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Ni5P4 has received considerable attention recently as a potentially viable substitute for

Pt as the cathode material for catalytic water splitting. The current investigation focuses

on theoretical understandings of the characteristics of active sites toward water splitting

using first-principle calculations. The results indicate that the activity of bridge NiNi sites

is highly related on the bond number with neighbors. If the total bond number of NiNi is

higher than 14, the sites will exhibit excellent HER performance. For the top P sites, the

activity is greatly affected by the position of coplanar atoms besides the bond number.

Data of bond length with neighbors can be used to predict the activity of P sites as

reviewed by machine learning. Partial density of state (PDOS) analysis of different P sites

illustrates that the activity of P sites should form the appropriate bond to localize some 3p

orbits of the P atoms. Bond number and position of neighbors are two key parameters

for the prediction of the HER activity. Based on the current work, most of the low-energy

surfaces of Ni5P4 are active, indicating a good potential of this materials for hydrogen

evolution reactions.

Keywords: nickel phosphides, water splitting, hydrogen evolution reaction, density functional theory, machine

learning

INTRODUCTION

Growing concerns on the energy crisis and environmental problems urgently demand for
the development of clean and affordable renewable energy sources as feasible alternatives to
the diminishing fossil fuels. Water electrolysis is the most promising option to generate high
purity hydrogen as a clean energy source, but unfortunately, the required cathode materials for
electrochemical water splitting, such as Pt, is too expensive for large-scale application (Li et al.,
2016). This has prompted continued research effort toward searching for earth-abundant elements
as the cathode materials for large-scale applications. The potential candidates include transition
metals (McKone et al., 2013), and their dichalcogenides (Chen et al., 2011; Voiry et al., 2013; Xie
et al., 2013; Yang et al., 2013), carbides (Chen et al., 2013a,b), borides (Vrubel and Hu, 2012),
nitrides (Cao et al., 2013), phosphides (Feng et al., 2016), and metal-free carbon nitrides (Merlet
et al., 2012; Meng et al., 2017), etc.
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GRAPHICAL ABSTRACT | Bond number and relative position with neighbors

are two important factors on the activity of Ni5P4 for HER.

Among these materials, nickel phosphides (NixPy) have
shown great promise due to their high activity and stability
(Gerasimov and Simirskii, 2008; Laursen et al., 2018). NixPy
has been reported in more than 10 stoichiometric compositions
(Feng et al., 2014; Huang et al., 2014; García-Muelas et al., 2018).
Among them, Ni5P4 has drawn lots of attentions recently on its
synthesis, structure, and reactivity (Shu et al., 2005; Zhao et al.,
2015). For example, Pan et al. investigated the electrocatalytic
property for hydrogen evolution reaction (HER) of Ni12P5, Ni2P,
and Ni5P4, and found that the catalytic property followed the
order of Ni5P4 > Ni2P > Ni12P5 (Pan et al., 2015). Laursen et al.
found that the Tafel slope and overpotential at −100mA cm−2

are 33mVdec−1 and−62mV in 1MH2SO4, which are very close
to Pt in strong acidic solution (Laursen et al., 2015). Although
Ni5P4 has high activity for HER, an atomic-scale understanding
of their reactivity has been elusive, because of the diversity
of possible active sites on its different crystal surfaces. While
experimental approaches will face a great challenge, theoretical
studies can provide insight of the active sites and therefore
become an important tool for understanding the catalytic activity
of Ni5P4.

Some researchers believed that the superior performance
of Ni5P4 can be attributed to a high positive charge on Ni
atoms and the ensemble effect of P, where the number of Ni3-
hollow sites that bind H very strongly is decreased due to the
abundance of P, which therefore leads to more thermoneutral
adsorption (Liu and Rodriguez, 2005; Liu et al., 2005). However,
recent experimental research indicates that NiP2 material is also
able to exhibit excellent HER activity although there are no
Ni3-hollow sites on the surfaces due to the enriched P atoms,
as shown in Figure S1 (Jiang et al., 2014; Pu et al., 2017).
Recently, Wexler et al. found through simulation that P site
was the most active site, but the hollow Ni sites on Ni2P and

Ni5P4 (0001) surfaces were not active (Wexler et al., 2017). This
result agrees with Jin et al. and our recent work, where we
found P sites were suitable for HER for Ni3P (Jin et al., 2016;
Hu et al., 2018a). However, it was also found not all P sites
are active. Therefore, it is necessary to obtain a fundamental
understanding of the activity for P sites from the atomic scale,
which are important for the development of a broad range of
catalytic materials. Till now, no such model exists to reveal an in-
depth understanding of the catalytically active sites. Therefore,
finding the key parameters affecting the HER activity becomes
an essential task for the rational design and optimization of
efficient catalysts.

