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Summary. The transition from the adiabatic (Sedov) phase of a spherically
symmetric supernova remnant is studied numerically. The input physics is
kept as simple as possible, but the interstellar magnetic field is included.
It is shown that, for sufficiently large values of the explosion energy and
ambient density, multiple shocks are formed. These shocks continue to be
formed until the expansion velocity of the remnant falls below 108 km s ™.

The X-ray luminosity of the remnant is also calculated and it is found that
the mean X-ray temperature does not correlate with the expansion velocity
once radiative cooling becomes important.

1 Introduction

In recent years there has been considerable work on supernova remnants, both theoretical
and observational, most of which is described in a review by Chevalier (1977). A number of
authors have carried out numerical studies of the evolution of such remnants with a wide
variety of input physics (Rosenberg & Scheuer 1973; Straka 1974; Chevalier 1974a, b;
Mansfield & Salpeter 1974). Although the fundamental theory of their evolution seems quite
well established, there remain a number of discrepancies between theory and observation. In
particular, the X-ray temperature of supernova remnants is always much higher than that
behind a shock travelling with the expansion velocity of the optical filaments. This has led
a number of authors (McKee & Cowie 1975; McKee, Cowie & Ostriker 1978; Lozinskaya
1978) to assume that the optical filaments are produced by dense clouds embedded in a
much rarer medium. However, it is found here that, once radiative cooling has occurred,
there need be no correlation between the velocity of the optical filaments and the X-ray
temperature of the remnant.

It has been shown in a previous paper (Falle 1975; hereafter referred to as Paper I) that
the onset of radiative cooling is sudden, and that additional shocks may be formed during
the transition from the Sedov to the thin-shell phase. This transition has not been studied in
detail by other authors, mainly because of the complexity of the flow during this phase,
but a proper treatment is important for several reasons. First, most of the energy of the
remnant is radiated away during this phase and so to a large extent it determines the subse-
quent evolution of the remnant. Secondly, Bell (1978) and Blandford & Ostriker (1978)
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have suggested that cosmic rays are accelerated by supernova shocks. The number and
strength of the additional shocks can then have an important effect on the cosmic rays
produced by a supernova remnant.

For these reasons we will consider the rapid cooling phase of supernova remnants in some
detail, using the numerical code described in Paper I. This treats shocks by shock-fitting and
readily allows a variable mesh-spacing to cope with locally steep gradients. The problem of
rapid cooling is thus treated more satisfactorily than by other methods, although the
formation of multiple shocks clearly causes some programming difficulties.

The physical assumptions are described in Section 2 together with a brief description
of the numerical code used. From the equations given in Section 2, the appropriate scaling
laws are derived in Section 3. These are then used in Section 4 to derive the time at which
radiative cooling becomes important. A criterion for the formation of secondary shocks is
derived in Section 5, while the numerical results are presented in Section 6.

2 Physical assumptions and computational method
The physical assumptions are broadly the same as in Paper I, namely:

(i) The flow is initially described by the Sedov solution for a uniform medium with
v = 5/3. This assumes that the time ¢, at which the remnant enters the Sedov phase is less
than the time 7, at which radiative cooling becomes important.

In Paper I it was shown that

M6 [ F \-V2
th<7x103(ﬁe) (1—(%) ng3yr, 2.1

[©]

where M, is the mass ejected during the explosion, Ey is the explosion energy and n,is the
interstellar number density. It will be shown in Section 4 that

E 0.24
rsg=2.7x104(—°) ng% 5% yr. 2.2)

1051

The requirement that a Sedov phase exists then becomes

tb ( EO )"074(Me )5/6

—=026|— —) nd¥<1. 2.3
g 10% Mo) ° @3)

This is satisfied for all cases considered in this paper, provided that M, < M,,.
(ii) The magnetic field is tangential everywhere and is a function of radius only, i.e.

B=1[0,0,B(r)] 24)

in spherical polars. The magnetic field does not become dynamically important until the gas
has cooled and the resulting compression has amplified the field. Although unphysical,
(2.4) will then be a reasonable approximation since only the tangential component of the
field is magnified.

