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We develop a formalism to investigate the behavior of quantum field and quantum ground state 
when the field is coupled to perturbation that periodically oscillates. Working in the Schrildinger 

picture of quantum field theory, we confirm that the phenomenon of parametric resonance in the 

classical theory implies an instability of quantum vacuum, and correspondingly it gives rise to 

catastrophic particle production if the oscillation lasts indefinitely; the produced number of particles 
exponentially increases without bound as time proceeds. The density matrix describing the limiting 

stage of the quantum state is determined by a small set of parameters. Moreover, the energy 
spectrum and the intensity of produced particles are worked out in greatest detail in the limit of weak 

coupling or small amplitude perturbation. In the case of strong coupling or large amplitude pertur· 
bation the leading adiabatic formula is derived. Application to cosmological fate of weakly interact· 

ing spinless fields (WISF) such as the invisible axion, the Polonyi and the modular fields is discussed. 

Although very little effect is expected on the invisible axion, the Polonyi type field has a chance that 
it catastrophically decays at an early epoch without much production of entropy, provided that an 
intrinsic coupling is large enough. 

§ 1. Introduction 

What would be the fate of the quantum ground state if a periodic oscillation of 

some perturbation lasts for an indefinitely long time? This seemed a purely ac

cademic problem, until modern unified theories of the micro-world predicted many 

weakly interacting spinless fields (WISF), and until it was clarified that condensate 

oscillation of these fields may become the major massive component of our universe, 

at least during some epoch of the early universe. Indeed, in some case (the invisible 

axion case1>) this type of WISF becomes the cold dark matter candidate, even of the 

present universe, while in another case (the Polonyi field case2>) their decay creates 

too huge an entropy, destroying either the standard scenario of nucleo-synthesis or 

baryo-genesis, which then eliminates an interesting class of supergravity models. 

In this paper we shall formulate the fundamental problem of attacking the 

behavior of quantum field and quantum state under periodic perturbation. Our 

formalism is based on the Schrodinger picture of quantum field theory. In this 

formulation relationship between the quantum wave function and the classical oscil

lator motion becomes evidently clear. Thus we are able to confirm without any 

ambiguity that the exponential decay law of the initial ground state is related to the 

classical instability (parametric resonance) under periodic perturbation. Moreover, 

we are able to work out the density matrix of the quantum state initially started as 

the ground state, and able to compute the energy spectrum and the intensity of 

produced particles at any asymptotic future time. 

The phenomenon of catastropic particle production that occurs at the limiting 

late stage of periodic perturbation has many features so distinct as to be verified 

unmistakably if it ever can be checked by laboratory experiment. It may also have 
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874 M. Yoshimura 

important implication on cosmological WISF. We briefly examine the two cases of 

immediate interest, the invisible axion and the Polonyi field. It is shown that 

although very little effect is expected for the axion, the Polonyi type field has a chance 

of being dissipated away without much entropy creation. This would be a blessing 

to some phenomenology of supergravity models, but we leave the final word on this 

issue to future until more details are worked out. 

Some aspect of particle production under periodic perturbation has been inves

tigated in the past, especially in regard to the reheating problem after inftation.3
>·

4
> 

Aside from our different motivation on WISF, we point out that our main achievement 

in the basic formalism is to clarify the nature of quantum state at the level of the 

density matrix, which has not been available so far even in the limited situation. 

Only with this level of understanding one can completely determine the limiting 

behavior of the quantum ground state, and can compute many quantities from the first 

principle. In clarifying the precise nature of quantum state, it is crucial to implement 

the unitarity, namely conservation of the probability. Our formulation manifestly 

satisfies the unitarity at every stage of approximation, whereas in some calculation in 

the literature the unitarity is obscured. We hope that we have contributed much to 

this regard. In technical aspects, we mention two major improvements here over 

previous works: explicit formulas from all higher resonance bands in the small 

amplitude or the weak coupling case, and derivation of a major adiabatic contribution 

in the large amplitude or the strong coupling case. 

The rest of this paper is organized as follows. In explaining the content of each 

section, we shall also state our main conclusion so that the reader can regard this as 

a summary of our work. In § 2 we formulate the Schrodinger picture of the quantum 

ground state subjected to continuous periodic perturbation after an initial time. We 

only consider the simplest type of model of this sort, the Gaussian model with a 

periodic mass function. The wave functional of the entire system can be decomposed 

into a product of wave functions of Fourier modes since spatial translational invarian

ce is kept intact. The Gaussian wave function of each mode is then written in terms 

of a single function of time u(t) that obeys the classical motion of field oscillator 

under the periodic potential. The width of the Gaussian peak is given by the modulus 

lu(t)l, and the phase in the Gaussian exponent by the logarithmic derivative of the 

modulus. Thus analysis of the quantum wave function is reduced to that of the 

classical equation under some specific initial condition, determined from the initial 

condition of the quantum system. The spread of the Gaussian peak corresponds to 

excitation of higher levels of harmonic oscillator, thus production of particles. 

Hence growth of the field oscillator amplitude in the classical equation implies an 

increase of particle production in the quantum state. 

In § 3 we explain how general Gaussian model is described by the density matrix 

in such a way that the unitarity is manifest. The density matrix in the Fock base is 

much easier, in the Gaussian model, to handle than the wave function itself, and is 

much more convenient to compute various observable quantities. The diagonal 

element of the density matrix, namely the probabiliy distribution of n particle 

production, is written in terms of a quantity that may be interpreted as the average 

number of produced particles. 
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Catastrophic Particle Production under Periodic Perturbation 875 

Section 4 is a mathematical addendum in which we first explain how the instabil

ity region of the parametric resonance may be identified and derive the width of the 

resonance band in the case of small amplitude perturbation. Our method also makes 

it possible to compute the growing mode function in a systematic series expansion of 

the coupling factor. We then sketch how to obtain solution to the same classical 

equation under the large amplitude perturbation. The adiabatic approximation is 

excellent in this regime. The classical amplitude of field oscillator is given in this 

case by an elliptic integral of the second kind, from which we determine the limiting 

behavior. This section contains some useful formulas and new derivation of old 

results that are not written in the standard textbook5
> on the Mathieu equation. 

Detailed derivation of weak coupling formulas is relegated to Appendix. 

In § 5 we combine results of the previous sections in order to determine the 

limiting behavior of the evolved ground state. Under the small amplitude perturba

tion there exist two vastly different time scales in the problem, the short time scale of 

oscillation, and the long time scale of decay or the inverse of the production rate of 

particles. We first time-average over the short time scale, ignoring transient phenom

ena. We then mode-sum over frequencies within the resonance band. In this way it 

becomes possible to obtain a useful formula of the spectrum intensity at any 

asymptotic time. Adding contribution from resonance frequencies in infinitely many 

bands gives rise to the exponential decay law of the ground state and its associated 

particle production. A precise relation between the two is estabilished. If the 

periodic perturbation lasts indefinitely, the particle production becomes catastrophic. 