Herein, we report a comprehensive theoretical study on the
atomic active sites of Ni5P4 for HER. It was found that there are
three types of active sites, namely the bridge NiNi sites, bridge
NiP sites, and top P sites. The activity of these active sites is closely
associated with the bond number and position with respect to
the neighbors. A direct link between the macroscopic activity
and the atomic-scale properties was therefore established by
regression and machine learning method based on the generated
understandings. The outcome provides not only an improved
understanding of Ni5P4, but also a guideline for the design and
synthesis of this material as an electrocatalyst for HER.

COMPUTATIONAL METHODS

All calculations were implemented in the CASTEP module
of the Materials Studio package (Accelrys Inc., San Diego,
CA, USA). During the calculations, self-consistent periodic
DFT was adopted by generalized gradient approximation with
Perdew-Burke-Ernzerhof exchange-correlation functional. The
plane-wave ultrasoft pseudopotential method, describing the
ionic cores of Ni-3d84s2 and P-3s33p2, were represented
the electron-ion interaction in reciprocal space. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme was
selected as the minimization algorithm. The energy
cutoff is 380 eV and the SCF tolerance is 5.0 × 10−7 eV
atom−1. The k-points samplings is set as 1 × 1 × 1 for
different surfaces. The optimization is completed when the
energy, maximum force, maximum stress and maximum
displacement are smaller than 5.0 × 10−6 eV atom−1,
0.01 eV Å−1, 0.02 GPa, and 5.0 × 10−4 Å, respectively.
These parameters were verified by experimental data, as listed
in Table S1 and Figure S2, and our previous calculations
(Hu et al., 2018a).

The surfaces, containing at least six layers, were obtained from
the bulk Ni5P4 (space group hP36, 186, as shown in Figure S3)
with a vacuum region of 15 Å. Considering the symmetry of
bulk Ni5P4, seven low-index surfaces, viz., the (001), (100), (110),
(110), (101), (111), and (111), with different terminations were
chosen during calculation. Different terminations are indicated
using capital letters A, B, C, D, and E (more information can
be found in Figures S4, S5). It was found that only P-rich
and stoichiometric surfaces are stable in all low-index surfaces
(Figure S6). Based on the surface energies, seven low energy
surfaces (details in Figure S7) are selected for the investigation
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of the catalytic activity. The energies of species related to the
calculation can be found in Table S2.

The Gibbs free energy of adsorption hydrogen atom is
calculated by Equation (1) (Hu et al., 2018b):

1GH = E[Ni5P4 +H]− E[Ni5P4]− 1/2E[H2]+ 1EZPE

−T1SH (1)

where E[Ni5P4+H] is the total energy of the system, including
the adsorbed molecules and the Ni5P4 facet; E[Ni5P4] is the
energy of Ni5P4 facet; E(H2) represents the total energy of a
gas phase H2 molecule; 1EZPE denotes the zero-point energy
of the system simplified as 0.05 eV. The term –T1SH is the
contribution from entropy at temperature K, taken as 0.20 eV at
298K (Tang and Jiang, 2016).

FIGURE 1 | Free energy profile of H2 generation on different active site of surfaces with the units in eV (A) the (001)C surface, with Pt(111) and Ni(111) surfaces

included for comparison; (B) the (100)C surface; (C) the (110)A surface; (D) the (110) A surface; (E) the (101)A surface; (F) the (111) A surface; (G) the (111)A surface.

The geometry structures of different surfaces (H) the (001)C surface (I) the (100)C surface; (J) the (110)A surface; (K) the (110) A surface; (L) the (101)A surface; (M)

the (111)A surface; (N) the (111)A surface; Violet spheres stand for P atoms and blue spheres stand for Ni atoms. Large, medium, and small spheres stand for the

atoms located in the first, second, and third layer.
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RESULTS AND DISCUSSION

Active Sites for HER
1GH is considered as a good descriptor of materials for
catalyzing hydrogen generation following either the Volmer-
Tafel or the Heyrovsky mechanism (Hinnemann et al., 2005). In
principle, smaller of |1GH| means better HER activity (Zheng
et al., 2014). Figure 1 displays details of the adsorption energies
involved in the water splitting process on the different sites.

As illustrated in Figure 1H, we found that 1GH for Ni(111)
and Pt(111) surfaces are −0.23 and −0.07 eV, respectively. This
is largely consistent with previous experimental and calculated
results (Nørskov et al., 2005; Tan et al., 2013). As seen from
Figure 1, some hollow NiNiNi sites, hollow PPP sites, bridge
NiNi sites, and top P sites are able to stably adsorb the hydrogen
atom (H∗). If we consider a site is active when the |1GH| is
smaller than 0.15 eV, the hollow sites are not catalytically active
while some bridge NiNi sites and top P sites may be active.
In order to reveal the characteristic of the active sites, detailed
structures for bridge NiNi sites and top P sites are illustrated in
Figures 2, 3.

