 300 1:3 18,000 <3 84.5 0.135 [81]

50 wt%
In2O3/Co/C-N 2 300 1:3 3000 9.5 88.4 0.0801 [82]

10 wt% Ir/In2O3 5 300 1:4 21,000 17.7 70 0.765 [83]

Au/In2O3-ZrO2 5 300 1:4 21,000 14.8 70.1 0.59 [84]

Rh/In2O3 5 300 1:4 21,000 17.1 56.1 0.5448 [16]

GaZrOx (27%) 3 330 1:3 24,000 <9 <72.7 <0.61 [85]

Bi-MnFe2O4 0.1 220 1:3 22,000 a 22 61 a [86]

Cu-Zn-Al-K 3 240 1:4 2400 a 14 96 0.461 [87]

CuIn-350 3 280 1:3 7500 11.4 80.5 0.197 [88]

Ga3Ni5/SiO2 0.1 200 1:3 a ~1.2 b 94 ~0.075 b [89]

MoS2 5 180 1:3 ~3000 b 12.5 94.3 0.13 [90]

ReOx/TiO2 10 200 1:4 4 18 98 7.913 [91]

Pt/HxMoO3−y 4 200 1:3 a 25 33 0.049 [92]

PdZn/ZnO/SiO2 5 260 1:3 60,000 3.3 65.3 0.443 [93]

ZnOx/ZrO2 2 300 1:3 9000 ~6 b 75.1 ~0.12 b [94]

PdZn/ZnO/ZnFe2O4 5 290 1:3 21,600 13.94 55.02 0.593 [95]

MoP/ZrO2 4 250 1:3 ~19,200 b 1.4 55.4 ~0.05 b [15]

a Not available. b Estimated based on the data present in the publication.

2.1. Cu-Based Catalysts

Cu-based catalysts, especially Cu/ZnO/Al2O3 (e.g., typical weight composition of
CuO:ZnO:Al2O3 being 60:22:8 adopted by ICI Ltd., London, UK), were originally used as
the catalyst for industrial methanol synthesis from syngas (CO, CO2, and H2) at ~250 ◦C
and 50–100 bar [96–98]. CO2 was considered the main carbon source for methanol [99,100],
which is possibly a hint that Cu/ZnO catalyst could also be active for methanol synthesis
from the hydrogenation of pure CO2. Nowadays, Cu-based catalysts are still the hotspots
in the research field of CO2 hydrogenation to produce methanol [101] thanks to their all-
around unique performance over others. Despite many controversies in understanding
the reaction mechanism of commercial Cu/ZnO/Al2O3 catalysts, progress in catalyst
development in recent years has been conspicuous [98,101–106].
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The Cu/ZnO catalyst has been thought “a prototype for studying complex promo-
tional interactions in catalysis” [106]. Indeed, both Cu and ZnO have certain activity
for methanol synthesis from both CO and CO2, while only their mixture shows superior
performance [97,107]. The consequence of the mixture can be: (1) gas-dependent mor-
phological changes of the active component; (2) support-induced strain; and (3) strong
metal–support interaction (SMSI) effect [106]. The consequence includes well-dispersed
and stabilized Cu on ZnO, partially oxidized Cu species, creation of oxygen vacancies [108],
and formation of ZnO–Cu interface and Zn–Cu alloy [98,106]. Number of strategies were
designed revolving around modifying the intrinsic activity of copper in the catalyst, in-
cluding development of new synthesis methods [109–116], adoption of various support
materials [68,115,117,118], and promoters [87,119,120] to enable new structures and mor-
phologies [68,112,121,122], more homogeneous and stable particles size [123,124], tunable
metal–oxide interface [125–128], etc.

2.1.1. Preparation Methods

A selective synthesis method was adopted by Tada et al. to prepare an amorphous
CuaZr1−aOb catalyst [111]. The method was originally based on an incipient wetness
impregnation, followed by drying and calcination (see Figure 3). The main point was
emphasized by low calcination temperature and low metal loading. The low calcination
temperature enables the formation of interfacial sites between metal and support that were
supposed to be the active sites for CO2-based methanol synthesis. The low metal loading
(up to the solubility limit of metal in oxide support) can essentially prevent the formation of
crystalline CuO particles and tune the interfacial sites between metal and supports during
H2 reduction.
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Yu et al. compared the performance of Cu/SiO2 catalysts prepared by the ammo-
nia evaporation (AE) method and flame spray pyrolysis (FSP) method [112]. The high
temperature in the FSP method facilitates high specific surface area and the formation of
mixed oxides and is therefore suited for modulating metal–support interactions [129,130].
Specifically, a distorted Cu-O-Si structure formed in the Cu/SiO2 stabilizes Cu+ species,
which are closely correlated with the formation of intermediates and methanol. As a result,
the FSP sample contains 5 times higher surface Cu+ species than in the AE sample, leading
to a significant enhancement of methanol selectivity. By comparison, Cu-based catalysts
prepared through the aerosol-assisted sol–gel (AASG) process possess rich spherical and
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mesostructured microparticles (see Figure 4 for a schematic view of the AASG process),
achieving highly dispersed open mesopores and promoters (e.g., Zn and Ga) [121]. The
active component (Cu) was directly introduced by impregnation or incorporated in the
precursor solution, which markedly simplifies the synthesis process. The following calcina-
tion leads to the enrichment of dispersed Cu species on the catalyst surface. The catalytic
activity of resulted catalysts was ascribed to the formation of the sites that are active for
methanol synthesis and inactive for reverse water gas shift reaction. The formation of the
active sites was originally promoted by the structure promoter (e.g., Zn and Ga) and by
the preparation method as well. Likewise, the precursor phase has a strong influence on
the activity of the final catalyst. A Zincian georgeite precursor was adopted to synthesize
Cu/ZnO catalysts and yielded a high content of exposed Cu sites and intimated Cu–ZnO
interface [110].
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Varied from the traditional way to stabilize the structure of Cu/ZnO catalyst, the
compositions, sizes, and geometries of colloidal ZnO and Cu were tuned by the adoption
of phosphinate ligands during synthesis [113]. As a result, the structure of the Cu and
ZnO catalyst was stabilized whilst keeping the surface activity, providing a simple manner
to regulate the stability and activity of the catalyst. In addition, the particle size, surface
area of Cu, and the strongly basic sites in the Cu/Zn/Al/Zr compound were tuned by the
incorporation of different amounts of fluorine (F) ions [109]. With such an approach, the
activity and methanol selectivity can be systematically studied as a function of F content.
An optimized result was obtained with F/Al = 0.83, where both the methanol yield and
methanol selectivity reach the maximum.

