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Introduction

Modeling a system with regression or classification are common ways to scientifi-

cally investigate phenomena. Since Supervised Machine Learning ( ML ) [1] provides a 

way to automatically create regression and classification models from labeled datasets, 

researchers use Supervised ML to model all sorts of phenomena in various fields. Hence, 

it is vital to stay informed on supervised ML techniques practitioners currently use to 

achieve success. �is is the first study that takes an interdisciplinary approach to reveal 

the emerging body of literature that shows CatBoost is an effective tool for use in super-

vised ML techniques.

CatBoost is an open source, Gradient Boosted Decision Tree (GBDT) implementa-

tion for Supervised ML bringing two innovations: Ordered Target Statistics and Ordered 
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Boosting. We cover these innovations in detail in "CatBoost Gradient Boosted Trees 

Implementation" section. In the seminal paper on CatBoost, “Catboost: unbiased boost-

ing with categorical features” [2], Prokhorenkova et al. recommend using GBDT algo-

rithms with heterogeneous data. �ey write, “For many years, it [gradient boosting] has 

remained the primary method for learning problems with heterogeneous features, noisy 

data, and complex dependencies: web search, recommendation systems, weather fore-

casting, and many others...” Heterogeneous datasets contain features with different data 

types. Tables in relational databases are often heterogeneous. �e opposite of hetero-

geneous data is homogeneous data. Homogeneous data is data that is all the same type. 

For example, a dataset of features composed of pixel color intensity values is homoge-

neous. Such data may be multidimensional, but the components of each dimension are 

all the same type of data. Some works we survey here give empirical evidence for Prok-

horenkova et al. claim that GBDT algorithms yield better performance than other ML 

algorithms on tasks for heterogeneous data. Other works we review show that GBDT 

algorithms tend not to do as well as ML alternatives such as neural networks on tasks 

involving homogeneous data. However, research into applying neural networks to heter-

ogenous data [3, 4], is an active area of research. �erefore, researchers should give con-

sideration to the nature of the data they intend to use for ML implementations. It may be 

a mistake to consider only GBDT algorithms if the data is homogeneous, and it may also 

be a mistake to ignore GBDT algorithms if the data is heterogeneous.

In the interdisciplinary segment, we provide examples of experiments that will guide 

the reader in avoiding these mistakes. However, we feel the concept is important enough 

to merit immediate coverage here. Matsusaka et al. in “Prediction model of aryl hydro-

carbon receptor activation by a novel qsar approach, deepsnap–deep learning” pub-

lished a study that compares the performance of Gradient Boosted ML algorithms to 

deep learning algorithms [5]. In their study, the authors report on the results of applying 

these algorithms to digital image data, that is, homogeneous data. �e authors docu-

ment that a deep learning algorithm gives better performance in terms of Area Under 

the Receiver Operating Characteristic Curve ( AUC ) and accuracy. �is is not surpris-

ing to us, since Matsusaka et al. are evaluating the performance of these algorithms on 

homogeneous data. Matsusaka et al. results serve as a reminder to researchers applying 

ML algorithms to homogeneous data to consider that gradient boosted algorithms may 

not be the best choice. Below, we cover multiple studies that confirm the same idea: Cat-

Boost is a good solution for problems involving heterogeneous data, but may not be the 

optimal learner for problems involving homogeneous data. To put it succinctly, we find 

CatBoost is best suited to heterogeneous data.

Apart from the degree of heterogeneity of one’s data, a researcher working with Big 

Data [6, pp. 12–13] must also consider the time complexity of ML algorithms. When 

working with large datasets, small differences in the time required to execute high 

frequency operations can result in large differences in the total time required to con-

duct experiments. �ree studies we cover in detail, Prokhorenkova et  al. [2], Spadon 

et al. [7] and Anghel et al. [8], show mixed results on the training time consumption of 

CatBoost and XGBoost [9]. We believe this is due to differences in hyper-parameters 

that the authors use to configure the learning algorithms. We also cover scenarios that 

show where researchers may trade running time for accuracy by using CatBoost or an 
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alternative. Overall, we find the mixed results for running time complexity of CatBoost 

versus other learners that we hypothesize is rooted in CatBoost’s sensitivity to hyper-

parameter settings.

We find one study that highlights CatBoost’s sensitivity to hyper-parameter settings 

that may shed some light on the discrepancies in the training time performance of 

CatBoost and other learners that we discover later in this review. �is study is “Bench-

marking and optimization of gradient boosting decision tree algorithms” by Anghel 

et al. [8]. In this study the authors document training time and accuracy for CatBoost, 

XGBoost, and LightGBM [10] on four benchmarking tasks involving large datasets. 

Figure 1, copied from [8, Fig. 2], contains plots of training times versus maximum val-

idation scores during hyper-parameter optimization. It shows how training times vary 

widely as Anghel et al. change the algorithms’ hyper-parameters during optimization. 

We find Panel b interesting. �is is where the authors report the results for the algo-

rithms on the Epsilon1 benchmark. On the left side of Panel B, we see that some for 

some hyper-parameter configurations, CatBoost yields a maximum validation score 

sometime between 10 and 100 min, but for other configurations, it takes nearly 1000 

min. In [2], Prokhorenkova et  al. compare running time of CatBoost and XGBoost 

on a task involving the Epsilon dataset. However, XGBoost is missing from Panel b 

of Fig. 1. Anghel et al. report that they were unable to run XGBoost on the Epsilon 

benchmark due to memory constraints. �at impediment to running XGBoost is an 

Fig. 1 Image from [8] showing sensitivity of CatBoost to hyper-parameter settings; a records performance on 
the Higgs benchmark, b performance on the Epsilon benchmark, c performance on the Microsft benchmark, 
and d performance on the Yahoo Benchmark

1 https ://www.csie.ntu.edu.tw/~cjlin /libsv mtool s/datas ets/binar y.html.

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/binary.html
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indication that, under the methods of their experiment, XGBoost consumes more 

memory than CatBoost for the same task. We include this result to emphasize that 

one may find it necessary to adjust CatBoost’s hyper-parameter settings in order to 

obtain the best results for CatBoost in terms of training time.

�e application of GBDT algorithms for classification and regression tasks to many 

types of Big Data is well studied [11–13]. To the best of our knowledge, this is the 

first survey specifically dedicated to the CatBoost implementation of GBDT’s. Since 

its debut at the December 2018 Advances in Neural Information Processing Systems 

( NIPS ) conference [2], researchers have conducted many experiments involving Cat-

Boost. A number of these studies either involve Big Data, or techniques that will scale 

to Big Data. Hence, it is time for a review of these studies from a Big Data perspec-

tive. Researchers that work in Big Data environments often do so with a particular 

distributed framework, such as Apache Spark [14]. Some of these frameworks include 

GBDT implementations. For example, Spark MLlib’s GradientBoostedTrees module, 

[15], is one such implementation. For examples of GBDT applications in Spark please 

see [16] and [11] . However, as long as the distributed framework supports a language 

that the Gradient Boosted Decision Tree implementation has an application pro-

gramming interface API available for, it is possible to use that implementation in the 

framework; thus, freeing the user to select from the most appealing GBDT implemen-

tation available. For researchers wishing to employ CatBoost with very large data-

sets, one viable approach is to fit a CatBoost model to a representative sample using 

the CatBoost Python API, then apply a CatBoost model to the larger dataset using a 

distributed framework such as Spark or Hadoop [17] with CatBoost’s Java API. We 

provide this one example to show applying CatBoost to large datasets with popular 

distributed frameworks is feasible. However, we recognize that there exists a multi-

tude of distributed frameworks suitable for Big Data that, in turn, support a myriad of 

programming languages. So, there should be many more valid approaches to applying 

trained CatBoost models to Big Data.

Researchers in disparate domains find applications for CatBoost. We find works in 

the fields of Astronomy [18], Finance [19–22], Medicine [23–26], Biology [27, 28], 

Electrical Utilities Fraud [29–31], Meteorology [32, 33], Psychology [34, 35], Traffic 

Engineering [7, 36], Cyber-security [37], Bio-chemistry [5, 38], and Marketing [39]. 

�erefore, a good understanding of CatBoost may provide one the opportunity to 

participate in interdisciplinary research. Our third finding is that the wide range of 

subjects where CatBoost is applicable is evidence that it is a general-purpose algo-

rithm that behooves researchers to understand. On the other hand, as the works we 

survey demonstrate, CatBoost works better in some situations than others. We take 

an interdisciplinary approach to study different subject areas where researchers use 

CatBoost. For each of the subject areas we list here, we provide a section that details 

how researchers use CatBoost in that specific domain.

Before we cover applications of CatBoost in various domains, we discuss our search 

method, we cover related works, and then provide an overview of the GBDT ensem-

ble technique, and the CatBoost implementation of GBDT’s. We touch on another 

GBDT implementation, LightGBM [10]. Like CatBoost, LightGBM has built-in sup-

port for encoding categorical variables. XGBoost is another GBDT implementation 
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without built-in support for categorical features, so we choose not to give details on 

it. First of all, we provide details on the method we use to discover articles we cover.

Search method

We used our University library database, Google Scholar [40], and the Web of Science 

[41] databases to search for the term “CatBoost.” We obtained results with 278 arti-

cles from OneSearch, 25 articles from Web of Science, and the first 100 results from 

Google Scholar. We then conducted a manual review of the 403 records resulting from 

the search. During the manual review we retained only the studies related to CatBoost 

and its applications. We do not include works where the authors mention CatBoost, but 

do not employ it in any experiment. We do not limit our search results to any specific 

subject area.

Related work

In order to find related work, we review all studies retrieved using the search method 

detailed in the previous section, looking specifically for surveys on CatBoost. We did 

not find such a study. To the best of our knowledge, this is the first review that focuses 

exclusively on research involving the CatBoost implementation of GBDT’s. We therefore 

expanded our search for surveys on Gradient Boosted techniques, and find two related 

studies.

Prior to the introduction of CatBoost, Sagi and Rokach published “Ensemble learning: 

a survey” [42]. �is work is broader in scope and covers ensemble methods in general. 

It was published in 2018, and includes a discussion of Gradient Boosted Decision Tree 

algorithms, but not CatBoost.

Another related work is “A survey of classification techniques in data mining” by Suja-

tha and Prabhakar [43]. �is study also covers a broader range of ML algorithms than 

what we cover here. Sujatha and Prabhakar published this study in 2013, prior to the 

release of CatBoost. Furthermore, it does not provide the depth of detail on GBDT algo-

rithms that we go into here.

�e absence of a survey of research where CatBoost is used, and the abundance of 

recent work involving CatBoost, indicates to us that a survey of these works is timely. A 

thorough understanding of GBDT’s and CatBoost is necessary before one delves into the 

different ways researchers apply CatBoost in various fields. �erefore, we continue with 

a review of GBDT’s and the CatBoost implementation of GBDT’s. After that, we conduct 

the interdisciplinary review, grouping coverage of works by field. From this perspective, 

one may see how to apply CatBoost given a problem in the same domain.

Gradient Boosted Decision Trees

Jerome H. Friedman describes Gradient Boosting in the study titled “Greedy func-

tion approximation: a gradient boosting machine” [44]. In his paper, Friedman describes 

the Gradient Boosting ML technique. Since it is a supervised ML technique, we begin 

with a set 
{

xi, yi
}

 of input values xi , and expected output values yi , i ∈ {1 . . . n} . Gra-

dient boosting takes the approach of iteratively constructing a collection of functions 

F
0, F1, . . . , F t , . . . , Fm , given a loss function L

(

yi, F
t
)

 . Here we would like to emphasize 

that L has two input values, the ith expected output value yi , and the tth function F t that 
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estimates yi . Assuming we have constructed function F t we can improve our estimates of 

yi by finding another function F t+1
= F

t
+ h

t+1(x) such that ht+1 minimizes the expected 

value of the loss function. �at is,

Where H is the set of candidate Decision Trees we are evaluating to choose one to add to 

the ensemble. Furthermore, by the definition of F t+1 , we can write the expected value of 

the loss function L in terms of F t and ht+1:

One may notice that the right-hand side of Eq. (2) implies we wish to minimize the loss 

function’s value on y and F t plus something. If we assume L is continuous, and differ-

entiable, we can add something related to the rate of change of L to F t to shift its value 

somewhere in the direction that L is decreasing. �erefore, if we set ht+1 to values in 

the direction that the gradient of L with respect to F t is decreasing the fastest, we would 

have the ht+1 that approximately minimizes EL
(

y, F t
+ ht+1

)

 . Under these assumptions 

then we can write a reasonable approximation for ht+1,

We refer to this technique as Gradient Boosting because we use the partial derivatives 

(gradients) of the loss function L with respect to the function F t to find ht+1 . Prokhoren-

kova et  al. [2] point out that we may not have an easy way to compute 

argmin
h∈H

E

(

∂Ly

∂F t − h
)2

 . �is could be because it would be difficult, in general, to say what 

the probability of specific values of argmin
h∈H

E

(

∂Ly

∂F t − h
)2

 should be, and we may not 

know what F t should be because we could be using stochastic techniques, such as some 

algorithm to construct a Decision Tree to define F t . However, we can assume, as Prok-

horenkova et al. suggest,

Although we are covering Friedman’s Gradient Boosting Decision Trees technique in 

this section, we use this reference to Prokhorenkova et al. in our explanation, since our 

ultimate goal is to provide the reader a clear understanding of CatBoost.

We can take approximations (3) and (4) to obtain a concrete estimate for ht+1:

For GBDT’s the base case F0 is a Decision Tree, and the h1, h2, . . . , ht , . . . hm are also 

Decision Trees. When we add a Decision Tree to construct F t+1 in this manner, the 

expected value of the loss function EL
(

y, F t+1(x)
)

 shrinks, implying that the estimates 

(1)ht+1
= argmin

h∈H

EL
(

y, F t
)

.

