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Catalytic quantum error correction
Todd Brun, Igor Devetak, and Min-Hsiu Hsieh

Abstract—We develop the theory of entanglement-assisted
quantum error correcting (EAQEC) codes, a generalization of the
stabilizer formalism to the setting in which the sender and re-
ceiver have access to pre-shared entanglement. Conventional sta-
bilizer codes are equivalent to self-orthogonal symplectic codes. In
contrast, EAQEC codes do not require self-orthogonality, which
greatly simplifies their construction. We show how any classical
binary or quaternary block code can be made into an EAQEC
code. We provide a table of best known EAQEC codes with code
length up to 10. With the self-orthogonality constraint removed,
we see that the distance of an EAQEC code can be better than any
standard QEC code with the same fixed net yield. In a quantum
computation setting, EAQEC codes give rise to catalytic quantum
codes, which assume a subset of the qubits are noiseless. We also
give an alternative construction of EAQEC codes by making
classical entanglement-assisted codes coherent.

Index Terms—quantum error-correcting code, entanglement,
quantum information theory, and father protocol.

I. INTRODUCTION

Information theory and the theory of error-correcting codes

(coding theory) are intimately connected. Both address the

problem of sending information over noisy channels. The

sender Alice encodes her message as a codeword, sends it

through the channel, and the receiver Bob tries to infer the

intended message based on the channel output.

Information theory (or rather the subfield of Shannon the-

ory) deals with the asymptotic setting of increasingly long

codes, with asymptotically vanishing error probability. The

noisy channel is typically assumed to act independently on

the codeword bits. The fundamental quantity of interest is

the capacity of the channel: the optimal rate (in bits per

channel use) of information transfer. Claude Shannon [1] gave

a remarkable characterization of the channel capacity in terms

of mutual information. Unfortunately, the capacity is achieved

by random coding, which means highly inefficient encoding

and decoding algorithms.

Coding theory deals with the practical finite setting, charac-

terized by a fixed code length, number of encoded bits and

correctable error set. The most popular codes have simple

mathematical properties, such as linearity (a linear combi-

nation of codewords is another codeword), which allows for

efficient encoding. The performance of these codes is then

measured against the optimal performance set by Shannon

theory.
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This relationship carries over to quantum information pro-

cessing. The basic communication task is sending quantum

information over noisy quantum channels. This setting is

also relevant for fault-tolerant quantum computation, because

decoherence can be regarded as a quantum channel connecting

two points in time (rather than space). The first quantum

error-correcting (QEC) code was discovered by Shor [2],

leading to an explosion of research in subsequent years [3],

[4], [5], [6], [7], [8], [9], [10]. Calderbank and Shor [10]

and Steane [7] gave the first systematic way to construct

quantum “CSS” codes from self-orthogonal classical codes

over Z2. These efforts culminated in a general theory of linear

quantum codes, also known as stabilizer codes [8], [11], [12],

[13]. Stabilizer codes are equivalent to classical codes which

are self-orthogonal with respect to the symplectic bilinear

form. These in turn may be constructed from self-orthogonal

classical codes over F4, generalizing the CSS construction [9],

[8].

In [2] Shor also raised the information theoretical question

of characterizing the capacity of a quantum channel for

sending quantum information, subsequently answered by [14],

[15], [16] in terms of coherent information. It comes as no

surprise that coding theory and information theory continue

to inform each other in the quantum setting. The capacity-

achieving quantum codes of [16] have a structure akin to CSS

codes (thanks to their common connection to cryptography).

Concatenated stabilizer codes achieve rates equal to the coher-

ent information evaluated on density operators corresponding

to maximally mixed qubit states encoded by a stabilizer code

[4], [17].

Research has since taken us beyond this most obvious

quantum communication setting. Apart from quantum com-

munication channels, there are other resources to consider,

such as entanglement and classical communication. Great

progress has been made in characterizing optimal tradeoffs

between these resources. For example, the capacity of a

quantum channel for sending classical information assisted by

entanglement (EA capacity) is a simple single letter expression

involving quantum mutual information [18]. In [19] (see also

[20], [21]) a remarkable duality was discovered between

entanglement-assisted quantum communication (the “father”

protocol) and quantum-communication-assisted entanglement

distillation (the “mother” protocol). The two were shown to

generate a whole family of protocols when combined with

the more elementary protocols of superdense coding [22],

quantum teleportation [23] and entanglement distribution [19].

The father side of the family is shown in Figure 1. Quantum

capacity-achieving protocols can be obtained from the father

protocol by combining it with entanglement distribution. In

conjunction with superdense coding, the father protocol gives

rise to EA capacity-achieving protocols. Moreover, the latter
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Fig. 1. The male side of the family tree of quantum Shannon theory [19].

can be made coherent [16], [19], [24], [25], [26] to recover

the father protocol.

Can we reproduce the family in the finite setting of coding

theory? Is it beneficial to do so? In this paper we give

an affirmative answer to these two questions. We develop

a general theory of linear “father” codes or entanglement-

assisted quantum error-correcting (EAQEC) codes. EAQEC

codes turn out to be a rather natural generalization of the

usual stabilizer codes, equivalent to classical symplectic codes.

These codes need not be self-orthogonal: the degree to which

they are not self-orthogonal measures the required amount

of entanglement assistance. Consequently, any linear classical

code can be made into an EAQEC code. This provides a drastic

simplification, allowing the classical theory of error correction

to be imported wholesale [27], [49], [28], [29], [30], [31], [32],

[33], [34], [35].

The idea of using entanglement to assist construction of

QEC codes was proposed in [4], [36]. The authors in [4]

showed how to link a one-way entanglement purification pro-

tocol (1-EPP)—specifically, the one-way hashing protocol—

to the problem of preserving quantum states though quantum

channels, the same goal as standard QEC codes. Analogously,

in [37] the 1-EPP assisted by pure entanglement, or breeding

protocol, can also be linked to EAQEC codes. The authors

of [4] described a technique to turn the entanglement pu-

rification problem (and therefore, also the QEC problem)

into an entirely classical exercise; however, this paper did

not provide any such constructive method relating classical

coding theory to actual QEC codes, due to the mathematical

difficulty of keeping everything in the EPP language. It was

only with the development of the stabilizer formalism that

the connection between classical linear codes and standard

QEC codes became clear. Because of this connection, in fact,

entanglement purification protocols are now generally derived

from QEC codes, rather than the other way around, since QEC

codes can be constructed using ideas from the well-developed

classical theory of error-correcting codes.

The first attempt to construct EAQEC codes in the stabilizer

formalism was by Bowen [38]. He constructed an EAQEC

code from the [[5, 1, 3]] QEC code using two pure maximally

entangled pairs. Still the connection of EAQEC codes to

the stabilizer formalism (equivalently the classical symplectic

codes) is very vague, and this stimulates the work presented

in this paper. We continue the study of [10], [7], [11], [9],

[8] where those papers can not link arbitrary classical linear

codes to QEC codes.

The paper is organized as follows. Section II provides

background on the Pauli group and symplectic algebra. It

also reviews basic quantum strategies for sending classical

information. Section III defines EAQEC codes and determines

the set of errors they can correct. Section IV generalizes

the code construction method of [9], [8] based on classical

codes over F4. Section V regards the right branch of Figure

1: constructing catalytic QEC codes from EAQEC codes.

Section VI regards the left branch of Figure 1: constructing

entanglement-assisted codes for sending classical information

(EACEC codes). These are then made coherent [25], providing

an alternative construction of EAQEC codes. Section VII dis-

cusses bounds on the performance of EAQEC codes. Section

VIII recovers Bowen’s result in our framework. Section IX

updates the table of known codes from [8]. We discuss our

results in Section X.

II. BACKGROUND

In this section we review the properties of Pauli matrices,

and relate them to symplectic binary and quaternary vec-

tor spaces. Our presentation follows Forney et al. [39] and

Hamada [17].

A. Single qubit Pauli group

A qubit is a quantum system corresponding to a two

dimensional complex Hilbert space H. Fixing a basis for H,

the set Π of Pauli matrices is defined as

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
,

Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

The Pauli matrices are Hermitian unitary matrices with eigen-

values belonging to the set {1,−1}. The multiplication table

of these matrices is given by:

× I X Y Z
I I X Y Z
X X I iZ −iY
Y Y −iZ I iX
Z Z iY −iX I

Observe that the Pauli matrices either commute or anticom-

mute. Let [A] = {βA | β ∈ C, |β| = 1} be the equivalence

class of matrices equal to A up to a phase factor.1 Then

the set [Π] = {[I], [X], [Y ], [Z]} is readily seen to form a

commutative group under the multiplication operation defined

by [A][B] = [AB]. It is called the Pauli group.

1It makes good physical sense to neglect this overall phase, which has no
observable consequence.
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We are interested in relating the Pauli group to the additive

group (Z2)
2 = {00, 01, 10, 11} of binary words of length 2

described by the table:

+ 00 01 11 10
00 00 01 11 10
01 01 00 10 11
11 11 10 00 01
10 10 11 01 00

This group is also a two-dimensional vector space over the

field Z2. A bilinear form can be defined over this vector space,

called the symplectic form or symplectic product2 ⊙ : (Z2)
2×

(Z2)
2 → Z2, given by the table

⊙ 00 01 11 10
00 0 0 0 0
01 0 0 1 1
11 0 1 0 1
10 0 1 1 0

In what follows we will often write elements of (Z2)
2 as u =

(z|x), with z, x ∈ Z2. For instance, 01 becomes (0|1). For

u = (z|x), v = (z′|x′) ∈ (Z2)
2 the symplectic product is

equivalently defined by

u⊙ v = zx′ + z′x.