In the limit of small amplitude perturbation the spectrum of produced particles is 

equally spaced at w=(E/2)n (n=l, 2, 3···) of increasingly narrower band width, and 

the intensity of each band is determined as a function of time. In the large amplitude 

regime the particle production rate has a dependence on the oscillation amplitude 

quite different from the small amplitude case. This is shown by using the leading 

adiabatic formula in the previous section. 

Final section 6 describes cosmological application on WISF. We first explain 

briefly the cosmological damped oscillation of WISF. After the onset of the oscilla

tion the Hubble time is time scale of the amplitude damping, hence during one Hubble 

time one may ignore effect of damping and assume undamped periodic oscillation. 

After introducing a general parametrization on WISF properties, we discuss effect of 

the cosmological redshift that may push away relevent frequencies outside the reso

nance band. Rate of particle production while staying within the resonance band is 

a real measure of the decay rate of cosmologial WISF. It turns out that frequencies 

in general redshift away in time much shorter than one Hubble time under the small 

amplitude perturbation of WISF. This redshift effect is thus crucial in diminishing 

the particle production rate under the small amplitude perturbation. In most cases of 

cosmological application it is then important whether the large amplitude perturba

tion may or may not occur, since in this case the redshift effect plays a minor role. It 

is shown that the large amplitude perturbation is realized at least in one case 

examined: when a large intrinsic coupling is involved, which may or may not occur for 

the Polonyi field, depending on supergravity models. Using the formulas applicable 

under the large amplitude perturbation, we examine how the produced energy density 
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876 M. Yoshimura 

relative to the parent's varies with cosmological evolution and under what condition 

this ratio becomes of order unity, in which case a catastrophic decay of WISF is 

expected. It is suggested that in the Polonyi field case the catastrophic particle 

production terminates the Polonyi field oscillation if an intrinsic coupling is larger 

than ~10. 

§ 2. Model in the Schrodinger picture 

In order to extract the most important features of the problem and not to be 

confused by minor details, we adopt a simple model of scalar boson field q;(x, t) 

coupled to a classical oscillator ~(t) with the Hamiltonian, 

(1) 

A slightly general form of time dependence of the periodic oscillator ~(t) is taken 

here: 

(2) 

with real constants ~±· The oscillation frequency is given by E and for a practical 

purpose one can take an amplitude of ~+=~-=(~/2), so that ~(t)=~cos(Et). The 

reason we take a more general form of~+*~- is to show that none of our conclusion 

depends on the special cosine form, the result resting solely with presence of the two 

terms of the form, e±2
iz, in any finite mixture. On the other hand, a single term, either 

e2
;z or e-u•, does not work. As mentioned in Introduction, we may envisage the 

situation in which the oscillator ~(t) is a homogeneous component of a genuine field 

variable ~(x, t). 

In the rest of discussion, we take the Schrodinger picture of the quantum Hilbert 

space. The field variable q;(x, t) is decomposed into its spatial Fourier components 

Qk(t), and the wave functional of the state vector is written as 

(3) 

Due to the space translational invariance it is obvious that each Fourier sector is 

linearly independent. For definiteness we enclose the system within a large normali

zation box of volume V such that each mode is labeled by a discrete index k. The 

wave function r/Jk obeys the Schrodinger equation, 

(4) 

with 

To simplify our notation we denoted each Fourier component by the index w 

=./ k 2 + m2
, and we shall omit its suffix w whenever no confusion may occur. 
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Catastrophic Particle Production under Periodic Perturbation 877 

The SchrMinger equation (4) is solved by a Gaussian ansatz, 

(5) 

where it is found that 

(6) 

The dot · denotes the time derivative (d/dt). This equation is equivalent to the 

corresponding classical field equation coupled to the oscillator ~- Namely, the 

quantum problem is converted to the classical problem by the Gaussian ansatz. 

By changing the variables like 

1 (2w)2 

u(z)=u(t), z=2Et, h= E , (7) 

we find that the classical equation is of a generalized Mathieu type, 

d
2
u ( 2 · 2 · ) dz2 + h-8+e- ·z-e_e ,z u=O. (8) 

Due to the reality of the constants 8±, once a special solution /(z) to the second order 

differential equation (8) is found, another linearly independent solution is obtained as 

/*(- z). Furthermore, from general discussion5
> of the Mathieu type equation and as 

will also be explained in the next section, the special solution is written as the form 

of e•zp(z) where P(z) is periodic: P(z+ ;r)=P(z). The parameter A is either real or 

purely imaginary, indicating respectively unstable and bounded solution. In math

ematics these are generally called Floquet solution, while in physics they are par

ametric resonance for A real and Bloch wave for A purely imaginary (with time 

replaced by a spatial coordinate). 

Our main interest lies in evolution of the initial ground state, 

(9) 

hence we take as the initial condition to the classical differential equation, 

( 
Wo )-

112 it . 
u(O)= 7r , 70)=zwo. (10) 

With this initial condition one may further achieve a simplification of the wave 

function. First, separating real and imaginary parts with u(z) = R(z) + il(z), one 

finds that 

u E R'+il' 
u 2 R+il 

where the prime ' indicates the z-derivative (d/dz). By noting the constancy of the 

Wronskian of the two solutions, R(z) and /(z), 
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878 M. Yoshimura 

. . ( mo )-I 
R I - RI = -----;r wo = 7r , 

one obtains 

q-_1L_ 7C 

u -luF· 

(11) 

We have ignored a q-independent phase factor that do not affect physical observables. 

This is a basic formula for our subsequent investigation. 

The Gaussian wave function Eq. (11) of the evolved ground state is characterized 

by the spread and a phase factor, the spread of the Gaussian peak given by the 

modulus lui that almost, but not quite completely (rather u itself faithfully), follows 

the classical motion and the phase being given by the rate of time variation of this 

spread. Thus in our formalism there exists an unambiguous correspondence between 

the quantum wave function and the classical motion. Another nice feature of the 

formula (11) is that the normalization of the wave function 

is automatically satisfied, ensuring the unitary development of the quantum state. 

Despite the unitary evolution the ground state decays, and the decay amplitude is 

given by 

=(47rwo)114
[ molul +fur- i dJ~I r112

• (12) 

Thus exponential growth of the classical variable u in the instability band of the 

parametric resonance implies directly the exponential decay law of the initial quan

tum state. The decayed state is accompanied by production of field quanta, since the 

spread of the Gaussian peak implies excitation of higher harmonic oscillator levels. 

We shall have much more to say later on these issues after we introduce the density 

matrix of the quantum system. 