As indicated in Figures 2A–K, only a few bridge NiNi sites
are active, such as the bridge Ni5Ni6 and Ni17Ni18 while others
are not. It is notable the linear correlation coefficient is 0.869
between total bond number of Ni and 1GH, and the linear fit

between bond number of Ni (x) and 1GH (y) obeys y=−1.98+
0.13x. Therefore, the bond number plays an important role to the
activity and it may exhibit excellent HER performance when the
total bond number of Ni equals to 15 or 16 (Figure 2L).

Furthermore, it is interesting to notice that the 1GH for most
top P sites are closer to zero (P2, P3, P4, P5, P8, P9, P12, P13,
P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P29,
P30, P33, and P35). It means these sites are able to trap protons
and bond the atomic hydrogen while still able to desorb H2

easily. This finding agrees well with the results reported by Jin
et al., where it was reported that top P may be the active sites
for Ni3P (Jin et al., 2016). Additionally, other top P sites are not
suitable for HER such as P1, P7, P10, P11, P14, P28, P32, and
P34. In order to clearly recognize the key parameters affecting the
activity, more detailed geometry structures of P sites are plotted
in Figure 3.

As indicated in Figure 3, P sites can be divided into three types
based on the number of PP bond during the surface cleavage.
The first type is the one that has two PP bonds, these P sites
are active if one of the PP bond is a double bond (P35, P5, and
P20) while the other is not (P7, P11, and P1). The second type
is the P sites with 1 PP bond. All such P sites have three bond
number with Ni. These P sites are active if only one neighboring
atom (regardless of Ni or P atom) is coplanar with this P site (P2,
P18, P19, P29, P30, P33, P22, P23, P26, and P27). While the P

FIGURE 2 | (A–K) Stable adsorption sites with bridge NiNi; (L) the relationship between the bond number of Ni and 1GH. The bonds are marked when the bond

tolerance changes from 0.600 to 1.185, and violet spheres stand for P atoms and blue spheres stand for Ni atoms. In order for easy comparison, the 1GH are also

manifested in the units of eV.
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FIGURE 3 | Stable adsorption sites with surface P atoms (A–F) surface P sites with 2 PP bonds; (G–R) surface P sites with 1 PP bonds; (S–F1) surface P sites with 0

PP bonds; The bond number (red number) of P are marked when the bond tolerance changes from 0.600 to 1.185.

sites are not active if the two neighboring atoms are coplanar
with the P site. For example, P10 and P14 are coplanar with
one neighboring Ni and one neighboring P. The third is the P
site without PP bond. This type of P sites have 3, 4, 5, and 6
bond number with Ni. For the P sites with three bond number,
the P sites are active if no neighboring atom is coplanar with
this P site (P24, P25), while it is not active if one neighboring
atom is coplanar with this P site (P34). Furthermore, P sites

with four or six bond number are active while P sites with
five bond number are not active. The information thus displays
a “structure sensitivity” of this material. The determination of
the bond number on the activity has also been found in other
catalysts (Zhao et al., 2016; Wang et al., 2018). In this work,
not only the bond number but also the relative position with
neighbors play an important role to determine the activity of P
atom for HER (Graphical Abstract).
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FIGURE 4 | Comparing the predicted 1G with calculated 1G on P sites (A) the predicted 1G by ANN method based on the BL data, arranged from largest to

smallest; (B) the predicted 1G by SVM method based on the BL data; (C) The predicted 1G by ANN method based on the BLP data; (D) the predicted 1G by SVM

method based on the BLP data.

Although this connection between activity and bond property
is obvious, it is difficult to fit by mathematical models due to
the complexity. Machine learning method, which is capable of
analyzing complex data, is used to analyze the results obtained.
Two machine learning methods, the Artificial Neural Network
(ANN) and Support VectorMachine (SVM), were used to predict
the activity. During the ANN training, the number of input
layer, middle layer, and output layer were chosen based on the
characteristics of the data. This data were randomly split into
training (50%) and testing (50%) groups to prevent overtraining.
For the SVM model, the regularization parameter is set as 10
in order to balance the classification accuracy and overfitting
for the training data. The Kernel type is Radial Basis Function
(RBF) with RBF gamma equals to 0.1. Furthermore, the model
will stop the optimization when the error between the adjacent
steps is <0.1%. The results are shown in Figure 4. There are
two database during the training, one for the bond length (BL)
(Table S3), where the bond length of active sites are arranged
from long to short, and the other the bond length–position (BLP)
(Table S4), arranged from the first, second, and third layer based
on position of active P site as indicated in the inset image of
Figure 4C.