Define the map N : (Z2)
2 → Π by the following table:

(Z2)
2 Π

00 I
01 X
11 Y
10 Z

This map is defined in such a way that N(z|x) and ZzXx are

equal up to a phase factor, i.e.

[N(z|x)] = [ZzXx].

We make two key observations

1) The map [N ] : (Z2)
2 → [Π] induced by N is an

isomorphism:

[Nu][Nv] = [Nu+v].

2) The commutation relations of the Pauli matrices are

captured by the symplectic product

NuNv = (−1)u⊙vNvNu.

Both properties are readily verified from the tables.

B. Multi-qubit Pauli group

Consider an n-qubit system corresponding to the tensor

product Hilbert space H⊗n. Define an n-qubit Pauli matrix

A to be of the form A = A1 ⊗ A2 ⊗ · · · ⊗ An, where

Aj ∈ Π. The set of all 4n n-qubit Pauli matrices is denoted

by Πn. The product of elements of Πn is an element of Πn

2Strictly speaking it is not an inner product.

up to a phase factor. Define as before the equivalence class

[A] = {βA | β ∈ C, |β| = 1}. Then

[A][B] = [A1B1]⊗ [A2B2]⊗ · · · ⊗ [AnBn] = [AB].

Thus the set [Πn] = {[A] : A ∈ Πn} is a commutative

multiplicative group.

Now consider the group/vector space (Z2)
2n of binary

vectors of length 2n. Its elements may be written as u = (z|x),
z = z1 . . . zn ∈ (Z2)

n, x = x1 . . . xn ∈ (Z2)
n. We shall

think of u, z and x as row vectors. The symplectic product

of u = (z|x) and v = (z′|x′) is given by

u⊙ vT = zx′T + z′ xT .

The right hand side are binary inner products and T denotes

the transpose. This should be thought of as a kind of matrix

multiplication of a row vector and a column vector. We use u⊙
vT rather than the more standard uvT to emphasize that the

symplectic form is used rather than the binary inner product.

Equivalently,

u⊙ vT =
∑

i

ui ⊙ vi

where ui = (zi|xi), vi = (z′i|x′i) and this sum represents

Boolean addition. Observe that if u ⊙ uT = 0, these two

vectors are “orthogonal” to each other with respect to the

symplectic inner product.

The map N : (Z2)
2n → Πn is now defined as

Nu = Nu1
⊗ · · · ⊗Nun

.

Writing

Xx = Xx1 ⊗ · · · ⊗Xxn ,

Zz = Zz1 ⊗ · · · ⊗ Zzn ,

as in the single qubit case, we have

[N(z|x)] = [ZzXx].

The two observations made for the single qubit case also hold:

1) The map [N ] : (Z2)
2n → [Πn] induced by N is an

isomorphism:

[Nu][Nv] = [Nu+v]. (1)

Consequently, if {u1, . . . ,um} is a linearly indepen-

dent set then the elements of the Pauli group subset

{[Nu1
], . . . , [Num

]} are independent in the sense that

no element can be written as a product of others.

2) The commutation relations of the n-qubit Pauli matrices

are captured by the symplectic product

NuNv = (−1)u⊙vT

NvNu. (2)

C. Properties of the symplectic form

In this subsection we present two well-known results which

will play a major role in the construction of EAQEC codes.

Together they will enable us to conclude that any independent

subset of the n-qubit Pauli group can be transformed via a

unitary operation into a canonical set whose elements act non-

trivially only on single qubits. Independent proofs of Theorem

1 and 2 are provided in Appendix A and B, respectively, for
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completeness. The reader is advised that the proofs can be

skipped on a first reading without impairing understanding of

the rest of the paper.

A subspace V of (Z2)
2n is called symplectic [40] if there

is no v ∈ V \{0} such that

v ⊙ uT = 0, ∀u ∈ V. (3)

(Z2)
2n is itself a symplectic subspace. Consider the standard

basis for (Z2)
2n, consisting of gi = (ei|0) and hi = (0|ei)

for i = 1, . . . , n, where ei = (0, . . . , 0, 1, 0, . . . , 0) [1 in the

ith position] are the standard basis vectors of (Z2)
n. Observe

that

gi ⊙ gT
j = 0, for all i, j (4)

hi ⊙ hT
j = 0, for all i, j (5)

gi ⊙ hT
j = 0, for all i 6= j (6)

gi ⊙ hT
i = 1, for all i. (7)

Thus, the basis vectors come in n hyperbolic pairs (gi,hi)
such that only the symplectic product between hyperbolic

partners is nonzero. The matrix J = [gi ⊙ hT
j ] defining the

symplectic product with respect to this basis is given by

J =

(
0n×n In×n

In×n 0n×n

)
, (8)

where In×n and 0n×n are the n×n identity and zero matrices,

respectively. A basis for (Z2)
2n whose symplectic product

matrix J is given by (8) is called a symplectic basis. In

the Pauli picture, the hyperbolic pairs (gi,hi) correspond

to (Zei , Xei) – the anticommuting Z and X Pauli matrices

acting on the ith qubit.

In contrast, a subspace V of (Z2)
2n is called isotropic if

(3) holds for all v ∈ V . The largest isotropic subspace of

(Z2)
2n is n-dimensional. The span of the gi, i = 1, . . . , n, is

an example of a subspace saturating this bound.

A general subspace of (Z2)
2n is neither symplectic nor

isotropic. The following theorem, stated in [40] and rediscov-

ered in Pauli language in [41], says that an arbitrary subspace

V can be decomposed as a direct sum of a symplectic part

and an isotropic part.

Theorem 1: Let V be an m-dimensional subspace of

(Z2)
2n. Then there exists a symplectic basis of (Z2)

2n con-

sisting of hyperbolic pairs (ui,vi), i = 1, . . . , n, such that

{u1, . . . ,uc+ℓ,v1, . . . ,vc} is a basis for V , for some c, ℓ ≥ 0
with 2c+ ℓ = m.

Equivalently,

V = symp(V )⊕ iso(V )

where symp(V ) = span{u1, . . . ,uc,v1, . . . ,vc} is symplec-

tic and iso(V ) = span{uc+1, . . . ,uc+ℓ} is isotropic.

Proof: The proof is given in Appendix A where we

describe an algorithm which, by induction, yields the basis

from the statement of the theorem. The idea of the algorithm

comes from Gram-Schmidt orthogonalization procedure for

linear space.

Remark It is readily seen that the space iso(V ) is unique,

given V . In contrast, symp(V ) is not. For instance, replacing

v1 by v′
1 = v1 + uc+1 in the above definition of symp(V )

does not change its symplectic property.

A symplectomorphism Υ : (Z2)
2n → (Z2)

2n is a linear

isomorphism which preserves the symplectic form, namely

Υ(u)⊙Υ(v)T = u⊙ vT . (9)

The following theorem relates symplectomorphisms on (Z2)
2n

to unitary maps on H⊗n. It appears, for instance, in [42].

Theorem 2: For any symplectomorphism Υ on (Z2)
2n there

exists a unitary map UΥ on H⊗n such that for all u ∈ (Z2)
2n,

[NΥ(u)] = [UΥNuU
−1
Υ ].

Proof: An independent proof is given in Appendix B for

completeness.

Remark. The unitary map UΥ may be viewed as a map on

[Π] given by [A] 7→ [UΥAU
−1
Υ ]. The theorem says that the

following diagram commutes

(Z2)
2n Υ−−−−→ (Z2)

2n

[N ]

y
y[N ]

[Π]
UΥ−−−−→ [Π]

D. Encoding classical information into quantum states

In this subsection we review two schemes for sending classi-

cal information over quantum channels: elementary coding and

superdense coding. These will be used later in the context of

quantum error correction to convey information to the decoder

about which error happened.

In the first scheme, Alice and Bob are connected by a perfect

qubit channel. Alice can send an arbitrary bit a ∈ Z2 over the

qubit channel in the following way:

• Alice locally prepares a state |0〉 in H. This state is the

+1 eigenstate of the Z operator. Based on her message

a, she performs the encoding operation Xa, producing

the state |a〉 = Xa|0〉.
• Alice sends the encoded state to Bob through the qubit

channel.

• Bob decodes by performing the von Neumann mea-

surement in the {|0〉, |1〉} basis. As this is the unique

eigenbasis of the Z operator, this is equivalently called

“measuring the Z observable”.

We call this protocol “elementary coding” and write it sym-

bolically as a resource inequality [19], [25], [43], [21], [20]3

[q → q] ≥ [c→ c].

Here [q → q] represents a perfect qubit channel and [c → c]
represents a perfect classical bit channel. The inequality ≥
signifies that the resource on the left hand side can be used in

a protocol to simulate the resource on the right hand side.