(iii) The cooling rate per unit volume is

L =nyn,®(T) ergem 357, (2.5)

where ny, n, are the hydrogen and electron number densities respectively. For T > 10K,
®(T) is taken from Cox & Daltabuit’s (1971) calculations for an optically thin gas with
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Figure 1. Cooling law (Kafatos 1973).

Aller’s (1961) abundances. In the range 10°K < 7' < 10°K, ®(T) is taken from Kafatos’
(1973) calculations which take into account the fact that in this temperature range the gas
cools too rapidly to stay in ionizational equilibrium. For T < 10%K the cooling is compli-
cated by the fact that the hydrogen recombines and the gas becomes optically thick to
radiation beyond the Lyman limit. However, when the gas cools to these temperatures, the
magnetic pressure exceeds the gas pressure so that the dynamics are independent of the
cooling law for T < 10*K. As in Paper I we therefore assume ® « T for T < 10*K. The
function ®(7) is shown in Fig. 1.

(iv) The thermal conductivity of the gas is neglected. Several authors (Chevalier 1975;
Solinger, Rappaport & Buff 1975) have considered the effect of thermal conduction and
Chevalier has shown that it makes the interior of the remnant isothermal. These authors
assume that the thermal conductivity is

K=107T%2 (2.6)

which is valid for a fully ionized hydrogen gas if there is no magnetic field. In the presence
of a field, however, the thermal conductivity parallel to the field is unchanged, but that
perpendicular to the field becomes

2
K =5.5%x10716 I#Hl/" Q2.7)

Thermal conduction is only important at temperatures above 10°K, and K will then be
less than K if B> 107'*G (for ny = 1). The magnetic field is certainly much greater than
this, except near the centre of the remnant where the density is very low. If there is
turbulence with an energy density greater than the field energy density then the field will
become random and prevent conduction. Near the shell, the turbulent energy density is a
few percent of the thermal energy density and thus always greater than the field energy
density. In the interior of the remnant, this turbulence will have decayed and the field will
be more ordered. Conduction may then be important in the interior, unless there are in-
homogeneities which can generate turbulence. But since most of the energy is near the
shock, conduction in the interior will not have an important effect on the remnant. In
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particular, it will not alter the energetics of those regions which are cooling radiatively, since
these are near the shock.

(v) The ambient gas is uniform, fully ionized, at a temperature of 10°K and is at rest.
Any motions in the ambient medium will be of the order of the sound speed and so may be
neglected as long as the shock is strong.

Kahn (1974) has shown that, for a supernova explosion with a total energy of 10%2erg,
the amount in ionizing radiation is ~ 10*”erg. At a density of one hydrogen atom cm ™3, this
can only ionize a sphere ~ 5 pc in radius, even without allowing for recombinations. The
ambient gas cannot therefore be ionized by the original explosion, although Cox (1972a)
has shown that, if the shock velocity is greater than ~ 50 km s™?, the radiation from the gas
cooling behind the shock can ionize the gas ahead.

As to the assumption of uniform density, this is clearly invalid for most supernova
remnants. While there would clearly be no difficulty in considering the ambient density to
be a function of radius, the most interesting effects would be produced by non-spherically
symmetric density distributions. Since these cannot be studied with a spherically symmetric
code, we adopt a uniform density for simplicity. ,

With a magnetic field of the form (2.4) and spherical symmetry, the hydrodynamic
equations for a perfectly conducting gas are,

ou ou op o B* B?

ol—+u —) = —— — (momentum), (2.8)
ot or or or 8 d4ar

oB uB

—=— —uB - — (flux conservation), (2.9)

ot or r

0 0 2pu

ki +—pu+ P (continuity), (2.10)

ot or r

) 0 G )

—p+u—p_7—p(—p+u—p)+(y_1)L=o (energy), @2.11)

ot or p ‘ot or -
kpT

p= w (state). (2.12)
MMy

Here u (=0.66) is the mean molecular weight.
In addition to equations (2.8) to (2.12) we have the Rankine—Hugoniot conditions at
the shock which bounds the remnant,

oV~ )= poV, @13)
B? B}

—4p+p(V —u)P=—+po+poV?, (2.14)
87 &

B? 1 B2 1

Y o= P o (2.15)
4rp (y—1)p 2 dmpe (v —1)po 2

Here V is the velocity of the shock in a fixed frame, and p,, po and B, are the ambient
density, pressure and magnetic field respectively.

