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Catalytic Synthesis of N-Unprotected Piperazines, Morpholines 
and Thiomorpholines from Aldehydes and SnAP Reagents** 
Michael U. Luescher and Jeffrey W. Bode* 

Abstract: Commercially available SnAP (Stannyl (Sn) Amine 
Protocol) reagents allow the transformation of aldehydes and 
ketones into a variety of N-unprotected heterocycles. By identifying 
new ligands and reaction conditions, we have realized a robust 
catalytic variant that expands the substrate scope to previously 
inaccessible heteroaromatic substrates and new substitution 
patterns. It also establishes the basis for a catalytic, enantioselective 
process through the use of chiral ligands.  

Saturated N-heterocycles are privileged scaffolds for the 
preparation of bioactive small molecules as they offer 
advantages including improved solubility, bioavailability, and 
pharmacokinetics.[ 1 , 2 ] Their use is currently limited by poor 
commercial availability and the paucity of methods for their 
preparation, particularly for mono- and di-C-substituted variants. 
In seeking to provide a cross-coupling approach for the rapid 
synthesis of substituted, saturated N-heterocycles, we recently 
disclosed a cross-coupling approach from SnAP (Stannyl (Sn) 
Amine Protocol) reagents and aldehydes. This operationally 
simple process provides facile, one-step access to C-substituted 
thiomorpholines,[3] morpholines, piperazines,[4] diazepanes and 
other medium-ring heterocycles[ 5 ] and spirocyclic structures 
(Figure 1).[ 6 ] Many of these SnAP reagents are now 
commercially available and SnAP chemistry is finding 
widespread use in industry. 

Despite the outstanding substrate scope and operational 
simplicity of SnAP reagents, we have identified two major 
limitations. First, SnAP chemistry has so far required 
stoichiometric Cu(OTf)2, which both decreases efficiency and 
limits the possibilities of an enantioselective process. The need 
for stoichiometric copper is also at odds with our current 
mechanistic hypothesis, which postulates an overall redox 
neutral reaction.[3,5] We attributed the need for stoichiometric 
copper to product inhibition – a common obstacle for metal 
catalyzed reactions in which the products are more basic than 
the starting materials.[ 7 ] Second, aldehydes with proximal 
heteroatoms do not undergo cyclization. This is of special 
interest as the elusive 2-(pyridine-2-yl)piperazines and related 
scaffolds are often found in bioactive small molecules.[8] 

  

Figure 1. SnAP reagents for the synthesis of N-heterocycles from aldehydes 
and ketones. 

We now report the identification of ligand accelerated 
SnAP reactions that operate with catalytic amounts of copper 
and also further expand the substrate scope, including α-
heteroaromatic aldehydes. We also introduce α-bis(substituted) 
SnAP reagents for the synthesis of 2,3-substituted N-
heterocycles, a new product class in SnAP chemistry (Figure 1), 
and demonstrate the viability of this system for catalytic, 
enantioseletive N-heterocycle synthesis. 

We postulated that product inhibition – rather than 
mechanistic considerations – precluded the use of catalytic 
amounts of copper, as experiments with 20 mol % copper gave 
only about 20% yield (Table 1, entries 1–3). Heating to 90 °C in 
the absence of ligand increased conversion, but we found these 
conditions to have poor substrate scope (entry 4). As 
deactivation can often be reversed by additives or by a change 
in the ligand, we initially focused on ligand screening. A survey 
of ligands often used in copper catalyzed reactions, such as 
phenanthrolines, bipyridines, or phosphines, showed no catalytic 
activity (entries 5–9).[9] Surprisingly, only a single ligand class – 
Box ligands – showed appreciable catalysis and we established 
that 20 mol % Cu(OTf)2 in combination with 20 mol % 2,2-bis(4-
phenyl-2-oxazolin-2-yl) propane (L8) promoted full conversion 
(entry 10). Further optimization focusing on the reaction 
temperature and solvent revealed two crucial parameters: (1) 
the integrity of the catalyst[10] and (2) an increased amount of 
HFIP (1,1,1,3,3,3-hexafluoro-2-propanol).[11] Heating the reaction 
to induce turnover was detrimental for catalytic activity (entry 11), 
a counterintuitive observation that we attribute to enhancement 
of ligand exchange between the bis(oxazoline) ligand L8 and the 
unprotected product. With HFIP as the sole solvent, we were 
able to reduce the catalyst loading to 5 mol % (entry13).[11] 
Based on literature precedents,[3,7,12] we attribute the beneficial 
effect of increased HFIP, a solvent of broad utility due to strong 
hydrogen-bond donor abilities,[12,13] to the complexation of the N-
heterocycle product, thereby promoting turnover of the Lewis 
acidic copper catalyst (Figure 2).  
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Table 1. Reaction optimization and ligand screening.[14] 