Elementary coding immediately extends to m qubits. Alice

prepares the simultaneous +1 eigenstate of the Ze1 , . . . , Zem

operators |0〉, and encodes the message a ∈ (Z2)
m by

applying Xa, producing the encoded state |a〉 = Xa|0〉.
3In [25] resource inequalities were used in the asymptotic sense. Here they

refer to finite protocols, and are thus slightly abusing their original intent.
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Bob decodes by simultaneously measuring the Ze1 , . . . , Zem

observables. We could symbolically represent this protocol by

m [q → q] ≥ m [c→ c].

In the second scheme, Alice and Bob share the ebit state

|Φ〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (10)

in addition to being connected by the qubit channel. In (10)

Alice’s state is to the left and Bob’s is to the right of the ⊗
symbol.

The state |Φ〉 is the simultaneous (+1,+1) eigenstate of the

commuting operators Z ⊗Z and X ⊗X . Again, the operator

to the left of the ⊗ symbol acts on Alice’s system and the

operator to the right of the ⊗ symbol acts on Bob’s system.

Alice can send a two-bit message (a1, a2) ∈ (Z2)
2 to Bob

using “superdense coding” [22]:

• Based on her message (a1, a2), Alice performs the en-

coding operation Za1Xa2 on her part of the state |Φ〉,
producing the state |a1, a2〉 = (Za1Xa2 ⊗ I)|Φ〉.

• Alice sends her part of the encoded state to Bob through

the perfect qubit channel.

• Bob decodes by performing the von Neumann measure-

ment in the {(Za1Xa2 ⊗ I)|Φ〉 : (a1, a2) ∈ (Z2)
2} basis,

i.e., by simultaneously measuring the Z ⊗Z and X ⊗X
observables.

The protocol is represented by the resource inequality

[q → q] + [q q] ≥ 2 [c→ c], (11)

where [q q] now represents the shared ebit. It can also

be extended to m copies. Alice and Bob share the state

|Φ〉⊗m which is the simultaneous +1 eigenstate of the

Ze1 ⊗Ze1 , . . . , Zem ⊗Zem and Xe1 ⊗Xe1 , . . . , Xem ⊗Xem

operators. Alice encodes the message (a1,a2) ∈ (Z2)
2m by

applying Za1Xa2 , producing the encoded state |a1,a2〉 =
(Za1Xa2⊗I)|Φ〉⊗m. Bob decodes by simultaneously measur-

ing the Ze1⊗Ze1 , . . . , Zem⊗Zem and Xe1⊗Xe1 , . . . , Xem⊗
Xem observables. The corresponding resource inequality is

m [q → q] +m [q q] ≥ 2m [c→ c].

Superdense coding provides the simplest illustration of how

entanglement can increase the power of information process-

ing.

III. ENTANGLEMENT-ASSISTED QUANTUM ERROR

CORRECTION

In this section we formally introduce entanglement-assisted

quantum error-correcting codes and prove our main result,

Theorem 6, which gives sufficient error-correcting conditions.

A. The model

Denote by L the space of linear operators defined on the

qubit Hilbert space H. We will often encounter isometric

operators U : H⊗n1 → H⊗n2 . The corresponding superop-

erator, or completely positive, trace preserving (CPTP) map,

is marked by a hat Û : L⊗n1 → L⊗n2 and defined by

Û(ρ) = UρU†.

Fig. 2. A generic entanglement-assisted quantum code.

Observe that Û is independent of any phase factors multiplying

U . Thus, for a Pauli operator Nu, N̂u only depends on the

equivalence class [Nu].
Our communication scenario involves two spatially sepa-

rated parties, Alice and Bob, as depicted in Figure 2. The

resources at their disposal are

• a noisy channel defined by a CPTP map N : L⊗n →
L⊗n taking density operators on Alice’s system to density

operators on Bob’s system;

• the c ebit state |Φ〉⊗c shared between Alice and Bob.

Alice wishes to send k qubits perfectly to Bob using the above

resources. An [[n, k; c]] EAQEC code consists of

• An encoding isometry E = Ûenc : L⊗k ⊗ L⊗c → L⊗n

• A decoding CPTP map D : L⊗n ⊗ L⊗c → L⊗k

such that

D ◦ N ◦ Ûenc ◦ Ûapp = id⊗k,

where Uapp is the isometry which appends the state |Φ〉⊗c,

Uapp|ϕ〉 = |ϕ〉|Φ〉⊗c,

and id : L → L is the identity map on a single qubit. The

protocol thus uses up c ebits of entanglement and generates

k perfect qubit channels. We represent it by the resource

inequality (with a slight abuse of notation [25], [20])

〈N〉+ c [q q] ≥ k [q → q].

Even though a qubit channel is a strictly stronger resource than

its static analogue, an ebit of entanglement, the parameter k−c
is still a good (albeit pessimistic) measure of the net noiseless

quantum resources gained. It should be borne in mind that a

negative value of k − c still refers to a non-trivial protocol.

To make contact with classical error correction it is nec-

essary to discretize the errors. It is well known that for

standard quantum error correction (i.e., that unassisted by

entanglement) it suffices to consider errors from the Pauli

group (see e.g. [13].) We will show this for entanglement-

assisted quantum error correction. This is done in two steps.

First, the CPTP map N may be (non-uniquely) written in terms

of its Kraus representation

N (ρ) =
∑

i

AiρA
†
i .

Second, each Ai may be expanded in the Pauli operators

Ai =
∑

u∈(Z2)2n

αi,uNu.
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Fig. 3. The canonical code.

Define the support of N by supp(N ) = {u ∈ (Z2)
2n :

∃i, αi,u 6= 0}. The following theorem allows us, absorbing

Uapp into Uenc, to replace the continuous map N by the error

set S = supp(N ).

Theorem 3: If D ◦ N̂u ◦ Ûenc = id⊗k for all u ∈ supp(N ),
then D ◦ N ◦ Ûenc = id⊗k.

Proof: The proof, which follows straightforwardly from

the discretization proof in standard QEC case, is given in

Appendix C.

B. The canonical code and syndrome coding

By the results of the previous subsection, we are now

interested in EAQEC codes which correct a particular error

set S ⊂ (Z2)
2n. We first restrict attention to a simple error

set, which will turn out to be generic due to the results of

Section II-C.

Consider the following trivial encoding operation Û0 defined

by

U0 : |ϕ〉|Φ〉⊗c 7→ |ϕ〉|0〉|Φ〉⊗c. (12)

In other words, the register containing |0〉 (of size ℓ = n−k−c
qubits) is appended to the registers containing |ϕ〉 (of size k
qubits) and |Φ〉⊗c (of size c qubits each for Alice and Bob). We

call the encoded state in (12) the canonical code. What errors

can this canonical code correct with such a simple-minded

encoding?

Proposition 4: The code given by U0 and a suitably defined

decoding map D0 can correct the error set S0 ∈ (Z2)
2n,

S0 = {(α(a,a1,a2),b,a1|β(a,a1,a2),a,a2) :
b,a ∈ (Z2)

ℓ,a1,a2 ∈ (Z2)
c}, (13)

for any functions α, β : (Z2)
ℓ × (Z2)

c × (Z2)
c → (Z2)

k.

Proof: The protocol is shown in Figure 3. Consider an

error vector u ∈ S0:

u = (α(a,a1,a2),b,a1|β(a,a1,a2),a,a2). (14)

After applying Nu on the encoded state |ϕ〉|0〉|Φ〉⊗c, the state

received by Bob becomes (up to a phase factor)

Nu

(
|ϕ〉|0〉|Φ〉⊗c

)

= Zα(a,a1,a2)Xβ(a,a1,a2)|ϕ〉 ⊗XaZb|0〉 ⊗ (Za1Xa2 ⊗ I)|Φ〉⊗c

= |ϕ′〉 ⊗ |a〉 ⊗ |a1,a2〉, (15)

where

|ϕ′〉 = Zα(a,a1,a2)Xβ(a,a1,a2)|ϕ〉 (16)

|a〉 = XaZb|0〉 = Xa|0〉 (17)

|a1,a2〉 = (Za1Xa2 ⊗ I)|Φ〉⊗c. (18)

As the vector (a,a1,a2,b)
T completely specifies the error u,

it is called the error syndrome. The state (15) only depends

on the reduced syndrome r = (a,a1,a2)
T . In effect, a and

(a1,a2) have been encoded using elementary and superdense

coding, respectively. Bob, who holds the entire state (15), may

identify the reduced syndrome using the results of section II-D.

Bob simultaneously measures the Ze1 , . . . , Zeℓ observables

to decode a, the Ze1 ⊗ Ze1 , . . . , Zec ⊗ Zec observables to

decode a1, and the Xe1 ⊗ Xe1 , . . . , Xec ⊗ Xec observables

to decode a2. He then performs Z−α(a,a1,a2)X−β(a,a1,a2) on

the remaining k qubit system |ϕ′〉, recovering it back to the

original state |ϕ〉.
Since the goal is the transmission of quantum information,

no actual measurement is necessary. Instead, Bob can perform

the CPTP map D0 consisting of the controlled unitary

U0,dec =∑

a,a1,a2

Z−α(a,a1,a2)X−β(a,a1,a2) ⊗ |a〉〈a| ⊗ |a1,a2〉〈a1,a2|,

followed by discarding the last two subsystems.