(2)EL

(

y, F t+1
)

= EL

(

y, F t
+ ht+1

)

(3)ht+1
≈ argmin

h∈H

E

(

∂Ly

∂F t
− h

)2

.

(4)argmin
h∈H

E

(

∂Ly

∂F t
− h

)2

≈ argmin
h∈H

1

n

(

∂Ly

∂F t
− h

)2

.

(5)ht+1
≈ argmin

h∈H

1

n

(

∂Ly

∂F t
− h

)2

.
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F j+1(xi) are better than the estimates F j(xi) . CatBoost, as well as other currently popular 

GBDT techniques XGBoost and LightGBM, make refinements to the Gradient Boosting 

technique Friedman describes in [44]. Researchers who have a good understanding of 

how the GBDT technique works have a better chance of successfully applying it in any 

discipline. Similarly, researchers who know how CatBoost carries out the GBDT tech-

nique are better equipped to employ it in any domain. �erefore, we provide details on 

CatBoost in the next section.

CatBoost Gradient Boosted Trees Implementation

In [2], Prokhorenkova et  al. propose the CatBoost algorithm, and compare it with 

XGBoost and LightGBM. In their description of the CatBoost learner, they cover their 

refinements to the GBDT algorithm Friedman describes in [44]. Here we cover these 

refinements and some related hyper-parameters that users should be aware of since the 

related hyper-parameters’ values may also affect the resources CatBoost consumes.

CatBoost’s first refinement to Gradient Boosting is the manner in which it deals with 

high cardinality categorical variables. For low cardinality categorical variables, CatBoost 

uses one-hot encoding. �e precise definition of low cardinality depends on the comput-

ing environment and whether the user is employing CatBoost in any specialized modes. 

�e current version of CatBoost at the time of this writing, version 0.23.2, has a default 

value of 255 under some conditions when running on GPU’s, and 2 when running on 

CPU’s provided certain other specific conditions are not met. �is is an obvious, yet 

non-trivial example of CatBoost’s sensitivity to hyper-parameters. One may obtain dif-

ferent results in terms of running time and other performance metrics since changing 

this hyper-parameter not only alters the type of processor CatBoost will use, but also the 

manner in which it will encode categorical features. We refer the reader to the CatBoost 

API documentation2 for further details on how CatBoost sets the threshold for one-hot 

encoding.

In [2], Prokhorenkova et  al. use the term “Ordered Target Statistic” to refer to the 

technique CatBoost uses for encoding categorical variables, when CatBoost is not using 

one-hot encoding. Micci-Barreca introduces target statistics in “A preprocessing scheme 

for high-cardinality categorical attributes in classification and prediction problems” [45]. 

A target statistic is a value we calculate from the ground truth output values associated 

with particular values of a categorical attribute in a dataset. One strategy for dealing 

with categorical variables in ML is to replace the categorical values of a feature with a 

target statistic.

�e most important concept in the Ordered TS calculation is rooted in the distinc-

tion between training and test datasets. Let D be the set of all data available to train and 

evaluate our GBDT ensemble. �e Decision Tree ht+1 we add to the ensemble is the 

Decision Tree that minimizes the expected value of the loss function EL . We wish to 

use some data in D for fitting the Decision Tree ht+1 , and some data for finding the ht+1 

that minimizes EL . Our motivation for using the data in D in this way is to avoid what 

Prokhorenkova et al. define as “target leakage” [2]. We explain more on target leakage 

2 https ://catbo ost.ai/docs/conce pts/pytho n-refer ence_param eters -list.html#pytho n-refer ence_param eters -list.

https://catboost.ai/docs/concepts/python-reference_parameters-list.html#python-reference_parameters-list
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below; however, we finish our description of CatBoost’s encoding technique first. �e 

way CatBoost chooses the data to use for fitting ht+1 is to place an arbitrary order on the 

elements of D with a random permutation σ . Let σ(k) be the kth element of D under σ , 

and Dk =

{

x1, x2, . . . , xk−1

}

 , ordered by the random permutation σ . CatBoost uses Dk 

as the data for fitting the Decision Tree ht+1 , and D as the data for evaluating whether 

h
t+1 is the Decision Tree that minimizes EL

(

y, F t
+ ht+1

)

 . �e meaning of the notation 

Dk is the first important concept for understanding how CatBoost encodes the values of 

categorical variables.

�e second important concept for understanding how CatBoost encodes the values of 

categorical variables is the indicator function 1 . �e indicator function 1a=b is a function 

of one variable a that has the value 1 when a = b , and 0 otherwise. �e indicator func-

tion plays an important role in the formula CatBoost applies to map the values of a cate-

gorical feature to a numerical value. Specifically, this formula involves the indicator 

function 1xij=xik
 . �is indicator function takes the value 1 when the ith component of 

CatBoost’s input vector xj is equal to the ith component of the input vector xk . Here we 

use k as in the kth element according to the order we put on D with the random permu-

tation σ , and i takes on the integer values 1 through k − 1.

Understanding these key concepts of the training data D and the indicator function 

1xij=xik
 , enables us to define the formula for the encoded value, x̂k

i
 , of the ith categorical 

variable of the kth element of D as:

Prokhorenkova et al. define p as a prior commonly set to the average value of the label 

in the dataset, and a as a parameter greater than 0. We do not see a clear suggestion for 

the value of a [2]. However, one can see that setting a to a value greater than 0 in Eq. (6) 

ensures we will not divide by 0 in the case that none of the values xij equal xi
k
 . Also, in 

that case, any value a > 0 guarantees x̂i
k
 gets the value p.

CatBoost applies Eq. (6) when fitting the Decision Tree ht+1 , but uses a varia-

tion of it when evaluating ht+1 to determine if it is the Decision Tree that minimizes 

EL
(

y, F t
+ ht+1

)

 . �e variation on Eq. (6) is that instead of using the subset Dk , it uses 

the entire set D.

Now that we have an understanding of how CatBoost encodes categorical variables, 

we can understand why it uses this technique. As we mention above, CatBoost encodes 

categorical values in order to alleviate the problem of target leakage. Prokhorenkova et 

al. write that CatBoost avoids target leakage because the technique it uses for encoding 

categorical variables has a certain property, that they express in Eq. (7)

Interestingly, the way CatBoost’s encoding technique satisfies this property is to ensure 

we do not use the value yk in Eq. (6). Prokhorenkova et al. explain that if we use yk to 

encode features in xk we create target leakage [2]. �ey define target leakage in terms 

of conditional shift. Noting that Eq. (7) involves conditional probabilities, we see that if 

(6)x̂ik =

∑
xj∈Dk

1xij=xik
· yj + ap

∑
xj∈Dk

1xij=xik
+ a

.

(7)E

(

x̂i|y = v
)

= E

(

x̂ik |yk = v
)

.
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Eq. (7) does not hold, it means that the expected value of all encoded values for the ith 

feature given a specific output value v does not equal the expected value of the encoded 

values for some training examples 
(

xk , yk
)

 . In other words, when Eq. (7) does not hold, 

the expected encoded value x̂i
k
 is shifted under the condition yk = v . �is is an overfit-

ting condition in the sense that in the fitting process the model can exploit the correla-

tion between x̂k and yk during training, but the correlation will not exist during testing 

due to the difference in expected values when Eq. (7) does not hold. �e way they sug-

gest avoiding the shifting of the expected values under the conditions y = v and yk = v 

is to exclude the value of yk in the computation of values for x̂i when encoding the value 

x
i

k
 ; hence, the definition of Dk above, and its role in computing the value of x̂i

k
 in Eq. (6) 

above.

�e second property of the Ordered TS that Prokhorenkova et al. describe is that 

it eventually uses all training examples 
(

xk , yk
)

 . �is property ensures that after suffi-

cient iterations, we have encoded categorical values with all the information available 

in the training data. �is second property balances the overfitting protection of the 

first property, to ensure we are not underfitting, because we are using all the available 

training data.

�e way Prokhorenkova et al. enforce this property is another refinement to Gradi-

ent Boosting that they call the Ordered Boosting technique. Target leakage not only 

causes a conditional shift in the expected value of an encoded variable, but also it 

causes prediction shift in the expected value of the residuals we wish to minimize. 

To see why this is so, consider Approximation (5), and assume we are using Cat-

Boost’s Ordered Target Statistic technique to encode some categorical variables to 

build the Gradient Boosted Decision Trees that constitute F t+1 . �en, because we are 

using Ordered Target Statistics to encode categorical variables, 
∂Ly

∂F t  is also a random 

variable because we use the random permutation σ(k) to choose the elements of Dk 

to encode categorical variables that influence the value of F t . �erefore, the distri-

bution of 
∂Ly

∂F t  can be shifted under the condition that we calculated 
∂Ly

∂F t  with a par-

ticular encoding for xi
k
 . Prokhorenkova et al. explain that this conditional shift leads 

to bias in the estimate we make for ht+1 , and that negatively impacts the metrics we 

obtain when evaluating of F t+1 on data we did not use at training time. Prokhoren-

kova et  al. refer to the impact on F t+1 as its generalization ability. To combat this 

impact on F t+1 ’s generalization ability, Prokhorenkova et al. propose Ordered Boost-

ing. �e key concept in Ordered Boosting is to use the same examples in Dk that 

we use to compute the Ordered Target Statistics, to compute the estimates for ht+1 , 

which means we must use them to compute the values of 
∂Ly

∂F t  . �e reader will recall 

that Dk =

{

x1, x2, . . . , xk−1

}

 depends on where we are at in iterating through the per-

mutation σ of the elements of D . In other words, when we start with k = 1 , Dk will 

have one element in it. �is means we will have a high variance in values we estimate 

for 
∂Ly

∂F t  . So, in Ordered Boosting, CatBoost uses multiple, independent permutations 

σ1, σ2, . . . , σs of D to compute a number of sets of residual values that it can use to find 

h
t+1 , to obtain F t+1 , and maintain the guarantee that none of the values of xi

k
 are used 

to compute the values of the gradients 
∂Ly

∂F t  . At the same time using these multiple sets 

of residuals reduces the variance in CatBoost’s estimates of 
∂Ly

∂F t  . �is is how Ordered 

Boosting avoids prediction shift.
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Another important concept in CatBoost’s process of building Decision Trees is Oblivi-

ous Decision Trees ( ODT’s). CatBoost constructs an ensemble of ODT’s. ODT’s are full 

binary trees, so if the ODT has n levels, it will have 2n nodes. Furthermore, all non-leaf 

nodes of the ODT will have the same splitting criteria. To assist the reader’s under-

standing, in Table  1, we include a diagram of an ODT from Lou and Obukhov, “Bdt: 

gradient boosted decision tables for high accuracy and scoring efficiency” [46]. Accord-

ing to Prokhorenkova et al., ODT’s “...are balanced, less prone to overfitting, and allow 

speeding up execution at testing time significantly” [2]. We see ODT’s are balanced by 

definition. Since they are full binary trees the number of comparisons to reach a leaf 

node is the minimum number of comparisons to reach the maximum number of leaf 

nodes, so we agree that ODTs may yield more efficient executions than deeper Decision 

Trees that are not completely filled. �e trade-off is that one must be careful in setting 

the maximum tree depth in CatBoost since the amount of memory CatBoost will use 

may grow by a factor of 2 times the number of trees in the ensemble for every unit of 

increase in the maximum tree depth. �is is another example of CatBoost’s sensitivity to 

hyper-parameter settings that researchers should be aware of since it can have an impact 

on the amount of memory and running time their experiments consume. Perhaps the 

differences in running time complexity we see are rooted in improper values for this 

hyper-parameter.

Another useful feature CatBoost adds to GBDT’s is its support for interactions of fea-

tures. Prokhorenkova et  al. refer to these interactions as “feature combinations.” �e 

authors claim CatBoost will greedily choose the most efficacious combinations of fea-

tures during training [2]. Furthermore, CatBoost will use the Ordered TS method for 

encoding new features it generates from feature combinations when the combination of 

features includes a categorical variable. It is outside the scope of this survey to investigate 

whether other Decision Tree algorithms automatically discover new categorical features 

from combinations of other categorical features. To the best of our knowledge this is an 

innovation unique to CatBoost and another compelling reason for applying CatBoost 

in situations where one is working with data that has categorical features. Researchers 

should be aware of this functionality since it can impact the amount of time it takes for 

Table 1 Oblivious Decision Tree example from  Lou and  Obukhov demonstrating 

a Decision Tree and Decision Table that provide equivalent logic [46]

x3 ≤ 5 x6 ≤ 0 f

0 0 2

0 1 7

1 0 5

1 1 0
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CatBoost to fit a GBDT model. One may control the maximum number of categorical 

features CatBoost will attempt to combine by setting a hyper-parameter value. �is is 

another hyper-parameter value that CatBoost is sensitive to. Differences in the values 

researchers use for this hyper-parameter may account for some contradictory results we 

find in the literature on CatBoost.

CatBoost is an implementation of Gradient Boosted Decision Trees that avoids condi-

tional shift with Ordered TS and prediction shift with Ordered Boosting. Both Ordered 

TS and Ordered Boosting rely on iterating through random permutations of a dataset. In 

Ordered TS we ensure that we do not use a specific training example 
(

xk , yk
)

 to encode 

any categorical component xi
k
 of xk . In Ordered Boosting, we use the same random per-

mutation we use in Ordered TS to ensure we do not use the training example 
(

xk , yk
)

 

to estimate the rate of change of the loss function we are using to improve (boost) the 

model’s estimate of yk for the input value xk . Also, in Ordered Boosting, we use several 

random permutations of our data simultaneously to reduce variance in our estimates 

of the rate of change of the loss function. CatBoost’s use of Ordered TS and Ordered 

Boosting make it a good choice for datasets with categorical variables that are sparse, 

or infrequently occur with specific target values, since these techniques guarantee that, 

given some unusual training example, CatBoost will involve other examples to update 

its estimate for the unusual example systematically. However, CatBoost is not the only 

GBDT algorithm that provides automatic encoding of categorical features. For a broad 

discussion on embedding techniques, please see [47]. In the next section we explain how 

a related GBDT implementation provides this functionality.