§ 3. Density matrix of Gaussian model and its general properties 

Although the wave function completely describes a quantum state, an equivalent 

description is possible in terms of the density matrix. It is sometimes, for instance in 

cases when observable quantities are needed, also useful to introduce the density 

matrix. In our subsequent discussion on the precise nature of the quantum state at 

late times, it is of crucial importance to use the density matrix formalism. This is 

due to that the density matrix in the Gaussian model has some simple properties, while 

preserving the fundamental relation of unitarity. 
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Catastrophic Particle Production under Periodic Perturbation 879 

The entire density matrix of our quantum system is decomposed into a product 

of submatrices Pk in Fourier modes as 

p=Ilpk, Pk(q, q'; t)=¢(q, t)¢*(q', t)=<qi¢(t)><¢(t)iq'). 
k 

(13) 

Unless confusion occurs, we often omit the mode index w and the time variable t. 

The wave function in our problem is of a Gaussian form, 

(14) 

with D(t) a known time-dependent function in our analysis of this section. All 

discussion that follows in this section is valid for an arbitrary D(t) provided that 

!RD>O. 

It is convenient to introduce the Fock base of the unperturbed field oscillators Qw, 

(15) 

with r/Jo(qw)cx.e-wq.,•!• the ground state wave function. The state vector in the Fock 

base is then expressed by 

< nl¢(t)>=( w!R.p ).1!4 1 1oo dq Hn(/W q )e-OI2Hw+D)q• 
7r 2n!2/n! -oo 

(16) 

with Hn(x) the Hermite polynomial of order n. The state vector components 

<nl¢(t)> trivially vanish for an odd integer n. In the even integer case, using an 

identity on the Hermite polynomial,6
> 

we obtain a very useful relation, 

1ood H ( r-) -(l/2)(w+D)q2= c(2/)! / 2 (w-D) 1 

00 q zt v w q e v 7r l! w+D w+D . (17) 

This formula greatly simplifies our subsequent discussion. 

The density matrix in the Fock base is thus given by 

Pzt,2m 
/(2/)!(2m)! I w!RD 1

1
'
2

( w- D )
1
( w- D* )m 

2t+m 1 /!m! (w+D) 2 w+D w+D* ' 
(18) 

Pnm=O (for nor m odd). (19) 

It can be verified that this density matrix trivially meets the unitarity relation, 

00 

~ Pnn=trp=1, 
n=O 

as should be so by construction. The diagonal element of the sub-density matrix is 

written in terms of one parameter denoted by K, 
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880 M. Yoshimura 

(20) 

A few immediate conclusions follow from consideration given here. The first 

and second moments of the density matrix give the average number and the dispersion 

of produced particles, which is computed as 

(21) 

(22) 

The further D deviates from w, the more particles are produced. The diagonal 

element of the density matrix Eq. (20) is expressed solely in terms of the average 

number of produced particles <N>. 
The probability of the initial state being maintained is exactly given by 

I<OI¢(t)>I2
=Poo=/ 2z:K. (23) 

A precise relation of the decay law of the initially prepared state and the number of 

produced particles is then 

Poo= )1 +<N>. 
1 

(24) 

Thus when the initial state decays according to e-rt, the produced number of particles 

increases like e2Ft. This relation is exact irrespective of detailed form of the wave 

function, but it must be kept in mind that this exact relation holds only for a single 

frequency mode. We shall later derive a formula applicable when the mode-sum is 

performed. 

§ 4. Parametric resonance 

It is well known5
> that the Mathieu type equation with periodic coefficients 

exhibits instability in infinitely many band regions of the parameter space of h 

=(2w/E)2 and 8±=(4f1.~±/E 2
). In the weak coupling, or the small amplitude limit h 

}>18±1 the parametric resonance roughly occurs when the input frequency E is closely 

tuned, within a resonance band, to the characteristic frequency of the system, w, by 

the relation: w=(E/2)n, namely, h=n2 with n a positive integer. The parametric 

resonance occurs however small the coupling 8± is. Implication of this parametric 

resonance on the quantum ground state is the main theme of this paper. In this 

section we shall first review weak coupling analysis of the classical parametric 

resonance, explaining some details usually not written in the textbook on Mathieu's 

equation. We think that the material presented in the weak coupling limit either 

includes new results of great use in our later analysis, or is a new derivation of known 

results in a much more simple way than usually presented. In the second part of this 

section we sketch analysis in the large amplitude or the strong coupling limit. For 
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Catastrophic Particle Production under Periodic Perturbation 881 

brevity we only present results to the first leading term in the strong coupling limit. 

In the last part of this section we combine analysis in the above two regimes in order 

to identifiy strong coupling regions within a few lower resonance bands, which 

becomes useful in our later application. A precise identification of the adiabatic 

instability lines is difficult to find, by analytic means, in a general (8, h) region, but for 

lower bands of n=l, 2 we can derive approximate analytic formula by comparing the 

stability chart obtained by numerical methods7
> to our weak coupling result. 

4.A. Small amplitude limit 

A Floquet type of solution is expanded as 

00 

e;.zp(z)= L: ck(z)ei<n+2k)z 
k::.-t:XJ 

(25) 

with the periodicity understood: P(z+;r)=P(z). The basic idea of our approach is 

that within the narrow band near h= n2 one may take e±inz as the zero-th order 

approximate solution and assume small time variation of the amplitude ck(z). It is 

thus legitimate to keep time derivative terms only in the two modes, k=O and - n, in 

the form of co.-n~Aco,-n, since IAI~L We anticipate a systematic hierarchy of 

coefficients in the small parameter I e+ e_: 

Ck = Q[ ( 8+ e_)Mln(lkl/2,lk+nl/2)] ' 

whose validity can consistently be checked by solutions derived. The growth rate 

factor A as a function of e= h- n
2 is obtained as described in Appendix: 

(26) 

Here we defined various quantities by 

(27) 

(28) 

The case n=O must be treated separately. One finds that 

(29) 

The instability region with a real A is characterized by infinitely many narrow bands 

with the width .den (28). However there is a gap between the n=O instability line 

Eq. (29) and the first n=l band: this region is defined by 

(30) 
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882 M. Yoshimura 

for a small 8+8-. In summary, the first few instability bands in the (8, h) plane are, 

with 8+ = 8- = 8, 

82 
h<--

4 ' 
(31) 

These formulas are accurate for small 8 values. At 8 as large as 3 the accuracy gets 

worse, but typically down to ~25%, which is still useful in many cases. 

In terms of the original oscillator variables the resonance band lies around w 

=(E/2)n with the band width given by 

(J1~/E2)n 

2n 1n[(n-1)!)2E' 
(32) 

taking ~+=~-=(1/2)~ for simplicity. The gap of stability region around the origin 

in the (jJ;l, w) plane is specified by the three lines, 

w=O ".==o w= m~ [1-2A_l (A)2]t'2. 
' ,...r; ' 2 m/ 2 m/ 

We call this region bounded by the three lines stability triangle. 

It is also possible to compute expansion coefficients of the solution u(z) in terms 

of a single overall factor co. We quote the leading result, 

with 

tan17= 
E+(n)_E 

E- E_<n> ' 
(n)_ +.dEn 

E± -Eo-
2 

. 