The above code is degenerate with respect to the error

set S0, which means that the error can be corrected without

knowing the full error syndrome.

We can characterize the canonical code in terms of the

parity check matrix F given by

F =

(
FI

FS

)
, (19)

FI =
(
0ℓ×k Iℓ×ℓ 0ℓ×c 0ℓ×k 0ℓ×ℓ 0ℓ×c

)
, (20)

FS =

(
0c×k 0c×ℓ Ic×c 0c×k 0c×ℓ 0c×c

0c×k 0c×ℓ 0c×c 0c×k 0c×ℓ Ic×c

)
, (21)

with ℓ = n− k − c.
The vector space rowspace(F ) decomposes into a direct

sum of the isotropic subspace rowspace(FI) and symplectic

subspace rowspace(FS), as in Theorem 1. Define the sym-

plectic code corresponding to F by

C0 = rowspace(F )⊥

where

V ⊥ = {w : w ⊙ uT = 0, ∀u ∈ V }.

Note that (V ⊥)⊥ = V . Then C⊥
0 = rowspace(F ), iso(C⊥

0 ) =
rowspace(FI) and symp(C⊥

0 ) = rowspace(FS).
The number of ebits used in the code is

c =
1

2
dim rowspace(FS)

and the number of encoded qubits is

k = n− dim rowspace(FI)−
1

2
dim rowspace(FS).
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The code parameter k̂ := k−c which is the number of encoded

qubits minus the number of ebits used is independent of the

symplectic structure of F :

k̂ = n− dim rowspace(F ).

The error set S0 can be described in terms of F :

Proposition 5: The set S0 of errors correctable by the code

C0 is such that, if u,u′ ∈ S0 and u 6= u′, then either

1) u− u′ 6∈ C0 (equivalently: F ⊙ (u− u′)T 6= 0T ), or

2) u − u′ ∈ iso(C⊥
0 ) (equivalently: u − u′ ∈

rowspace(FI)).

Proof: If u is given by (14) then F ⊙ uT = r =
(a,a1,a2)

T , the reduced error syndrome. By definition (13),

two distinct elements of S0 either have different reduced

syndromes (a,a1,a2) (condition 1) or they differ by a vector

of the form (0,b,0|0,0,0) (condition 2). Observe that condi-

tion 1 is analogous to the usual error-correcting condition for

classical codes [44].

The parity check matrix F also specifies the encoding and

decoding operations. The space H⊗k is encoded into the

codespace defined by

C0 = {U0|ϕ〉|Φ〉⊗c : |ϕ〉 ∈ H⊗k}.

It is not hard to see that the codespace is the simultaneous +1
eigenspace of the commuting operators:

1) I ⊗ Zei ⊗ I ⊗ I, i = 1, . . . , ℓ;
2) I ⊗ I ⊗ Zej ⊗ Zej , j = 1, . . . , c;
3) I ⊗ I ⊗Xej ⊗Xej , j = 1, . . . , c.

Above, the first three operators act on Alice’s qubits and the

fourth on Bob’s. Define the matrix

B =




0ℓ×c 0ℓ×c

Ic×c 0c×c

0c×c Ic×c


. (22)

Define the augmented parity check matrix

Faug = (F,B) =


0ℓ×k Iℓ×ℓ 0ℓ×c 0ℓ×c 0ℓ×k 0ℓ×ℓ 0ℓ×c 0ℓ×c

0c×k 0c×ℓ Ic×c Ic×c 0c×k 0c×ℓ 0c×c 0c×c

0c×k 0c×ℓ 0c×c 0c×c 0c×k 0c×ℓ Ic×c Ic×c


.

Observe that rowspace(Faug) is purely isotropic. The

codespace is now described as the simultaneous +1 eigenspace

of {Nw : w ∈ rowspace(Faug)}, or, equivalently that of

G0 = {Nw : w is a row of Faug}.

The decoding operation D0 is also described in terms of

F . The reduced syndrome r = F ⊙ uT is obtained by

simultaneously measuring the observables in G0. The reduced

error syndrome corresponds to a number of possible errors

u ∈ S0 which all have an identical effect on the codespace.

Bob performs N̂u = N̂−u to undo the error.

C. The general case

We now present our main result: how to convert an arbitrary

(n + k̂)-dimensional subspace C of (Z2)
2n into an EAQEC

code. Consider the (n − k̂)-dimensional subspace C⊥. By

Theorem 1, there exists a symplectic basis of (Z2)
2n consisting

of hyperbolic pairs (ui,vi), i = 1, . . . , n, such that the ordered

set R = {uk+1, . . . ,un,vk+ℓ+1, . . . ,vn} is a basis for C⊥,

for some c, ℓ ≥ 0 with 2c + ℓ = n − k̂, and k − c = k̂.

Let H be the matrix whose rows consist of the elements

of R in the order given from top to bottom. Let Υ be the

symplectomorphism defined by

Υ(ui) = gi (23)

Υ(vi) = hi. (24)

Recall the matrix F given by (19)-(21). Observe that, with a

slight abuse of notation,

Υ(H) = F

in the sense that Υ takes the ith row of H to the ith row of

F . We may extend Υ to act on (Z2)
2(n+c), including a trivial

action on the bits corresponding to Bob’s side. Then

Υ(Haug) = Faug, (25)

where Haug = (H,B).
In terms of vector spaces

Υ(C⊥) = C⊥
0 , (26)

Υ(iso(C⊥)) = iso(C⊥
0 ). (27)

Note that c = 1
2 dim symp(C⊥). We are now ready for our

main result:

Theorem 6: There exists an [[n, k; c]] EAQEC code defined

by the encoding and decoding pair (Ûenc,D) with the follow-

ing properties:

1) It can correct the error set S defined by: if u,u′ ∈ S
and u 6= u′, then either

a) u− u′ 6∈ C (equivalently: H ⊙ (u− u′)T 6= 0T ),

or

b) u − u′ ∈ iso(C⊥) (equivalently: u − u′ ∈
rowspace(HI)).

2) The codespace C = Ûenc(H⊗k) is a simultaneous

eigenspace of the ordered set

G = {Nw : w is a row of Haug},

where Haug = (H,B), with B given by (22).

3) To decode, the reduced error syndrome

r = H ⊙ uT (28)

is obtained by simultaneously measuring the observables

from G. Bob finds a u satisfying (28) and performs N̂u

to undo the error.

Remark The above theorem generalizes the error correcting

conditions of [11], [8] for quantum error correcting codes

unassisted by entanglement. When c = 0 then C⊥ = iso(C⊥)
and no entanglement is used in the protocol. We call such

codes self-orthogonal.
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Fig. 4. Generalizing the canonical code construction.

Proof: By Theorem 2 there exists a unitary UΥ such that

for all u ∈ (Z2)
2n

[NΥ(u)] = [UΥNuU
−1
Υ ], (29)

and hence

N̂Υ(u) = ÛΥ ◦ N̂u ◦ Û−1
Υ .

The above also holds for Υ and ÛΥ extended to act trivially

on Bob’s side.

Our EAQEC code is defined by Uenc = U−1
Υ U0 and D =

D0 ◦ ÛΥ, as shown in Figure 4.

1) Recall the error set S0 defined in Proposition 5. From

(26) and (27) it follows that Υ(S) = S0. By Proposition

5, for all u ∈ S,

D0 ◦ N̂Υ(u) ◦ Û0 = id⊗k,

from which

D ◦ N̂u ◦ Ûenc = id⊗k

follows. Thus, the code (Ûenc,D) corrects the error set

S.

2) The codespace is C = U−1
Υ (C0), by definition. Accord-

ing to (25), C0 is the simultaneous +1 eigenspace of

G0 = {NΥ(w) : w is a row of Haug},
or by (29), the set

G′
0 = {UΥNwU

−1
Υ : w is a row of Haug}.

Lemma 7 below implies that the codespace C is a

simultaneous eigenspace of G.

3) Assume that error u ∈ S occurs. The operation D0

involves

a) measuring the set of operators given by G0, or

equivalently G′
0, yielding the reduced syndrome

r = F ⊙Υ(u)T ;

b) performing N̂Υ(u), where Υ(u) ∈ S0 is an error

consistent with the observed syndrome r.

(28) holds because

r = Υ(H)⊙Υ(u)T = H ⊙ uT .

By Lemma 8 below, performing D = D0 ◦ ÛΥ is equiv-

alent to measuring the set G, followed by performing

N̂u = Û−1
Υ ◦ N̂Υ(u) ◦ ÛΥ, followed by ÛΥ to undo the

encoding. If the final ÛΥ is omitted, one recovers the

encoded state rather than the original one.

Lemma 7: If C0 is a simultaneous eigenspace of Pauli

operators from the set G′
0 then C = U−1(C0) is a simultaneous

eigenspace of Pauli operators from the set G = {U−1AU :
A ∈ G′

0}.

Proof: Observe that if

A|ψ〉 = α|ψ〉,

then

(U−1AU)U−1|ψ〉 = αU−1|ψ〉.

Lemma 8: Performing U followed by measuring the op-

erator A is equivalent to measuring the operator U−1AU
followed by performing U .