The activity of the catalyst is sensitive to the microstructure and morphology. Yang et al.
have prepared a Cu/ZnO@m-SiO2 catalyst with a core–shell structure. The mesoporous
pore of silica confined the size of Cu nanoparticles to a narrow size distribution at around
5 nm, which enables excellent stability against aggregation and deactivation, as well as
superior catalytic activity [124], in line with the experimental findings by van den Berg [131].
Additionally, highly dispersed Cu/graphene catalysts were obtained by the adoption of
metal–organic frameworks (MOFs) template, showing nice CO2 hydrogenation activity.
This was achieved by introducing MOFs (e.g., HKUST-1) agent into the graphene layers,
followed by high-temperature calcination. The ordered structure of MOFs enables the
periodic arrangement of Cu nanoparticles, and the sequent pyrolysis of MOF further
promotes the formation of ultrafine metal nanoparticles [123].
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2.1.2. Role of Supports

The role of supports was originally thought to provide a carrier for well-dispersed
metal particles and structural separation against sintering [97,132]. However, the SMSI
effect was intensively reported in many supported catalysts having a strong influence on
the chemical state, morphology, stability, activity, etc., of the catalysts [132,133]. For CO2
hydrogenation to methanol catalysts, the frequently studied supports were ZnO [98,103],
Al2O3 [97,134], ZrO2 [118], CeO2 [117,130], SiO2 [124], and their mixed oxides [115,135].

For Cu/ZnO catalysts, the deactivation was proposed to follow the oxidation of Cu0

to Cu2+ and the agglomeration of ZnO species [136]. To prevent the possible deactivation,
measures must be adopted to stabilize the structure of ZnO and the oxidation state of
copper, which can be achieved by either regulation of the structural promoter or the
addition of a hydrophobic promoter. Other problems of the Cu-based catalyst are the
sintering of the Cu component during reaction due to the relatively low Hüttig temperature
(407 K) [137,138] and adsorbate-induced dynamic shape changes [139,140]. In this case,
Al2O3 was usually adopted as a structural promoter to elevate the stability, as well as
the dispersion of active components [138,141]. Comparatively, ZrO2 appears to work in
multiple ways [142]. A parallel comparison of Cu supported on CeO2, ZnO, and ZrO2
showed that the SMSI between Cu and CeO2 leads to efficient dispersion of CuO and
sufficient oxygen vacancies on the oxide support that stabilizes the intermediates (e.g.,
formate and methoxide) to produce methanol [117]. High coverage of formate species
inhibits the RWGS reaction and therefore results in a high methanol selectivity [68]. Besides
the SMSI effect, the apparent interactions between nitrogen species and Cu species have
some impact on the microstructure of the resulted catalyst. As a result, the Cu-ZrO2 catalyst
supported on N-doped carbon nanotubes (CNTs) exhibits enhanced CuO dispersion that
consequently promotes the reduction of Cu and hence the catalytic performance [118].

In addition, because of the good thermal stability and flexibly controlled microstruc-
ture, spinel structure materials have attracted research interest to tune the properties of
Cu-based catalysts for methanol synthesis [135,143–145]. For Cu supported on ZnFe2O4
spinel catalyst, the size of Cu nanoparticles was adjustable according to the Cu/Zn and
Zn/Fe molar ratios. Compared with the other Cu/ZnM-0.5 (M = Co, Ni, Sn, Cr, Al, Ga, and
Mn) catalysts prepared with the same procedures, Cu/ZnFe-0.5 exhibits better methanol
synthesis performance. The optimized 33Cu/ZnFe-0.5 catalyst exhibits a high methanol
selectivity of 71.6% and a CO2 conversion of 9.4% at 260 ◦C and 4.5 MPa. Therein, the spinel
structure of ZnFe2O4 was thought to tune the formation of small ZnO adjacent to surface
Cu NPs as well as the SMSI. The ZnFe spinel structure enhances the adsorption of CO and
inhibits the weak and medium-strong CO2 adsorption, resulting in improved methanol
selectivity. The spinel structure catalysts, however, usually have relatively low surface area
because of the high calcination temperature during preparation [135]. Combined with the
microwave–hydrothermal synthesis method [116,135], a Cu1−xZnxAl2O4 precursor with
a high specific surface area was obtained. Thanks to the separation of the spinel lattice,
very small Cu particles (<4 nm) were obtained with the exposed Cu surface area of 8 m2/g.
The catalyst also exhibited good structural stability against aggregation in the following
reduction process. Similarly, tuning of the microstructure and intrinsic catalytic properties
of Cu/ZnAl2O4 was also achieved by adding Cr or Ga [145].

2.1.3. Promoters

The effect of the promoter in the heterogeneous catalyst is structural and electronic
in nature [146,147]. For instance, superior methanol selectivity has been achieved by
potassium (K) promoted Cu-Zn-Al catalyst (CZA-K) [87]. Compared with sodium (Na),
the Cu+/Cu ratio of CZA-K is higher, which enables better CO2 hydrogenation activity.
The formation of surface K-O-(CO)-O species prevents the dissociation of CO2, leading to a
limited RWGS reaction and higher methanol selectivity. Ga2O3 added to Cu-ZnO/HZSM-
5-based catalyst can effectively increase the specific surface area, reduce the size of the
metallic component and maintain a relatively high Cu+ content, all of which were thought
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crucial for the hydrogenation of CO2 [148]. Besides, indium (In) shows a good promotion
effect for Cu/CeO2 catalyst. Loading of 1 wt% indium in Cu/CeO2 leads to a prominent
improvement in methanol yield rate. The promotion effect herein includes smaller Cu
particle size and improved dispersion and stability of Cu [119].

With a surface organometallic chemistry (SOMC) approach, Cu supported on SiO2
with different promoters (Ti, Zr, Hf, Nb, Ta) was successively prepared. Importantly, the
prepared catalysts have the same physicochemical properties, in which condition the role
of the promoter can be compared in parallel. As the promoters were proposed to modify
the Lewis acid strength of interfacial metal sites [120] that correlates with the stability of
the reaction intermediates (formate and methoxy) at the periphery of Cu nanoparticles,
a promoter with stronger Lewis acid metal sites will enable a better catalytic activity over
Cu-based catalyst.

In addition to the exotic promoters, it was also reported that the methanol itself may
act as a promoter over Cu/ZnO/MgO catalyst. With the presence of a small amount of
methanol in the reactant steam, the apparent activation barrier was notably reduced (from
117.9 kJ/mol to 67.9 kJ/mol) [149]. The origin of the methanol promotion effect was not
discussed in the publication but is possibly related to the interaction between methanol
and the catalyst with the self-limiting activity expected.