LightGBM Support for Categorical Variables

LightGBM is another GBDT algorithm that supports automatic encoding categori-

cal features. We discuss it here to give the reader an understanding of the differ-

ence in encoding techniques. Many of the works we include in this study compare 

the performance of LightGBM to CatBoost. The article that introduces LightGBM 

“Lightgbm: a highly efficient gradient boosting decision tree” by Ke et al., does not 

mention support for categorical features [10]. However, LightGBM’s online docu-

mentation [48] states that LightGBM uses a technique from Fisher in the article 

“On grouping for maximum homogeneity” [49]. Interestingly, in the references in 

the study that introduces CatBoost [2], Prokhorenkova et al. also refer to the Light-

GBM on-line documentation, as well as the LightGBM source code when they men-

tion LightGBM’s support for categorical features. Our point is that the LightGBM 

creators did not indicate they felt LightGBM’s handling of categorical variables 

was significant enough to document as a contribution in the article that introduces 

LightGBM. Fisher’s technique, that LightGBM uses, partitions a set of arbitrary 

numbers into subsets with minimum variance between members of the partitions. 

LightGBM applies Fisher’s technique when evaluating the splitting criteria for a cat-

egorical feature as it is growing a Decision Tree. LightGBM constructs a histogram 

of the values of a categorical feature, then sorts the histogram by gradient statistics. 

It then iterates through the sorted histogram to divide the set of values of the cat-

egorical feature into two groups. Prokhorenkova et al. criticize the technique Light-

GBM uses for two reasons. The first is that the technique requires more memory 
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than using Ordered TS because LightGBM must maintain gradient statistics for all 

possible values of a categorical feature. The second issue Prokhorenkova et al. point 

out is that it is computationally expensive for LightGBM to compute the gradient 

statistics necessary to build the sorted histogram. Furthermore, Prokhorenkova et al. 

also point out that in LightGBM’s documentation [50], the authors appear to back 

away from recommending LightGBM’s technique for handling categorical features. 

We understand this to mean that the LightGBM documentation’s authors caution 

the user not to use LightGBM support for high-cardinality categorical features.

With CatBoost and LightGBM both being GBDT implementations, and both pro-

viding similar functionality to support automatic handling of categorical features, 

one may be curious to see how these learners perform when compared against each 

other on the same ML task. Moreover, one may wish to know the same for other 

types of learners as well. Many studies we include document experiments to answer 

this question. Hence, in the next section, we provide tables that summarize the out-

comes of these experiments. Studies are grouped by field in these tables. Perhaps 

it is disappointing that there is no clear winner in all situations. However, this fact 

motivates us to investigate the details of these works to see why this is the case in the 

sections following the tables.

Table 2 Machine learning

Title CatBoost: unbiased boosting with categorical features

Description Paper introducing CatBoost algorithm

Performance metric logloss, zero-one loss

Winner CatBoost

Reference [2]

Title Benchmarking and optimization of gradient boosting decision tree algorithms

Description Compare CatBoost, LightGBM, and XGBoost run on GPU’s, using four benchmark tasks

Performance metric AUC ROC and Normalized discounted cumulative gain ( NDCG)

Winner CatBoost wins AUC for Epsilon DataSet, LightGBM wins AUC for the Higgs dataset, 
XGBoost wins (NDCG) for Microsoft and Yahoo Datasets

Reference [8]

Table 3 Tra�c engineering

Title A Semi-Supervised Tri-CatBoost method for driving style recognition

Description Combine labeled and unlabeled data, use CatBoost as a base classifier to identify driving 
style

Performance metric N/A CatBoost used for semi-supervised learning not compared to other classifiers

Winner N/A

Reference [36]

Title Reconstructing commuters network using machine learning and urban indicators.

Description Construct graph on human movement between cities, extract features, apply CatBoost 
among other algorithms to reconstruct graph

Performance metric Accuracy

Winner CatBoost wins but training time is long compared to XGBoost, so authors use XGBoost for 
remainder of study

Reference [7]
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CatBoost applications by �eld

Tables of works studied

A good measure of the generality of an idea is its applicability in diverse settings. 

We mention existing surveys on applications of GBDT algorithms in our section on 

Table 4 Finance

Title Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset

Description Evaluate of XGBoost, LightGBM, and CatBoost performance in predicting loan default

Performance metric AUC, running time

Winner LightGBM

Reference [19]

Title Short term electricity spot price forecasting using CatBoost and bidirectional long short 
term memory neural network

Description CatBoost for feature selection for time-series data

Performance metric Mean absolute percentage error

Winner CatBoost not a competitor, used for feature selection

Reference [21]

Title Research on personal credit scoring model based on multi-source data

Description Use “Stacking&Blending” with CatBoost, Logistic Regression, and Random Forest to calcu-
late credit score in a regression technique

Performance metric Model is ensemble of no direct comparison between algorithms; performance measured 
in AUC 

Winner N/A

Reference [22]

Title Predicting loan default in peer-to-peer lending using narrative data.

Description Evaluate CatBoost against other classifiers on the task of predicting loan default using 
Lending Club data

Performance metric Accuracy, AUC, H measure, type I error rate, type II error rate

Winner CatBoost

Reference [20]

Table 5 Astronomy

Title KiDS-SQuaD II. Machine learning selection of bright 
extragalactic objects to search for new gravitationally 
lensed quasars

Description Use CatBoost to classify astronomical data

Performance metric AUC 

Winner CatBoost

Reference [18]

Table 6 Cyber-security

Title Attack detection in enterprise networks by machine learning methods

Description Compare CatBoost, LightGBM, SVM, and logistic regression in multi-
class and binary classification task of identifying computer network 
attacks.

Performance metric AUC, CV balanced accuracy, balanced accuracy, F1, precision, recall

Winner CatBoost

Reference [37]
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related works. This shows that GBDT algorithms are rooted in a general idea. We 

review studies where the authors use CatBoost in a wide array of fields. Hence, Cat-

Boost is implemented in such a way that it preserves the generality of Friedman’s 

conception of the GBDT algorithm. First, we summarize the works we cover in 

Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Then, we cover them in detail, grouped by 

the fields the works contribute to.

In the sections that follow, we organize studies involving CatBoost by subject. As 

we review works in specific fields, general techniques that apply in multiple disci-

plines become apparent. We take an objective look at CatBoost’s performance in 

many applications to show where it is a good choice, and where it is not. The first 

subject area we cover is the field of Astronomy.

Table 7 Meteorology

Title Short-term weather forecast based on wavelet denoising and catboost

Description Use CatBoost to predict weather-related observations, and compare to other machine 
learning algorithms doing the same task

Performance metric unique method, based on root mean squared error

Winner CatBoost

Reference [51]

Title Evaluation of CatBoost method for prediction of reference evapotranspiration in humid 
regions

Description compare CatBoost, SVM , and RF ability to predict amount of water lost through evaporation 
and transpiration

Performance metric MAPE, RSME,  R2

Winner Results do not indicate clear overall-winner

Reference [33]

Table 8 Medicine

Title The use of data mining methods for the prediction of dementia: evidence from the english 
longitudinal study of aging

Description Classify dementia on imbalanced data, maximum cardinality of feature is 50, compare 
CatBoost to other classifiers

Performance metric Normalized Gini coefficient

Winner Convolutional neural network

Reference [26]

Title A novel fracture prediction model using machine learning in a community-based cohort

Description Use CatBoost to predict fragility fracture

Performance metric AUC 

Winner CatBoost

Reference [24]

An efficient novel approach for iris recognition based on stylometric features and machine 
learning techniques

Description Use CatBoost after doing feature extraction from image data converted to base-64 
encoded data

Performance metric AUC 

Winner multiboostAB

Reference [23]
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Astronomy

Published in 2012 [53], �e Kilo Degree Survey KiDS , de Jong et al. is the result of an 

Astronomical study that researchers for the European Southern Observatory ( ESO ) 

Table 9 Biology

Title CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal 
cell carcinoma

Description Classify kidney cancer images into instances of high-grade or low-grade cancer, presents 
opportunities for research at Big Data scale

Performance metric Used only CatBoost

Winner N/A

Reference [28]

Title diseases spread prediction in tropical areas by machine learning methods ensembling and 
spatial analysis techniques

Description Use CatBoost to predict spread of dengue fever

Performance metric Mean absolute error

Winner LSTM and XGBoost ensemble

Reference [27]

Title Performance analysis of boosting classifiers in recognizing activities of daily living

Description Compare CatBoost with XGBoost in ability to identify human physical activity types from 
sensor data

Performance metric f-measure

Winner Friedman stochastic gradient boosting, ada-decision trees

Reference [25]

Table 10 Marketing

Title Predicting online shopping behavior from clickstream data 
using deep learning

Description CatBoost is part of ensemble that is best clickstream predictor

Performance metric AUC 

Winner GRU—CatBoost Ensemble

Reference [39]

Table 11 Bio-chemistry

Title Construction and analysis of molecular association network by combining behavior repre-
sentation and node attributes.

Description Leverage graph representation of association network of biological entities to predict 
associations as input for classifier, compare CatBoost with other popular classifiers as 
association predictor

Performance metric Accuracy, sensitivity, specificity, precision, Matthew’s Correlation, Coefficient, AUC,

Winner CatBoost (except Sensitivity)

Reference [38]

Title Prediction model of aryl hydrocarbon receptor activation by a novel QSAR approach, 
deepSnap–deep learning

Description Compare CatBoost to other learners in image processing task related to study relationship 
between genes and liver function

Performance metric AUC, accuracy

Winner DeepSnap-DL (deep learning algorithm)

Reference [5]
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carried out using equipment in the Very Large Telescope installation in Chile. According 

to de Jong et al. the full KiDS survey is 15 terabytes ( TB ) of data. Given such a volume of 

data, some form of automation is necessary to conduct research on it. Supervised ML is 

one way to approach data of this magnitude. One such study that takes the Supervised 

ML approach specifically with CatBoost is “Kids-squad ii. machine learning selection of 

bright extragalactic objects to search for new gravitationally lensed quasars”, by Khramt-

sov et al. [18]. In this article, the authors use CatBoost to classify objects in KiDS data 

into the categories: stars, quasi-stellar radio sources ( quasar ), and galaxies. After they 

classify objects in KiDS data, Khramtsov et al. take on the task of creating a catalog of 

gravitationally lensed quasars. Gravitational lensing refers to the alteration of an object’s 

appearance when the light from it is bent as it travels through the gravitational field of 

another massive object. According to Khramtsov et al. gravitationally lensed quasars are 

interesting for astronomers because they can be used for studying the expansion history 

of the universe, dark matter around galaxies, and planets outside our solar system.

In order to create a training sample, Khramtsov et al. use data from an earlier study, 

the Sloan Digital Sky Survey ( SDSS ) [54], as a source for labels. �ey create a training 

dataset from the data on objects that are present in both SDSS and KiDS . �eir training 

dataset has 127,376 instances.

�e features the authors use are derived from color intensity measurements of objects 

in the KiDS data. �e data contain nine optical or infrared colors, and Khramtsov et al. 

mention that they also use 36 combinations of pairs of colors, and one continuous feature 

Table 12 Electrical utilities fraud

Title Bridging the gap between energy consumption and distribution through non-technical 
loss detection

Description Use CatBoost for predicting non-technical loss in power distribution networks, authors 
report little in terms of quantitative results

Performance metric Performance metric not explicit

Winner Not clear, authors do not give exact numbers

Reference [29]

Title Performance Analysis of Different Types of Machine Learning Classifiers for Non-Technical 
Loss Detection

Description Compare CatBoost with 14 other classifiers

Performance metric Precision, recall, F-Measure

Winner CatBoost has highest precision and F-measure, ANN has 0.003 higher recall

Reference [52]

Title Energy theft detection using gradient boosting theft detector with feature engineering-
based preprocessing

Description Technique for using CatBoost with highly imbalanced data

Performance metric True positive rate, false positive rate

Winner CatBoost, has lowest false positive rate, LightGBM wins true positive rate, CatBoost has 
longest total train and test time, LightGBM has shortest total train and test time

Reference [31]

Title Impact of feature selection on non-technical loss detection

Description Use incremental feature selection, compare performance of CatBoost, Decision Tree and 
K-Nearest Neighbors classifiers

Performance metric Precision, recall, F-Measure

Winner CatBoost, except for recall of models trained with 9 features, where K-NN wins

Reference [30]
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CLASS_STAR , that takes a value from 0 to 1, that gauges how point-like a light source 

is. Khramtsov et al. write that they perform classification in a 37 dimensional features 

space, which implies they discard the 9 original color intensity features after they derive 

the 36 features from pairs of color intensity features. �e total number of instances in 

the KiDS data that they classify is approximately 9.6 million. Khramtsov et al. report that 

their KiDS data is imbalanced, since their final classification finds 5,665,586 galaxies, 

3,660,368 stars, and 145,653 quasars, and 122,306 instances of indeterminate class. For 

in-depth coverage of techniques for addressing class imbalance, please see [55]. Khramt-

sov et al. apply threshold values to the list of output probabilities of the CatBoost classi-

fier to partition KiDS data into classes. �e indeterminate instances are those where the 

probability that the instance is a quasar or a galaxy are approximately the same.