In Paper I it was shown that (2.8) to (2.12) could be transformed into differential
relations along the characteristics. The method used to integrate these equations is described
in Paper 1. Shocks are treated by shock-fitting unless they are very weak, in which case they
are handled satisfactorily by the small artificial viscosity introduced by the way in which the
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equations are differenced. Additional shocks are formed during the evolution of the
remnant, and this leads to shocks overtaking each other. The method for dealing with this is
described in the Appendix.

The scheme is explicit and correct to second order. Stability requires that the time-step
be limited by the Courant—Friedrichs condition, except when cooling becomes so rapid that
the cooling time is shorter than the Courant—Friedrichs time. In order to handle the steep
gradients which occur, it is necessary to use different mesh-spacings in different parts of the
flow. There were usually six to nine different regions and, since the permissible time-step
varies by several orders of magnitude across the remnant, different time-steps were used in
each of these regions.

Note that if the shocks are treated by artificial viscosity, then the cooling time must be
greater than the Courant—Friedrichs time at the shock. Otherwise a gas element will cool
significantly in passing through the finite thickness of the shock and, since the shock
structure produced by artificial viscosity is incorrect, the energy radiated by the gas element
will be incorrect. We shall see in Section 6 that a significant fraction of the energy of the
remnant is radiated away near secondary shocks, for which the cooling time would be
shorter than the Courant—Friedrichs time unless an unacceptably small mesh-spacing were
used. This means that it is extremely difficult to calculate the energy of a supernova remnant
accurately if artificial viscosity is used.

It can of course be argued that the simplifying assumptions used in the present work
cause errors as large as those introduced by the use of artificial viscosity. However, if
artificial viscosity is used, and the cooling time is shorter than the Courant—Friedrichs time,
then gas passing through a shock is not heated to a high temperature. As we shall see later,
the cooling of gas from a high temperature produces interesting dynamical effects, which
depend only on certain gross features of the cooling law. These effects would be lost if
artificial viscosity were used.

3 Scaling laws
The cooling law (2.5) can be written in the form
C
L=45( =) G3.1)
C'*
where ¢ is a dimensionless function and
P

c=— 3.2)
o

is the sound speed in the gas. c, is a reference sound speed which we take to be that at the
maximum of the cooling curve. Then

% 1/2
€y = ( *) =6.09 x 108, (3.3)
pmy

where T, is the temperature at the maximum of the cooling curve. If we choose ¢(1) =1 we
get

A=1.88x10%. (34)

For a given function ¢, the flow is governed by the parameters Eq, po, 4, ¢, Boand ¢,
where B, and c, are the ambient magnetic field and sound speed respectively. From these
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we can construct three dimensionless parameters which we choose to be
Eyp3 YB3 ¢
A="243,  B=—, €=—. (3.5)
C‘* ’YTTpoC* C*

We shall see later that the magnetic field is only important when the gas has cooled
substantially, so that until this happens the flow cannot dépend on #. The parameter®
will only have an effect at the very latest times when the shock is no longer strong. We can
thus divide the flow into three stages. In the first the magnetic field is unimportant and the
flow depends only on .2; in the second it depends on both & and &; while in the third it
depends on all three. The time at which the first stage ends depends on %, and the time at
which the second ends depends on €.

In view of this it is convenient to choose characteristic mass ., length « and time ¢,
which do not involve By and c,. A suitable choice is

EO EO 1/3 EO 1/3
me =T, {c=( 2) > [cz( ) . (3-6)

2 5
Cyg PoCy pOC*

All solutions with the same values of 7, # and € can be obtained from each other using
this scaling-law. Furthermore, in the first stage of the flow the solutions need only have the
same values of %, and in the second the same values of ./ and #.

For galactic supernovae we would expect 10°°< Ey< 10%%,107 ' < ny< 10,1077 < By <
1075, The possible range for the ambient temperature Tyis 100 K < T, < 10°K, but we shall
only consider T, = 10*K. The dimensionless parameters ¢, # and € then lie in the ranges
43%x10%°< A <43x10!1° 107 %< #<1and €=0.24.