4.B. Large amplitude limit 

(33) 

(34) 

Having presented the necessary machinery in the weak coupling or the small 

amplitude limit, we proceed to the strong coupling or the large amplitude case. Here 

our discussion is limited to the leading approximation. Consider the Mathieu equa

tion in a slightly different, but physically equivalent fashion: 

u" + w2(z)u=O, w2(z)=h+28cos(2z) (35) 

with the initial condition, 

u(O)=( w~o;E rt/2' ~ (0)= iw(O). 

We took both 8 >0, h >0. Assumption of the initial ground state of harmonic 

oscillators means that w(O)=J h+28 is real and positive. For simplicity we take~+ 

= ~- such that 

8 - () - 2J1~ 
+- --]I2· 

The condition of the strong coupling or the large amplitude is 2 8 -:c. h and we 
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Catastrophic Particle Production under Periodic Perturbation 883 

anticipate that this is realized by the adiabatic condition, 

->1-. lu'l w' I 
u (J) 

(36) 

Neglecting the right-hand side of 

__!!___[_!_< ')2 + _!_ -2 2]- _, - 2 dz 2U 2WU -WWU, (37) 

that follows from the classical equation of motion, we find, by considering the initial 

condition, 

( 
E./h+28 )-1/2 [ 1z J u(z)= 

2
Jr exp i 

0 
dz./ h+28-48sin2z . (38) 

The adiabatic condition (36) is obeyed for 8-:?>h as expected, except near the turning 

point of w(z)=O. 

The exponent factor in the formula (38) is an elliptic integral E(z, k) of the 

second kind, 

with 

48 
28+h' 

(39) 

(40) 

which approaches 2 as 8 4 co. The behavior of E(z, k) as a function of z for k>1 is 

best studied by the complex integral in the cut w=sinz plane: 

Near the turning point w= ±(1/k) one must analytically continue w into the complex 

upper half-plane so that one picks up the growing component which always dominates 

over the decaying component. Thus each time when z goes beyond the branch point 

singurality ±sin-1(1/k), the exponent gets enhanced, and the total increment in 

passing through one period of L1z=2Jr is 

. 11 j k2w2-1 
iL1E(27r, k)=4 dw 

1 
2 • 

Ilk -w 
(41) 

In the limit 8->co, namely k->./2, this increment is numerically ~2.396. In the large 

time limit z'J>2Jr the growth factor accumulates, and one finds that 

lul2~}1 ~eJ.2-/28Et. (42) 

When this formula is extended to an extreme, one may use it for the whole range of 

0 < w < ~. although one must be careful of the stability triangle mentioned above. 

Furthermore, the important exponent factor has a variation at a finite h/(28). As a 
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884 M. Yoshimura 

function of this variable the constant coefficient 1.2 in Eq. (42) is modified to 

(43) 

The average value of this quantity for the range o=0-1 is ~0.327, a factor ~0.3 

reduction from 1.2, when averaged with the phase space weight. We should consider 

this reduction for a better estimate. 

4.C. Strong coupling region within lower bands 

The large amplitude or the strong coupling formula above has been derived in the 

adiabatic approximation, with the condition h< 2(). But the actual region of appli

cable adiabatic region cannot be this simple, especially due to existence of infinitely 

many bands. From an inspection of the stability chart obtained by numerical 

methodsn one can however gain a confidence of deriving approximate analytical 

expression of the instability region in which the adiabatic formula may be applied, at 

least for a few lower bands of n=1, 2. 

We proceed as follows. First, we define the region bounded by the weak coupling 

band lines and the adiabatic line of h=2() 

Suppose then that () gradually increases from 0. For () < 0.33 the gap of the stability 

triangle exists and there is no adiabatic region. As () increases above 0.33, the 

adiabatic h=2() line may cross the band boundary. Each time the adiabatic h=2() 

line crosses the lower weak coupling line h=n2 +e_<n>, a new adiabatic region 

appears. By using the weak coupling formula (31) of the boundary line of the band, 

we obtain approximate expressions of the strong coupling regions within a few lower 

bands. These regions are classified according to the value of e, 

(1) 2(/38-6)( ~0.33) < () < 2(/6-2)( ~0.90): 

()2 

1- ()-8< h<2(), or 

(2) 0.90< ()<3: 

()2 

O<h<1+()-8, or 

O< w< mt [1 +2 JJ.~ _Jj J4....) 2

]

112

: n=1 band (II), 
2 m/ 2\m/ 

for 
()2 

e>2(4J3-6)(~L86), 4-12<h<2e, or 

(45) 

(46) 
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Catastrophic Particle Production under Periodic Perturbation 885 

(47) 

We call these three regions, Regions I, II, III for later application. There is no simple 

analytic formula for () >3. But for a ()larger than 0[10] most of the region given by 

O< h<2() belongs to the instability region. 

§ 5. Limiting behavior of evolved ground state 

In this section we combine our previous formalism and mathematical analysis in 

order to determine the final stage of initially prepared ground state when the system 

is coupled to a periodic perturbation of frequency E. The sub-density matrix Pw with 

w=J k 2+ m2 of the quantum system is a bounded function of time for most of the 

modes, except within the infinitely many resonance bands, each joined to w=(E/2)n(n 

= 1, 2, 3, · · ·) at the weak coupling limit ()+ ()_ =0. Thus the limiting form of the density 

matrix as t-> oo is dominated by contribution from resonance frequencies. We 

therefore concentrate on combined effects from infinitely many bands, neglecting 

contribution outside the instability region. 

Recall, prior to any detailed discussion, that once the classical field oscillator 

amplitude u is given, non-vanishing sub-density matrix element Pnm in the Fock base 

of frequency w is obtained as 

P21•2m J (2!)!(2m)! -I wfRD 1'12
( w- D )

1
( w- D* )m 

zl+m 'l!m! hm' /Lm- (w+D)2 w+D w+D* ' (48) 

(49) 

5.A. Small amplitude case 

The leading small amplitude (()~h) behavior is computed from the previous 

general formula by puting in the initial condition. For simplicity we present results 

taking ()+= ()_=(2J-L~/E 2
). For the n-th band it reads: 

( 

(J) )-1/2 
u(z)~i-: 

. tz ) [ e;nz{cos(27J )sinh(t1z)- isin(27J )cosh(t1z)} + e-;nzsinh(t1z)] , (50) 
sm 7J 

./(€+-€)(€-€-) 
2n 

zn 3[(n-1)!]2' 

(51) 

(52) 

for €-< E< €+ with z=(E/2)t. Although it appears subleading, terms of order e-Az 

= e-mt2 must be retained to get correct, non-divergent contribution near the threshold 

of the band, € ~ €±. 