Khramtsov et al. evaluate three different Decision Tree based ensemble techniques for 

classifying their labeled data: CatBoost, XGBoost, and Random Forest. Please see Fig. 2 

for confusion matrices of each classifier’s performance on the hold-out dataset. We find 

the confusion matrices for Random Forest and CatBoost to be quite similar. However, 

Khramtsov et al. find CatBoost yielded the best performance for the classification task. 

In our discussion on CatBoost, we write that Prokhorenkova et al. claim that Oblivious 

Decision Trees are less prone to overfitting. Khramtsov et  al. provide some empirical 

evidence for the claim in Appendix A.3, where they report that CatBoost, “...is more able 

to generalize good results on an unseen dataset.” [18] �eir justification for this state-

ment is that on the hold-out dataset, CatBoost yields a smaller difference in Matthews’ 

Correlation Coefficient ( MCC ) between training and hold-out datasets.

In one study on Astronomy Khramtsov et al. make a clear case for using CatBoost. 

For their purposes, CatBoost is the best classifier for detecting quasars in the KiDS 

data. Khramtsov et  al. follow a pattern we see in many of the fields we cover; they 

compare performance of multiple learners to select the best. In the studies that we 

cover next we see that CatBoost is usually a strong contender among GBDT imple-

mentations, and sometimes with other unrelated classification or regression ML algo-

rithms. Overall, Khramtsov et al. study is a good example of how CatBoost works well 

with heterogeneous, categorical Big Data. At first glance, one may be tempted to think 

KiDS data is homogeneous since it consists of color intensities, but the CLASS_STAR  

feature makes the data heterogeneous. In the next section, we focus on the subject of 

applications of CatBoost to Finance.

Fig. 2 Confusion matrices from Khramtsov et al. showing the relative performance of Random Forest, 
CatBoost and XGBoost on the hold-out dataset [18]
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Finance

We find studies such as “Comparison between xgboost, lightgbm and catboost using a 

home credit dataset” by Essam Al Daoud that compare the performance of CatBoost 

to other algorithms in Finance-related ML tasks [19]. �is study compares XGBoost, 

LightGBM, and CatBoost on the ML task of predicting loan repayment given a list 

of features describing the borrower. Daoud reports that LightGBM yields the best 

performance in terms of AUC and training time. We do not see where Daoud pro-

vides a reference for the source of the Home Credit Dataset. Moreover, Daoud does 

not list hyper-parameters used in the experiments in [19], so Daoud’s results may be 

difficult to reproduce. For example, one important hyper-parameter for CatBoost is 

iterations, that specifies the maximum number of Decision Trees CatBoost will 

construct. A low value for this parameter can impact CatBoost’s performance rela-

tive to other GBDT implementations. Since Daoud does not document this value, it 

is difficult to conclude that LightGBM is the best performer. We recommend as a best 

practice that researchers document hyper-parameters used in GBDT implementa-

tions they compare.

Daoud compares CatBoost to other GBDT implementations, but researchers have also 

explored blending CatBoost with other models. “Research on personal credit scoring 

model based on multi-source data” by Zhang et  al. is a study where the authors clas-

sify borrowers into groups of those with overdue payments on their loans, and those 

who pay on time [22]. Zhang et al. do not name the dataset they use, but it appears to 

be different from the dataset Daoud uses since it has a different number of instances 

and is data from Chinese credit markets. Zhang et al. employ CatBoost, Random For-

est, and Logistic Regression together using the “Stacking&Blending” method. �e 

Stacking&Blending method is a linear combination of the outputs of CatBoost, Random 

Forest, and Logistic Regression. Zhang et  al. report that with the Stacking&Blending 

technique, they determine the weights for the linear combination according to the accu-

racy of individual models, but they do not give any detail on precisely how the weights 

are calculated. It could be the case that the authors selected weights manually accord-

ing to what gave the best result for their study. �ey write, “�e wij used in this paper 

is determined by the accuracy of multiple trainings of a single model. �e higher the 

accuracy of a single model, the greater the weight of the model.” wij is constant for any 

value of j, the index of the sample, but changes for i which is the index of the model. 

�e weights they list are: 0.2 for Logistic Regression, 0.4 for random forest, and 0.4 for 

CatBoost. If Zhang et  al. did not use a computational approach to find the values for 

these weights, there is an opportunity for further research to use an optimization tech-

nique to show what the best values for coefficients would be to use. Zhang et al. do not 

compare the performance of their blended model to any other model. Nevertheless, this 

work shows CatBoost is an effective component of a system for predicting when a bor-

rower will have overdue payments. �eir technique has an overall AUC of 0.73. While 

they show their Stacking&Blending technique has an AUC that is far better than what a 

random guess would yield, we do not see a direct comparison of this technique to other 

learners in their study. Zhang et al.’s study is a demonstration of the Stacking&Blending 

technique; however, the next finance-related study we cover is a more comprehensive 

comparison of more widely used techniques we find to be more informative.
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We return to the task of predicting outright loan default with “Predicting loan default 

in peer-to-peer lending using narrative data”, by Xia et al. [20]. �is study is an evalua-

tion similar to Daoud [19] that showcases CatBooost’s ability to predict when a borrower 

will default on a loan. Xia et al. work with data from Lending Club3, an online platform 

that connects individuals to facilitate making personal loans.

In their experiments, Xia et  al. extract what they call “hard information” and “soft 

information” from data that Lending Club makes available to the public. In the context 

of their study, hard information is numerical data from loan applications: loan param-

eters, the applicant’s creditworthiness, and the applicant’s solvency. �e soft informa-

tion that Xia et  al. work with relates to free-form text on the loan application. �is 

includes: the number of times someone edits the loan description, number of words in 

the loan description, and a one-hot encoded feature calculated from the words in the 

loan description. �e one-hot encoded feature is calculated from the output of a cluster-

ing algorithm, that is composed with the Skip-Gram variant of Word2Vec [56], which is 

in turn composed with term frequency-inverse document frequency ( TF-IDF ) applied to 

the loan description text [57]. Xia et al. derive three datasets of hard and soft informa-

tion from the Lending Club data, one dataset for each of the years 2011, 2012, and 2013.

�e performance of different algorithms is compared to that of CatBoost. �e algo-

rithms used for comparison are: Logistic Regression ( LR ), Regression Tree ( RT ), Bag-

ging Neural Network ( BNN ), Random Forest ( RF ), GBDT’s, and XGBoost. All of these 

algorithms are available in the Python Scikit-learn library [58] except for XGBoost. 

�eir results show that combining their feature extraction technique with CatBoost 

Table 13 From [20], bracketed numbers are con�dence intervals; note we do  not  �nd 

where Xia et al. document the signi�cance level for the con�dence intervals; here “softer” 

means models are trained with all available features

Softer dataset

Model Accuracy AUC H-measure

LR-softer 0.7516 [0.7508, 0.7523] 0.6151 [0.6139, 0.6163] 0.0843 [0.0827, 0.0860]

RT-softer 0.6952 [0.6911, 0.6996] 0.5444 [0.5391, 0.5493] 0.0124 [0.0095, 0.0153]

BNN-softer 0.7496 [0.7480, 0.7516] 0.6120 [0.6095, 0.6151] 0.0801 [0.0766, 0.0843]

RF-softer 0.7436 [0.7415, 0.7456] 0.6043 [0.6013, 0.6073] 0.0695 [0.0659, 0.0733]

GBDT-softer 0.7504 [0.7488, 0.7520] 0.6132 [0.6107, 0.6158] 0.0818 [0.0784.0.0853]

XGBoost-softer 0.7511 [0.7496, 0.7526] 0.6143 [0.6120, 0.6167] 0.0833 [0.0801, 0.0866]

CatBoost-softer 0.7523 [0.7511, 0.7535] 0.6162 [0.6144, 0.6180] 0.0859 [0.0834, 0.0885]

 Model Type I rate Type II rate

LR-softer 0.1557 [0.1550, 0.1565] 0.6142 [0.6123, 0.6160]

RT-softer 0.2024 [0.1978, 0.2072] 0.7087 [0.6994, 0.7198]

BNN-softer 0.1569 [0.1557, 0.1580] 0.6190 [0.6141, 0.6231]

RF-softer 0.1617 [0.1599, 0.1639] 0.6298 [0.6241, 0.6346]

GBDT-softer 0.1564 [0.1554, 0.1574] 0.6171 [0.6130, 0.6211]

XGBoost-softer 0.1560 [0.1550, 0.1569] 0.6153 [0.6115, 0.6190]

CatBoost-softer 0.1552 [0.1545, 0.1560] 0.6124 [0.6095, 0.6152]

3 https ://lendi ngclu b.com

https://lendingclub.com
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yields the best performance in terms of accuracy, ( AUC ), H-measure [59] type I error 

rate, and type II error rate. It is also interesting to note that Xia et al. report using a 

Bayesian hyper-parameter tuning method. �is could be a factor in why Xia et al. find 

CatBoost yields the best performance whereas Daoud does not in similar machine 

learning tasks.

We reproduce a part of [20, Tab. 7] in Table 13 below that shows the superior per-

formance of CatBoost for predicting loan defaults in 2013 Lending Club data. Xia 

et al. also report the results of significance tests that show CatBoost’s superior per-

formance is statistically significant. Metrics related to the running times of training 

or testing the models they compare are not reported in their study. �ey also do not 

report the running time performance of their feature extraction technique. �ere-

fore, we see an opportunity for future research in evaluating these running times. �is 

research is relevant in the field of Big Data since, with large datasets, one might be 

willing to trade off running time for performance metrics. Xia et al. results indicate 

CatBoost can be a good choice for predicting when a candidate borrower will default 

on a loan.

Moving on from the subject of using CatBoost to classify borrowers, another finance-

related study involving CatBoost is “Short term electricity spot price forecasting using 

catboost and bidirectional long short term memory neural network” by Zhang and 

Fleyeh [21]. �e role of CatBoost in this study is that of a feature selector. Zhang and 

Fleyeh use historical electricity futures prices time-series data as well as the categori-

cal values: day of week, hour of day, and a weekend/ not weekend indicator. Zhang and 

Fleyeh also do autocorrelation analysis of time series data to discover which previous 

price data are likely predictors. �ey then use feature importance scoring functionality, 

which is part of the CatBoost software package, to determine which features to extract 

from their raw data to use as input to other ML algorithms. Using CatBoost as a fea-

ture selector to rank features is an interesting approach for researchers working with 

Big Data, since some datasets that qualify as Big Data have large numbers of features. 

CatBoost provides a way to automatically select features. Zhang and Fleyeh propose a 

novel composition of CatBoost and Bidirectional Long Short Term Memory ( BDLSTM ) 

[60] but they do not compare CatBoost as a feature selector to any other GBDT, or any 

other feature selection technique. �erefore, there is an opportunity for future research 

to compare the efficacy of different feature selection techniques in Zhang and Fleyeh’s 

technique for forecasting electricity spot prices. CatBoost’s built-in support for encoding 

categorical features makes it a convenient choice for a feature selection technique.

For finance-related studies involving CatBoost, we find research that is mostly 

credit-related. Zhang and Fleyeh’s use of CatBoost for feature selection is the excep-

tion to that rule. �erefore, there are opportunities for researchers to apply CatBoost 

to other sub-domains in finance, and be the first to do so. �at CatBoost and Light-

GBM do well on the task of loan default prediction supports Prokhorenkova’s claim 

that GBDT’s do well for problems involving heterogeneous data. Also, Xia et al. use 

of a hyper-parameter optimization technique may explain why CatBoost outperforms 

LightGBM in Xia et al. experiments, but not in Daoud’s experiments. �e next field 

we delve into is Medicine, and the first work we study in that field has something in 

common with [22]—it describes another blending technique.
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Medicine

“�e use of data mining methods for the prediction of dementia: evidence from the 

english longitudinal study of aging” by Yang and Bath is a study that evaluates various 

combinations of classifiers [26]. �e classifiers they compare are CatBoost, XGBoost, 

Logistic Regression, Regularized Greedy Forests ( RGF ) [61], and Convolutional Neu-

ral Networks ( CNN ) on the task of classifying individuals as having dementia, or not 

having dementia according to data available on them from the English Longitudinal 

Study on Aging ELSA [62] dataset. �e models are combined with an ensemble tech-

nique, similar to one Zhang et al. use in [22]. �e final output of the ensemble is

where xi is the output of the ith model in the ensemble, and the wi coefficients are subject 

to the constraint that they must sum to 1. Also, like Zhang et al. in [22], Yang and Bath 

do not provide details on how the wi are calculated. �is provides further motivation 

for research that elucidates how one might go about optimizing weights for ensembles 

involving CatBoost; since we have examples of research missing this information in two 

disparate fields – Finance, and here, Medicine. �e evaluation metric the authors use is 

the Normalized Gini Coefficient, defined as 2 × AUC − 1 . �e Normalized Gini Coef-

ficient has a scale from 0 to 1, but is nothing more than a linear transformation of AUC . 

�e algorithms used for addressing class imbalance in the data are Synthetic Minority 

Over-sampling Technique ( SMOTE ) [63] and Adaptive Synthetic Sampling Approach 

( ADASYN ) [64]. In addition, the authors use hyper-parameters for the various classifier 

implementations to address class imbalance. We feel using these parameters in addition 

to SMOTE or ADASYN would be redundant, since these algorithms balance the data 

before it is presented to a classifier. For further studies on application of techniques for 

addressing classs imbalance see [65] and [6].

Yang and Beth report that the data they use in their study is imbalanced with 142 

out of 9666 records in the positive class for one dataset they use, and 109 out of 8445 

records in the positive class for another dataset. �is is clearly not a study in Big Data 

since the dataset is small in comparison to others we cover in this study. However, we 

choose to cover the study here because Yang and Bath’s ensemble technique is inter-

esting and applicable to larger datasets.