4 Onset of radiative cooling

The considerations of the last section can immediately be used to obtain an expression for
the time at which radiative cooling becomes important. In the Sedov solution the tempera-
ture gradient behind the shock is negative, so that the magnetic field cannot be important
unless it is so behind the shock. However, the field is negligible behind a strong adiabatic
shock unless it dominates ahead of the shock. Since we shall not consider such cases, we can
be certain that the flow is unaffected by the field and hence does not depend on % until
radiative cooling becomes important. Once this happens, the temperature gradient behind
the shock will increase, so, following Cox (1972b), we will define f, as the time at which
the temperature gradient behind the shock vanishes. This gives a good indication of the time
at which radiative cooling becomes significant. This time f,, must be independent of
& and €.
We have on dimensional grounds

tsg = LS (A). “4.1)

The dimensionless function f(&) is found by computing #, for a number of values of ..
For &/ in the range given in Section 3, we find

f()=1.06x10"1f~7/75, (4.2)
Putting this into (4.1), and substituting for .o and ¢, from (3.5) and (3.6), we get

E0.24
teg=1.06 (4.3)

0.64 40.28 .0.52"°
C* A Po
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For the adopted values of 4 and c,, this gives

EO 0.24
tg=2.7x10% (1?51) ng %52 yr. (4.4)
Similarly we find that the shock velocity and radius at this time are given by
{
Vg =1.72 l—°d°-°554, 4.5)
[

Ry =0.476 /.ol ~0038, (4.6)
These become

EO 0.0554
Vg =2.77x10% (IE;I n%) kms™, 4.7)

5 0295
Ry =2.0x10" ( 10—51) ng %4 pe. (4.8)

As can be seen from Figs 2 and 3, the shock velocity and radius at this time are little
different from those for the Sedov solution. Because of this, (4.7) and (4.8) are nearly the
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Figure 2. Shock radius 7 as a function of time. The straight line is the Sedov solution.
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Figure 3. Shock velocity vg as a function of time. The straight line is the Sedov solution,
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Figure 4. Flow at various times. ug, pg and pg are the post-shock values. (a) Sedov solution for y = 5/3.
(b) £=2.10yr, rg=14.1 pc, ug= 1.90 X 102km s~*, ps = 8.14 X 10~'°dyn cm 2, Pg=6.60X10"*gcm™3,
(¢) t=293X10%r1, rg=159pc, ug=1.31X10%kms™, ps=3.90X10"°dyncm™, pg=6.50x107*
gem™>, (d) £=3.21X10*yr, rg= 16.4 pc, Us=9.28X10'kms™", pg=1.98X 107*°dyn cm?, pg = 6.34 X
107*gem™. () t=3.56 X 10*yr, 7 = 16.7 pc, Ug=2.97x10'kms™, pg=2.55x 10" dyn cm™?, pg =
4.76 X10*gem™. (f) +=3.56X10%yr. (g) #=3.70X10%yr, rs=16.8pc, ug=1.27X10°kms™, pg =
3.68X10°dyncm™, pg=6.50X10"*gcm™. (h) #=9.01X10* yr, rg=22.0pc, ug=5.22Xx10'kms™,
Ps=6.67X10 dyncm™ pg =5.77X10* gem™. (i) ¢ = 9.01 X 10%yr.
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Figure 4 - continued

same as the expressions obtained by substituting 7, into the Sedov solution. The structure
of the flow behind the shock has, however, changed significantly. This can be seen in
Fig. 4(b).

The post-shock temperature at ¢ = 7, is given by

{2
Tig = 1.5x107°V2 = 4.41 x 10702 1108, (4.9)
ZC
This is
on3)\0-1108
ng=1.15x106(1051) (4.10)
For the range of Eon’ considered, T lies in the range
53x10°K < Tz < 2.5x10°K. (4.11)
In the temperature range
T,=1.78x10°K < T < 3x10°K, (4.12)
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the cooling function ¢ is approximately a power-law, and this, together with the fact that
cooling only becomes important when ¢ = t,, is the reason why f(.o/) is a powerlaw. We
also find that, as long as the temperature in the remnant is everywhere greater than T, then
radiative cooling is only important in regions where the temperature is in the range defined
by (4.12). This allows us to deduce an approximate scaling-law which is valid as long as the
temperatue is greater than 7, throughout the remnant.