As emphasized in the previous section, the density matrix element in each mode 
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886 M. Yoshimura 

is governed by the two numbers, K ~ 1/ <N> and a phase o with tano= :I D/w. Time 

dependence of this factor K- 1 
~ <N> is necessarily complicated, because there are two 

different time scales involved, one scale very short of order 1/E and the other scale 

very long of order 1/(A.E). Note that A.=O[L1E]~l. A useful quantity is time 

average over the short time scale, for instance by averaging over a quasi-period of Llt 

=(2L1z/E)=(2TC/E). Although exact time average of any density matrix element is in 

general difficult to compute in a closed form, it is relatively easy to get the average 

of the first moment, 

(53) 

This was derived by using the technique of complex integration like 

_l_ rzu dz!(e2i(nz-~))=-1-. f dw !(w). 
TC Jz 2m Jwl=l W 

The number of produced particles thus computed has a correct finite behavior 

near the ends of the resonance band at E=E±, since the dangerous factor (E+-E)(E 

-E-) in sinh2(A.z) and sin2(277) cancel in the time average <N>. It is thus possible to 

get a finite result by keeping small O[e-AEt 12
] terms consistently. One indeed gets a 

well-defined number of produced particles by summing over all unstable modes within 

the n-th band, 

-- E
3
V ~ 2 4m

2 !.•• -
~ <Nw> ~- 32 2 n --Ez dE <N.> 

w-nE/2 TC •-

(54) 

where we explicitly wrote n-dependence. An approximate estimate of integral, 

!. •+ sinh2(A.z) 
dE . 2(Z ) - sm 77 

valid for L1Ez/(2n)~ 1 was used here. We define the growth rate of produced particles 

by 

(55) 

In the special case of n= 1 

(56) 

Time dependence of the spectrum and the intensity of produced particles is of 

crucial importance in any application of the resonance production. The spectrum 

has an unmistakable feature of equal spacing, w=(E/2)n, and of the band width, 
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Catastrophic Particle Production under Periodic Perturbation 887 

Moreover, we explicitly gave the intensity rule at late times in Eq. (54). If this 
phenomenon should be verifiable at laboratories, it has many experimental conse
quences that can be checked with detailed prediction. The total number of produced 
particles at any finite time, summed over all band index n, is finite, but becomes 
exponentially large at late times. 

The dominant contribution out of infinitely many bands is from the fundamental 
mode of n=l, the case of pair production of equal energy (E/2). The dominance of 
the fundamental mode is true except in the large amplitude case ()=2J-1.~/E 2

= 0[1] for 
which many pairs of higher energy may readily be created. We shall have more to 
say on the large amplitude case in the second part of this section. Production of high 
energy particles may superficially appear to violate the energy conservation, (.1) 

>(E/2). The apparent violation is allowed due to that the external oscillation makes 
the concept of energy conservation meaningless at a formal level. However minor it 
may appear in the small amplitude case, it is important to keep in mind that due to 
their peculiar nature high energy particles may play important roles. 

The decay law of the initial vacuum is derived from 

which yields 

(58) 

r is the total decay rate of the initial vacuum per unit volume. By taking the 
dominant n=l mode alone, one gets 

(59) 

for m<f::..E/2. The fact that the probability of the vacuum persistence Eq. (57) is 
suppressed by the volume factor V in the exponent is related to the homogeneity of 
space: the decay may occur anywhere with equal probability. The decay rate 
Eq. (58) may be compared with the Born rate of the usual one particle decay of mass 
M that conserves energy, 

This formula can also be derived from the above partial rate 

_ VJ-1.2e I _4m
2 

nv- 64 7!' yl ft2 

by taking with E=M the amplitude of ~=J(2/MV), which follows by equating the 
energy density of ~-oscillation (1/2)M 2 ~ 2 to one particle mass density within the 
volume V, M/V. Difference here from this conventional Born formula lies in that the 
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888 M. Yoshimura 

amplitude of oscillation ~ may become much larger than that of one particle decay; 

indeed, the rate is enhanced by V·M~ 2 /2 which may become a huge factor in cos

mological application. 

5.B. Large amplitude case 

We quote very briefly the main result. For simplicity we take ~+=~-=(1/2)~ as 

before. First, the produced number of particles for each mode is given, using numeri

cal values of the integral, by 

<N>~0.61exp[2f(;;)~t], 2](0)~2.4. (60) 

As explained in § 4.B, the rate factor has a mode frequency dependence given by 

f(w
2
/f.-l~) with !(o) defined by Eq. (43). The mode sum is performed with the instabil

ity constraint, which restricts the momentum range. If the whole phase space is 

available with the condition h< 2{) alone, then k
2 < f-1~- m

2
, but the adiabatic regime 

is restricted in more complicated ways as described in the previous section. Here we 

merely give an order of magnitude estimate by taking the full phase space and 

ignoring the w-dependence of the exponent. We postpone discussion of the actual 

reduction factor of the phase space to when application is made. Thus, we find for 

production of massless particles with m~~. 

~<~~Lox 10 -2(f.-1~)3'2e2.4~1, (61) 

(62) 

From 

1 [ Et J Poo~IJ l<f\i:scx:exp -- 2 -~Aw , 

the decay law of vacuum is 

(63) 

again taking the full phase space. 

§ 6. Application 

-- Fate of Cosmological WISF --

Modern unified theories predict many spinless bose fields that couple to ordinary 

matter extremely weakly. In cosmology based on these unified theories, there 

appears a grave potential problem. The condensate of these fields at the early 

universe may dominate the mass density of the universe after some epoch of oscilla

tion, yet they may or may not decay due to their weak coupling. In either case they 

are likely to cause a disaster, because they either produce too much entropy when they 

decay at too late an epoch, destroying the standard nucleo-synthesis or the baryo

genesis scenario, or their mass density overdoses the present universe, which cannot 
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Catastrophic Particle Production under Periodic Perturbation 889 

be true. We shall examine how the new mechanism of resonant particle production 

discussed in previous sections affects this problem. In particular, we pay special 

attention to the case of the invisible axion, 0 the Polonyi,z> and the modular fields, 

which may be of immediate interest. 

Weakly interacting spinless fields (WISF), which we generically denote by ~. 

undergo damped oscillation at the early universe, obeying the evolution equation, 

(64) 

with a(t) the cosmological scale factor in the flat Robertson-Walker metric of ds2 

=dt 2-a2(t)dx 2
• For m 1 t~1, the amplitude of~ field behaves as 

[ 
a( to) ]312 ( T )3t2 

~(t)=~o a(t) cos[me(t-to)]=~o To cos[me(t-to)], (65) 

with to= 1/me, and To the temperature scale of the onset of damped oscillation. The 

initial temperature To is determined by equating the Hubble time scale to the inverse 

mass of ~ field, 1/me, 

(66) 

where N is an effective number of massless species contributing to the energy density 

at the temperature To. 

We consider a class of WISF's that include the axion, the Polonyi, and the 

modular fields. Their properties relevant to our discussion are summarized by a few 

quantities, the mass me, the initial amplitude of oscillation ~o, and their generic 

Yukawa-type ((1/2)~g:> 2
) coupling denoted by Jj, to a typical ordinary bose matter g:> 

such as the photon, the Higgs, and the scaler fermion fields. To the Hubble time scale 

the damping of oscillation amplitude is small, and one may assume exactly periodic 

oscillation. Mode functions of the bose field g:> obey 

(67) 

during one Hubble time. Rewriting this equation in the standard form of Mathieu 

type gives the parameter set, 

_ _ 2Jj~o (L)3/2 = (L)3/2 
E- me , 8- 2 '~' - Oo '~' , 

me .to .to 
(68) 

The initial e value, Oo=(2Jj~o/m/), is the most crucial quantity for the cosmological 

fate of ~ field. 