 
Entry Cu(OTf)2 Ligand conv. [%] Yield [%] 3c[a] 

1 100 mol % 2,6-lutidine 100 89 
2 20 mol % 2,6-lutidine 33 25 
3 20 mol % - 24 15 

4[b] 20 mol % - 92 71 
5 20 mol % L1 or L2 ca. 10 < 5 
6 20 mol % L3 30 20 
7 20 mol % L4 or L5 ca. 20 0 
8 20 mol % L6 or L7 < 10 < 10 
9 20 mol % PPh3 or BINAP 0 - 

10 20 mol % L8  100 86 
11[c] 5 mol % L8 ca. 15 ca. 10 
12 5 mol % L8 25 19 

13[d] 5 mol % L8 88 76 

[a] NMR yield with 1,3,5-Trimethoxybenzene as internal standard. [b] Reaction 
performed at 90 °C. [c] Reaction performed at 45 °C. [d] HFIP as solvent. 

 

 

 

Figure 2. Proposed catalytic cycle for copper catalyzed cyclization. 

The catalytic conditions provided morpholines and 
thiomorpolines from the corresponding SnAP reagents, giving 
the majority of products in excellent yields from aromatic, 
heteroaromatic, and branched aliphatic aldehydes. We were 
pleased to find that – unlike the stoichiometric variant – all 
regioisomers of pyridinecarboxaldehydes and related 
heteroaromatic aldehydes were excellent substrates, an 
outcome that we attribute to the superior ligand and increased 
amount of HFIP. For some substrates, such as those containing 
additional coordinating heteroatoms, a higher catalyst loading 
(20 mol %) was beneficial. Substrate specific optimization is also 
possible; for example in the gram-scale synthesis of 3c using 
5.0 mmol of SnAP M 1 and 5 mol % catalyst loading. A few 
limitations remain including mesityl aldehyde (3m) or aliphatic 
substrates prone to enamine formation (4k), which give mostly 
protodestannylated side products (Scheme 1). 
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Scheme 1. Catalytic morpholine and thiomorpholine synthesis. Reactions were performed on a 0.5 mmol scale using 1.0 equiv SnAP reagent and 1.0 equiv 
aldehyde. Yields shown are of isolated, analytically pure compounds following chromatography. [a] Cu(OTf)2 (10 mol %), (±)-PhBox (10 mol %), HFIP (0.1 M). [b] 
Cu(OTf)2 (20 mol %), (±)-PhBox (20 mol %), HFIP (0.05 M). [c] 5.0 mmol scale reaction: Cu(OTf)2 (5 mol %), (±)-PhBox (5 mol %), HFIP (0.1 M), rt, 36 h. 
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Curiously, the same conditions did not prove as effective 
for piperazine synthesis using SnAP Pip 5 as an increased 
amount of protodestannylated side products were observed. 
With these substrates, 10 mol % Cu(OTf)2 and 10 mol % 2,6-
lutidine as ligand were found to be optimal, provided that an 
increased amount of HFIP was employed to promote turnover. 
Acetonitrile was identified as a beneficial additive that improved 
yields of the unprotected piperazines and also reduced the 
amount of protodestannylated side products (Scheme 2).[ 15 ] 
Other additives such as BF3�Et2O, TMSOTf, Sc(OTf)3, or AgOTf 
did not have a significant effect, nor did the addition of fluoride 
sources (LiF, KF, CsF, TBAF, CuF2) to facilitate possible 
transmetallation. Applying these conditions to SnAP M 1 or 
SnAP TM 2 resulted mostly in unreacted starting material, 
reinforcing the importance of the bis(oxazoline) ligand L8 for 
those transformations. 
 

 

Scheme 2. Catalytic piperazine synthesis. Reactions were performed on a 0.5 
mmol scale using 1.0 equiv SnAP reagent and 1.0 equiv aldehyde. Yields 
shown are of isolated, analytically pure compounds following chromatography. 