2.2. In2O3-Based Catalysts

In2O3 was initially reported to show excellent catalytic activity for methanol steam
reforming with extremely high selectivity of CO2 relative to that of Cu/ZnO catalysts [150].
In 2012, Ge’s group published a theoretical paper predicting the methanol synthesis activity
of In2O3 from CO2 hydrogenation [151]. In the following paper, oxygen vacancy (D4) was
deemed to play a key role in the activation of CO2 and stabilizing the key intermediates
involved (see Figure 5 for the structure of ideal and defective In2O3(110) surface) [42].
Since then, a number of works have been published reporting the superior activities and
selectivities of pure In2O3 or In2O3-based catalysts [83,152–161]. A very early experimental
test was performed on commercial In2O3 powders after simple calcination in air at 500 ◦C
for 5 h [158]. The catalyst showed somewhat comparable activities with the reported
Cu-based catalysts. This could be a promising result since only pure In2O3 was applied,
not to mention the unknown specific surface area.
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Various strategies have been adopted to improve the performance, including: (1) noble
metal loading to facilitate H2 activation and formation of oxygen vacancies; (2) introduction
of oxide support to elevate the dispersion and resist sintering of the active component;
(3) adoption of different synthesis methods to achieve novel morphological, electronic,
or interfacial effects.

Recently, Liu’s group has reported an In2O3 supported Ir catalyst (Ir/In2O3) showing
enhanced activity, methanol selectivity as well as stability under the reaction condition
of 300 ◦C, 5 MPa, and 2100 h−1 while keeping the H2/CO2 ratio of 4 [83]. The catalyst
was prepared by precipitation and impregnation method giving a specific surface area
of 68 m2/g. Therein, the interaction between Ir and In2O3 has proposed the key role in
determining the structural characteristics of the catalyst, including a high dispersion of Ir,
avoidance of over-reduction of In2O3, and stabilized oxygen vacancies that were thought to
be the activation center for CO2 molecules. Similarly, Rh supported on In2O3 prepared by
the deposition–precipitation method also exhibited good activity (space-time yield (STY) of
methanol up to 0.5448 gMeOH·gcat

−1·h−1) and selectivity (56.1%) for CO2 hydrogenation to
produce methanol [16]. Higher selectivity was achieved at a lower reaction temperature
due to the unfavorable RWGS at a lower temperature. The introduction of Rh gives rise to
an enhanced H2 dissociation efficiency, and the sequent spillover to In2O3 further promotes
the formation of surface oxygen vacancies. Similar effects were also found for Ni, Pt, Rh,
Au, and Ru supported on In2O3 [16,80,83,155,156,159,161].

Supported catalysts, however, sometimes suffered from sintering even though the
metal nanoparticles were separated physically by support materials [136,152]. Appropriate
interaction between support materials and metal nanoparticles may hinder the sintering to
some extent. Au/In2O3 catalyst prepared by deposition–precipitation method has exhibited
the consequence of the interactions [80]. The Au/In2O3 catalyst yields a methanol selectivity
of 67.8% with the STY of 0.47 gMeOH·gcat

−1·h−1. After a 12 h on-stream test, the conversion
of CO2 dropped by only 0.5%, and the mean particle size of the Au nanoparticles was
slightly changed from 1.0 nm to 1.3 nm, indicating a nice structural stability that was
not seen on other oxide support [80,157]. In addition, anchoring of Pd to the lattice of
In2O3 leads to superior catalytic performance, as well as structural stability. By controlled
coprecipitation, Pd was atomically dispersed in the lattice matrix of In2O3, and the growing
up of the Pd cluster was efficiently hindered [152].

Another challenge of the In2O3 catalysts for CO2 hydrogenation is the structural
instability of In2O3 during reaction [160], which can be overcome by choosing appropriate
support materials [78,79]. Using ZIF-67(Co) MOFs as precursors, Pustovarenko et al.
successively synthesized Co3O4-supported In2O3 composites (In2O3@Co3O4) [78]. After
ZIF-67(Co) was synthesized, it was impregnated with aqueous indium nitrate solution
and then dried under vacuum and calcined under different thermal conditions (including
pyrolysis at 600 ◦C in nitrogen flow and calcination at 400 ◦C in airflow). The obtained
3In@4Co(20) catalyst showed methanol selectivity of 75%, CO2 conversion of 17.3% and
methanol STY of 0.65 gMeOH·gcat

−1·h−1 at 285 ◦C, 50 bar and gas hourly space velocity
(GHSV) = 15,600 h−1 with H2/CO2 = 4:1. On the one hand, the In distribution all over the
metal-organic matrix, micropore, and interparticle surface area can be optimized through
tuning the textural properties of ZIF-67(Co); on the other hand, the formation of mixed
metal carbide, namely Co3InC0.75, formed during the pyrolysis–calcination process can
effectively stabilize high dopant distribution and prevent the formation of large oxide
domains, which is beneficial to shorten the induction time during CO2 hydrogenation.

Martin et al. [79] compared the performance of pure In2O3, In2O3 supported on
monoclinic ZrO2 (In2O3/m-ZrO2) and Cu/ZnO/Al2O3. 100% methanol selectivity was
achieved under industrial conditions (T = 473–573 K, P = 5.0 MPa, GHSV = 16,000 h−1) over
the pure In2O3 (Figure 6). The STY of methanol varies with reaction temperature as well as
the CO concentration in the feed (keeping H2/CO2 = 4:1) (Figure 6), which was ascribed to
the evolution of oxygen vacancies. By comparison, the In2O3 supported on monoclinic ZrO2
significantly improves the yields of methanol because of the promoted formation of oxygen
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vacancies, the better dispersion of In2O3, the resistance against sintering, and possibly
the modulation of the In2O3 activities by a catalyst–support interactions. In addition, the
supported In2O3 showed excellent stability over 1000 h under reaction conditions. For both
In2O3 and In2O3/ZrO2, the oxygen vacancies were emphasized to play a key role in the
adsorption and hydrogenation of CO2 molecules.
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Figure 6. (a) Methanol STY and selectivity for CO2 hydrogenation over bulk In2O3, In2O3/ZrO2

(9 wt% In), and the benchmark Cu-ZnO-Al2O3 catalyst at various temperatures. (b) Methanol STY
over bulk In2O3 as a function of the CO concentration in the feed at 573 K. Reaction conditions:
p = 5.0 MPa, H2/CO2 = 4:1, and GHSV = 16,000 h−1. Reprinted with permission from [79]. Copyright
2016 Wiley.