Effect of the cosmological redshift is very important in the case of small ampli

tude perturbation of 2101 ~ h, because it may readily push away resonance frequencies 

beyond the narrow band. If a frequency redshifts outside the band, the instability of 

this particular mode ceases to operate. Under the small amplitude perturbation the 

time Llt during which a particular frequency stays within the n-th band is determined 

by 
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890 M. Yoshimura 

a(t) 
1- a(t+Llt) <.dEn. (69) 

Assuming a small L1En, one derives 

Llt H<L1En. (70) 

With L1En~1. the walk-out time is much smaller than the Hubble time H- 1
• 

At the walk-out time LltR=(LlEn/H), the exponent factor in the produced number 

density is 

Af _ (L1€n)
2 
m~ 

rnk.J R- 4n H (71) 

assuming the temperature dependence of the Hubble parameter in the radiation 

dominated epoch: Hex: T 2
• Growth rate Rn while staying within the band is then 

given by dividing the number density of produced particles by the number density of 

parent ~ particles, (1/2)m~~ 2 • By taking one species of a massless particle for 

simplicity, the production rate reads as 

n3/2 ( m~ )2( T )-2 [ ( T )3n-2J 
zsf2n3'2 To To exp Cn To , Cn (72) 

The ratio of produced energy density to the parent's is 

p_n 
-;;;-'[Rn. (73) 

In particular, the dominant fundamental mode of n=1 contributes with the rate, 

(74) 

This formula is valid only in the radiation dominated epoch. In the ~-matter 

dominated epoch the temperature dependence in the exponent is modified to ( T/To)3 12
• 

The prefactor ( T/To)- 2 increases as time proceeds, hence as T decreases. This 

cannot be true for an indefinitely long time. Indeed, our asymptotic formula of 

produced number of particles is valid only for (1/2)J..nm~t:;::: 1, that is, when the 

exponent above is large, hence when ( T/To) is not too small. Here the strong 

coupling or the large amplitude problem is involved. 

The production rate under the large amplitude perturbation depends on various 

factors in different ways from the small amplitude case, in particular on the oscilla

tion amplitude ~. which may drastically change the fate of WISF. The frequency 

range that contributes to the growing particle production depends both on the initial 

8o value and on the temperature scale in question T, relative to To. For simplicity 

we shall only consider a moderate range of the initial parameter 8o=(2f.J.~o/m/), for 

instance, 0[20] or even less, which turns out to be sufficient for later application. 

The large amplitude perturbation region available is then restricted, initially to a 

wide h<28 region and at later stages to a few adiabatic regions, Regions I, II and III, 

etc., as explained in § 4.C. One must check in each case of application whether the 

necessary condition of applicability is fulfilled or not. Before going into any details 
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Catastrophic Particle Production under Periodic Perturbation 891 

of how this is met, we shall give an order of magnitude estimate of production rate in 

the adiabatic region. The number of produced particles of one light species of 

particles with m<r:.j fl.~o ( T/To)314 up to one Hubble time is 

<N> /V ~ _2 f1.3t2 ( T )-3t4 [ [if;_ ( To )s'4] 
R m~~2/ 2 2.0 X 10 m~~ 0112 To exp (2.4- 0.65)y m7 T , (75) 

:~ =l.sx1o-
2

( ~~Yexp[(2.4-o.65)f{!J(!; t 4

], (76) 

extending the phase space region to the full O< w< ~- Two numbers written in the 

exponent correspond to the adiabatic approximation with and without the w depen

dent reduction factor of the rate coefficient. The available phase space is actually 

reduced from this one, by a reduction factor of the form, /[(2f.l.~o/m/)( T/To) 312
]. A 

precise form of the function /(x) will be given below when a specific application is 

made. The crucial exponent factor increases like ( To/T) 514 as time proceeds, in 

contrast to the T/To factor in the small amplitude case (74). The precise temperature 

scale dependence ( To/T) 514 here is trusted only when the coupling factor fl. is indepen

dent of the particle energy w, which does not hold in the axion case having a different 

( To/T) 112 behavior. 

The production rate given here is a yield produced during one Hubble time after 

the epoch of temperature T. There always exists accumulation effect of produced 

particles, but with a rapidly changing production rate the main contribution comes 

from one Hubble time at the maximal production. We therefore ignore a minor 

accumulation effect. 

With these in mind we proceed to discuss important cases of application. First, 

the invisible axion. The axion field which we denote by A has an effective two 

photon coupling in the form, 

r> 2a 1 
..Leff=---y-AE·B. 

Jr JA 
(77) 

The fine structure constant a appears, because this term is induced by a triangular 

loop of fermions. /A is the scale at which the Peccei-Quinn symmetry is broken and 

we ignored 0[1] factors in the coupling. The other coupling to matter fields such as 

quarks and leptons are irrelevant to our problem. The effective Lagrangian yields a 

modified Maxwell equation, 

• Q' 1 . 
E-fi' xB=--AB. 

Jr /A 
(78) 

Relevant parameters for the resonant production are 

(79) 

with A the QCD scale. The quantity Oo is dependent on the photon energy w like 

(),=2f.l.~o~1Q:_~ 
0 

mA
2 

1r mA • 
(80) 
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892 M. Yoshimura 

This factor is too small for (w/mA)4:..7r/(2a), and no appreciable resonant production 

occurs for the axion as far as the small amplitude formula (74) can be applied, because 

frequencies immediately redshift away outside the band by the time L1eH- 14:..H-1
•
8

) 

Now the important question is whether there exists a region of parameters in 

which the large amplitude formula can be applied. This cannot occur in the axion 

case, because the stability gap constraint applied to the axion leads to incompatible 

conditions like 

[ 
a ( T )3'2]-I 

w>0.16mA 7i To 

Basically the presence of the stability triangle restricts 8::::::0.33, which has no overlap 

with the adiabatic h< 28 condition due to the small (a/Jr) factor. Thus there is no 

way an appreciable resonant production takes place for the cosmological axion. 

The situation is different for fields of the Polonyi type. Here a generic dimen

sionless coupling may be of order unity or larger, but the effective coupling may be 

suppressed by a small ratio of an intermediate to a large mass scale. We express 

relevant parameters by 

F2 F4 
m~=M, l;o=M, J-L=go M3 , 

leading to the initial amplitude, 

8o=2go. 