Yang and Bath perform a set of experiments, where the number of features 

and the combination of classifiers are factors in the experiments. In the study, the 

authors report that the raw data has 400 features. �e authors include a supplemen-

tary spreadsheet that describes the data they use, and we find a maximum of 50 for 

the number of levels a feature can obtain. Furthermore, we can see that many of the 

(8)y =

n∑

i=1

wixi

Table 14 “Best Gini scores of individual ML algorithms on the test data” [26]

XGB stands for XGBoost; LGB for LightGBM; K-CNN the Keras [66] implementation of Convolutional Neural Networks; RF for 

Random Forest; RGF for Regularized Greedy Forest; performance in terms of Normalized Gini Coe�cient

XGB LGB CatBoost K-CNN RF RGF LR

0.9234 0.9153 0.9218 0.9307 0.9295 0.9276 0.9069
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features are categorical and heterogeneous with descriptions such as “father has dia-

betes” or “difficulty taking medications.” As we mentioned earlier, the default value 

for the minimum number of features CatBoost may use for encoding categorical vari-

ables with Ordered TS may be 255 if one runs CatBoost on GPU’s, so it could be the 

case that Yang and Bath did not take advantage of Ordered TS encoding of categori-

cal variables, which could have had an impact on their results. Yang and Bath report 

on the performance of each learner separately, and several combinations in different 

ensembles. We include copies of both results in Tables 14 and 15. �e tables show that 

CatBoost is not the best performing learner separately, and it is also not a member of 

the best performing ensemble. However, we do not find a significance test that shows 

the results of different classifiers is statistically significant. We choose to include this 

study since it highlights the use of CatBoost in the field of medicine, and techniques 

used are applicable in Big Data problems. �e next item in our study is also in the 

medical field, but focuses on predicting a different sort of condition.

“A novel fracture prediction model using machine learning in a community-based 

cohort”, by Kong et al. is a study on using ML on the task of predicting fragility fractures 

in patients [24]. Fragility fractures are bone fractures that occur from little or no trauma. 

�e authors report that their study uses a cohort of 2227 patients. We assume there is 

one sample in the dataset per participant, so this is not a study in Big Data. However, we 

choose to include their study in our survey because it shows how CatBoost can outper-

form other ML algorithms in tasks involving heterogeneous, categorical data. Assuming 

the list of clinical characteristics of participants listed in [24] [Tab. 1] is the comprehen-

sive list of features, there are 35 features in the dataset, 9 of which we consider to be 

categorical. However, the authors also report results for models using the top 20 most 

important features. �e authors determine feature importance using Shapley additive 

explanations ( SHAP ) analysis [67]. Results show CatBoost outperforms Support Vec-

tor Machine ( SVM ) and Logistic Regression in the task of identifying participants who 

will develop fragility fractures. CatBoost outperforms SVM and Logistic Regression in 

all experiments. We focus on the key result of predicting all types of fragility fractures, 

using all features in the cohort data. For this result CatBoost yields an AUC of 0.688, 

whereas Logistic Regression yields an AUC of 0.614, and SVM yields an AUC of 0.500. 

�e AUC that SVM yields is no better than a model that randomly classifies inputs into 

categories. �is is interesting because in the next study we cover [23], the authors use 

data with features that are derived from heterogeneous numerical data. In that study two 

algorithms related to SVM , Sequential Minimal Optimization ( SMO ) (which is the name 

for the SVM implementation in the Weka [68] ML library), and Support Vector Classi-

fication ( SVC ) [15] yield the best performance in terms of multiple different metrics for 

Table 15 From Yang and Bath [26], “System performance on the test data using di�erent 

ensemble strategies”

E1 is ensemble of K-CNN, RF and RGF; E2 is ensemble of K-CNN, RF and XGB; E3 is ensemble of K-CNN, RGF, XGB; E4 is 

ensemble of K-CNN, RGF and CatBoost; E5 is ensemble of K-CNN, RF, RGF and CatBoost; E6 is ensemble of K-CNN, RF, RGF 

and XGB; performance in terms of Normalized Gini Coe�cient

E1 E2 E3 E4 E5 E6

0.9332 0.9331 0.9325 0.9322 0.9332 0.9333



Page 23 of 45Hancock and Khoshgoftaar  J Big Data            (2020) 7:94  

one experiment. �erefore, Kong et al. results give further evidence that CatBoost can 

outperform other ML algorithms on categorical, heterogeneous data, whereas Adam-

ovic et al. results, that we cover next, show CatBoost falls behind other techniques when 

homogeneous, numeric data is used.

Adamovic et al. study is titled “An efficient novel approach for iris recognition based 

on stylometric features and machine learning techniques.” [23] Stylometry is the study of 

identifying an author based on the content of his or her work. In their study, stylometry 

is applied to the Base-64 encoding of iris images as though it were prose, so that identi-

fying the hypothetical author equates to identifying the owner of the iris. For an example 

of a stylometric feature, from [23][Tab. 1], we see, “�e number of vowels in a text.” We 

consider Adamovic et al. study of properties of the human iris to be a medical study, for 

the purpose of biometric identification applications.

�eir study’s data processing pipeline converts iris images into samples with all 

numeric features. �ey use the Chinese Academy of Sciences Institute of Automation 

( CASIA ) Iris Image Database Version 4 as the source of images to fit several ML models. 

�e models used are as follows: from the Weka system, 1R rule learning [69], C4.5 Deci-

sion Tree [70], SVM [71] and Multiboost [72]. Within the Weka program, these mod-

els are named OneR, J48, SMO and MultiboostAB, respectively. Another model used 

is a version of Random Forest [73] from the R package randomForest. From the Python 

Scikit-learn library, they use the SVC algorithm. Finally, they also include CatBoost as 

a model. Adamovic et al. report that for handling class imbalance in their experiments, 

they use SMOTE [63], and Majority Weighted Minority Over-sampling Technique 

( MWMOTE ) [74]. �e exact nature of class imbalance is not clear in their study. Adam-

ovic et al. write that their data has two classes, Class Y, and Class N. Furthermore, Class 

Y is the class “the same iris” and Class N is “irises of different persons.” Class Y has 450 

samples, and Class N has 2,415 samples. �e link to the CASIA dataset4 containing the 

iris data is provided, but at the time of this writing, this site is not accessible. Adamovic 

et al. write that they use the Recursive Feature Elimination ( RFE ) [75] and Regularized 

Random Forest ( RRF ) [76] methods for feature extraction. �ey conduct experiments 

with a 16 feature dataset, derived with RFE, and an 8 feature dataset they obtain with 

RRF. In addition, they report conducting experiments with all 62 features. �e results 

Adamovic et al. report are very strong in terms of accuracy, precision, recall, F1 score 

and AUC , regardless of which feature selection technique they use, or which machine 

learning algorithm they use. All scores they report are close to the maximum values 

possible, as can be seen in Table 16 that we copy from [23]. We interpret the results in 

Table  16 to mean that the stylometric data they derive from iris images is so distinc-

tive that the number of features, and ML classifier they use is not very important. �ere 

are clear winners in Table 16, but margins are close. Another conclusion we draw from 

the results is that CatBoost yields weaker performance than other classifiers because the 

data is derived from a homogeneous source, and in [2], Prokhorenkova et al. mention 

that CatBoost may not perform as well on homogeneous data as other ML algorithms.

4 http://biome trics .ideal test.org/

http://biometrics.idealtest.org/
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Another example where CatBoost does not appear to do well when pitted against 

other Gradient Boosted Decision Tree classifiers for ML tasks where no categorical 

data is involved is “Performance analysis of boosting classifiers in recognizing activi-

ties of daily living”, by Rahman et  al. [25]. In their study, the authors compare Cat-

Boost to XGBoost, LightGBM, AdaBoost, and Gradient Boosting [77]. �e study 

documents the performance of these classifiers’ ability to categorize accelerometer 

and gyroscope sensor data into physical activities of the person using a smart phone. 

Figure  3 illustrates the relatively weak performance of CatBoost in comparison to 

other Gradient Boosted Decision Tree algorithms for this ML task. �e legend in 

Fig. 3 explains the two values for F-measure Rahman et al. report each classifier. �ey 

report one F-measure score for models trained with all features, and one F-measure 

score for models trained with “Correlation-based features” ( CFS ) [25] [p. 7]. CFS is 

a technique for selecting a subset of features that are not correlated with one and 

other. What stands out to us about this study is that the data the authors use is purely 

numerical. �e data is homogeneous in the sense that it is related to motion since it 

is from accelerometers and gyroscopes. Rahman et  al. study is evidence one should 

avoid CatBoost for these types of data.

In these studies related to medicine, we find one study that supports the idea that 

CatBoost is a good choice to use when data is heterogeneous and categorical. �at 

Table 16 From [23] original caption, “Iris recognition performances on the CASIA dataset, 

with the cross-validation performed after the over-sampling (SMOTE).”

Method Accuracy Precision Recall F1 AUC 

All features

 OneR 0.9982 ± 0.003 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

 J48 0.9926 ± 0.006 0.99 ± 0.02 0.96 ± 0.04 0.98 ± 0.02 0.98 ± 0.02

 SMO 0.9927 ± 0.005 0.99 ± 0.02 0.96 ± 0.03 0.98 ± 0.02 0.98 ± 0.01

 SVC 0.9955 ± 0.004 0.97 ± 0.03 1.00 ± 0.01 0.98 ± 0.02 0.99 ± 0.00

 RandomForest 0.9980 ± 0.003 1.00 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 1.00 ± 0.00

 MultiboostAB 0.9998 ± 0.001 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

 CatBoost 0.9993 ± 0.001 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

RFE-16

 OneR 0.9978 ± 0.003 1.00 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

 J48 0.9947 ± 0.005 0.99 ± 0.01 0.97 ± 0.03 0.98 ± 0.02 0.99 ± 0.01

 SMO 0.9966 ± 0.004 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

 SVC 0.9951 ± 0.002 0.97 ± 0.02 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00

 RandomForest 0.9983 ± 0.002 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

 MultiboostAB 0.9988 ± 0.002 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.00

 CatBoost 0.9979 ± 0.002 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.00

RRF-8

 OneR 0.9971 ± 0.003 1.00 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

 J48 0.9960 ± 0.004 1.00 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

 SMO 0.9995 ± 0.002 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

 SVC 0.9997 ± 0.001 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.00 0.99 ± 0.00

 RandomForest 0.9982 ± 0.003 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

 MultiboostAB 0.9977 ± 0.003 1.00 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 1.00 ± 0.00

 CatBoost 0.9986 ± 0.002 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.00
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study is Kong et al. [24], where the results for predicting fragility fractures show Cat-

Boost yields the best performance. One reason for this may be that the dataset is het-

erogeneous data from surveys that cohort members submit for the study. However, 

we find another study where the data is categorical and heterogeneous in Yang and 

Bath [26], where CatBoost does not yield the best performance. �ere, the perfor-

mance of CatBoost’s competitors are very close and there may not be a statistically 

significant difference between them. Finally, we see two studies that support the idea 

that CatBoost is not the best choice for a classifier for datasets with homogeneous 

features. In the case of Adamovic et al. even though they use feature extraction from 

raw image data, CatBoost does not outperform other classifiers. We suspect this is 

due to the original homogeneous nature of the image data they use. In the case of 

Rahman et al. the data they use is numerical accelerometer and gyroscope data. For 

ML applications in Medicine or other fields, CatBoost appears to be more suitable for 

data that is tabular, such as patient demographic data, or survey data. In the next sec-

tion, we look at how researchers use CatBoost to make advances in the field of electri-

cal utilities fraud detection.

Electrical utilities fraud

Coma and Carmona use ML techniques for electricity theft detection [29]. In their study 

the authors report using CatBoost, XGBoost, and LightGBM. �e subject of the study is 

interesting to researchers working with Big Data since it involves applying ML to detect 

patterns of fraudulent electricity consumption in large-scale data.

Fig. 3 Image from [25] showing relatively weak performance of CatBoost (CB) as compared to XGBoost 
(XGB), LightGBM (LGBM), Gradient Boosting(GB), AdaBoost using Decision Trees (ADA_DT) and AdaBoost 
using Random Forest (ADA_RF)
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In their study, Coma and Carmona work with data that describes millions of a utilities 

company’s customers throughout Spain. �e authors’ goal is to use ML algorithms to 

detect non-technical loss in an electricity providers’ service. Non-technical loss ( NTL ) 

is a loss due to some abnormality in the place where the provider delivers electricity, 

or fraud. �e proposed advantage of using ML is to save human time and effort in both 

finding and correcting the causes of abnormal electricity consumption patterns. �e 

authors do not give specific values of metrics they use to detect non-technical loss. �ey 

write that they use GBDT algorithms CatBoost, LightGBM, and XGBoost, but they do 

not supply a detailed comparison of the performance of each algorithm. �ey report, “In 

terms of accuracy, the system succeeds in the detection of NTL. In customers without 

contract, we have achieved very good results, with campaigns higher than 50% of accu-

racy. In campaigns to detect NTL in customers with contract, the system has reached up 

to 36% of accuracy.” �is is the greatest detail we find on quantitative results on classifier 

performance in their study.