If the cooling law has the form

L =Bp2(l—;)a, (4.13)

then the characteristic mass », length ¢ and time #,, are given by
m!, = E3(a—i(6a—11),4/(6a—11)p2/(6a—11)
lé - E82a—3)/(6a—ll)pSS—za)/(Ga—ll)B 2/(6a~11), (4.14)
¢! = FR@—D/(6a—11),(7-20)/(6a—11)p 5/(6a—11)
c .

(4.3) then shows that we must have
a=-—1.14, (4.15)
The approximate scaling-law (4.14) then becomes

' — 170.888 .-0.224 »n-0.336
m =E;)**p, B ,

‘! =E8‘296p60‘4083_0’112, (4.16)
o =E(‘)’-24p(‘)°-523'°-28_

As long as ¢ can be approximated by a power-law, the flow does not depend on any
dimensionless parameter. The scaling-law (4.16) can then be used to obtain the solution for
any value of the parameters from a single computation.

This scaling breaks down when the temperature falls below 7,,. From the computations,
we find that this occurs at 7 = #; with

EO 0.24
t,=4.06 x10* (F) ng®3%yr. 4.17)
For ¢t < t,, solutions may be scaled according to (4.16). We shall make use of this fact in the
next section.

As far as scaling is concerned, we can thus divide the evolution of the remnant into four
stages. In the first up to ¢ = ¢,, the scaling-law (4.16) holds and the flow does not depend on
any dimensionless parameters. In the second, from ¢ = ¢, to ¢ = ¢,, say, the flow depends only
on 2. We shall see later that this stage is very short, so that ¢, ~ ¢,. From ¢ = £, to ¢ = ¢; the
flow depends only on &/ and %, while for ¢ > ¢3 it depends on all three parameters. Note
that, while ¢, is independent of o/, # and €, ¢, depends on &/ and &, and ¢, depends on
o, # and €. t, is precisely defined, whilst 7, and 73 are somewhat vaguely defined since
they depend on the definition of a small effect of # and € on the flow.

5 Conditions for the formation of additional shocks

It was shown in Paper I that, if £y p3 was sufficiently large, then the radiative cooling was so
rapid that additional shocks were formed. In this section we will devise a condition on the
form of the cooling-law and on Ep¢ (i.e. on 2¢) for this to occur.
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The local cooling time in the gas is
p _ c?
(O -DL y(y—1)

from (3.1). If we assume that the region in which radiative cooling is important originally
has size A;, mean sound speed ¢; and mean density p;, then continuity gives

Apo(c?c?) (5.1)

tcool =

—)i =&. 5.2)
NP
Here p and X are the mean density and size of the region at any later time. We have assumed
that the cooling region is thin so that it may be regarded as approximately plane parallel,
and that the radius does not change significantly.

The sound crossing-time in this region is then

fy=m= (53)

where ¢ is the mean sound speed in this region. We expect additional shocks to be formed if
fcool < tgat any time. The ratio of these times is

=3

Leool = ¢ . (5 .4)
ty  y(y—1)AsE*cHoiN
As the gas cools, ¢ decreases, and so the ratio of these times will decrease if
da ¢
5.5

a o@hch "
If

c—2 C—2 a
() () oo
then this requires
a< % 5.7

Note that this is a stricter requirement than the condition for the thermal instability during
isobaric cooling, which merely requires o < 3 (McCray, Stein & Kafatos 1975).
Additional shocks will not form unless #,4;/t; becomes less than unity. We then require

feool - [ 3/(1)(52/01)] min
() - ‘
ts Jmin  Y(y — DApiN

where [¢3/¢(¢%/c2)]min is the minimum value. This is simply a property of the cooling law,
and for the law which we have adopted we find

1, (5.8)

&3
——— |  =9.75x10" :
erpl, e 53

at ¢=2.57x10% (T =3.16 x 10°K).
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Clearly A; and p; are somewhat uncertain, but it is reasonable to take p; to be simply the
adiabatic post-shock density,

v +1
b= (_) Po. (5.10)
v—1
We will take the cooling region to be the gas swept up between tsg and the onset of rapid
cooling. The latter can be defined as the time when the pressure gradient begins to depart
from that in the Sedov phase. Since T > T, everywhere up to this point, we can use the
approximate scaling-law (4.16). We then have

E0.296
)\i e 0

0408 "
Po

From a single computation we find

0.296

_ )
N=35x107-0 (5.11)
Po

Substituting (5.9), (5.10) and (5.11) into condition (5.8), we get

Eon} -6

o > 8.8x107°, (5.12)
In Paper I it was shown by computation that the condition is

Eqond -5

o >2.7x107>. (5.13)

Given the crudity of the assumptions used to derive (5.12), the agreement is quite satis-
factory.

