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Abstract

This paper presents the key algorithmic techniques behind CatBoost, a new gradient
boosting toolkit. Their combination leads to CatBoost outperforming other publicly
available boosting implementations in terms of quality on a variety of datasets.
Two critical algorithmic advances introduced in CatBoost are the implementation
of ordered boosting, a permutation-driven alternative to the classic algorithm, and
an innovative algorithm for processing categorical features. Both techniques were
created to fight a prediction shift caused by a special kind of target leakage present
in all currently existing implementations of gradient boosting algorithms. In this
paper, we provide a detailed analysis of this problem and demonstrate that proposed
algorithms solve it effectively, leading to excellent empirical results.

1 Introduction

Gradient boosting is a powerful machine-learning technique that achieves state-of-the-art results in a
variety of practical tasks. For many years, it has remained the primary method for learning problems
with heterogeneous features, noisy data, and complex dependencies: web search, recommendation
systems, weather forecasting, and many others [5, 26, 29, 32]. Gradient boosting is essentially a
process of constructing an ensemble predictor by performing gradient descent in a functional space.
It is backed by solid theoretical results that explain how strong predictors can be built by iteratively
combining weaker models (base predictors) in a greedy manner [17].

We show in this paper that all existing implementations of gradient boosting face the following
statistical issue. A prediction model F obtained after several steps of boosting relies on the targets
of all training examples. We demonstrate that this actually leads to a shift of the distribution of
F (xk) | xk for a training example xk from the distribution of F (x) | x for a test example x. This
finally leads to a prediction shift of the learned model. We identify this problem as a special kind of
target leakage in Section 4. Further, there is a similar issue in standard algorithms of preprocessing
categorical features. One of the most effective ways [6, 25] to use them in gradient boosting is
converting categories to their target statistics. A target statistic is a simple statistical model itself, and
it can also cause target leakage and a prediction shift. We analyze this in Section 3.

In this paper, we propose ordering principle to solve both problems. Relying on it, we derive
ordered boosting, a modification of standard gradient boosting algorithm, which avoids target
leakage (Section 4), and a new algorithm for processing categorical features (Section 3). Their
combination is implemented as an open-source library1 called CatBoost (for “Categorical Boosting”),
which outperforms the existing state-of-the-art implementations of gradient boosted decision trees —
XGBoost [8] and LightGBM [16] — on a diverse set of popular machine learning tasks (see Section 6).

1https://github.com/catboost/catboost
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2 Background

Assume we observe a dataset of examples D = {(xk, yk)}k=1..n, where xk = (x1
k, . . . , x

m
k ) is a

random vector of m features and yk ∈ R is a target, which can be either binary or a numerical
response. Examples (xk, yk) are independent and identically distributed according to some unknown
distribution P (·, ·). The goal of a learning task is to train a function F : Rm → R which minimizes
the expected loss L(F ) := EL(y, F (x)). Here L(·, ·) is a smooth loss function and (x, y) is a test
example sampled from P independently of the training set D.

A gradient boosting procedure [12] builds iteratively a sequence of approximations F t : Rm → R,
t = 0, 1, . . . in a greedy fashion. Namely, F t is obtained from the previous approximation F t−1 in
an additive manner: F t = F t−1 + αht, where α is a step size and function ht : Rm → R (a base
predictor) is chosen from a family of functions H in order to minimize the expected loss:

ht = argmin
h∈H

L(F t−1 + h) = argmin
h∈H

EL(y, F t−1(x) + h(x)). (1)

The minimization problem is usually approached by the Newton method using a second–order
approximation of L(F t−1 + ht) at F t−1 or by taking a (negative) gradient step. Both methods
are kinds of functional gradient descent [10, 24]. In particular, the gradient step ht is chosen in

such a way that ht(x) approximates −gt(x, y), where gt(x, y) := ∂L(y,s)
∂s

∣

∣

s=F t−1(x)
. Usually, the

least-squares approximation is used:

ht = argmin
h∈H

E
(

−gt(x, y)− h(x)
)2

. (2)

CatBoost is an implementation of gradient boosting, which uses binary decision trees as base
predictors. A decision tree [4, 10, 27] is a model built by a recursive partition of the feature space
R

m into several disjoint regions (tree nodes) according to the values of some splitting attributes a.
Attributes are usually binary variables that identify that some feature xk exceeds some threshold t,
that is, a = ✶{xk>t}, where xk is either numerical or binary feature, in the latter case t = 0.5.2 Each
final region (leaf of the tree) is assigned to a value, which is an estimate of the response y in the
region for the regression task or the predicted class label in the case of classification problem.3 In
this way, a decision tree h can be written as

h(x) =

J
∑

j=1

bj✶{x∈Rj}, (3)

where Rj are the disjoint regions corresponding to the leaves of the tree.