(81) 

(82) 

The large mass scale M is the Planck scale and the intermediate mass scale F is of 

order 1010 Ge V or more in the case of the Polonyi field. We only consider the Yukawa 

coupling to spinless bosons, but there may exist coupling to the gauge field similar to 

the two photon decay of the axion, in which case the following estimate is modified 

in substantial ways. Assumption of the small amplitude oscillation leads to the 

growth rate while staying within the resonance band, 

(83) 

Unless go2 is very large, for instance 250 or more, it is again unlikely that this type of 

WISF decays in the small amplitude regime. 

One must however use formulas relevant to the large amplitude perturbation if 

the exponent factor is large. The large amplitude formula yields production rate of 

particles in the mass range of m4:../g0 m~( T/To)314
, 

( F)4 [ ( T )3'2] [ ( To )s'4] :~ =:el,5Xl0-
2go

2 M f 2go '!'; exp (2.4-0.65)~ T , (84) 

in the radiation dominated epoch. The two numbers in the exponent, 2.4 and 0.65, 

correspond to the adiabatic approximation with and without the w-dependent reduc

tion factor of the rate coefficient. A more refined estimate would lead to a modified 

exponent replacing the coefficient (2.4-0.65), which may weakly depend on go( T/To)312
• 

f(x) is the reduction factor of the phase space due to the restricted w-range in the 
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Catastrophic Particle Production under Periodic Perturbation 893 

adiabatic region, which is given in regions of immediate interest, 

/(x)~1, (x~0[10]) 

=1- ~ ( ~ + 1- 2
5
4 x )(; -1 + ~), (1.9<x<3) 

( 
1 1 X )

2 

= 2X+2-T6 , (0.90<x<1.9) 

=( ~ + 2 ~ - 1 ~)( ~- 2 ~ + 1 ~). (0.33<x<0.90) (85) 

Using these functional forms, one can readily find the temperature scale that the 

produced particle energy becomes comparable to the parent's. We did some sample 

computations. For instance, for go=15 we find that the decay occurs at 

T 
---y;~0.2, 

taking F/M=10-9 -10-6 with the larger exponent 2.4, and 

T 
---y;~0.06-0.09 

with the smaller exponent 0.65. 

(86) 

(87) 

For a smaller go value one must take into account the adiabatic constraint of () 

>0.33, since no sizable particle production is expected in the small amplitude regime. 

Ignoring the phase space suppression factor of order unity, the produced energy 

density roughly obeys 

;, ::::; 1.5 X 10-2go2( ~ rexp((ll-3.0)go413] , (88) 

right at ()=0.33 in the radiation dominated epoch. For this quantity to exceed 1 so 

that the decay is completed in the large amplitude regime, the coupling go must satisfy 

go >4- 3 with the larger exponent 11, and go> 12-9 with the smaller exponent 3.0, 

taking for the intermediate mass scale F/M =10-9 -10-6
• Thus there seems no funda

mental difficulty in getting a substantial decay of the Polonyi type field, provided that 

go~ 0[10]. The precise number of this bound needs to be calculated by more sophisti

cated ways, but it should be clear that there is a definite possibility of resolving the 

Polonyi problem. 

One possible problem concerns effect of the Polonyi mass dominance on the 

particle production rate. Modified time variation of the decayed energy density 

during the ,;-matter dominated epoch is given by 

( 
F )4 [ ( T )3t2] [ ( ]; )st4( T )3t4] :~ =1.5X10-

2
go

2 
M I 2go To exp (2.4-0.65)/Uo T: T 

with Tm the temperature at the onset of ,;-matter dominance, 

~_4;r (_M_)2 
To- 3 mp1 · 

(90) 
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894 M. Yoshimura 

The rate in the matter dominated epoch increases more slowly than in the radiation 

dominated epoch, but still rapidly enough as the temperature T decreases. Right at 

the onset of matter dominance of T= Tm the rate is given by 

( :e t =1.5 X 10-2go2( ~Yt[ 2go( 4; r2( !l YJ 

Xexp[(2.4-0.65)~(/7r r4

( ~~ r2
J. (91) 

Taking M = mpd /8ii as an illustration gives the exponent factor as large as 

= 10(23-6.2).;;;. 

In order to complete the Polonyi decay at a temperature scale prior to the matter 

dominated epoch, there is a condition on ~ parameters. These come from f)> 0.33 

and (pfpe)m > 1, leading to 

go(____M__)
3 
> 0.019 , (92) 

mpt 

Again taking M = mpd /8ii as a guide and ignoring the phase space reduction factor 

of order unity, we find a constraint, 

(94) 

with go>2.4. In the range of the intermediate mass scale of F/M=10-9 -10-6, this 

constraint gives go> 13-6.1 for the larger exponent factor of 23 and go> 160-69 for 

the smaller exponent factor of 6.2. 

Although these numbers for the coupling seem a bit large, we note that the 

Polonyi field does not have to decay completely prior to the epoch of its dominance. 

Even in the ~-matter dominated epoch the particle production rate increases, albeit 

with a slower rate than in the radiation dominated epoch. Right at the adiabatic 

limit of 8=0.33 the decayed energy density in the ~-dominated epoch becomes 

;e ~1.5 x 10-2go2( ~Yexp[ (2.9-0.79)go ~~ J, (95) 

again ignoring the phase space reduction factor of order unity. In order to get the 

Polonyi decay within the large amplitude regime, the right-hand side quantity must 

exceed unity. With M = mpt/ /8ii as a guide, this happens for the larger exponent of 

2.9 at go=5.5-3.6, and for the smaller exponent of 0.79 at go=19-13, taking the mass 

range of F/M=10-9 -10-6. 

A possible problem that might arise when the Polonyi field decays in the epoch of 

its dominance is a large entropy creation after the Polonyi energy is completely 

converted to radiation. This might dilute the baryon asymmetry created at the GUT 

epoch. We may estimate the entropy dilution factor S by assuming instantaneous 

conversion of the Polonyi energy into thermal radiation. The reheated thermal 
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Catastrophic Particle Production under Periodic Perturbation 895 

temperature TR is determined by 

dRTR
4
=dmTm

4
( f r, (96) 

where the temperature T is obtained by solving (pfpt)=l. Ignoring a difference in 

the massless degrees of freedom d; in different epoch, one finds for the entropy dilution 

factor, 

s~- ~-( TR )3 ( T m )
3
'4 

T T 
(97) 

The further T deviates from Tm, the more entropy is created, but with the dilution 

factor governed by a not too large exponent factor of 3/4. With M = mp1/ /8i( the 

ratio of produced energy density to the parent's becomes 

p ( F )4 [ ( T )3'4] --p;=1.5X10-
2
go

2 M exp (23-6.2)~ i , (98) 

under the large amplitude constraint go( T/Tm?12 >2.4. One may thus compute the 

dilution factor S(go) for go>2.4. For instance, with go=l0-50 the entropy dilution 

factor is computed as 5~4-2 at most, which may be regarded as a minor effect. 

Given many uncertainties on the Polonyi field, especially on values of go and M, we 

believe the situation promising for the resolution of the Polonyi problem. 