In terms of the parameter .o/, (5.13) becomes

of > 1.15x10°, (5.14)

which is satisfied for almost all supernova remnants.

The arguments of this section can be applied to any flow in which the cooling law
satisfies (5.5) at any point. In particular, they have been applied by Dyson, Falle & Perry
(1980) to the flow resulting from the interaction of a QSO wind with ambient material.

6 Numerical results

Since we are primarily concerned with studying the shocks produced by rapid cooling, we
will restrict ourselves to supernova remnants with .o7> 1.15 x 103, In order that the present
work may be compared with Chevalier’s (1975) results, we choose E, =3 x 10%%erg, po=
1.67x107*gcm™, By=10"%G. This gives s/=13x107, #=6.42x10"% and €= 0.24.
These values correspond to Chevalier’s model A except that he uses a field of 3 x 10™¢G. In
fact we find that the field has little effect on the overall flow unless the magnetic pressure
becomes important in regions in which the temperature is greater than T,. Note, however,
that for values of 2/ such that additional shocks form, it is necessary to use a finite value of
B,. Otherwise the density becomes very high and the consequent decrease in the Courant—
Friedrichs time makes it impossible to continue the computations.
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For this model we have from (4.4)—(4.6) t,;=2.02Xx10%yr, Rgg = 13.99 pc, Vi = 2.59 X
102km s™!. These values are marked on Figs 2 and 3. The structure of the remnant is shown
in Fig. 4. The flow variables are plotted as functions of the Eulerian radius, in contrast to
Paper I where they were shown as functions of the Lagrangian variable m (r) which is the
mass interior to radius r. Although this makes a physical interpretation of the results easier,
the considerable compression which occurs makes it necessary to show only a part of the
flow in the later stages.

Fig. 4(a)—(d) correspond roughly to Fig. 5(a)—(d) in Paper I and show that cooling sets
in suddenly, so that a low-pressure region is formed behind the shock. This is because, as
expected for this value of .o/, the cooling time in this region becomes shorter than the
sound crossing-time.

The flow during the period of thin-shell formation is shown schematically in Fig. 5,
while the corresponding numerical results are shown in Fig. 4(d)—(i). In Fig. 5(a) the low-
pressure region is idealized as being bounded by pressure discontinuities. The break-up of
these discontinuities is shown in Fig. 5(b). s, and s; are shocks which move into the low-
pressure region, while R, and R, are rarefaction waves moving away from this region. For
this value of ./, s, and s; are weak and can be handled by the small artificial viscosity
inherent in the numerical code whereas, for larger values of .2, the shocks are strong and
must be treated by shock fitting. The temperature behind s, and s3 remains low because of
the short cooling-time. Contact discontinuities are not shown since they disappear in a
cooling-time. s, and s; collide and produce two much stronger shocks s, and s5 as shown in
Fig. 5(c). This corresponds to Fig. 4(e) and (f) and it can be seen that the cooling time
behind s4 and ss is short. In Fig. 5(d), which corresponds to Fig. 4(g), ss has overtaken s,
causing it to accelerate and producing an inward-moving rarefaction wave Rj;. This
rarefaction eventually overtakes s, and weakens it somewhat.