3 Categorical features

3.1 Related work on categorical features

A categorical feature is one with a discrete set of values called categories that are not comparable to
each other. One popular technique for dealing with categorical features in boosted trees is one-hot
encoding [7, 25], i.e., for each category, adding a new binary feature indicating it. However, in the
case of high cardinality features (like, e.g., “user ID” feature), such technique leads to infeasibly
large number of new features. To address this issue, one can group categories into a limited number
of clusters and then apply one-hot encoding. A popular method is to group categories by target
statistics (TS) that estimate expected target value in each category. Micci-Barreca [25] proposed
to consider TS as a new numerical feature instead. Importantly, among all possible partitions of

2Alternatively, non-binary splits can be used, e.g., a region can be split according to all values of a categorical
feature. However, such splits, compared to binary ones, would lead to either shallow trees (unable to capture
complex dependencies) or to very complex trees with exponential number of terminal nodes (having weaker
target statistics in each of them). According to [4], the tree complexity has a crucial effect on the accuracy of the
model and less complex trees are less prone to overfitting.

3In a regression task, splitting attributes and leaf values are usually chosen by the least–squares criterion.
Note that, in gradient boosting, a tree is constructed to approximate the negative gradient (see Equation (2)), so
it solves a regression problem.
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categories into two sets, an optimal split on the training data in terms of logloss, Gini index, MSE
can be found among thresholds for the numerical TS feature [4, Section 4.2.2] [11, Section 9.2.4].
In LightGBM [20], categorical features are converted to gradient statistics at each step of gradient
boosting. Though providing important information for building a tree, this approach can dramatically
increase (i) computation time, since it calculates statistics for each categorical value at each step, and
(ii) memory consumption to store which category belongs to which node for each split based on a
categorical feature. To overcome this issue, LightGBM groups tail categories into one cluster [21] and
thus looses part of information. Besides, the authors claim that it is still better to convert categorical
features with high cardinality to numerical features [19]. Note that TS features require calculating
and storing only one number per one category.

Thus, using TS as new numerical features seems to be the most efficient method of handling
categorical features with minimum information loss. TS are widely-used, e.g., in the click prediction
task (click-through rates) [1, 15, 18, 22], where such categorical features as user, region, ad, publisher
play a crucial role. We further focus on ways to calculate TS and leave one-hot encoding and gradient
statistics out of the scope of the current paper. At the same time, we believe that the ordering principle
proposed in this paper is also effective for gradient statistics.

3.2 Target statistics

As discussed in Section 3.1, an effective and efficient way to deal with a categorical feature i is
to substitute the category xi

k of k-th training example with one numeric feature equal to some

target statistic (TS) x̂i
k. Commonly, it estimates the expected target y conditioned by the category:

x̂i
k ≈ E(y | xi = xi

k).

Greedy TS A straightforward approach is to estimate E(y | xi = xi
k) as the average value of y

over the training examples with the same category xi
k [25]. This estimate is noisy for low-frequency

categories, and one usually smoothes it by some prior p:

x̂i
k =

∑n
j=1 ✶{xi

j
=xi

k
} · yj + a p

∑n
j=1 ✶{xi

j
=xi

k
} + a

, (4)

where a > 0 is a parameter. A common setting for p is the average target value in the dataset [25].

The problem of such greedy approach is target leakage: feature x̂i
k is computed using yk, the target of

xk. This leads to a conditional shift [30]: the distribution of x̂i|y differs for training and test examples.
The following extreme example illustrates how dramatically this may affect the generalization error
of the learned model. Assume i-th feature is categorical, all its values are unique, and for each
category A, we have P(y = 1 | xi = A) = 0.5 for a classification task. Then, in the training dataset,

x̂i
k = yk+ap

1+a
, so it is sufficient to make only one split with threshold t = 0.5+ap

1+a
to perfectly classify

all training examples. However, for all test examples, the value of the greedy TS is p, and the obtained
model predicts 0 for all of them if p < t and predicts 1 otherwise, thus having accuracy 0.5 in both
cases. To this end, we formulate the following desired property for TS:

P1 E(x̂i | y = v) = E(x̂i
k | yk = v), where (xk, yk) is the k-th training example.