Another issue we find in this work is that the authors report they discard AUC as a 

metric for validating models in favor of the Precision-Recall curve. We have no issue 

with discarding AUC over Precision-Recall curve. Our issue is that Coma and Car-

mona are inconsistent. �e only quantitative data on performance that we find Coma 

and Carmona reporting in [29] is in our previous quotation of them where they write 

about the accuracy of their system in terms of AUC . While their study documents an 

interesting application of CatBoost to a Big Data problem, Coma and Carmona do not 

provide enough detail for one to draw a conclusion as to which of CatBoost, XGBoost, 

or LightGBM served them best. In their study the authors list several reasons why they 

choose GBDT algorithms over other classification techniques. �eir study appears to be 

a report on a work in progress. It is interesting to researchers working in Big Data since 

the study involves a large database with data on millions of customers. �e conclusion 

we draw from this study is that CatBoost and other popular GBDT algorithms are being 

researched by utilities companies as a means to do fraud detection. �e next work we 

cover is on the same subject, and provides more detail on learners the authors use.

Another study that provides more detail on the performance of GBDT algorithms for 

NTL detection in the electricity utilities industry is, “Energy theft detection using gradi-

ent boosting theft detector with feature engineering-based preprocessing” by Punmiya 

and Choe [31]. Both [31] and [29] have May 2019 publication dates, which indicates that, 

for the study of NTL detection in electricity utilities, there is a trend of using GBDT 

algorithms.

An important proposal in Punmiya and Choe’s study is a technique for generating 

samples synthetically. �e positive class in their dataset is extremely sparse. �erefore, 

motivated by a recent study by Buzau et al. [78], that shows the strong performance of 

XGBoost in NTL , Punmiya and Choe compare XGBoost, CatBoost, and LightGBM to an 

existing consumption pattern-based electricity theft detector ( CPBETD ) that is based on 

Support Vector Machine ( SVM ). �ey compare the performance of these classifiers to 

detect patterns of theft in electricity usage data from smart grid electricity meters. Pun-

miya and Choe rely on random number generators to generate values in ranges above 

those in typical non-theft data. In addition, they test the utility of deriving features based 

on summary statistics (minimum, maximum, mean, and standard deviation) of daily 
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electricity usage. �is is noteworthy because we see the same technique used in previ-

ous research by Bauder et al. in the similar task of health insurance fraud detection at 

Big-Data scale, where they add summary statistics based on treatments and procedures 

aggregated by healthcare provider and year [79]. Like Punmiya and Choe, Bauder et al. 

work with an imbalanced dataset. �e efficacy of including summary statistics may only 

be specific to Punmiya et  al. and Bauder et al.’s experiments. �ere is an opportunity 

for future research to determine how adding summary statistics may improve a classi-

fier’s performance. Punmiya and Choe find that Gradient Boosted Decision Tree algo-

rithms provide lower false positive and higher true positive rates in their experiments 

when compared with CPBETD . We interpret the results Punmiya and Choe report as 

suggestions for handling imbalanced data for use with Gradient Boosted Decision Tree 

algorithms such as CatBoost. �e suggestions are: generate positive class samples syn-

thetically by generating fake observations with features that have values in ranges that 

could only belong to the positive class if such a sample did exist, and augment features 

with summary statistics of other features. Punmiya and Choe show the lower false posi-

tive rates and higher true negative rates when they employ summary statistics in a table 

of results we include in Table  17. �ey also show that CatBoost has the lowest false 

Table 17 From [31],  “Performance comparison without  or  with new feature(s) (average 

of 100 random customers), where revised theft cases are used

“ Here”, “synth” refers to features derived from summary statistics of daily usage; DR refers to detection rate, or true positive 

rate, and FPR refers to false positive rate

XGBoost w/o w/ w/ w/ w/ w/

Synth Mean Std Min Max All 4

DR(%) 94 95 95 95 95 96

FPR(%) 6 5 4 4 4 4

CatBoost w/o w/ w/ w/ w/ w/

Synth Mean Std Min Max All 4

DR(%) 97 97 97 97 97 97

FPR(%) 5 6 5 5 5 3

Light w/o w/ w/ w/ w/ w/

GBM Synth Mean Std Min Max All 4

DR(%) 97 97 97 97 97 97

FPR(%) 7 7 6 5 6 5

Fig. 4 From [31]; false positive rates for XGBoost, CatBoost, and LightGBM as number of features used 
increases
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positive rate, but the longest total train and test time, in the charts that we include cop-

ies of in Figs. 4 and 5, respectively. In Punmiya and Choe’s work, we find techniques that 

are useful for fraud detection that are applicable at Big Data scales. As we shall see in the 

next work, we cover more applications of GBDT techniques for NTL detection in the 

electrical utilities industry.

A third study on NTL in electrical utilities is “Impact of feature selection on non-tech-

nical loss detection” by Ghori et  al. [30]. In their study, they propose the Incremental 

Feature Selection ( IFS ) technique for NTL detection. For details on IFS please see [30, 

Algorithm 1]. Ghori et al. do not compare IFS to other feature selection techniques, so 

its relative efficacy remains to be seen. Hence, a study to evaluate feature selection tech-

niques for classifiers on the task of NTL is an opportunity for future research.

In their study, Ghori et  al. document experiments where they compare CatBoost, 

Decision Tree ( DT ), and K-Nearest neighbors ( KNN ) on the task of detecting NTL in 

a specific dataset that they apply IFS to. �e dataset they use consists of electricity con-

sumption information from 80,244 customers over 15 months, with 112 features total. 

Of the 112 features, they find that only 71 are useful. Ghori et  al. report that in their 

experiments CatBoost outperforms KNN and DT for a full feature set of 71 features in 

terms of precision, recall and F-measure. CatBoost also outperforms KNN and DT in 

terms of precision, recall, and F-measure with a reduced set of 9 features obtained with 

IFS , except for KNN, which has a higher recall than CatBoost for the reduced feature set. 

�ey also point out that, as one would expect, CatBoost has a lower training time when 

they use a dataset with 9 features. As we see in Table 18, CatBoost’s performance suffers 

Fig. 5 From [31]; Evaluation (total train and test) time for XGBoost, CatBoost, and LightGBM as number of 
features increases, average of 100 random customers; shows improvement in CatBoost false positive rate 
when all summary statistics are employed

Table 18 From [30], “Precision , recall and F-measure of CatBoost, Decision Tree classi�er 

and KNN for 9 and 71 features”

Features CatBoost (%) DT (%) KNN (%)

Precision 71 98.11 97.23 94.18

9 97.40 96.8 96.58

Recall 71 99.27 97.80 45.10

9 98.68 98.24 99.12

F-Measure 71 98.69 97.51 61.00

9 98.04 97.53 97.83
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with the reduced dataset, but one can use IFS to trade some performance for training 

time.

Ghori et al. do not use any technique to balance the class ratio in their data, but they 

ensure their training and test dataset have the same class ratio. �e class imbalance ratio 

is 96% class, and 4% positive. We include a copy of a table of results from [30] that shows 

the relative performance of CatBoost, DT and KNN with the number of features (9 or 

71) as a factor in Table 18.

Ghori et  al. study [30] was published as a part of the 6th International Conference 

on Data Science and Machine Learning Applications. Apparently they were expanding 

this work for “Performance Analysis of Different Types of Machine Learning Classifi-

ers for Non-Technical Loss Detection” [52] that appeared in the Journal “IEEE Access” 

around the same time that [30] was published. Both studies have the same authors, and 

the data descriptions in both studies indicate they use similar data. In [52], the authors 

augment the collection of classifiers they use to include an Artificial Neural Network 

( ANN ). Interestingly, we find a description of a process similar to IFS in [52], but it is not 

referred to as such. However, in [52] the authors report finding 14 useful features after 

applying feature selection, whereas in [30] the authors report finding 9 useful features. 

�e results in [52, Tab. 5], comparing the performance of classifiers used in the study, 

show that CatBoost outperforms other learners in terms of precision and F-measure, but 

not recall. �e same table shows that the algorithm that yeilds the best performance in 

terms of recall is ANN . However, Ghori et al. list all features of their dataset in [52] [Tab. 

6]. We find at least three features, “Type-Premise”, “Type-Bill” and “Type-Consumer” 

that are categorical. �ey have definitions “House hold type like house, flats, market etc.”, 

“Type of bill” and “Connection type”, respectively. Moreover, in [52] [Tab. 7] the authors 

give lists of hyper-parameters they use, but they do not indicate they set CatBoost’s 

“cat_features” hyper-parameter. �erefore we cannot conclude that Ghori et  al. took 

maximum advantage of CatBoost’s Ordered Target Statistics encoding for all categorical 

features in their dataset.

Our search for studies involving CatBoost reveals that researchers are interested in 

using it for NTL detection in electrical utilities markets. Coma and Carmona’s contri-

bution of using the SHAP importance for selecting features in their dataset appears to 

be an earlier publication of an idea that Ghori et al. refine with IFS . Furthermore Ghori 

et al. expand their investigation into NTL , showing best results for CatBoost in terms 

of precision and F-measure, but not recall. Punmiya and Choe make a contribution by 

showing the performance of CatBoost on imbalanced datasets can be improved with the 

introduction of synthetic data, and the addition of new features from summary statistics 

of existing features. Ghori et al. propose IFS for feature selection, but do not compare it 

against other feature selection techniques. �eir results of their classifiers’ performance 

in terms of accuracy and running time show that one may use IFS to tune feature set 

size to trade performance in terms of precision, recall, or F-measure for performance in 

terms of computation time. �ese studies show CatBoost is a useful tool for NTL detec-

tion in the electrical utilities industry, with possible applications in fraud detection in 

other markets. Given the success of other DT based classifiers for fraud detection [80–

82], we see opportunities for applying CatBoost to more fraud detection tasks. In the 

next section, we take a look at how researchers are using CatBoost to study the weather.
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Meteorology

�e first meteorology-related work we cover in the database is “Short-term weather 

forecast based on wavelet denoising and CatBoost” by Diao et al. [51]. In this study the 

authors cite the inaugural CatBoost paper [2], by Prokhorenkova et al. as their justifica-

tion that CatBoost is the superior boosted Decision Tree algorithm. �ey also mention 

training times for neural network based solutions are longer than Decision Tree based 

solutions. �is is another motivation Diao et al. have for trying CatBoost. �e data that 

the authors use in the study initially has 38 features. Before feeding the data into Cat-

Boost for regression, the authors apply feature selection by Recursive Feature Elimina-

tion ( RFE ), thus eliminating features with low correlation to the target value, then use 

some unspecified combination of the feature importance ranking functions built into 

CatBoost and XGBoost. �e final group of features the authors use is not clear in their 

publication. �ey provide a table of the least important features, but it is not obvious 

what the features listed in the table have to do with the features they use in the study. 

�e table is entitled “�e Least Important Features,” so one surmises that perhaps they 

are eliminated during feature selection. After employing these three initial feature selec-

tion techniques, Diao et  al. write that they use spatio-temporal feature extraction to 

enhance qualitative features such as temperature, humidity, and wind speed. However, 

they only discuss a technique for transforming temporal features: month, day of the 

month and hour, to two-dimensional values, so what we can surmise from the infor-

mation they provide is that they only perform temporal feature extraction. Diao et  al. 

provide a fair amount of detail on the Wavelet Denoising technique they use to smooth 

values in the features they select. For results, Diao et al. report scores that are calculated 

based on root mean square error ( RSME ) of values they forecast, and the RMAPS-based 

RMSE that is not clearly defined. Diao et al. mention they use data from the “weather 

forecast track in 2018 AI Challenger Global AI Contest” but we do not find a reference 

for that contest to find out more about RMAPS-based RSME . �e formula they give for 

a score is:

We give Diao et al. the benefit of the doubt and assume that the scores they report for 

models are such that higher scores indicate lower RMSE of their forecast. In the results 

Diao et al. report, CatBoost outperforms Random Forest [73], Long Short-term Mem-

ory ( LSTM ) [83], and Seq2Seq [84]. We include this study in our survey since it shows 

CatBoost may work well for regression tasks when used in conjunction with Wavelet 

Denoising.

“Evaluation of catboost method for prediction of reference evapotranspiration in 

humid regions” by Huang et al.is a more robust study on meteorological applications of 

CatBoost [33]. �e principal aim of the study is to use ML regression models to forecast 

water evapotranspiration ( ET ). Huang et  al. define ET as, “�e loss of water from the 

ground and vegetation into the atmosphere, composed of evaporation from ground and 

vegetation surfaces plus transpiration through vegetation.” Accurate estimates of ET are 

important for water resource planning. Huang et al. report on the performance, in terms 

of RMSE , mean absolute percentage error ( MAPE ) [85], MBE, and R2 [86] of CatBoost, 

(9)Score =

RSME(RMAPS) − RSME(forecast)

RSME(RMAPS)
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Vector Machine ( SVM ) [87] and Random Forest ( RF ) [73]. �e error of the regression 

models is calculated relative to a reference value of ET , which they provide a formula 

for. In their experiments, the authors use data from 12 weather stations in Southeast-

ern China. �e raw data from the weather stations contains 5 features: daily solar radia-

tion ( RS ), maximum ( Tmax ) and minimum ( Tmin ) air temperatures at 2 m height, relative 

humidity ( Hr ), and wind speed (U) at 2 m height. As part of their experimental design 

the authors test performance of models with all 5 features, and 7 different subsets of 

the 5 features. Huang et al. do not report if they employ any well-known techniques to 

determine feature importance. We note what appears to be a minor typographical error 

in the definition of MAPE that Huang et al. supply:

According to de Myttenaere et al. definition of absolute percentage error [85], in Huang 

et al. notation the definition of MAPE should be:

where Yi,e is the estimated value and Yi,m is the measured (actual) value. According to 

Google Scholar, at the time of this writing, de Myttenaere et al. [85] has 185 references. 