Once s, has been overtaken by ss, the temperature in the gas behind it exceeds 7, so that
it is once more subject to the catastrophic cooling described in Section 5. A low-pressure
region is again formed behind s, and the whole process repeats itself. In Fig. 2 it can be seen
that this process of shock formation occurs four times in all. In fact, the process only ceases
when s, is no longer accelerated to a velocity greater than 108 km s™!, which is the shock
speed at which the post-shock temperature is equal to T,,. As shown in Section 5, gas cooling
from a temperature less than 7, can cool in approximate pressure equilibrium so that
additional shocks are not formed. For larger values of .27, the process repeats itself more
times and again only ceases when s; is no longer accelerated to velocities greater than
108 kms™%,

During this process, the cooling time behind s, is shorter than the Courant—Friedrichs
time. Thus if artificial viscosity is used, the gas will not be heated to a high temperature by

©

Figure 5. Schematic diagram of the flow showing the formation of additional shocks.
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s;. Repeated shock-formation would then either not occur, or the oscillations in shock
strength would have much smaller amplitude.

Once the bulk of the gas has cooled, and the mean velocity of the cool material has fallen
below 108 km s™%, the flow is as in Fig. 4(h) and (i); 98 per cent of the mass of the remnant
is in a cold shell whose thickness is 15 per cent of the radius. Throughout this shell, the
magnetic pressure dominates over the gas pressure. This will be the case whatever the value
of By, the only difference being that the cold shell will be thinner if By is smaller.

The inner edge of the cold shell is bounded at r/r; = 0.85 by a sharp transition in which
gas cools rapidly from ~ 105K down to ~ 10®K. As can be seen from the figure, the pressure
and velocity are continuous across this region except for some small numerical oscillations.
These are due to the large gradients. Inside this transition there is a region containing hot
gas, which is bounded at r/r; = 0.8 by the inward-moving shock s,. Inside s, there is very hot
gas (T > 10°K) which is expanding outwards. Radiative cooling is negligible in this gas
because of the low density.

The outer edge of the cold shell is bounded by a very thin (Ar/rg=0.01) region in which
the gas cools from the post-shock temperature of 8 x 10°K down to 10°K. It is this region
which produces most of the optical emission from the remnant at this time. The spectrum
of this radiation could be obtained by a calculation such as that performed by Cox (1972a)
and Raymond (1976) for the cooling region behind a steady shock.

The remnant retains essentially this structure, with the cold shell gradually increasing in
mass while s, weakens and eventually disappears. This continues until the velocity of the
shell becomes less than 50 km s™!. The radiation from the gas cooling behind the shock is
then no longer able to ionize the ambient gas and so, unless the remnant is embedded in an
Hi1 region, the ionization structure in the cooling region will be complicated. The end
result, however, will clearly be a slowly moving H1 shell, whose thickness will depend on the
ambient magnetic field.

The energy of the remnant is shown as a function of time in Fig. 6. Here E7 is the total
energy input to the remnant and is given by

4 cl
Ey=Eo+—p3 2000

3 " v(r-1)
since the ambient gas has non-zero thermal energy. It can be seen that the bulk of the energy
is radiated away during the period of additional shock formation from #=3.2x10% to

6.1)

ElEo

10 1

075

05

0-25

Figure 6. Energy of the remnant as a function of time. E7 is the total energy input, Er the total energy of
the remnant, Eyp, the thermal energy, Ey the kinetic energy and Ey, the magnetic energy.
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L; erg/s

107y ey ——
10° 10 tyr

Figure 7. Total luminosity L; as a function of time.

t=6.3x10%yr. Note that the kinetic energy actually increases at one point due to the
presence of rarefaction waves.

Fig. 7 shows the total luminosity of the remnant as a function of time. This is greatest
during the first period of rapid cooling when the low-pressure region is first formed. There-
after there are peaks associated with the formation of the additional low-pressure regions. A
significant fraction of the luminosity at this time comes from gas cooling behind the
additional shocks s, and s3.

The X-ray luminosity in the band 1.5—4 keV is shown in Fig. 8. This was calculated using
the results given by Tucker & Koren (1971) for a low-density plasma with solar abundances.
The mean emission-weighted X-ray temperature is also shown in Fig. 8. It can be seen that
this temperature correlates with the velocity of s, as long as radiative cooling is unimportant,
but thereafter it actually increases while the velocity of s; decreases. This is because, once
the thin shell has formed, the X-ray emission comes only from the hot interior and so does
not depend on the velocity of the thin shell. This means that there is no discrepancy
between the X-ray temperature measured for old remnants, such as the Cygnus Loop, and
the expansion velocities of the optical filaments.