In our example above, E(x̂i
k | yk) =

yk+ap
1+a

and E(x̂i | y) = p are different.

There are several ways to avoid this conditional shift. Their general idea is to compute the TS for xk

on a subset of examples Dk ⊂ D \ {xk} excluding xk:

x̂i
k =

∑

xj∈Dk
✶{xi

j
=xi

k
} · yj + a p

∑

xj∈Dk
✶{xi

j
=xi

k
} + a

. (5)

Holdout TS One way is to partition the training dataset into two parts D = D̂0 ⊔ D̂1 and use

Dk = D̂0 for calculating the TS according to (5) and D̂1 for training (e.g., applied in [8] for Criteo
dataset). Though such holdout TS satisfies P1, this approach significantly reduces the amount of data
used both for training the model and calculating the TS. So, it violates the following desired property:

P2 Effective usage of all training data for calculating TS features and for learning a model.
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Leave-one-out TS At first glance, a leave-one-out technique might work well: take Dk = D \ xk

for training examples xk and Dk = D for test ones [31]. Surprisingly, it does not prevent target
leakage. Indeed, consider a constant categorical feature: xi

k = A for all examples. Let n+ be the

number of examples with y = 1, then x̂i
k = n+−yk+a p

n−1+a
and one can perfectly classify the training

dataset by making a split with threshold t = n+−0.5+a p
n−1+a

.

Ordered TS CatBoost uses a more effective strategy. It relies on the ordering principle, the
central idea of the paper, and is inspired by online learning algorithms which get training examples
sequentially in time [1, 15, 18, 22]). Clearly, the values of TS for each example rely only on the
observed history. To adapt this idea to standard offline setting, we introduce an artificial “time”, i.e.,
a random permutation σ of the training examples. Then, for each example, we use all the available
“history” to compute its TS, i.e., take Dk = {xj : σ(j) < σ(k)} in Equation (5) for a training
example and Dk = D for a test one. The obtained ordered TS satisfies the requirement P1 and allows
to use all training data for learning the model (P2). Note that, if we use only one random permutation,
then preceding examples have TS with much higher variance than subsequent ones. To this end,
CatBoost uses different permutations for different steps of gradient boosting, see details in Section 5.

4 Prediction shift and ordered boosting

4.1 Prediction shift

In this section, we reveal the problem of prediction shift in gradient boosting, which was neither
recognized nor previously addressed. Like in case of TS, prediction shift is caused by a special kind
of target leakage. Our solution is called ordered boosting and resembles the ordered TS method.

Let us go back to the gradient boosting procedure described in Section 2. In practice, the expectation
in (2) is unknown and is usually approximated using the same dataset D:

ht = argmin
h∈H

1

n

n
∑

k=1

(

−gt(xk, yk)− h(xk)
)2

. (6)

Now we describe and analyze the following chain of shifts:

1. the conditional distribution of the gradient gt(xk, yk) | xk (accounting for randomness of
D \ {xk}) is shifted from that distribution on a test example gt(x, y) | x;

2. in turn, base predictor ht defined by Equation (6) is biased from the solution of Equation (2);
3. this, finally, affects the generalization ability of the trained model F t.

As in the case of TS, these problems are caused by the target leakage. Indeed, gradients used at each
step are estimated using the target values of the same data points the current model F t−1 was built on.
However, the conditional distribution F t−1(xk) | xk for a training example xk is shifted, in general,
from the distribution F t−1(x) | x for a test example x. We call this a prediction shift.

Related work on prediction shift The shift of gradient conditional distribution gt(xk, yk) | xk

was previously mentioned in papers on boosting [3, 13] but was not formally defined. Moreover, even
the existence of non-zero shift was not proved theoretically. Based on the out-of-bag estimation [2],
Breiman proposed iterated bagging [3] which constructs a bagged weak learner at each iteration
on the basis of “out-of-bag” residual estimates. However, as we formally show in Section E of
the supplementary material, such residual estimates are still shifted. Besides, the bagging scheme
increases learning time by factor of the number of data buckets. Subsampling of the dataset at each
iteration proposed by Friedman [13] addresses the problem much more heuristically and also only
alleviates it.

Analysis of prediction shift We formally analyze the problem of prediction shift in a simple case
of a regression task with the quadratic loss function L(y, ŷ) = (y − ŷ)2.4 In this case, the negative
gradient −gt(xk, yk) in Equation (6) can be substituted by the residual function rt−1(xk, yk) :=
yk − F t−1(xk).