�is lends credibility to the claim that their definition of absolute percentage error is 

widely accepted. We do not find that Huang et al. provide a citation for their definition 

of MAPE, so we cannot validate whether it is widely accepted, and therefore conclude it 

is a typographical error. Otherwise, one may choose to ignore results on performance in 

terms of MAPE for the regression models. Huang et al. also do not provide a reference 

or definition of the acronym MBE, but they provide a formula for it. �is formula indi-

cates MBE is simply the mean value of the difference of estimated and measured values:

�e authors report that CatBoost works best when inputs have no missing values, but 

that SVM outperforms CatBoost when inputs have missing values. In the context of their 

study, the term “missing values” means features removed from their dataset. However, 

the most interesting result from a Big Data perspective is the comparison that Huang 

et  al. make between the running times and memory usage of CatBoost, SVM and RF . 

A copy of bar charts from [33] in Fig.  6 shows CatBoost consumes less time and less 

memory than its competitors. �e time and memory usage reported in Fig. 6 is meas-

ured for different levels of data, where the level corresponds to the size of the dataset. 

If resource consumption is the primary concern, the results in Fig. 6 suggest one should 

select CatBoost when choosing a Gradient Boosted tree ensemble algorithm. However, 

we do not see where Huang et al. include hyper-parameter settings for the models they 

evaluate, so one cannot verify that they did not use settings that would result in unnec-

essary resource consumption.

(10)MAPE =

1

n

n∑
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n
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Another study related to predicting weather-related phenomena with CatBoost is 

“Predicting daily diffuse horizontal solar radiation in various climatic regions of China 

using support vector machine and tree-based soft computing models with local and 

extrinsic climatic data” [32], by Fan et al. �is study examines the performance of differ-

ent algorithms for predicting the total amount of solar radiation that reaches the Earth. 

Fan et al. cite previous studies that show SVM outperforms some neural network based 

approaches. For more background on neural networks, please see [88]. Fan et al. com-

pare several Decision Tree based algorithms to SVM . �e conclusion that Fan et al. make 

in this study is that CatBoost is nearly as accurate as SVM , but has running times that 

are lower than SVM’s. �is confirms Huang et al.’s findings we report above. �e results 

of two of their experiments show that CatBoost runs about 1.9 times as fast as SVM . In 

a third experiment they find that CatBoost is 33.9 times faster than SVM . �erefore, this 

result is interesting to researchers working with Big Data, since CatBoost could provide 

a noticeable reduction in processing time for long-running jobs. Another interesting 

point about the study is that Fan et al. report that they used a Grid Search hyper-param-

eter optimization technique for the learners they compare. �is is the second instance 

Fig. 6 Image from [33] illustrating the relative efficiency of CatBoost, according to Huang et al. Level 1 is 
10 years’ data from a single station, Level 2 is 10 years’ data from 12 stations, Level 3 is 20 years’ data from 12 
stations, Level 4 is 30 years’ data from 12 stations and Level 5 is 40 years’ data from 12 stations
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where we find CatBoost is reported to be the best performing learner when the authors 

also report using a hyper-parameter tuning technique. �e first instance is in [20] that 

we cover earlier.

�e studies on applications of CatBoost to Meteorology that we find here show two 

things. �e first is that the CatBoost regression variant is a viable candidate for fore-

casting weather-related data. �e data that Huang et al. and Fan et al. report on using 

seems heterogeneous since they are measurements of different types of climatic data. 

Diao et al. do not provide quite enough detail on their data for us to be certain about its 

degree of homogeneity. �e second is that CatBoost has better running times than SVM 

for weather-related regression problems. A comparative complexity analysis of SVM and 

CatBoost is outside the scope of this study. Please see Appendix C of [2] for a complex-

ity analysis of CatBoost. Fan et al. may have obtained this finding because they employ a 

hyper-parameter optimization technique. Next, we cover applications of CatBoost in the 

field of Psychology.

Psychology

One example where CatBoost as a classifier outperforms other classifiers is “Screening of 

anxiety and depression among the seafarers using machine learning technology” by Sau 

and Bhakta [35]. In this study CatBoost outperforms Random Forest, Logistic Regres-

sion, Naïve Bayes, and Support Vector Machine classifiers in the task of identifying indi-

viduals that suffer from anxiety or depression. It is important to note that the raw data 

the authors use in this study is from a survey where they treat the answers to the survey 

as features. Eight out of fourteen of the features from the survey are categorical values. 

�is helps explain why CatBoost is the best performing classifier for the machine learn-

ing task in [35]. �e authors write, “Five machine learning classifiers (Logistic Regres-

sion, Naïve Bayes, Random Forest, Support Vector Machine and Catboost), those [sic]

can handle the binary outcome variable (labels) with mixture of categorical and continu-

ous features, are selected for comparison purpose.” So, it appears that the authors take 

advantage of built-in support for encoding categorical features in all the learners they 

use. �ese results may be an indication that CatBoost has better support for encoding 

categorical features. �e authors also report hyper-parameter settings they use for each 

learner. �is could make the study a good starting point for research into CatBoost’s 

sensitivity to hyper-parameter settings since the settings are documented.

Another study in the Psychology domain that uses CatBoost is “Machine learning 

identifies the dynamics and influencing factors in an auditory category learning experi-

ment” [34], by Abolfazli et  al. �e study is an investigation into the ability of humans 

to categorize sounds. Hence, experiments in the study involve playing sounds for the 

subjects and asking them to identify which category the sound belongs to. �e authors 

list three specific goals in the study: (1) gain insight into how humans learn to categorize 

sounds, (2) detect when subjects are near the limit of their capacity to learn new catego-

ries of sounds and (3) determine whether subjects will be able to learn a new category of 

sound. Abolfazli et al. state that their motivation for the third goal is to prevent fatigue 

in test subjects. �eir study is fascinating because it is an example of how to use machine 

learning to better understand human learning. However, we see an opportunity for fur-

ther research since the authors do not compare the performance of CatBoost to other 
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ML algorithms on their ML task. �e task in Abolfazli et al. experiments is to estimate 

whether a person will learn to classify types of sounds given the person’s performance so 

far.

�e technique Abolfazli et  al. use for feature engineering is interesting because it 

could be part of an experimental design for other experiments with the goal of predict-

ing humans’ ability to learn. �ey measure the true positive rate and false positive rate 

of the test subjects’ classifications of sounds in blocks of 40 trials, and use these scores 

as features for a CatBoost ML model. Please see [34] [Tab. 1] for more details on these 

features. �e subjects’ performance over the duration of the experiment makes a time 

series. In [34] [Tab. 2] Abolfazli et  al. report the progressive increase in the balanced 

accuracy [89] scores CatBoost yields as they increase the amount of data they use as 

input to CatBoost. �is result shows CatBoost’s ability to predict whether a subject will 

learn to classify sound categories before the end of the experiment.

�e two studies we find involving CatBoost and Psychology cast CatBoost in a posi-

tive light. In the first case of Sau and Bhakta [35], the learner does well, perhaps because 

the data are survey data that are categorical and heterogeneous. However, in the second 

study by Abolfazli et al. [34], the data are classification error rates of the test subjects, 

that are acting as classifiers during testing. �erefore, it may be the case that another 

learner would do better if used in the same experiment. Now we pivot from Psychology 

to the subject of Traffic Engineering. To get started on that subject we take a look at a 

study on identifying driving style.

Tra�c Engineering

We find one study related to identifying driving style. �is study falls under the category 

of research with a likely application to self-driving automobiles. One interesting aspect 

of the study is that it is an application of CatBoost for semi-supervised learning. �is 

study is titled “A semi-supervised tri-catboost method for driving style recognition” by 

Liu et  al. [36]. In this article the authors propose the Tri-CatBoost method for labe-

ling data. �is method leverages labeled data to impute labels for unlabeled data. Tri-

Catboost employs three CatBoost classifiers that are trained on Bootstrap samples of 

labeled data. After training, Tri-CatBoost begins an iterative process that involves tenta-

tively labeling data and updating the three models. Liu et al. refer to this as the “minority 

obeying majority” strategy. �e minority obeying majority strategy involves iteratively 

training one CatBoost classifier on data labeled by other CatBoost classifiers. Iterations 

continue until the classifiers are in agreement on labels they are generating, and all the 

classifiers have stable error rates when re-evaluated on the labeled data. An opportunity 

for future research is in the domain of mitigating class noise. One could employ the Tri-

CatBoost method, using samples of labeled data where one is confident that the samples 

have little to no class noise, and treat samples of data with class noise as unlabeled data. 

One could then take the resulting labels that Tri-CatBoost imputes for the data with 

class noise as a dataset cleansed of class noise.

Another application of CatBoost in the field of Traffic Engineering is “Accurate clas-

sification for automatic vehicle-type recognition based on ensemble classifiers” by Shvai 

et al. [90]. �e authors cover an interesting ensemble technique that involves Convolu-

tional Neural Networks ( CNN ) [91], Optical Sensors ( OS ), and CatBoost. Shvai et al.’s 
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description of OS’s indicates that they are devices that measure the height and number 

of axles on a vehicle to return a categorical output value for the vehicle type. �e output 

of the CNN and OS are combined into a vector, which becomes the input to CatBoost. 

We include a copy of the architecture diagram in Fig. 7. Shvai et al. design has the prac-

tical application of automated toll collection. �e system is an example of how GDBT’s 

work well with heterogeneous data; since, in their architecture CatBoost takes data of 

two completely different types. Shvai et al. report that they experimented with substitut-

ing different classifiers in place of CatBoost, but they get the best performance in terms 

of accuracy with the system as depicted in Fig. 7 with CatBoost. �e accuracy of this 

system in the task of vehicle type identification is 99.03, which is an impressive improve-

ment over the performance of OS’s that they report as 52.77.

A third study we find that is related to Traffic Engineering has to do with the move-

ment of people between urban centers. In “Reconstructing commuters network using 

machine learning and urban indicators” [7], Spadon et  al. report that they choose 

XGBoost over CatBoost for their study because CatBoost and XGBoost have nearly 

equivalent performance in terms of accuracy, but XGBoost is about fifty times faster per 

training iteration than CatBoost. One should not jump to the conclusion that XGBoost 

is better suited to Big Data problems based on what Spadon et al. report on the relative 

running times of XGBoost and CatBoost, since Prokhorenkova et al. present opposing 

results in [2]. Prokhorenkova et al. write that CatBoost’s mean tree construction time is 

about 4 times faster than XGBoost. One iteration of a GBDT algorithm is the construc-

tion of a Decision Tree, so it would behoove us to know the root cause of the discrep-

ancy in running times that Spadon et al. and Prokhorenkova et al. report. To be clear 

Fig. 7 Image from [90] depicting ensemble architecture of system for automatic vehicle detection; CNN and 
OS output are fed to CatBoost

Table 19 From [2], showing the mean tree construction time in seconds

Italic text from the original work, indicates shortest tree construction time

Time per tree

CatBoost Plain 1.1 s

CatBoost Ordered 1.9 s

XGBoost 3.9 s

LightGBM 1.1 s



Page 36 of 45Hancock and Khoshgoftaar  J Big Data            (2020) 7:94 

about Prokhorenkova et al. claims about CatBoost’s and XGBoost’s running time perfor-

mance, we include a copy of a table from Appendix C.2 of “CatBoost: unbiased boosting 

with categorical features,” in Table 19. �e results in Table 19 are for running CatBoost 

on the Epsilon dataset, whereas Spadon et al. training time results are on a dataset they 

derived from Brazilian census data. �e Epsilon dataset has 2,000 features whereas the 

dataset from Spadon et al. appears to have a much larger number of features. It is not 

clear from Spadon et al. paper exactly how many features their dataset has, but it could 

be a sparse dataset with thousands of features since they model their data as a graph 

with 5,565 vertices, and they indicate that the weights of edges in the graph form some 

features in their dataset. Since there are thousands of vertices, each vertex has thousands 

of edges incident to it. We know the value of most edge weights is zero since Spadon 

et al. report that 55,247 of the edges have non-zero weights. In addition, Spadon et al. 

document that they use 22 additional features for each city from the Brazilian census 

data. �erefore, the Epsilon dataset, and the dataset from Spadon et al. have a dissimilar 

number of features. �is may account for the difference in training performance that 

Spadon et al. and Prokhorenkova et al. report.

In the field of Traffic Engineering, we see researchers have applied CatBoost to very 

different problems. However, the first study [36], by Liu et al. is interesting in terms of 

the new semi-supervised technique presented in it. �e second study [90] we cover by 

Shvai et al. shows positive results for CatBoost, and we feel one reason for that is the 

heterogeneous nature of the data they use in the study. Finally, Spadon et al. [7] apply 

CatBoost to a graph-related problem, and we find only two such graph-related studies, 

the other being [38], by Yi et al. While Spadon et al. reject CatBoost for efficiency rea-

sons, it could be worthwhile to investigate whether hyper-parameter optimization would 

result in improved efficiency for CatBoost. In the next section, we transition from the 

subject of traffic, to one related to network traffic, and Cyber-security.

Cyber-security

Detection of computer network attacks is in the domain of Big Data, and fast detection 

times are important for two reasons. First of all, consumers demand low latency internet 

service for applications such as gaming, high frequency trading, voice communications, 

and so on. At the same time, if a system in one’s network is under attack, one would like 

to know that as soon as possible. Attack detection may introduce latency, so, there is a 

trade-off between performance and security. One recent study where the authors employ 

CatBoost to detect attacks is “Attack detection in enterprise networks by machine learn-

ing methods” [37], by Bakhareva et al. Here, the authors find that CatBoost outperforms 

LightGBM, Linear Support Vector Machine Classifier, and Logistic Regression, in terms 

of cross validation balanced accuracy, balanced accuracy, F1 score, precision, recall, and 

AUC . However, they also report that CatBoost has longer training and prediction times. 

�e authors report mixed results for the time it takes a trained CatBoost model to make 

a prediction versus other models. Furthermore, the authors report classification time for 

the algorithms they compare on entire datasets. In one case, CatBoost is slowest, taking 

7.25 seconds to classify instances of the CICIDS [92] dataset as attack/not attack traffic. 