To further understand the role of ZrO2 support, Frei et al. have prepared a series of In-
Zr mix-oxide (synthesized by coprecipitation method with the molar content of In from 0 to
100%) and supported In2O3 catalysts (on monoclinic and tetragonal ZrO2 by wet impregna-
tion method) [162]. The mix-oxide showed strong electronic interaction between In2O3 and
ZrO2 while displaying inferior CO2 hydrogenation activity, indicating a negligible elec-
tronic contribution of ZrO2 to the activity enhancement. For supported catalysts, however,
the methanol yield was about one order higher for In2O3 supported on m-ZrO2 than that
on t-ZrO2, although on both supports, nuclear magnetic resonance (NMR) results showed
ordered fine epitaxial In2O3. The ultraviolet-visible (UV-vis) spectrum of In2O3/m-ZrO2
shows more absorption in the band gap, indicating a higher density of oxygen vacancies in
the oxide. The m-ZrO2 and t-ZrO2 are slightly different in lattice constant, which makes
the lattice mismatch to In2O3 of 1.2% and 0.5%, respectively. The slightly larger lattice mis-
match between In2O3 and m-ZrO2 tends to generate tensile strain that favors the formation
of more and possibly diverse oxygen vacancies on In2O3 [154,162]. The large discrepancy in
catalytic activity was also attributed to the formation of electron-rich In2O3 because of the
electron transfer from ZrO2 to In2O3 [163], which could be from the same origin. The work
highlighted the role of imperfect epitaxy in the formation of vacancies (defects) and conse-
quent catalytic activities. Also, one must note that the peculiarity of m-ZrO2 over t-ZrO2, in
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this case, cannot be simply transplanted to other systems, e.g., Cu, Ag, and Au supported
on t-ZrO2 were reported to show either better [164,165] or worse [166] CO2 hydrogenation
performance than on m-ZrO2, depending on the preparation method and pretreatment
conditions. Further modification of In2O3/ZrO2 system was achieved by loading active
metals, e.g., via a coprecipitation method to obtain Au/In2O3-ZrO2 catalysts [84]. While
the Au nanoparticles (NPs) in the solid solution facilitate H2 dissociation, the presence of
Zr stabilizes the structure of In2O3 and increases the number of oxygen vacancies, both as
the result of SMSI.

Indeed, the SMSI between Pd and In2O3 may lead to a bimetallic species that causes
weakening of H2 dissociation ability and hence the attenuation of the catalytic activi-
ties [167]. To avoid such alloy formation, Liu’s group prepared the supported catalysts
by introducing Pd-peptide composite, followed by a thermal treatment [168]. Compared
with the conventionally prepared supported catalyst by the impregnation method, the
resulted catalysts showed much better metal dispersion with a mean particle size of 3.6 nm
and improved catalytic activities. The author attributed the improved performance of
Pd-P/In2O3 catalysts to the enhanced H2 activation and more pronounced CO2 adsorption
ability as the result of highly dispersed Pt nanoparticles and the interfacial effect associ-
ated with the preparation method. In addition, atomically dispersed Pt/In2O3 [169] was
also reported to show good stability due to the higher barrier against sintering. A small
amount of Pt loading (0.03–0.58 wt%) by coprecipitation results in anatomically dispersed
doping of Pt in the In2O3 lattice. The Ptn+, though part of which is initially sintered under
reaction conditions, facilitates the formation of oxygen vacancies and also the activation of
hydrogen molecules.

2.3. Nanoalloy Catalysts

Nanoalloy catalysts often exhibit unique electronic structures distinguished from
either component [106,170–172]. As a result, the bonding properties of reactants, intermedi-
ates, or products can be tuned, which finally yields tunable activity and selectivity of the
catalysts. Nanoalloy is formed either in the preparation process or under reaction condi-
tions. The existence of nanoalloy can be validated by the finger-printed diffraction angle
(2θ) in X-ray diffraction (XRD) [173], the alloy state of an element in X-ray photoelectron
spectroscopy (XPS) [174], the specific vibrational mode of probe molecules binding to the
alloy sites [175], or the lattice constant value shown in transmission electron microscopy
(TEM) [88,176]. For a specific reaction, the turnover frequency (TOF) can be tuned by either
the composition or the relative content [177]. Studt et al. compared the catalytic activities
of three Ni-Ga catalysts via incipient wetness impregnation method and Cu/ZnO/Al2O3
catalyst via coprecipitation route as reference [102,177]. The better activity and methanol
selectivity of the Ni5Ga3/SiO2 catalyst were attributed to the suppressed RWGS activity.
While supported on mesoporous nitrogen-rich carbon, Ni5Ga3 was also found to have
good activity for CO2 hydrogenation, though the activity is sensitive to the preparation
method [176]. The author highlighted the freeze drying method that enables uniformly
distributed metal nanoparticles with an average size of 2–5 nm and correlated the formation
of NiGa alloy with the suitable local environment realized by the preparation method.

Shi et al. [88] synthesized Cu-In intermetallic catalyst and investigated the effect of
reduction temperature on the reaction activity. It was found that reduction temperature
exerts a notable influence on the formation of alloy, the crystallite size, and the adsorption
of gases. For instance, CuO was reduced to metallic Cu at 250 ◦C, and the Cu11In9 alloy
appeared when the reduction temperature was above 300 ◦C. With higher reduction tem-
perature, the crystallite size of Cu11In9 increases slightly, accompanied by an attenuated H2
adsorption ability. The CO2 adsorption ability varies notably with increasing the reduction
temperature, and the maximum value was obtained with CuIn-300 (reduced at 300 ◦C),
the trend of which agrees well with the STY of methanol tested at 240 ◦C and 3 MPa
(for the same reason, the CO2 adsorption ability was thought to be the key factor for the
design of Cu/In2O3 catalysts). Besides the temperature, reduction pressure also affects
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the formation of alloy. An X-ray absorption near edge structure (XANES) analysis on the
reduction process of commercially available Cu/ZnO/Al2O3 catalyst at different pressure
(1 mbar–10 bar) showed that Cu–Zn alloys were formed only under reduction pressure
of 100 mbar or above [178]. The maximum reduction rate (simultaneous formation of
copper (0)) is gradually shifted to low temperature by elevating the reduction pressure.
The catalysts started to show methanol synthesis activity when the total pressure was
above 1 bar, along with the increased formation of oxygen vacancies and other structural
distortions in the ZnO phase.

Note that, in this section, we do not really attempt to emphasize the alloy formation in
the activity modification for the metal supported on oxide since their interactions are not
necessarily accompanied by the formation of nanoalloy. For Ni supported on In2O3, the
authors emphasized the role of Ni–In alloy formation in determining its activity [153,172],
while Hensen and coworkers [179] claimed the activity of Ni/In2O3 system stems from the
synergy effect with no alloy formation evidenced. In any case, the formation of nanoalloy
in modifying the electronic structure and hence the catalytic performance provides a novel
idea for catalyst design.