5 Assume we have m = 2 features x1, x2 that are i.i.d. Bernoulli random variables

4We restrict the rest of Section 4 to this case, but the approaches of Section 4.2 are applicable to other tasks.
5Here we removed the multiplier 2, what does not matter for further analysis.
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with p = 1/2 and y = f∗(x) = c1x
1 + c2x

2. Assume we make N = 2 steps of gradient boosting
with decision stumps (trees of depth 1) and step size α = 1. We obtain a model F = F 2 = h1 + h2.
W.l.o.g., we assume that h1 is based on x1 and h2 is based on x2, what is typical for |c1| > |c2| (here
we set some asymmetry between x1 and x2).

Theorem 1 1. If two independent samples D1 and D2 of size n are used to estimate h1 and h2,
respectively, using Equation (6), then ED1,D2

F 2(x) = f∗(x) +O(1/2n) for any x ∈ {0, 1}2.

2. If the same dataset D = D1 = D2 is used in Equation (6) for both h1 and h2, then EDF
2(x) =

f∗(x)− 1
n−1c2(x

2 − 1
2 ) +O(1/2n).

This theorem means that the trained model is an unbiased estimate of the true dependence y = f∗(x),
when we use independent datasets at each gradient step.6 On the other hand, if we use the same
dataset at each step, we suffer from a bias − 1

n−1c2(x
2 − 1

2 ), which is inversely proportional to

the data size n. Also, the value of the bias can depend on the relation f∗: in our example, it is
proportional to c2. We track the chain of shifts for the second part of Theorem 1 in a sketch of the
proof below, while the full proof of Theorem 1 is available in the supplementary material (Section A).

Sketch of the proof . Denote by ξst, s, t ∈ {0, 1}, the number of examples (xk, yk) ∈ D with

xk = (s, t). We have h1(s, t) = c1s+
c2ξs1

ξs0+ξs1
. Its expectation E(h1(x)) on a test example x equals

c1x
1 + c2

2 . At the same time, the expectation E(h1(xk)) on a training example xk is different and

equals (c1x
1 + c2

2 ) − c2(
2x2−1

n
) + O(2−n). That is, we experience a prediction shift of h1. As a

consequence, the expected value of h2(x) is E(h2(x)) = c2(x
2 − 1

2 )(1−
1

n−1 ) +O(2−n) on a test

example x and E(h1(x) + h2(x)) = f∗(x)− 1
n−1c2(x

2 − 1
2 ) +O(1/2n). �

Finally, recall that greedy TS x̂i can be considered as a simple statistical model predicting the target
y and it suffers from a similar problem, conditional shift of x̂i

k | yk, caused by the target leakage, i.e.,

using yk to compute x̂i
k.

4.2 Ordered boosting

Here we propose a boosting algorithm which does not suffer from the prediction shift problem
described in Section 4.1. Assuming access to an unlimited amount of training data, we can easily
construct such an algorithm. At each step of boosting, we sample a new dataset Dt independently
and obtain unshifted residuals by applying the current model to new training examples. In practice,
however, labeled data is limited. Assume that we learn a model with I trees. To make the residual
rI−1(xk, yk) unshifted, we need to have F I−1 trained without the example xk. Since we need
unbiased residuals for all training examples, no examples may be used for training F I−1, which at
first glance makes the training process impossible. However, it is possible to maintain a set of models
differing by examples used for their training. Then, for calculating the residual on an example, we use
a model trained without it. In order to construct such a set of models, we can use the ordering principle
previously applied to TS in Section 3.2. To illustrate the idea, assume that we take one random
permutation σ of the training examples and maintain n different supporting models M1, . . . ,Mn

such that the model Mi is learned using only the first i examples in the permutation. At each step, in
order to obtain the residual for j-th sample, we use the model Mj−1 (see Figure 1). The resulting
Algorithm 1 is called ordered boosting below. Unfortunately, this algorithm is not feasible in most
practical tasks due to the need of training n different models, what increase the complexity and
memory requirements by n times. In CatBoost, we implemented a modification of this algorithm on
the basis of the gradient boosting algorithm with decision trees as base predictors (GBDT) described
in Section 5.