Proof: Let Πi be a projector onto the eigenspace cor-

responding to eigenvalue λi of A. Performing U followed

by measuring the operator A is equivalent to the instrument

(generalized measurement) given by the set of operators

{ΠiU}. The operator U−1AU has the same eigenvalues as

A, and the projector onto the eigenspace corresponding to

eigenvalue λi is U−1ΠiU . Measuring the operator U−1AU
followed by performing U is equivalent to the instrument

{U(U−1ΠiU)} = {ΠiU}.

D. Distance

The notion of distance provides a convenient way to char-

acterize the error-correcting properties of a code. We start

by defining the weight of a vector u = (z|x) ∈ (Z2)
2n by

wt(u) = wt(z ∨ x). Here ∨ denotes the bitwise logical “or”,

and wt(y) is the number of non-zero bits in y ∈ (Z2)
n. In

terms of the Pauli group, wt(u) is the number of single qubit

Pauli matrices in Nu not equal to the identity I .

Consider a symplectic code C. The distance of C is the

maximum d such that for each nonzero u of weight < d either

1) u 6∈ C, or

2) u ∈ iso(C⊥)

It is called non-degenerate if the second condition is not

invoked. A code is said to correct t errors if it corrects the error

set {u : wt(u) ≤ t} but not {u : wt(u) ≤ t+ 1}. Comparing

these definitions with Theorem 6, a code with distance d =
2t + 1 can correct t errors. An [[n, k; c]] EAQEC code with

distance d will be referred to as an [[n, k, d; c]] code.

IV. RELATION TO QUATERNARY CODES

We shall now show how to construct non-degenerate

EAQEC codes from classical codes over F4, generalizing the

work of [8]. Following the presentation of Forney et al. [39],

the addition table of the additive group of the quaternary field

F4 = {0, 1, ω, ω} is given by

+ 0 ω 1 ω
0 0 ω 1 ω
ω ω 0 ω 1
1 1 ω 0 ω
ω ω 1 ω 0
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Comparing the above to the addition table of (Z2)
2 establishes

the isomorphism γ : F4 → (Z2)
2, given by the table

F4 (Z2)
2

0 00
ω 01
1 11
ω 10

The multiplication table for F4 is defined as

× 0 ω 1 ω
0 0 0 0 0
ω 0 ω ω 1
1 0 ω 1 ω
ω 0 1 ω ω

Define the traces (Tr) of the elements {0, 1, ω, ω} of F4

as {0, 0, 1, 1}, and their conjugates (“†”) as {0, 1, ω, ω}.

Intuitively, Tr a measures the “ω-ness” of a ∈ F4. Observe

that a = 0 if and only if both Trωa = 0 and Trωa = 0.

The Hermitian inner product of two elements a, b ∈ F4 is

defined as 〈a, b〉 = a†b ∈ F4. The trace product is defined as

Tr〈a, b〉 ∈ F2. The trace product table is readily found to be

Tr〈 , 〉 0 ω 1 ω
0 0 0 0 0
ω 0 0 1 1
1 0 1 0 1
ω 0 1 1 0

Comparing the above to the ⊙ table of (Z2)
2 establishes the

identity

Tr〈a, b〉 = γ(a)⊙ γ(b).

These notions can be generalized to n-dimensional vector

spaces over F4. Thus, for a,b ∈ (F4)
n,

Tr〈a,b〉 = γ(a)⊙ γ(b)T . (30)

Let wt4(a) be the number of non-zero bits in a ∈ (F4)
n. Then

we have another identity

wt(γ(a)) = wt4(a), (31)

where γ(a) ∈ (Z2)
2n.

Proposition 9: If a classical [n, k, d]4 code exists then an

[[n, 2k−n+c, d; c]] EAQEC code exists for some non-negative

integer c.
Proof: Consider a classical [n, k, d]4 code (the subscript

4 emphasizes that the code is over F4) with an (n − k) × n
quaternary parity check matrix H4. By definition, for each

nonzero a ∈ (F4)
n such that wt4(a) < d,

〈H4,a〉 6= 0T .

This is equivalent to the logical statement

Tr〈ωH4,a〉 6= 0T ∨ Tr〈ωH4,a〉 6= 0T .

This is further equivalent to

Tr〈H̃4,a〉 6= 0T ,

where

H̃4 =

(
ωH4

ωH4

)
. (32)

Define the (2n− 2k)× 2n symplectic matrix H = γ(H̃4). By

the correspondences (30) and (31),

H ⊙ uT 6= 0T ,

holds for each nonzero u ∈ (Z2)
2n with wt(u) < d. Thus C =

rowspace(H)⊥ defines a non-degenerate [[n, 2k−n+ c, d; c]]
EAQEC code, where

c =
1

2
dim symp(C).

Any classical binary [n, k, d]2 code may be viewed as a

quaternary [n, k, d]4 code. In this case, the above construction

gives rise to a CSS-type code.

V. CATALYTIC QUANTUM ERROR-CORRECTING CODES

So far we have been considering communication scenarios

involving two spatially separated parties Alice and Bob con-

nected by a noisy channel N . In this setting, entanglement

between them is a meaningful resource. However, this might

not always be the case. What if Alice and Bob are separated

only in time—that is, what if the receiver is the same as the

sender, but at a later time? This is the problem of storing

quantum information. For example, N could represent the time

evolution of the state of a quantum computer. This type of error

correction is a key problem of quantum computation. In this

case, the idea of pre-shared entanglement between Alice and

Bob no longer makes sense.

It would therefore seem at first glance that EAQEC codes

have no direct application to quantum computation, except

possibly to protect internal communications within a quantum

computer. However, we can connect EAQEC codes to the

related idea of catalytic quantum error correction, which we

will now show does make sense in the context of storing

information. We thus map the storage problem, which is

relevant to computation, back to a communication problem

where EAQEC codes can be useful.

Consider the following scenario. Alice and Bob have access

to a noiseless channel, through which they are allowed to

send c qubits error-free, in addition to a regular noisy channel

N . This noiseless channel, however, only serves as a catalyst

and is returned at the end of the protocol. We define such an

[[n, k̂ = k−c; c]]C catalytic quantum error correcting (CQEC)

code by:

• An encoding isometry E : L⊗k ⊗ L⊗c → L⊗n

• A decoding CPTP map D : L⊗n ⊗ L⊗c → L⊗k

such that

D ◦ (N ⊗ id⊗c) ◦ E = id⊗k = id⊗k̂ ⊗ id⊗c . (33)

Please note that we use the subscript C to distinguish [[n, k; c]]
EAQEC and [[n, k̂; c]]C CQEC codes, to avoid confusion

between the yield k and the net yield k̂. The above may be

written as a resource inequality

〈N〉+ c [q → q] ≥ k̂ [q → q] + c [q → q]. (34)

Figure 5 shows how any [[n, k; c]] EAQEC code (E ,D) gives

rise to a [[n, k̂; c]]C CQEC code. This construction may
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Fig. 5. A catalytic quantum error-correcting code.

be understood in terms of resource inequalities. The simple

protocol called entanglement distribution written as

c [q → q] ≥ c [q q],

creates c ebits of entanglement by sending half of a locally

prepared state |Φ〉⊗c through the channel id⊗c. The CQEC

code is obtained by combining entanglement distribution with

the EAQEC code:

〈N〉+ c [q → q] ≥ 〈N〉+ c [q q]

≥ k [q → q]

= k̂ [q → q] + c [q → q].

Assume now that Alice and Bob have access to m copies

of the chanel N . Performing the CQEC protocol m times in

parallel (i.e. using the code (E⊗m,D⊗m)) gives

m〈N〉+mc [q → q] ≥ mk̂ [q → q] +mc [q → q].

The size of the catalyst can actually be reduced from mc to

c:

m〈N〉+ c [q → q] ≥ mk̂ [q → q] + c [q → q]. (35)

The proof is by induction. The statement is trivial for m = 1.

For the inductive step, assume true for m. Then (35) holds for

m+ 1:

(m+ 1)〈N〉+ c [q → q]

= 〈N〉+m〈N〉+ c [q → q]

≥ 〈N〉+mk̂ [q → q] + c [q → q]

≥ mk̂ [q → q] + k̂ [q → q] + c [q → q].

A more conventional formulation of this catalyst reduction is

given in the lemma below.

Lemma 10: If (33) is satisfied then for any non-negative

integer m there exists a CQEC code (Em,Dm) for the channel

N⊗m in the sense that

Dm ◦ (N⊗m ⊗ id⊗c) ◦ Em = id⊗mk̂ ⊗ id⊗c .

Proof: The inductive step is shown in the Figure 6.

The above construction is rather sensitive to perturbations. If

in any particular block a channel worse than N is experienced,

the resulting channel will not be pure and the next block will

start with an impure catalyst.

One may rightly ask about where one could obtain a catalyst

to begin with. After all, perfect channels are not normally

available, or we would not need error correction in the first

place. The basic idea is to use an ordinary c = 0 QEC code.

This is shown in Figure 7. An [[n, k̂; c]]C CQEC code for

Fig. 6. The inductive step.