2.4. Other Catalysts

MoS2 and MoS2-based materials have been widely used as lubricants [180], transis-
tors [181], heterogeneous catalysts [182–184], and gas sensors [185]. Due to the special
lattice structure, MoS2 is easily peeled into thin layers or even a single atomic layer [186].
The electronic structure of two-dimensional MoS2 is sensitive to the status of surface vacan-
cies. The sulfur (S) vacancies especially located at edges or in-plane, exhibit completely
different catalytic activities [90,187,188]. The edge S vacancies were thought to catalyze the
CO2 hydrogenation to methane, while the in-plane S vacancies were proven to be ideal
active sites for CO2 hydrogenation to methanol [90]. Over the in-plane sulfur vacancy-
rich MoS2 nanosheets, a methanol selectivity of 94.3% at a CO2 conversion of 12.5% was
achieved at 180 ◦C, and the catalyst was stable for over 3000 h without any deactivation.
The findings enlightened the potential role of the in-plane vacancies in catalysis, and fur-
ther modification of the vacancies-controllable MoS2 material or two-dimensional material
is meaningful.

Due to the unique structural characteristics, MOF materials were featured with highly
ordered and tunable porous structures, high surface area, flexible organic linkers, and
metal centers [189–191]. Accordingly, MOFs can be a template for porous material synthe-
sis [123], supporting materials for nanocatalysts [191,192], or act as catalysts individually
by introducing active metal centers as nodes or located on the MOF linkers [193,194],
as shown in Figure 7. Although many MOFs suffer from high temperature and moisture
conditions, some selected MOF-based catalysts, including UiO-bpy [191], MOF-74 [192],
UiO-67 [194], and UiO-66 [195], were reported to have good thermal stability even under
moisture condition, of which further tuning of the catalytic properties is likely foreseen.

Another promising catalyst catalog for CO2 hydrogenation to methanol is solid solu-
tion catalysts [74,196–198]. Wang et al. have prepared a series of ZnO-ZrO2 solid solution
catalysts through the coprecipitation method [196]. Both methanol selectivity and CO2
conversion reach maximum over the catalyst when Zn/(Zn + Zr) ratio is around 13%.
Methanol selectivity of 86% to 91% with CO2 conversion of 10% was achieved under the
condition of 5.0 MPa, 24,000 mL·g−1h−1 and 320 ◦C. The catalyst was proved to show
long-term thermal and chemical stabilities against sintering and poisoning by, e.g., SO2 or
H2S. Density functional theory (DFT) simulation results suggested that Zn and Zr provide
the adsorption sites for H2 and CO2, respectively. Therefore, a solid solution catalyst takes
advantage of both components to achieve the synergetic effect. Such synergetic effect was
also observed in other solid solution catalysts such as MaZrOx (Ma = Cd, Ga) [197]. Another
interesting aspect of the ZnO-ZrO2 solid solution catalyst is that its activity was reported to
be sensitive to the preparation method (the microstructure) rather than the ZnO/ZrO2 ratio.
The 20% ZnO-ZrO2 catalyst prepared by the evaporation-induced self-assembly process
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exhibited better methanol synthesis activity than that of the coprecipitation method [74].
The enhanced activity of the former was ascribed to its larger specific surface area related
to the mesoporous structure and more active sites for CO2 and H2 adsorption (which are
possibly correlated with the larger surface area).
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3. Mechanistic Understanding

As shown in the above text, large numbers of catalysts have been reported on their
superior activities for CO2 hydrogenation to methanol. They may be synthesized with dif-
ferent methods, from different sorts and proportions of raw materials, treated with different
parameters, or activated under different reaction conditions. Consequently, the resulted
catalysts are featured with varied compositions (at surface region), microscopic morpholo-
gies, particle sizes, surface area, bonding properties, etc., finally leading to unique activity,
selectivity, and stability. One of the practically noticeable consequences is the gradually
improved STY and methanol selectivity in the newest publications. Parallel to the improve-
ment in catalyst development, a comprehensive understanding of the structure–activity
relationship has made a lot of progress based on systematic kinetic analysis, surface science
study, operando techniques, theoretical simulations, etc., although one must note that some
reported mechanisms might be case-dependent and not expanded to other systems.

An active site is one of the most important concepts in the study of catalysis [199–201].
It functions in multiway, providing adsorption sites for reactants, diffusion routes for ad-
sorbate, suitable microscopic geometric matching for the reaction, appropriate bonding to
intermediates, etc. Therefore, an active site is generally not a single point, a special micro or
macrostructure, or a certain element with a specified chemical state, but the combination of
a series of microscopic locations with distinctive functions and special elemental, electronic
and geometric matching for the certain specific catalytic reaction [201]. It is an arduous
task to build up a panorama of an active site, not to mention the difficulties superimposed
by the structural complexity of nano-sized particles and numerous interferential issues.
An alternative and feasible way is to simplify the catalyst system, e.g., to perform reac-
tions on structurally well-defined model catalysts, such as single crystals, polycrystalline,
and thin films [202–204]. In this section, we summarize the works about active sites for
catalytic hydrogenation of CO2 to CH3OH on both modeled single crystals and realistic
powder catalysts.

3.1. The Chemical State of Copper

As early as the 1990s, Goodman et al. [205] have studied the hydrogenation of CO2
to CH3OH over Cu(100) surface under the condition of 500–550 K and 44–102 kPa, with
the feed composition of CO2/CO/H2 being 1/2/12. The activation energy of CO2 hy-
drogenation to CH3OH was estimated to be 73.4 ± 6.0 kJ/mol. No metallic copper was
detected after the reaction, indicating that copper may take effect in an ionic state. They,
therefore, concluded that CO2 only plays a positive role in keeping the copper in a suit-
able oxidation state, and CO provides the carbon source for the reaction. In contrast,
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Chorkendorff et al. [206] worked on the hydrogenation of pure CO2 on Cu(100) under the
reaction conditions of 543 K and 2 bar (CO2/H2 = 1:1) and did not find the oxidized state
of copper after the reaction. However, they obtained similar apparent activation energy of
69 ± 4 kJ/mol. The introduction of CO into the reaction system significantly enhanced the
reactivity by lowering the reduction barrier, where CO was thought not to participate in
the reaction [171,207]. The discrepancy in the carbon source was likely unified by a DFT
and kinetic Monte Carlo (KMC) study [208], which revealed that the main carbon source on
the Cu(111) (metallic Cu) surface is CO2, whereas on Cu2O(111) (ionic Cu) surface is CO.

Besides the chemical state, CO2 hydrogenation to CH3OH is also sensitive to the coor-
dination state of copper. Compared with Cu(100) [205] and polycrystalline Cu foil [209],
Cu(110) [210] exhibits higher CO2 hydrogenation activity in its metallic state. The appar-
ent activation energy for the synthesis of CH3OH on Cu(110) was measured to be about
67 kJ/mol, close to that on Cu(100) [205] and polycrystalline Cu foil (77 ± 10 kJ/mol) [209].
However, the apparent activation energy for RWGS on Cu(110) was measured to be
78 ± 14 kJ/mol, which is significantly smaller than that on polycrystalline Cu
(135 ± 5 kJ/mol) [209]. Likewise, not all surface Cu atoms are active in the reaction. DFT
results of CO2 adsorption over Cu(100) surface have shown that CO2 only dissociates at
step sites [32]. While Kim et al. [211] found that the dissociation occurs only when H2 is
coadsorbed on step sites, where CO2 is activated and converted to CO, surface oxygen (O*),
and surface hydroxyl (HO*). Moreover, these active species were subsequently converted
into carbonate (CO3

2−), bicarbonate (HCO3
−), and formate (HCOO*) species. Formate

species formed on terrace sites were then converted to CH2O(O) on step sites that were
subsequently converted to methoxy and methanol.