One great uncertainty not considered here is that the Polonyi mass may not be as 

simple as a constant mt. In general the Polonyi mass may depend on the field 

amplitude ~- Furthermore, the Polonyi field may have decay channels other than 

spinless bosons, in particular massless gauge bosons like the photon and the gluon. 

In this case our estimate will be modified. For instance, if the Polonyi field decays 

dominantly into massless gauge boson pairs, then the exponential growth terminates 

at the onset of the Polonyi mass dominance in the case of go not large enough, and the 

ordinary decay at a much later epoch might create too much entropy. A more 

detailed analysis based on particular models is called for, but the catastrophic decay 

discussed here may potentially give a great impact on phenomenological model 

building of supergravity models. 
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Appendix 

--Parametric Resonance in the Weak Coupling--

We follow in spirit the physicist approach with guesswork and consistency check 

of results, by generalizing analysis of Ref. 9). A Floquet type of solution is thus 
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896 M. Yoshimura 

expanded as 

00 

e;.zp(z) = 2: Ck(z)ei<n+2k)z 
k=-oo 

with the periodicity understood: P(z+;r)=P(z). Here we focus on the weak cou

pling. or the small amplitude case, thus the instability region is expected to be in a 

narrow band. 

The basic idea of our approach is that within the narrow band near h=n2 one 

may take e±inz as the zero-th order approximate solution and assume small variation 

of the amplitude ck(z). It is thus legitimate to keep time derivative terms only in the 

two modes, k=O and - n, in the form of co.-n ~ llco,-n, since llli<L We anticipate a 

systematic hierarchy of coefficients in the small parameter j ()+ ()_: 

Ck = 0[ ( ()+ ()_ )Mln(lkl/2,lk+nl/2)] . 

With h= n2+ €, lcl<1, the original equation leads to an infinite set of relations among 

coefficients, 

rk= -4k(n+k) (k=I=O,- n), ro=c+2inll, r-n=E-2inll. 

In matrix notation 

0 0 

0 -f)+ rk -f)_ 0 Ck 

0 0 =0. 

0 -f)+ r-k -r- 0 C-k 

0 0 

(99) 

(100) 

(101) 

To proceed further, it is useful to separately treat the three blocks defined by k 

;;::.:1, k~- n-1, - n+ I~k~ -1, and leave to the last the main co (k=O), C-n (k=- n) 

equation. Noting that rk= r-n-k, one finds that the blocks with k:;::-:1 and k~- n-1 

yield identical results and 

(102) 

rN - ()_ 0 0 

- ()+ rN-1 -f)_ 0 0 

0 0 
(103) DN= 

0 0 

0 0 - ()+ r2 - ()_ 

0 0 - ()+ r1 

The central block of- n+ 1~k~ -1 is then solved for C-1 and C-n+I in terms of co and 

C-n, yielding 

(104) 
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(105) 

r-1 -8- 0 0 

-8+ r-2 -8- 0 0 

with E= 
0 0 

(106) 
0 0 

0 0 -8+ r-n+2 -8-

0 0 -8+ r-n+1 

Finally, we insert back C±1 and C-n±1 into the last co (k=O), C-n (k=- n) equation. 

Noting that E!/=E;;!.1,n-1, one finds that 

(107) 

Nontrivial solution exists only for 

(2nA)2=(8+8-)2 
E;;!.1,1E1.~-1- [E- 8+8-(Du1 + E!nF=<E+- E)(E- E-), (1o8) 

E±= 8+8-CD!11 + Eu1) ± 8+8-/ E;;!.1.1El.~-1 . (109) 

We then compute the inverse matrix elements to lowest non-trivial orders. We 

thus find that 

1 1 (8+8-)n 12 

E±~2 n2_ 1 8+8-± (zn 1(n-1)!)2 . (n=F1) 

Thus the band width of parametric resonance is given by 

(8+8-)n/2 
LlE z2n 3( ( n _ 1)!)2 . 

The growth rate tl takes a simple form, 

(110) 

(111) 

(112) 

The two special cases of n=O and n=1 must be dealt with separately. First, n 

= 1 case. By using 

(113) 

we obtain 

(114) 

with D=limN-oo DN. 

Next, we deal with n=O case. In this case there is no linear term of co, and one 

must retain the higher order term of co. Moreover, there is no intermediate block, 
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898 M. Yoshimura 

and the final coefficient equation reads as 

- 8+c1 + YoCo- 8-C-1 =0, ro=/!2+ E, (115) 

(116) 

Thus, there is no band of n=O, and a gap extending to n=1 band exists in the region, 

(117) 

It is also possible to compute coefficients in terms of an overall factor co. We 

quote the result, 

Co -( 8- )n/2 -Uq ---- e 
C-n 8+ ' 

C-k=(E"kl8+co+ E"k.~-18-C-n) 

8+ k/28_ (n-k)/2 [ (8+8-)k12e-iq (k!)2(8+8-)<n-k)l2eiq] 

.;8+n+e_n z2<k l)[(k- 1)!)2 + z2<n k 1>[(n-1)!)2 , 

~( 1)k n! e k 
Ck- - 22kk!(n+ k)! - Co, (kz1) 

C-n-k:::: ( -1)k z2kk!(~ + k)! 0+ kC-n. (k 21) 

(118) 

(1::;;k::;; n-1) 

(119) 

(120) 

As promised, the expansion coefficients of terms e±inz+ikz systematically contain 

suppression factors of 8 1
k

1
, O=Jie+e+l· To leading order the functional form in the 

n-th band is then 

References 

1) ]. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. 120B (1983), 127. 

L. F. Abbott and P. Sikivie, Phys. Lett. 120B (1983), 133. 
M. Dine and W. Fischler, Phys. Lett. 120B (1983), 137. 

2) G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby and G. G. Ross, Phys. Lett. 131B (1983), 59. 
3) A. D. Dolgov and D. P. Kirilova, Sov. ]. Nucl. Phys. 51 (1990), 172. 

]. H. Traschen and R. H. Brandenberger, Phys. Rev. D42 (1990), 2491. 
4) L. Kofman, A. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73 (1994), 3195. 

Y. Shtanov, ]. Traschen and R. Brandenberger, Phys. Rev. D51 (1995), 5438. 
We became aware of these works after the main part of our work was completed. Our work 

improves over these works in a few points, especially in analytical formulas applicable both in the 

small amplitude and in the large amplitude case. 
5) A. Erdelyi et a!., Higher Transcendental Functions, Vol. III (McGraw-Hill, New York, 1955). 

N. W. McLachlan, Theory and Application of Mathieu Functions (Oxford University Press, 
London, 1947). 

6) A. Erdelyi eta!., Higher Transcendental Functions, Vol. II (McGraw-Hill, New York, 1955), p. 195. 
7) The second reference of Ref. 5). 

8) The first and the second reference of Ref. 1). 
9) L. Landau and E. Lifschitz, Mechanics (Pergamon, Oxford, 1960). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

4
/5

/8
7
3
/1

9
0
0
2
0
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