As indicated in Figure 4, there is a larger root mean
square error based on BL data while the error will be greatly
reduced based on BLP data. The different between BLP and
BL data is only whether the data contains the information of
relative positions or not. The result verifies our early finding
(Figure 3) that the positions of neighboring atoms indeed play an
important role on the catalytic activity. Furthermore, The SVM
model is more appropriate for the catalytic activity prediction
than the ANN model. Therefore, this work demonstrates
that it is possible to establish a relationship between activity
(macroscopic activity) of P sites and their bond length (an
atomic-scale property) by using appropriate machine learning
method. This method is potentially useful for high-throughput
calculations because it can drastically reduce the amount
of calculations.

Electronic Characteristics of Active Sites
As indicated above, most of P sites are active sites in Ni5P4. To
reveal the origin of HER activity, partial density of states (PDOS)
of different P sites are illustrated in Figure 5.

Comparing the PDOS of different sites (Figure 5A and
Figure S8), we found the separated 3p orbits, one localized
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FIGURE 5 | (A) The corresponding PDOS of P atoms. The corresponding PDOS of all P sites can be found in Figure S8; (B) the electron density difference map of

different surfaces with potential isovalue equals to 2.0 eV are inserted in, where a loss of electrons is indicated in blue and electron enrichment is indicated in red; (C)

the relationship between Mulliken charge and 1GH; (D) the relationship between Hirshfeld charge and 1GH; Details data of charge can be found in Table S5.

in the region of −5.0 to −3.0 eV and another localized in
the region of −1.0 to 1.0 eV, have a high activity. While
greatly localized 3p orbits near the Fermi level (P6) and deeper
energy level (P1) are not active. This finding suggests that the
activity of P sites comes from the appropriate bond to localize
some 3p orbits of the P atom: weakly bonded or strongly
bonded P atom weakens its activity. The weakly bonded P
sites, such as P6 and P7, tend to form strong stable bonds
with H∗, where the atoms have few electron-state fluctuations
and the charge-transfer is more common. Strongly bonded P
sites, such as P1, tend to form weak but stable bonds with
H∗ and make it impossible to form H bond on the sites
(Falicov and Somorjai, 1985).

Based on the electron density difference map (Figure 5B),
the catalytic activity has a strong relation with the electron
distribution. The same distribution has almost same activity,
for example, between P6 and P15, and P2 and P18. As known,
the neighboring bonds largely affect the electron distribution,

therefore, the activity of P sites are greatly related to the
bond number and relative position of neighbors. Furthermore,
the relationship between charge states with 1GH was also
analyzed. Some literatures indicated that the catalytic activity
has a strong relation with charge of the surface atom (Balteanu
et al., 2004). Statistical analysis (Figures 5C,D) shows that the
linear correlation coefficient is only 0.441 between Mulliken
charge and 1GH, and 0.446 between Hirshfeld charge and
1GH. This indicates that there is no strong relationship
between charge states and HER activity of Ni5P4. The main
reason is the charge states do not contain the relative
position with neighbors while charge distribution includes
this information.

CONCLUSIONS

In this paper, a comprehensive theoretical analysis is presented
on the catalytic characteristics of different active sites of Ni5P4
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for electrochemical water splitting. The results indicate the
bond number and relative position with neighbors play an
important role on the activity of Ni5P4 for HER. There are
two active sites, namely the bridge NiNi sites and top P
sites. The bridge NiNi sites with a total bond number of Ni
equals to 15 or 16 exhibit good HER performance. For the
top P sites, the activity is greatly affected by bond number
of P as well as the coplanar atoms. Data on the bond
length with neighbors can be used to predict the activity of
P sites as reviewed by machine learning. PDOS of different
P sites illustrates that the activity of P sites should form
the appropriate bond to localize some 3p orbits of P atom.
Weakly bonded or strongly bonded P atom will weaken its
activity. Therefore, bond number and positions of neighbors
are two key parameters for HER activity of Ni5P4 material.
The current work establishes a clear connection between
the macroscopic activity and geometrical structures of Ni5P4
material. The outcome not only provides important insights
into the surface activity for water splitting, but also opens
up an exciting opportunity to quickly design and optimize
the materials with high catalytic activity. Except the (001)C
that is non-active, most of the investigated surfaces of Ni5P4,
e.g., the (100)C, (110)A, (110)A, (101)A, are active for HER,
indicating that this material is a good candidate for practical
hydrogen production.
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