On the other hand, CatBoost outperforms LightGBM when the authors use CatBoost to 

classify CICDS into types of attacks. However, in the multi-class case, Support Vector 
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Machine, and Logistic Regression are faster. �e results Bakhareva et al. report in [37] 

show that CatBoost is the best detector of attacks, but there is a trade-off in terms of 

running time.

We find only one study where researchers use CatBoost in the area of Cyber-security. 

We see opportunities for future research to apply CatBoost to network security tasks 

given the success of other researchers in the field [93, 94] and [95]. �erefore, there may 

be further opportunities to apply CatBoost to other problems where GBDT’s are known 

to provide good solutions for Cyber-security challenges. CatBoost’s applicability in a 

wide range of subjects implies that we should be able to find more problems in the realm 

of Cyber-security where CatBoost is a good solution. Bakhareva et al. results imply that 

CatBoost is a good choice when accuracy in identifying attacks is more important than 

latency considerations in designing network security systems. Next, we turn our atten-

tion to the subject of CatBoost in Bio-chemistry.

Bio-chemistry

Yi et al. apply CatBoost in a study on predicting associations between molecules enti-

tled “Construction and analysis of molecular association network by combining behav-

ior representation and node attributes” [38]. In this paper the authors construct a graph 

with eight types of nodes. �e types of nodes are: proteins, micro-ribonucleic acids 

( miRNA ) [96], long non-coding ribonucleic acids ( lncRNA ) [97], messenger ribonucleic 

acids ( mRNA ) [98], circular ribonucleic acids ( circRNA ) [99], drugs, microbes, and dis-

eases. �e edges in the graph are associations between two nodes of different types. In 

this study, Yi et al. call this graph the molecular association network ( MAN ). Yi et  al. 

use the High Order Proximity preserved Embedding ( HOPE ) [100] algorithm to learn a 

vector representation of the nodes in the MAN. �ey use the components of this vector 

representation as some features of a dataset for a classifier, and they obtain more features 

for the dataset from attributes of the different types of nodes in the MAN. However, not 

all the attributes of the different types of nodes have the same dimensionality. So, they 

employ an autoencoder to learn representations of the nodes in the MAN such that the 

representations are vectors all having the same number of components. �e components 

of the vectors that the autoencoder learns constitute more input values for a classifier. 

�e composite of the vector representation that HOPE learns, and the vector represen-

tation that the autoencoder learns is the complete representation of a node in the MAN. 

�ough Yi et al. do not explicitly state this, we believe it must be the case that the dataset 

they use with a classifier consists of pairs of the composite representations of nodes in 

the MAN, where a pair is labeled as a member of the positive class if there is an associa-

tion between nodes, and a member of the negative class otherwise.

After Yi et al. obtain the labeled dataset, they compare the performance of several clas-

sifiers in their ability to predict associations between members of the MAN. �e per-

formance metrics they use are: accuracy, sensitivity, specificity, precision, and Mathews’ 

correlation coefficient. �e classifiers they use are: XGBoost, AdaBoost [101], Random 

Forest, Logistic Regression, and CatBoost. Table 20 is a copy of [38] [Tab. 3], that shows 

the results of their performance evaluation. CatBoost has the best results of all classifiers 

in all metrics except for specificity. �e work Yi et al. conduct in this study is interesting 
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because it illustrates a way to use ML techniques, including CatBoost to work with a het-

erogeneous network of objects.

One interesting thing to note about Yi et  al. study is that it involves a graph repre-

sentation of data, and experiments with systems where CatBoost is a component, and 

others where XGBoost is a Component. We see in Table 20 that CatBoost outperforms 

XGBoost. �is is quite different from the results Spadon et al. report on a study involv-

ing graphs of data, where the authors report nearly similar performance for both Cat-

Boost and XGBoost. �is is evidence that not all problems involving data with graph 

representations are best solved with a particular GBDT implementation. It also raises 

further interest in the question of how CatBoost’s sensitivity to hyper-parameters and 

hyper-parameter tuning impacts CatBoost’s performance in graph-related ML problems. 

Next, we cover an application of CatBoost to the study of on-line marketing.

Marketing

Clickstream data is web application usage data that web applications collect as users 

interact with the web sites the application provides. Busy web sites with millions of daily 

users can generate large amounts of clickstream data that falls into the domain of Big 

Data. “Predicting online shopping behaviour from clickstream data using deep learning” 

Table 20 From Yi et al. the proposed method is CatBoost

Best metrics are highlighted in italic; we split table in two for legibility

Method Accuracy (%) Sensitivity (%) Speci�city (%)

MAN-HOPE-LR 83.75 ± 0.11 83.21 ± 0.47 84.30 ± 0.32

MAN-HOPE-Ada 84.73 ± 0.18 85.53 ± 0.29 83.93 ± 0.22

MAN-HOPE-RF 92.66 ± 0.12 92.03 ± 0.15 93.29 ± 0.22

MAN-HOPE-XGB 89.56 ± 0.41 90.60 ± 0.28 88.51 ± 0.95

Proposed method 93.30 ± 0.12 91.50 ± 0.14 95.10 ± 0.11

 Method Precision (%) MCC (%) AUC (%)

MAN-HOPE-LR 84.13 ± 0.20 67.52 ± 0.22 91.58 ± 0.13

MAN-HOPE-Ada 84.19 ± 0.18 69.48 ± 0.36 92.07 ± 0.13

MAN-HOPE-RF 93.21 ± 0.20 85.33 ± 0.24 97.12 ± 0.05

MAN-HOPE-XGB 88.75 ± 0.81 79.13 ± 0.79 96.02 ± 0.24

Proposed method 94.91 ± 0.11 86.66 ± 0.24 97.93 ± 0.08

Fig. 8 Image from [39] illustrating best results for ensemble of CatBoost and GRU ; Here, the authors refer to 
CatBoost as Gradient Boosted Machine (GBM)
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by Koehn et al. is a study on using ML to predict user behavior from clickstream data 

[39]. �is study focuses largely on neural networks for making these predictions, but 

CatBoost plays a very important role. �e authors find that they get their best results 

when they employ an ensemble of a Gated Recurrent Unit ( GRU ) based neural network 

and CatBoost. �e ensemble technique the authors use is to compute the mean value 

of the output of the neural network and CatBoost for their final prediction. Koehn et 

al. give some important practical advice for choosing to use the ensemble of the GRU

-based neural network and CatBoost. �e advice is that when one observes two strong 

models with low correlation between their output values, an ensemble of those two 

models may perform even better. �erefore, researchers considering taking on work to 

classify clickstream data may find that CatBoost will form part of an ensemble with the 

best performance. Figure 8 shows an image reproduced from Koehn et al. [39] (Fig. 8), 

that demonstrates how the ensemble technique provides the best AUC for predicting 

user behavior from clickstream data.

Another example of a study that shows the inferiority of gradient boosted tree algo-

rithms to neural networks for ML tasks involving homogeneous data is “A clstm-tmn 

for marketing intention detection” by Wang et al. [102]. In this study the authors com-

pare various algorithms on the task of classifying text that contains news with marketing 

intent, and text that contains news without marketing intent. Hence, the ML task has as 

input homogeneous data of natural language text. �e results that Wang et al. present 

clearly show CatBoost, LightGBM, and XGBoost under-perform several neural network 

based algorithms. We include a copy of the key results here in Fig. 9 that provide evi-

dence for Prokhorenkova et al. claim that neural network based solutions may work bet-

ter than GBDT ’s for tasks involving heterogeneous data.

Fig. 9 Image from [102] illustrating neural network based algorithms outperforming Gradient Boosted tree 
algorithms for classifying homogeneous text data in the SoHu dataset of news articles labeled as with or 
without marketing intent
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�e two studies we find related to Marketing that involve CatBoost serve to point 

out important considerations to make when deciding to use GBDT’s or neural network 

based solutions. �e first is that an ensemble technique may work well, as in the case 

of Koehn et al. �e second is that for homogeneous data, GBDT’s may not be the ideal 

choice, as is the case with Wang et al. �e final subject area we cover is Biology.

Biology

We find one study related to clear cell renal cell carcinoma ( ccRCC ), “Ct-based machine 

learning model to predict the fuhrman nuclear grade of clear cell renal cell carcinoma” 

[28], by Lin et al. According to �e National Cancer Institute [103], ccRCC is a form of 

kidney cancer that makes up about 80% of all kidney cancer cases. �erefore, advances 

in treating ccRCC stand to benefit the largest number of people who suffer from kid-

ney cancer. In their study, the authors employ CatBoost to classify Magnetic Resonance 

MR and Computed Tomography CT in the task of identifying ccRCC in the images. 

�eir study does not appear to be research where authors use Big Data techniques. 

�e authors do not report the size of their dataset, but they write that the CT images 

they use come from a cohort of 231 patients. However, we chose to include this study 

since image classification for disease diagnoses is potentially a machine learning task 

where one could employ Big Data techniques. After selecting images for their cohort, 

Lin et al. indicate that they use the ITK-SNAP5 application to segment the images into 

regions of interest. �e ITK-SNAP website mentions that ITK-SNAP application per-

forms “semi-automatic” segmentation. �erefore, future work to apply the results of this 

study in a Big Data setting, would be to apply a fully automated technique for medical 

image segmentation, such as those covered in “Automated medical image segmentation 

techniques” [104], by Sharma and Aggarwal. �e remaining components of their system 

for classifying images are fully automated. Lin et al. use a Python library for extracting 

features from the segmented images, and then use these features as input to CatBoost. 

For the classifier component of their system, the authors use CatBoost exclusively. �ey 

report encouraging performance metrics, but the results would be more meaningful if 

they employed other classifiers. One would like to know if any other classifiers, espe-

cially a classifier built on a convolutional neural network, would have significantly differ-

ent performance.

Another work related to the study of diseases, and one study that researchers may find 

germane in the wake of the Covid-19 pandemic is “Diseases spread prediction in tropi-

cal areas by machine learning methods ensembling and spatial analysis techniques” [27], 

by Kolesnikov et al. In this study the authors use several ML regression algorithms to 

predict the number of dengue fever cases in a region during a particular week. One of 

the learners that the authors employ is CatBoost. CatBoost is not presented as the best 

performing algorithm in this study. �e best performing regression algorithm in this 

study is a combination of XGBoost and LSTM . �e authors do not document whether 

they examined the performance of other Gradient Boosted Decision Tree ensemble 

algorithms with LSTM , so there is an opportunity to investigate how a combination of 

5 http://www.itksn ap.org

http://www.itksnap.org
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CatBoost and LSTM would compare to the combination of XGBoost and LSTM . We 

could see results similar to what Koehn et al. find, where CatBoost is the best choice for 

an ensemble of a GBDT and GRU . GRU ’s and LSTM ’s are both recurrent neural net-

works. �e outcome of that future work would help researchers understand how well-

suited CatBoost is for regression problems involving time-series data. Furthermore, we 

foresee researchers having a stronger interest in studies similar to Kolesnikov et al. due 

to the Covid-19 pandemic.

In summary, we see CatBoost for two different applications in the field of Biology: one 

related to detection of types of kidney cancer, and another for predicting the spread of 

disease. In the case of Lin et al. for detecting kidney cancer from image-based data, we 

conjecture one might obtain better results employing a classifier more suited to homo-

geneous data. On the other hand, for studies like the one Kolesnikov et  al. conduct, 

CatBoost may be a good choice for an ensemble technique with some type of recurrent 

neural network.

Conclusions

�e research we cover in this survey leads us primarily to the conclusion that CatBoost 

is a good candidate for ML implementations involving Big Data. Researchers should 

consider using it with datasets that are heterogeneous, and have categorical features. 

�e results we cover imply one cannot rule out other GBDT implementations for spe-

cific problems, and that a common practice is to use more than one. However, since it 

is easy to use because of its automatic handling of categorical values, and strong perfor-

mance relative to other GBDT implementations, we believe CatBoost will remain a suit-

able choice for many applications for some time.

Another aspect of CatBoost we uncovered is its sensitivity to hyper-parameter set-

tings. Settings for the maximum number of iterations for CatBoost to use, the maxi-

mum depth of constituent Decision Trees, and the maximum number of combinations 

of categorical features to combine are values the user can alter to trade resource con-

sumption for performance. Furthermore, values that researchers use for these hyper-

parameters may help explain discrepancies in performance of CatBoost with respect to 

other learners.

Our interdisciplinary approach highlights the wide variety of fields where research-

ers have employed CatBoost. �is shows not only the generality of CatBoost, but also 

that researchers who have a good understanding of it have an opportunity to collabo-

rate with experts in other fields. We see several opportunities for such collaboration. 

We find many studies where researchers do not document the use of any hyper-param-

eter optimization method for the learners they use. �is implies we can obtain more 

insightful results simply by doing that optimization. We see two examples of studies 

where the authors use model blending, but it is not clear how they derive the coeffi-

cients for the outputs of constituent models, so there is an opportunity for research on 

a robust method for blending model outputs where one of the models is CatBoost. In 

our coverage of the uses of CatBoost for electricity theft detection, we find opportuni-

ties for future research into feature selection techniques. Also, in our review of applica-

tions of CatBoost in electricity theft detection, we find a chance for research into the 

extent of the generality of Punmiya and Choe’s technique of augmenting a dataset with 
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summary statistics to boost performance. Another interesting technique that we find in 

the domain of Traffic Engineering research is the Tri-CatBoost semi-supervised tech-

nique for labeling data that may have applications for problems involving datasets with 

class noise. Our description of GBDT’s, and the CatBoost implementation, as well as our 

coverage of various studies, provides expert knowledge that empowers one to employ 

CatBoost in these or many other future endeavors.
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