In numerous cases, the phase and microstructure are varied dynamically with the
ambient environment, such as pressure, temperature, proportion, duration, etc., making the
determination of the active site unconvincing. In such a situation, in situ or operando spec-
troscopic investigation may tell some more detailed information [212,213]. Ren et al. [214]
provided direct spectroscopic evidence for the microscopic process of CO2 hydrogenation
to CH3OH on Cu(111) surface at room temperature by near ambient pressure X-ray photo-
electron spectroscopy (NAP-XPS), ultraviolet photoelectron spectroscopy (UPS), and low
energy electron diffraction (LEED). They found that CO2 dissociates on Cu(111) surface to
form atomic oxygen, and hence Cu-O species under CO2 + H2 atmosphere, which conse-
quently promote CO2 hydrogenation to CH3OH through formate pathways, as shown in
Figure 8.
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3.2. Strong Metal–Support Interaction

The concept of strong metal–support interaction (SMSI) was initially put forward to
explain the attenuated adsorption ability (e.g., to CO and H2) of the group VIII metals
supported on TiO2 after reduction at high temperature (e.g., 500 ◦C) [215]. The concept
was extended to metal particles supported on reducible transition metals. Even more
generally, the support materials were believed not to be limited to transitional or reducible
if the surface reduction actually occurs (e.g., the oxides of niobium, manganese, and
lanthanum) [216,217]. Later, the SMSI effect was also observed under oxidative treatment
conditions, further extending the generality of the concept [218]. Although the driving force
for SMSI is energetic in nature, it is often accompanied by electron transfer between metal
and support, formation of an intermetallic bond, coating of metal by support or of support
by metal, and behaviors related to them (e.g., formation of oxygen vacancies, presence
of interface and synergetic effect, stabilization of metal component against thermal and
chemical sintering, tunable bonding properties of the catalyst, etc.). Herein, one must note
that the consequences induced by SMSI are not necessarily positive for catalytic properties,
just like the case it came from, but provide the possibility to tune the properties of catalysts.

For the industrially available Cu/ZnO/Al2O3 catalyst, it is generally agreed that ZnO
acts as either support to separate Cu nanoparticles physically or an electronic and structural
promoter to give rise to synergy effect with the latter mainly induced by SMSI [133,215].
The effect of SMSI may include the formation of the positively charged metal compo-
nent, oxygen vacancies (with different types), Cu–Zn alloy, electronic doping of ZnO,
and possibly the consequent stabilization of copper nanoparticles and metal–oxide inter-
faces [98,106,108,219]. A direct demonstration of the SMSI effect on catalytic activity was
carried out by Behrens et al. [98], where Cu steps were thought to be one of the key factors
to facilitate the formation of methanol. The presence of Znδ+ at defect sites was verified
to be the result of the dynamic SMSI effect leading to the partially covered metal particles
with ZnOx. The dynamic change was also accompanied by the alloy formation through
substitution of Zn into the Cu steps, the presence of partially oxidized Znδ+, and the ge-
ometric matching between Cu steps and adjacent ZnOx for stabilizing the intermediates
to methanol.

Fujitani et al. [220] have studied the influence of Zn deposition on the activity of Cu at
523 K and 18 atm and found that moderate coverage of Zn could promote the methanol
synthesis of Cu(111) while poisoning the Cu(110). The promotion effect of Zn on Cu(111)
was ascribed to the preferential formation of ZnOx species on Cu(111) over Cu(110) surface.
This could be indirect evidence to show the effect of SMSI on the activities of Cu/ZnO
catalysts. A further study by Nakamura et al. [221] showed that Cu+-O-Zn species are
formed during CO2 hydrogenation over polycrystalline Cu surface with Zn deposition. The
presence of Cu+-O-Zn species stabilizes the intermediate species (formate and methoxy).
On the physically mixed Cu/SiO2 and ZnO/SiO2 powder catalysts [222], they also found
that ZnO moiety partly migrates onto the Cu surface, creating Cu+-O-Zn active species and
partly dissolves into Cu particles to form Cu–Zn alloys. After deposition of Cu clusters on
ZnO(0001)-Zn terminated surface, a small amount of Cu promoted the reduction of ZnO by
triangular reconstruction for syngas hydrogenation to CH3OH [223]. The metallic zinc leads
to the formation of Cu–Zn alloys, which exhibit an excellent activity for CH3OH formation.

3.3. Interfacial Effect

The Cu–ZnO interface was believed to be a key factor for Cu/ZnO catalysts, which has
been evidenced by the metastable “graphite-like” ZnOx layers on the top of Cu nanoparticles
observed by transmission electron microscopy (TEM) [126]. Palomino et al. [224] also found
that the reactivity of Cu single crystal surfaces was significantly enhanced after the deposition
of ZnO nanoparticles. The activity follows Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100),
where the role of Zn was thought to stabilize the formate intermediate. Kattel et al. [103]
have compared the activity of Zn–Cu alloy and ZnO/Cu model catalysts for methanol
synthesis and found that metallic zinc nanoparticles were transformed to ZnO after running
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CO2 hydrogenation reaction over the Zn/Cu(111) catalyst at 525 K and 550 K. They, there-
fore, concluded that the synergy of ZnO and Cu at interface catalyze the hydrogenation
of CO2, although Nakamura et al. thought the positive valence state of Zn after reaction
could be the result of formate species binding to Zn [104,105,173].