Fig. 7. Constructing a QEC code from a seed QEC code and a CQEC code.

the channel N combined with a [[n′, c; 0]] QEC code for the

channel N ′ gives an [[n + n′, k̂ + c; 0]] QEC code for the

channel N⊗N ′. The combined code can be used as a catalyst

for an even larger code. In this way a sizeable catalyst can be

built up pretty quickly.

It is worth looking at this construction from a purely math-

ematical point of view. Let C ⊂ (Z2)
2n and C ′ ⊂ (Z2)

2n′

be

the symplectic codes corresponding to the [[n, k̂; c]]C CQEC

code and [[n′, c; 0]] QEC code, respectively. Let H and H ′

be the respective parity check matrices, as in Section III-C.

Note that C ′⊥ = iso(C ′⊥). Let ui, i = 1, . . . , c, be vectors in

(Z2)
2n′

which, together with a basis for C ′⊥, form a maximal

n′-dimensional isotropic subspace of (Z2)
2n′

. Recall the no-

tation gi = (ei|0) ∈ (Z2)
2c. Let Υ be a symplectomorphism

such that Υ(gi) = ui. Define the (n − k̂) × 2n′ matrix

B′ = Υ(B) with B defined as in (22) and ℓ = n − k̂ − 2c.
Note that the rows of B′ are in C ′. Then

H̃aug =

(
H, B′

0(n′−c)×2n, H ′

)

is the parity check matrix for the combined [[n+n′, k̂+ c; 0]]
QEC code. By construction, it must be self-orthogonal. So we

can think of the catalytic code construction as a way of using

EAQEC codes—designed for communication protocols—to

build up standard QEC codes, which can be useful for storage.

VI. A VARIATION ON EAQEC CODES

One lesson learned from quantum Shannon theory [19]

is that catalytic and non-catalytic codes have similar per-

formance. In this section we mimic the quantum Shannon

theoretical construction from [19]. First we construct codes for

sending classical information with entanglement assistance.

Then we make these protocols coherent in the sense of

[19], [24] to obtain a variation on EAQEC codes in which

entanglement is generated as well as quantum communication.

The end result is what we will call “type II” EAQEC codes,
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Fig. 8. Reduction from an EACEC code to a classical code over F4.

which can be constructed without the machinery of symplectic

linear algebra.

A. EA-codes for sending classical information

The communication scenario again involves two spatially

separated parties, Alice and Bob. The resources at their

disposal are a noisy channel N : L⊗n → L⊗n and the shared

c ebit state |Φ〉⊗c. Now Alice wishes to convey an element of

(F4)
k perfectly to Bob using the above resources. A protocol

which does this is called an [n, k; c]4 entanglement-assisted

classical error correcting code, or EACEC code for short. We

write the above as a resource inequality

〈N〉+ c [q q] ≥ 2k [c→ c]. (36)

The factor of 2 accounts for the conversion from quaternary

to binary.

Recall the isomorphism γ : (F4)
n → (Z2)

2n. It allows us to,

with a slight abuse of notation, speak of error sets S ⊂ (F4)
n,

and Pauli matrices Na, a ∈ (F4)
n. Let S ⊂ (F4)

n be the

support of N . An easy modification of Theorem 3 ensures

that correctly decoding the message for the set of channels

{N̂a : a ∈ S} suffices for the correct decoding of N . The

notion of distance for EACEC codes is equivalent to the one

for classical quaternary codes. An [n, k; c]4 EACEC code of

distance d is called an [n, k, d; c]4 EACEC code.

Proposition 11: If there exists an [n, k]4 classical code

(over F4) which corrects the error set S ⊂ (F4)
n, then there

exists an [n, k;n]4 EACEC code which corrects the same error

set.

Proof: We will show that superdense coding establishes

an equivalence between a quantum Pauli error Nc and a

classical error c.

Assume c = 0, corresponding to no error. Alice superdense

encodes b by performing Nb on her half of |Φ〉⊗n. Bob

performs a measurement in the {|Φb〉〈Φb| : b ∈ (F4)
n} basis,

where |Φb〉 = (Nb ⊗ I)|Φ〉, thus decoding b.

If the channel is N̂c for some c ∈ S, then Alice’s effective

encoding becomes NcNb which is a representative of [Nb+c].
Bob’s measurement will reveal b + c instead of b. This is

the message with a classical error c ∈ S. The encoding

preparation, followed by quantum error N̂c and decoding

measurement, simulates the noisy classical channel b 7→ b+c.

The theorem now follows, since the classical code can correct

any error c ∈ S .

Thus there is a direct correspondence between [n, k, d]4
classical codes and [n, k, d;n]4 EACEC codes. On the other

Fig. 9. The circuit implementing a coherent EACEC code. The upper right
hand corner defines U in terms of the quaternary code with parity check
matrix H4 and generating matrix G4.

hand, in Section IV we saw that an [n, k, d]4 classical code

defines an [[n, 2k − n + c, d; c]] EAQEC code. In the next

subsection we show how to construct a variation on an

[[n, 2k−n+c, d; c]] EAQEC code from an [n, k, d;n]4 EACEC

code via “coherification.”

B. Coherent EACEC codes

At this point we need to introduce one more resource, coher-

ent communication [24]. Let {|0〉, |1〉} denote a preferred basis

for a qubit system. The isometric channel which implements

the change of basis

∆2 : |i〉A 7→ |i〉A|i〉B , i = 0, 1

is called the coherent bit (or cobit) channel. The superscript A
denotes a system held by Alice and B denotes a system held

by Bob. It is regarded as a coherent version of a classical

bit channel. Viewing it as a resource, we use the symbol

[q → q q]. Coherifying a protocol is a broad notion marked by

replacing classical communication by coherent communication

[19], [24]. It was shown in [24] that superdense coding can

be made coherent, i.e. that the following resource inequality

holds:

[q → q] + [q q] ≥ 2[q → q q]. (37)

Consider an [n, k, d;n]4 EACEC code, given by (36). It can

also be made coherent thanks to its connection to superdense

coding. In other words, (36) can be upgraded to

〈N〉+ n [q q] ≥ 2k [q → q q]. (38)

An explicit circuit implementing this resource inequality is

given in Figure 9. The states {|a〉 : a ∈ (F4)
k} form a basis

for a 2k qubit space. {Nc} is a Pauli matrix whose index

c ∈ (F4)
n is in the support of N . H4 is the (n − k) × n

quaternary parity check matrix for the classical [n, k, d]4 code

which corrects all such c. G4 is the corresponding n × k
generator matrix such that H4G4 = 0(n−k)×k. The box in

the upper right hand corner defines the 4n×4n unitary matrix
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Fig. 10. The circuit implementing coherent teleportation.

U . There G4a ∈ (F4)
n is an encoded element a of (F4)

k. The

unitaries V and W are given by V =
∑

j∈F4
|j〉〈j| ⊗Nj and

W (|ϕ〉|0〉) =
∑

j∈F4

〈Φ+|(N†
j ⊗ I)|ϕ〉 (|Φ+〉|j〉).

Harrow [24] also exhibited a coherent version of quantum

teleportation [23], written as

2k [q → q q] + k [q q] ≥ k [q → q] + 2k [q q]. (39)

Figure 10 depicts a circuit implementing this resource inequal-

ity.

Combining (38) with (39) gives

〈N〉+ (n+ k) [q q] ≥ k [q → q] + 2k [q q]. (40)

This differs from a hypothetical [[n, k;n− k]] EAQEC code4

given by

〈N〉+ (n− k) [q q] ≥ k [q → q]

in that an extra 2k [q q] is needed as a catalyst. We call this a

type II [[n, k;n − k; 2k]] EAQEC code, and will refer to the

EAQEC codes from Section III-C as type I EAQEC codes.

A type II EAQEC code is not as versatile as regular type I

EAQEC codes. The catalyst does not allow it to be converted

into a catalytic QEC code, for example. Also, type II EAQEC

codes appear to be limited to F4 construction.

As in the original Shannon theoretical result [19] (Figure 1),

type II EAQEC codes (40) can be combined with superdense

coding (11) to give a catalytic version of an EACEC code

(36):

〈N〉+ n [q q] + k [q q] ≥ 2k [c→ c] + k [q q].

This does not hold for type I EAQEC codes of Section III,

unless c equals its maximal value of n− k.

VII. BOUNDS ON PERFORMANCE

In this section we shall see that the performance of EAQEC

codes is comparable to the performance of QEC codes (which

are a special case of EAQEC codes).

The two most important outer bounds for QEC codes are

the quantum Singleton bound [5], [12] and the quantum

Hamming bound [3]. Given an [[n, k, d]] QEC code (which is

an [[n, k, d; 0]] EAQEC code), the quantum Singleton bound

reads

n− k ≥ 2(d− 1).

4 This EAQEC code has the maximum value of c = n− k.

The quantum Hamming bound holds only for non-degenerate

codes and reads

⌊ d−1

2
⌋∑

j=0

3j
(
n

j

)
≤ 2n−k.

The proofs of these bounds [3], [12] are easily adapted to

EAQEC codes. This was first noted by Bowen [38] in the case

of the quantum Hamming bound. Consequently, an [[n, k, d; c]]
EAQEC code satisfies both bounds for any value of c. Note

that the F4 construction connects the quantum Singleton

bound to the classical Singleton bound n − k ≥ d − 1. An

[n, k, d]4 code saturating the classical Singleton bound implies

an [[n, 2k− n+ c, d; c]] EAQEC code saturating the quantum

Singleton bound.