Lx
erg/s
10%)

107

103A

107

1032‘

1031

Figure 8. X-ray luminosity Ly in the band 1.5—4 keV and mean emission-weighted X-ray temperature
T as functions of time.
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7 Conclusion

The present paper extends the work described in Paper I in a number of ways. First, it has
been shown in Section 3 that the scaling laws for supernova remnants can be simplified
under certain circumstances. This allows more information to be obtained from the
necessarily limited number of computations. The arguments leading to the criterion for the
formation of additional shocks have also been improved in such a way as to make it easier
to extend them to other situations.

The most important improvement, however, is that the additional shocks and their inter-
actions are treated by shock-fitting. This has allowed the complete evolution of the remnant
to be studied and has shown that additional shocks are formed many times. They are thus
far more important than was supposed in Paper L. In particular they have a greater effect on
the energetics of the remnant than had been thought. This means that the proper treatment
of these shocks is even more crucial if the evolution of supernova remnants is to be correctly
calculated.

It was pointed out in Section 2 that methods based on artificial viscosity, although .
suitable for many applications, are likely to lead to serious errors if used to treat these
additional shocks. Although the method used in the present work overcomes most of the
difficulties, it is very cumbersome when several shocks are involved. Clearly some more
convenient way of handling these problems is needed.

The fact that even a simple one-dimensional problem presents such difficulties makes it
difficult to trust two-dimensional calculations as at present performed. The coarse grid
necessary for these calculations must lead to very large errors in the energy loss and hence
distort the subsequent behaviour of the remnant. Their only value seems to be in carrying
out model calculations for cases in which these limitations are not serious.

Finally, it has been shown that, once radiative cooling has occurred, there is no simple
correlation between the X-ray temperature of the remnant and the expansion velocity of the
thin shell. The high X-ray temperature of remnants such as the Cygnus Loop therefore
provides no support for the idea that they are in the Sedov phase, the optical filaments being
produced by shock interactions with denser clouds.

In the Cygnus Loop there have been observations of velocities corresponding to the
X-ray temperature (Kirshner & Taylor 1976). It will be shown in a later paper that these,
and other features of the Cygnus Loop, can be explained by a variation in the ambient
density. The length-scale of this variation, however, appears to be of the same order as the
size of the remnant, rather than much smaller as proposed by McKee & Cowie.
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Appendix

The computational method used when two shocks overtake each other is described in this
Appendix. As long as the two shocks are separated by more than one mesh point, the
integration can proceed as described in Paper I. Once they are only one mesh point apart,
the situation will be as in Fig. Al. Here m is the Lagrangian variable, DE is the path of the

bt H G F E
i / /
A B C D
m m+3Am
Figure A1

leading shock s; and BG is that of the trailing shock s, which is overtaking s;. The mesh
spacing is so chosen that the flow in region BCD changes little in the time it takes s, to over-
take s;. The flow between the shocks may then be regarded as steady, so that the flow
variables ahead of s, can be obtained by interpolation on BCD. The flow in BCD is taken to
be that obtaining when the situation of Fig. Al first arises. In this way the solution can be
advanced in time until the shocks are so close that they will intersect in the next time-step.
This is shown in Fig. A2, where CE, DE are the paths of s, and s, respectively, and EF, EG

f+A|’I
f+pAf——————%
t

. M+ AM
Figure A2
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are the paths they would follow if they did not intersect at E. When the shocks intersect
at E, a discontinuity is created, which breaks up into a rarefaction wave travelling to the left,
a shock travelling to the right and a contact discontinuity at the point of intersection.

It is assumed that the flow is steady and plane parallel in the time interval ¢ + pAt to
t + At, so that the flow at ¢ + Ar can be found from the solution for a centred rarefaction
wave and a plane steady shock. The solution can then be advanced as before, except that
there is now a contact discontinuity at the value of the Lagrangian variable at which the
shocks intersected. This can be treated just like an ordinary mesh point, except that there
are two sets of equations along the streamlines, one on each side of the discontinuity.

In the present work, the gas ahead of s, is the undisturbed interstellar medium and so the
flow there is known. However, it is not difficult to extend the method to cases in which the
flow ahead of s, has to be obtained by computation.
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