Despite the unsettled divergence in the XPS assignment, the model proposed by
Muhler et al. [125] about the structural change over time on stream (TOS) possibly provided
a unified understanding (Figure 9). The Zn–Cu alloy was initially formed during the
reduction process on Cu/ZnO prepared either by coprecipitation method [225] or by a
physical mixture of Cu/SiO2 and ZnO/SiO2 [221]. The Zn species was then partially
oxidized to Znδ+ at the defective Cu sites under CO2 hydrogenation conditions due to
the SMSI effect [103,104]; Along with diffusion and oxidation of Zn, there may form a
graphitic-like ZnOx layer on Cu [126,226,227]; and finally, thick ZnO layers are formed
after long-term reaction under CO2 hydrogenation conditions [228]. In the whole process,
the initial fast-decreased activity was thought to be the result of the partial restructuring of
ZnO, which influences the stability of the Cu–ZnO interface; the long-term deactivation
was ascribed to the loss of specific surface and Cu–ZnO interface due to the crystallization
of ZnO.
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from left to right: Cu0–Zn0 surface alloy according to Nakamura et al. [230]. Znδ+ species at the
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The interface (or synergetic) effect of Zn–Cu alloy was predicted by DFT simulations
as well, where Zn atoms are located on the Cu surface in the form of single atoms or
clusters [231]. At the Cu–Zn interfaces, both single-atom Zn and Zn clusters (Zn3) can
catalyze CO2 to methanol with the activation barrier notably lower than that on a pure Cu
surface [232]. While the Zn single atom/Cu interface is thermodynamically and kinetically
resistant to oxidation, the Zn clusters can be easily oxidized through the dissociation of
CO2 at interfaces (which is likely the case under industrial reaction conditions), leading
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to an obvious reduction of the reaction barrier. Similarly, the rate of methanol formation
over CeOx/Cu(111) was found about 200 times faster than that on Cu(111), which was
ascribed to the synergetic effect of the interface between two complementary components
of copper and ceria [233]. The ceria components stabilize CO2

− and OH species, pro-
viding complementary chemical properties for Cu catalysts. Such unique matching was
barely observed on pure Cu or Cu–Zn alloys [98,234], which emphasizes the uniqueness
of the metal–oxide interface in property tuning. Such effect was also observed on Cu-
CeO2 [68], Pd-Ga2O3 [235], Au-CeOx/TiO2 [236], Cu/ZrO2 [111,237], Cu/Al2O3 [128],
CuO-In2O3 [88], Au4/In2O3 [156], etc. Overall, the interfacial effect in supported catalysts
is not only a geometric matching but also an electronic effect, just as the fact that it is often
induced by SMSI.

3.4. Size Effect

In some earlier years, the size-dependent activity has been largely reported on gold
and other catalysts [238,239]. The single-atom catalysts reported in recent decades could
belong to the catalog as well. The size effect is mainly an electronic effect, with no exclusion
of the possibility of structural effect since the convergence of surface energy may lead to
different geometry and lattice parameters of the nanoparticles [240]. Pacchioni et al. [241]
have investigated the electronic structure of rutile TiO2(110) thin films ranging from two
to ten layers and observed oscillated band edges (bottom of conduction band (CB) and
top of valence band (VB)) and varied band gaps. When reducing the particle size of metal
clusters, the energy levels of the frontier electron orbitals become more localized, and
loss of metallic properties may occur at some critical dimension. Che and Bennett [242]
roughly estimated the size effect of metal particles by comparing the spacing of electronic
levels of the particle with thermal energy kT and obtained the critical dimension of about
2 nm. Despite the unknown error bar, it gave a reasonable coincidence with the reported
work where the physical and catalytic properties start to change near this dimension.
Goodman and coworkers [239] have studied the size-dependent activity of Au/TiO2 for
CO oxidation and found the activity reaches the maximum at two-atom-thick clusters in
which nonmetallic properties start to appear. The size dependency of Au activity was
thought insensitive to the support materials [238,243].

For small Cu clusters (n = 3, 4, 20) supported on Al2O3 thin films, the catalysts exhibit
strong size- and temperature-dependent activity for CH3OH synthesis [244]. Cu3/Al2O3
shows maximum activity at 175 ◦C, while Cu20/Al2O3 is more active at higher tempera-
tures (275–325 ◦C). For all temperatures tested, Cu4/Al2O3 was the most active one. The
finding differs from the quasi-linear relationship between methanol synthesis activity and
specific Cu surface area for each class of the catalysts (e.g., Cu/ZnO, Cu/Al2O3, and
Cu/ZnO/Al2O3) reported by Kurtz et al. [138]. The discrepancy is caused by the size effect,
possibly through the change in electronic properties, since the Al2O3 is only a structural
promoter in the Cu/Al2O3 catalyst (a synergetic effect is ruled out). Although the grouping
of different catalysts proposed by Kurtz may not represent a general case, the work evi-
dently exhibited that the size effect is not isolated but correlated with the microenvironment
of the active components.

Zhang et al. [245] have worked on a series of Cu clusters with DFT simulations and
observed a linear relationship between the CO2 hydrogenation activity and the adsorption
energies of CO and O on Cu clusters. The latter were thought to correlate with the location
of the d band center that varies with the size of clusters. Note that the maximum cluster
adopted in the calculations consisted of 79 Cu atoms which correspond to a diameter of
about 1.5 nm. For large clusters, Karelovic et al. [246] claimed that the intrinsic activity
for methanol synthesis is independent of the particle size (from 8.5 to 37.3 nm), and the
enhanced methanol selectivity over the catalyst with a large particle size stems from the
suppression of RWGS reaction. In comparison, Van den Berg et al. [131] have studied the
size effect of Cu particles supported on different carriers with the particle size ranging from
2 to 15 nm and concluded that the catalytic activity for CO2 hydrogenation to methanol
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is close correlated with the particle size for each group of the catalysts. Smaller particles
show even worse activity because the reaction takes place only at Cu sites with a special
configuration, e.g., step edge sites, which are not favorable on smaller particles [131]. This
work again demonstrated the impact of the microenvironment that superimposes the
size effect.

Although the size of metal particles can be tuned by changing the loading of metal con-
tent by wet impregnation [246,247] or choosing a porous host with suitable pore size [248],
the possible morphological evolution under reaction conditions (e.g., with high pressure,
high temperature and the presence of reactants) may lead to even more uncontrollable
results [140,142,249]. From this aspect, the MOF template could be a choice to stabilize the
metal particles [123,189].

3.5. Oxygen Vacancies

The less coordination of the atoms at defect sites often makes them more reactive
than bulk or facet atoms [250–252]. The role of such sites has been extensively reported,
such as the stepped Cu in the formation of Cu-Zn alloy, the oxygen vacancies on ZnO for
CO hydrogenation, the in-plane sulfur vacancies for the CO2 dissociation and hydrogen
activation, and oxygen vacancies in In2O3 for CO2 adsorption.

For CO2 hydrogenation over Cu/ZnO catalysts, although the active site was proposed
to be the Cu–ZnO interface, the formation of such interface is always accompanied by the
formation of oxygen vacancies. In other words, it seems that the latter triggers the formation
of Zn–Cu alloy and then the Cu–ZnO interface. Different from the Cu/ZnO system, for
Cu supported on ZrO2, oxygen vacancies functionalize through activating CO2 [118,253]
(One may note that the statement that the activation of CO2 is the rate-determining step for
CO2 hydrogenation or enhanced CO2 adsorption will benefit the hydrogenation activity is
restricted to specific catalyst system and cannot be extended to a general case). On pure
In2O3 catalyst, the oxygen vacancies were thought to activate the CO2 molecule and
stabilize the intermediates [79,83,162]. For the recently reported two-dimensional MoS2
nanosheet catalysts, the in-plane sulfur vacancies were verified to dissociate CO2 to CO,
which is further hydrogenated to methanol. On Cu/CeO2 catalyst [117], excess surface
oxygen vacancies enhanced the stability of Cu in different oxidation states, which leads to
the stabilization of the COOH intermediate at the active sites.