It is instructive to examine the asymptotic performance of

quantum codes on a particular channel. A popular choice is

the tensor power channel N⊗n, where N is the depolarizing

channel with Kraus operators {√p0I,√p1X,√p2Y,√p3Z},

for some probability vector p = (p0, p1, p2, p3).

It is well known that the maximal transmission rate R =
k/n achievable by a non-degenerate QEC code (in the sense

of vanishing error for large n on the channel N⊗n) is equal to

the hashing bound R = 1−H(p). Here H(p) is the Shannon

entropy of the probability distribution p. This bound is attained

by picking a random self-orthogonal code. However no explicit

constructions are known which achieve this bound.

Interestingly, the F4 construction also connects the hashing

bound to the Shannon bound for quaternary channels. Consider

the quaternary channel a 7→ a + t, where t takes on values

0, ω, 1, ω, with respective probabilities p0, p1, p2, p3. The max-

imal achievable rate R = k/n for this channel was proved by

Shannon to equal R = 2 −H(p). An [n, k]4 code saturating

the Shannon bound implies an [[n, 2k − n + c; c]] EAQEC

code, or CQEC code, achieving the hashing bound! The idea

is to directly investigate the symplectic structure of such a

catalytic QEC code, and then using the idea of bootstrapping

the method from Figure 7 will enable us to construct a QEC

code with similar properties.

VIII. THE [[3, 1, 3; 2]] EAQEC CODE

In this section, we will demonstrate our construction of

the [[3, 1, 3; 2]] EAQEC code and relate this code to Bowen’s

earlier result [38]. Consider the classical [3, 1, 3]4 quaternary

code with parity check matrix

H4 =

(
1 1 0
1 0 1

)
. (41)

Then

H = γ(H̃4) =




1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1


. (42)
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Following the proof of Theorem 1, we have

u1 = (1 1 0 0 0 0)
u2 = (0 0 0 1 1 0)
u3 = (1 1 1 0 0 0)
v1 = (0 0 0 1 0 1)
v2 = (1 0 1 0 0 0)
v3 = (0 0 0 1 1 1),

(43)

and the hyperbolic pairs (u1,v1) and (u2,v2) span the rows-

pace of H . The simultaneous +1 eigenstate of the commuting

operators Nui
, i = 1, 2, 3, is

|0̃00〉 = 1√
2
(|000〉+ |110〉).

Then

|0̃00〉 = 1√
2
(|000〉+ |110〉)

|0̃01〉 = Nv1
|0̃00〉 = 1√

2
(|101〉+ |011〉)

|0̃10〉 = Nv2
|0̃00〉 = 1√

2
(|101〉 − |011〉)

|0̃11〉 = Nv1+v2
|0̃00〉 = 1√

2
(−|101〉+ |011〉)

|1̃00〉 = Nv3
|0̃00〉 = 1√

2
(|111〉+ |001〉)

|1̃01〉 = Nv1+v3
|0̃00〉 = 1√

2
(|010〉+ |100〉)

|1̃10〉 = Nv2+v3
|0̃00〉 = 1√

2
(−|111〉+ |001〉)

|1̃11〉 = Nv1+v2+v3
|0̃00〉 = 1√

2
(|010〉 − |100〉).

The encoding unitary UΥ is therefore

UΥ =
1√
2




1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0




. (44)

The logical 0 and 1 codewords are

|0L〉 = UΥ|0〉|Φ+〉⊗2

=
1

2

(
|0̃00〉|00〉+ |0̃01〉|01〉+ |0̃10〉|10〉+ |0̃11〉|11〉

)

|1L〉 = UΥ|1〉|Φ+〉⊗2

=
1

2

(
|1̃00〉|00〉+ |1̃01〉|01〉+ |1̃10〉|10〉+ |1̃11〉|11〉

)
.

Bowen’s code [38] can be obtained by applying the following

unitary to the codewords given above

UB =
1

2
√
2




1 −1 −1 −1 −1 1 1 1
−1 −1 −1 1 1 1 1 −1
1 −1 1 1 −1 1 −1 −1
−1 −1 1 −1 1 1 −1 1
1 −1 −1 −1 1 −1 −1 −1
1 1 1 −1 1 1 1 −1
−1 1 −1 −1 −1 1 −1 −1
−1 −1 1 −1 −1 −1 1 −1




.

IX. TABLE OF CODES

In [8] a table of best known QEC codes was given. Below

we show an updated table which includes EAQEC codes.

The entries with an asterisk mark the improvements over

the table from [8]. All these are obtained from Propo-

sition 3.1. The corresponding classical quaternary code is

available online at http://www.win.tue.nl/˜aeb/

voorlincod.html.

The general methods from [8] for constructing new codes

from old also apply here. Moreover, new constructions are

possible since the self-orthogonality condition is lifted. An

example is given by the following theorem.

Theorem 12: a) Suppose an [[n, k, d; c]] code exists, then

an [[n + 1, k − 1, d′; c′]] code exists for some c′ and d′ ≥ d;

b) Suppose a non-degenerate [[n, k, d; c]] code exists, then an

[[n− 1, k + 1, d− 1; c′]] code exists for some c′.
Proof: a) Recall that the net yield is k̂ = k− c. Let H be

the (n− k̂× 2n) parity check matrix of the [[n, k, d; c]] code.

The parity check matrix of the new [[n + 1, k̂ − 1, d′; c′]] is

then

H ′ =




0 · · · 0 0 1 · · · 1 1

1 · · · 1 1 0 · · · 0 0

0 0

HZ
... HX

...

0 0



. (45)

This corresponds to the classical construction of adding a

parity check at the end of the codeword [44]. The additional

rows ensure that errors involving the last qubit are detected.

Sometimes the distance actually increases: for instance, the

[[8, 0, 4]] is obtained from the [[7, 1, 3]] code in this way.

b) We mimic the classical “puncturing” method [44]. Let C
be the (n+ k̂)-dimensional subspace of (Z2)

2n corresponding

to the [[n, k, d; c]] EAQEC code. Puncturing C by deleting

the first Z and X coordinate, we obtain a new “code” C ′

which is an (n+ k̂)-dimensional subspace of (Z2)
2(n−1). This

corresponds to an [[n−1, k+1, d−1; c′]] EAQEC code, as the

minimum distance between the “codewords” of C decreases

by at most 1.

X. DISCUSSION

Motivated by recent developments in quantum Shannon

theory, we have introduced a generalization of the stabilizer

formalism to the setting in which the encoder Alice and

decoder Bob pre-share entanglement (EAQEC codes) [27].

We have traced the male side of family tree of quantum

http://www.win.tue.nl/~aeb/voorlincod.html
http://www.win.tue.nl/~aeb/voorlincod.html
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n\k̂ = k − c 0 1 2 3 4 5 6 7 8 9 10

3 2 2
∗

1 1

4 3
∗

2 2 1 1

5 3 3 2 2
∗

1 1

6 4 3 2 2 2 1 1

7 3 3 2 2 2 2
∗

1 1

8 4 3 3 3 2 2 2 1 1

9 4 4
∗

3 3 2 2 2 2
∗

1 1

10 5
∗

4 4 3 3 2 2 2 2 1 1

TABLE I
TABLE OF CODES FOR CODE LENGTH UP TO 10

Shannon theory, from EAQEC codes (corresponding to the

father protocol) to catalytic quantum codes (corresponding

to the quantum capacity) and EACEC codes (corresponding

to the classical EA-capacity). Moreover, EACEC codes can

be made coherent, providing an alternative to the EAQEC

construction from Section III. The most obvious question

is whether we can do the same for the female side of the

family tree [19]. Preliminary results [46] give a positive answer

to this question: entanglement distillation protocols assisted

by quantum and classical communication can be constructed

based on non-orthogonal symplectic codes.

There are two practical advantages of EAQEC codes over

standard QEC codes:

1) They are much easier to construct from classical codes

because self-orthogonality is not required. In standard

QEC codes, this would not work, because codes that

are not self-orthogonal would give rise to noncommut-

ing stabilizer generators. But we resolve this by using

pre-shared entanglement (therefore adding extra Pauli

operators on Bob’s side) to make all the generators

commute. This allows us to import the classical theory of

error correction wholesale, including capacity-achieving

modern codes [45], [49], [28], [29], [30], [31], [32], [33].

The attraction of these modern codes comes from the

existence of efficient decoding algorithms that provide

excellent trade-off between decoding complexity and de-

coding performance. In fact, these decoding algorithms,

such as the sum-product algorithm, can be modified

to decode the error syndromes effectively [47], [31],

[48], [30]. The main problem in using these iterative de-

coding algorithms on quantum low-density parity-check

(LDPC) codes comes from those shortest 4-cycles in

the Tanner graph that are inevitably introduced because

of the self-orthogonality constraint. However, we have

demonstrated recently that by allowing entanglement

assistance, those 4-cycles can be eliminated completely,

and the performance of the iterative decoding improves

dramatically in numerical simulations [28] (and subse-

quently in [31], [30], [33], [32]). We plan to further

examine the performance of quantum LDPC codes and

turbo codes in terms of the catalyst size for EAQEC

codes.