These optimized conditions afforded a general protocol to 
the desired functionalized 1,4-diazacyclohexanes (6a–6l) using 
SnAP Pip 5 in good yields (Scheme 2). No special precautions 
were necessary for the reaction setup, as the reactions are not 
particularly air- or moisture sensitive. All experiments were 
performed using identical reaction conditions without substrate-
specific optimization. Aldehydes containing functional groups 
including esters (6k), aryl halides (6c), pinacol boronates (6d), 
and diverse heterocycles (6e–6j) enable the production of 

scaffolds suitable for further elaboration. The tolerance of these 
conditions towards heterocyclic carboxaldehydes containing 
heteroatoms in the ortho-position (6e–6h) is noteworthy as no 
product was observed with the previously reported stoichometric 
conditions using 1.0 equiv Cu(OTf)2.[3–6] The catalytic conditions 
were unfortunately not applicable to the formation of larger rings, 
such as diazepanes, which work well under stoichiometric 
conditions. Ketones also did not prove to be viable substrates 
under these conditions and afforded the desired spirocycles in 
low yields. 

An advantage of SnAP chemistry is the ability to 
incorporate various substituents into the reagents themselves, 
facilitating the synthesis of substituted N-heterocycles, often as 
single diastereomers.[4,6b] To date, we have explored substitution 
at every position except that adjacent to the tributyltin moiety. To 
complete the study on ring substitution, we investigated the use 
of α-bis(substituted) SnAP reagents 7 and 9, which would afford 
two adjacent stereocenters upon ring closure. Using the 
described standard conditions, these reagents coupled with 
representative aldehydes to provide 2,3-disubstituted 
morpholines 8a,b or 10a–c in good to excellent yields and high 
diastereoselectivity (Figure 3). The trans-relative configuration 
was confirmed by NMR and X-ray analysis. The excellent results 
with these more sterically demanding SnAP reagents to form 
vincinal substituted heterocycles is a promising approach to 
more congested structures difficult to form by other methods.[16] 

 

Figure 3. Synthesis of disubstituted morpholines. [a] Cu(OTf)2 (10 mol %), (±)- 
PhBox (10 mol %), HFIP (0.1 M), 20 h, rt. [b] Cu(OTf)2 (20 mol %), (±)-PhBox 
(20 mol %), HFIP (0.05 M), 20 h, rt. [c] Relative stereochemistry was 
confirmed by X-ray analysis of (±)-8b; others were assigned by analogy. 

The identification of substoichiometric reactions conditions 
presents the exciting opportunity to provide catalytic, ligand-
controlled, enantioselective variants. Catalytic asymmetric 
methods to generate optically active saturated N-heterocycles 
remain quite rare and have limitations such as complex linear 
precursors or the need for protecting groups.[17] In preliminary 
experiments, we were pleased to find that using racemic SnAP 
6-Et-M 7 in combination with enantiopure (S)-PhBox as ligand, 
enantioenriched 2,3-disubstituted morpholine 8c was delivered 
in 82% yield and a promising enantiomeric ratio of 80:20 
(Scheme 3). Furthermore, the observed stereoconvergence 
supports our current mechanistic conjecture that the 
organostannane leads to a carbon radical upon oxidation by 
copper (II),[3,5] as also observed by Falck.[18] In contrast, most 
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cross-coupling methods of stereodefined nucleophiles with 
copper exhibit stereospecific transmetallation and 
enantioenriched products are accessed only from non-racemic, 
configurationally stable precursors that are often difficult to 
access.[19] Although improvements in the enantioselectivity are 
clearly needed, the observation of significant enantioinduction 
invites further studies on ligand optimization and investigations 
into the stereochemical determining step. 
 

 

Scheme 3. Catalytic enantioselective morpholine synthesis. For additional 
examples see Supporting Information. [a] er (enantiomeric ratio) was 
determined by chiral HPLC analysis on the purified product. [b] Absolute 
stereochemistry not assigned. 

In summary, we have identified catalytic protocols for the 
one-step synthesis of substituted, N-unprotected piperazines, 
morpholines and thiomorpholines. This robust, air- and moisture 
tolerant protocol is a valuable addition to the SnAP chemistry 
and expands the substrate scope to include 2-(pyridine-2-
yl)piperazines and related substrates. This work also introduces 
a new class of SnAP reagents, with substitution adjacent to the 
heteroatom, resulting in the diastereoselective synthesis of 2,3-
disubstituted N-heterocycles. Our preliminary findings on a 
catalytic, enantioselective variant provide a promising start for 
the development of new routes to enantioenriched N-
heterocycles.  

Keywords: cross-coupling • nitrogen heterocycles • aldehydes • 
homogeneous catalysis • SnAP reagents 
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Layout 2: 

COMMUNICATION 

SnAPcat! The identification of new ligands and reaction conditions provides a 
robust catalytic protocol for the synthesis of N-unprotected heterocycles using 
SnAP reagents. This catalytic variant expands the accessible substrate scope for 
the one-step access of substituted piperazines, morpholines and thiomorpholines 
and establishes the basis for a catalytic, enantioselective process through the use 
of chiral ligands. 
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