The formation of oxygen vacancies is sensitive to the environment. For instance, the
formation energy of oxygen vacancies on Cu/CeO2(111) ranges from 3.8 to 86.8 kJ/mol
depending on the positions, significantly smaller than that on stoichiometric CeO2(111)
surface [254]. The formation is promoted by loading selected metals such as Ni, Ir, Rh,
Ru, etc., in In2O3 [16,83,161]. The SMSI further stabilizes oxygen vacancies, leading to
enhanced activity and stability. Moreover, the formation of oxygen vacancies on In2O3 is
also facilitated by slightly imperfect lattice mismatching, e.g., supported on monoclinic
ZrO2 [154,162,163].

3.6. Reaction Intermediates and Reaction Pathways

Figure 10 presents the proposed reaction pathways for methanol synthesis over Cu-
based catalysts. CO2 is hydrogenated through two competing pathways via either formate
or carboxyl intermediates [255]. CO was considered as starting material as well since
methanol can be synthesized via CO intermediate. The dissociation of H2 was proposed
to be the initial stage of the reaction, and then CO2 reacts with preadsorbed H, where
the preadsorbed H indeed enhances the binding energy of CO2 on Cu and improves the
probability for further elemental steps.
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Varied from the theoretical prediction, Schumacher et al. claimed that carbonate is
an important intermediate for CO2 hydrogenation on Pt(111) surface strained Cu overlay-
ers [256]. They exposed 0.2 bar H2 to CO2 pre-exposed Cu/Pt(111) surface and observed a
significant loss of surface carbonate species (formed by pre-exposed CO2). An inference
of hydrogenation of carbonate was then drawn based on the experimental findings. The
authors explained the missing formate species in the postreaction XPS spectrum by the
tensile strain, which lowers the decomposition barrier of formate species and possibly
implies structure-sensitive intermediates and reaction pathways.

On Ni/In2O3 catalyst, a typical reaction pathway via formate pathway and RWGS
pathway is shown in Figure 11 [257]. For both Ni4/In2O3_P and Ni4/In2O3_P surfaces, the
RWGS pathway is the preferable route. The introduction of oxygen vacancies significantly
reduces the activation barrier. Hydrogen molecules dissociate over Ni species and then
spill over to the interfacial sites for further reaction.
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4. Conclusions and Outlook for Future Work

A catalytic reaction usually consists of a number of essential steps that occur in series.
A good catalyst is not necessary to catalyze each of the steps but to uniquely reduce the
energy barrier of the rate-determining step or to show the best statistical performance
for all steps, which is generally performed by the active site. The rate-determining step,
however, is not immutable but correlated with a specific catalyst. This is probably one of
the reasons why most of the reported catalysts revolved around a limited number of
composites or elements. Microscopic understanding of the structure–activity relationship
at the elemental level is worthwhile for the rational development of CO2 to methanol
catalysts. However, one must note that, in most cases, an active site is not a single atomic
site with a specific element and chemical state but a series of microscopic locations with
distinctive functions and special elemental, electronic and geometric matching for certain
specific elemental steps. In other words, catalysis is a multidimensional issue. Therefore,
the ultimate aim of the catalyst study is to control the microscopic structure and electronic
structure by varying macroscopic parameters (e.g., temperature, pressure, composition,
synthesis method, etc.). It seems that we are facing a black box on the way of catalyst
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development. Catalytic properties are correlated with the composition, geometry, particle
size, shape, acid–base properties, chemical states, type of promoters, bonding properties, etc.
Particularly, these factors are not isolated but correlative tight or weak, random or regular.
This means, especially for the study on the reaction mechanism, the rule drawn on a catalyst
through systematically changing certain factors might be misled by the concomitant factors.
Conclusions must be drawn with care. In addition, the dynamic structural evolution of
catalysts under reaction conditions brings more complexity to the issue (note that the
structural evolution is not always negative for activity). At this point, operando techniques
would benefit the mechanistic study [258–262]. For the same reason, DFT-derived energy
and activation barriers are sensitive to the coverage of surface species. Kinetic analysis may
reveal more details about the reaction [263–265]. Besides, machine learning has shown its
unique advantages in material science as well as the mechanistic understanding of active
sites, which could be a new branch of catalyst development [266–268].

Significant progress has been made on the development of the catalyst for CO2 hy-
drogenation to methanol, including improving activity, selectivity, stability, microscopic
understanding of the structure-activity relationship, prediction of new catalysts, etc., on
the laboratory scale. The reported STYCH3OH and selectivity per se are high enough for the
industrial application (e.g., a typical STY of methanol from syngas is roughly estimated to
be about 0.5 g·gcat

−1·h−1 [97]). Catalyst development at a larger scale, including synthesis
of catalysts, evaluation of activity and stability (e.g., chemical, mechanical, and thermal
stability), etc., may fasten the industrialization objective.
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Abbreviation

IR Infrared
CCS Carbon Capture and Storage
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
LPG Liquefied Petroleum Gas
MTH Methanol to Hydrocarbons
MTO Methanol to Olefin
MTA Methanol to Aromatics
MTG Methanol to Gasoline
FTS Fischer-Tropsch Synthesis
RWGS Reverse Water Gas Shift
DRM Dry Reforming of Methane
SMSI Strong Metal–Support Interaction
ICI Ltd. Imperial Chemical Industries Ltd.
AE Ammonia Evaporation
FSP Flame Spray Pyrolysis
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MOFs Metal-Organic Frameworks
GHSV Gas Hourly Space Velocity
CNTs Carbon Nanotubes
SOMC Surface Organometallic Chemistry
NPs Nanoparticles
DFT Density Functional Theory
KMC Kinetic Monte Carlo
ML Monolayer
UHV Ultra-High Vacuum
NMR Nuclear Magnetic Resonance
XPS X-ray Photoelectron Spectroscopy
HREELS High-Resolution Electron Energy Loss Spectroscopy
XRD X-ray Diffraction
XANES X-ray Absorption Near-Edge Structure
NAP-XPS Near Ambient Pressure X-ray Photoelectron Spectroscopy
UPS Ultraviolet Photoelectron Spectroscopy
LEED Low Energy Electron Diffraction
TEM Transmission Electron Microscopy
TOF Turnover Frequency
STY Space-time Yield
TOS Time on Stream
CB Conduction Band
VB Valence Band
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