2) The entanglement used in the protocol is a strictly

weaker resource than quantum communication. Thus

comparing the net yield, k − c, of [[n, k, d; c]] EAQEC

codes to [[n, k, d; 0]] QEC codes is not being entirely

fair to former. Furthermore, the pre-shared entanglement

can be obtained from a two-way entanglement distilla-

tion protocol that achieves higher rates than one-way

schemes. In this sense, a large value of the catalyst c is

advantageous, as it implies a higher qubit channel yield.

In the construction of EAQEC codes, the pre-shared ebits

are assumed to be noiseless. However, recent investigation

shows that EAQEC codes can be robust to noise on these

pre-shared ebits [30], [35], [50]. Based on the entanglement-

assisted stabilizer formalism proposed in this paper, we also

can construct more general QEC codes that allow us to

simultaneously transmit both classical and quantum messages

[51], [52].

If one is interested in applications to fault-tolerant quantum

computation, where the resource of entanglement between

the sender and receiver is meaningless, high values of c are

unwelcome because they require a long seed QEC code. We

expect this obstacle to be overcome by bootstrapping. Another

fruitful line of investigation connects to quantum cryptog-

raphy. Quantum cryptographic protocols, such as BB84, are

intimately related to CSS QEC codes. In [53] it is shown that

EAQEC analogues of CSS codes give rise to key expansion

protocols which do not rely on the existence of long self-

orthogonal codes. This was demonstrated for a family of codes

in [54].

APPENDIX A

PROOF OF THEOREM 1

Proof: Pick an arbitrary basis {w1, . . . ,wm} for V and

extend it to a basis {w1, . . . ,w2n} for (Z2)
2n. The procedure

consists of n rounds. In each round a new hyperbolic pair

(ui,vi) is generated; the index i is added to the set U (V) if

ui ∈ V (vi ∈ V ).

Initially set i = 1, m′ = m, and U = V = ∅. The i-th
(i > 1) round reads as follows.

1) We start with vectors w1, . . . ,w2(n−i+1), and

u1, . . .ui−1,v1, . . .vi−1, such that

a) w1, . . . ,w2(n−i+1), u1, . . .ui−1,v1, . . .vi−1 is a

basis for (Z2)
2n,

b) each of u1, . . .ui−1,v1, . . .vi−1 has

vanishing symplectic product with each of

w1, . . . ,w2(n−i+1),

c) V = span{wj : 1 ≤ j ≤ m′} ⊕ span{uj : j ∈
U} ⊕ span{vj : j ∈ V}.

2) Define ui = w1. If m′ ≥ 1 then and add i to U . Let

j ≥ 2 be the smallest index for which w1 ⊙ wT
j = 1.
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Such a j exists because of (a), (b) and the fact that there

exists a w ∈ (Z2)
2n such that ui ⊙wT = 1.

Set vi = wj .

3) If j ≤ m′:

This means that there is a hyperbolic partner of ui in V .

Add i to V; swap wj with w2; for k = 3, . . . , 2(n−i+1)
perform

w′
k−2 := wk − (vi ⊙wT

k )ui − (ui ⊙wT
k )vi,

so that

w′
k−2 ⊙ uT

i = w′
k−2 ⊙ vT

i = 0; (46)

set m′ := m′ − 2.

If j > m′:

This means that there is no hyperbolic partner of ui in

V . Swap wj with w2(n−i+1); for k = 2, . . . , 2(n−i)+1
perform

w′
k−1 := wk − (vi ⊙wT

k )ui − (ui ⊙wT
k )vi,

so that

w′
k−1 ⊙ uT

i = w′
k−1 ⊙ vT

i = 0; (47)

if m′ ≥ 1 then set m′ := m′ − 1.

4) Let wk := w′
k for 1 ≤ k ≤ 2(n − i). We need

to show that the conditions from item 1 are satis-

fied for the next round (i := i + 1). Condition (a)

holds because {ui,vi,w
′
1, . . .w

′
2(n−i)} are related to

the old {w1, . . .w2(n−i+1)} by an invertible linear

transformation. Condition (b) follows from (46) and

(47). Regarding condition (c), if m′ = 0 then it holds

because U and V did not change from the previous

round. Otherwise, consider the two cases in item 3. If

j ≤ m′ then {ui,vi,w
′
1, . . .w

′
m′−2} are related to the

old {w1, . . .wm′} by an invertible linear transformation.

If j > m′ then {ui,w
′
1, . . .w

′
m′−1} are related to the

old {w1, . . .wm′} by an invertible linear transformation

(the (ui ⊙wT
k )vi terms vanish for 1 ≤ k ≤ m′ because

there is no hyperbolic partner of ui in V ).

0 ≤ m′ ≤ 2(n− i) at the end of the ith round. Thus m′ = 0
after n rounds and hence V = span{uj : j ∈ U}⊕ span{vj :
j ∈ V}. The theorem follows by suitably reordering the

(uj ,vj).

APPENDIX B

PROOF OF THEOREM 2

Proof: Consider the standard basis gi = (ei|0), hi =
(0|ei). Define the unique (up to a phase factor) state |0〉 on

H⊗n to be the simultaneous +1 eigenstate of the commuting

operators Ngj
, j = 1, . . . , n. Define an orthonormal basis

{|b〉 : b = b1 . . . bn ∈ (Z2)
n} for H⊗n by

|b〉 = N∑
i bihi

|0〉.

The orthonormality follows from the observation that |b〉 is a

simultaneous eigenstate of Ngj
, j = 1, . . . , n with respective

eigenvalues (−1)bj :

Ngj
|b〉 = Ngj

N∑
i bihi

|0〉
= (−1)bjN∑

i bihi
Ngj

|0〉
= (−1)bjN∑

i bihi
|0〉

= (−1)bj |b〉.

(48)

The second line is an application of (2).

Define g̃i := Υ(gi). We repeat the above construction for

this new basis. Define the unique (up to a phase factor) state

|0̃〉 to be the simultaneous +1 eigenstate of the commuting

operators Ng̃i
, i = 1, . . . , n. Define an orthonormal basis

{|b̃〉} by

|b̃〉 = N∑
i bih̃i

|0̃〉. (49)

Defining u =
∑

i zigi + xihi, ũ =
∑

i zig̃i + xih̃i and x =
x1 . . . xn, we have

Nũ|b̃〉 = NũN∑
i bih̃i

|0̃〉

= (−1)ũ⊙(
∑

i bih̃i)
T

N∑
i bih̃i

Nũ|0̃〉

= (−1)ũ⊙(
∑

i bih̃i)
T

eiθ(ũ)N∑
i bih̃i

N∑
i xih̃i

N∑
i zig̃i

|0̃〉

= (−1)ũ⊙(
∑

i bih̃i)
T

eiθ(ũ)N∑
i(bi+xi)h̃i

|0̃〉

= (−1)ũ⊙(
∑

i bih̃i)
T

eiθ(ũ)|b̃+ x〉
= (−1)u⊙(

∑
i bihi)

T

eiθ(ũ)|b̃+ x〉,
(50)

where θ(ũ) is a phase factor which is independent of b. The

first equality follows from (49), the second from (2), the third

from (1), the fourth from the definition of |0̃〉 and the fact that

XbXx = Xb+x, the fifth from (49), and the sixth from (9).

Similarly

Nu|b〉 = (−1)u⊙(
∑

i bihi)
T

eiϕ(u)|b+ x〉, (51)

where ϕ(u) is a is a phase factor which is independent of b.

Define UΥ by the change of basis

UΥ =
∑

b

|b̃〉〈b|.

Combining (50) and (51) gives for all |b〉

NΥ(u)UΥ|b〉 = (−1)u⊙(
∑

i bihi)
T

eiθ(ũ)UΥ|b+ x〉
= ei[θ(ũ)−ϕ(u)]UΥNu|b〉.

(52)

Therefore [NΥ(u)] = [UΥNuU
−1
Υ ].

APPENDIX C

PROOF OF THEOREM 3

Proof: We may extend the map D to its Stinespring

dilation – an isometric map Ûdec with a larger target Hilbert

space L⊗k ⊗ L′, such that

D = TrL′ ◦Ûdec.

The premise of the theorem is equivalent to saying that for all

u ∈ supp(N ) and all pure states |ϕ〉 in H⊗n,

UdecNuUenc|ϕ〉 = |ϕ〉 ⊗ |u〉
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for some pure state |u〉〈u| on L′. By linearity

UdecAiUenc|ϕ〉 = |ϕ〉 ⊗ |i〉,
with the unnormalized state |i〉 =∑u αi,u|u〉. Furthermore,

(Ûdec ◦ N ◦ Ûenc)(|ϕ〉〈ϕ|)

= Udec

(
∑

i

AiUenc|ϕ〉〈ϕ|U†
encA

†
i

)
U†
dec

= |ϕ〉〈ϕ| ⊗
∑

i

|i〉〈i|,

where the second subsystem corresponds to L′. Tracing out

the latter gives

(D ◦ N ◦ Ûenc)(|ϕ〉〈ϕ|) = |ϕ〉〈ϕ|,
concluding the proof.
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