Ordered boosting with categorical features In Sections 3.2 and 4.2 we proposed to use random
permutations σcat and σboost of training examples for the TS calculation and for ordered boosting,
respectively. Combining them in one algorithm, we should take σcat = σboost to avoid prediction
shift. This guarantees that target yi is not used for training Mi (neither for the TS calculation, nor
for the gradient estimation). See Section F of the supplementary material for theoretical guarantees.
Empirical results confirming the importance of having σcat = σboost are presented in Section G of
the supplementary material.

6Up to an exponentially small term, which occurs for a technical reason.
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5 Practical implementation of ordered boosting

CatBoost has two boosting modes, Ordered and Plain. The latter mode is the standard GBDT
algorithm with inbuilt ordered TS. The former mode presents an efficient modification of Algorithm 1.
A formal description of the algorithm is included in Section B of the supplementary material. In this
section, we overview the most important implementation details.

1 2 3 654 7

𝑀5𝑡−1

𝑀6𝑡−1

𝑟𝑡 𝐱7, 𝑦7 = 𝑦7 −𝑀6𝑡−1(𝐱7)
8 9

Figure 1: Ordered boosting principle,
examples are ordered according to σ.

Algorithm 1: Ordered boosting

input : {(xk, yk)}
n
k=1, I;

σ ← random permutation of [1, n] ;
Mi ← 0 for i = 1..n;
for t← 1 to I do

for i← 1 to n do
ri ← yi −Mσ(i)−1(xi);

for i← 1 to n do
∆M ←
LearnModel((xj , rj) :
σ(j) ≤ i);
Mi ←Mi +∆M ;

return Mn

Algorithm 2: Building a tree in CatBoost

input : M , {(xi, yi)}
n
i=1, α, L, {σi}

s
i=1, Mode

grad← CalcGradient(L,M, y);
r ← random(1, s);
if Mode = Plain then

G← (gradr(i) for i = 1..n);

if Mode = Ordered then
G← (gradr,σr(i)−1(i) for i = 1..n);

T ← empty tree;
foreach step of top-down procedure do

foreach candidate split c do
Tc ← add split c to T ;
if Mode = Plain then

∆(i)← avg(gradr(p) for
p : leafr(p) = leafr(i)) for i = 1..n;

if Mode = Ordered then
∆(i)← avg(gradr,σr(i)−1(p) for

p : leafr(p) = leafr(i), σr(p) < σr(i))
for i = 1..n;

loss(Tc)← cos(∆, G)

T ← argminTc
(loss(Tc))

if Mode = Plain then
Mr′(i)←Mr′(i)− α avg(gradr′(p) for
p : leafr′(p) = leafr′(i)) for r′ = 1..s, i = 1..n;

if Mode = Ordered then
Mr′,j(i)←Mr′,j(i)− α avg(gradr′,j(p) for
p : leafr′(p) = leafr′(i), σr′(p) ≤ j) for r′ = 1..s,
i = 1..n, j ≥ σr′(i)− 1;

return T,M

At the start, CatBoost generates s+ 1 independent random permutations of the training dataset. The
permutations σ1, . . . , σs are used for evaluation of splits that define tree structures (i.e., the internal
nodes), while σ0 serves for choosing the leaf values bj of the obtained trees (see Equation (3)). For
examples with short history in a given permutation, both TS and predictions used by ordered boosting
(Mσ(i)−1(xi) in Algorithm 1) have a high variance. Therefore, using only one permutation may
increase the variance of the final model predictions, while several permutations allow us to reduce
this effect in a way we further describe. The advantage of several permutations is confirmed by our
experiments in Section 6.

Building a tree In CatBoost, base predictors are oblivious decision trees [9, 14] also called decision
tables [23]. Term oblivious means that the same splitting criterion is used across an entire level of the
tree. Such trees are balanced, less prone to overfitting, and allow speeding up execution at testing
time significantly. The procedure of building a tree in CatBoost is described in Algorithm 2.

In the Ordered boosting mode, during the learning process, we maintain the supporting models Mr,j ,
where Mr,j(i) is the current prediction for the i-th example based on the first j examples in the
permutation σr. At each iteration t of the algorithm, we sample a random permutation σr from
{σ1, . . . , σs} and construct a tree Tt on the basis of it. First, for categorical features, all TS are
computed according to this permutation. Second, the permutation affects the tree learning procedure.
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Table 1: Computational complexity.

Procedure CalcGradient Build T Calc all btj Update M Calc ordered TS

Complexity for iteration t O(s · n) O(|C| · n) O(n) O(s · n) O(NTS,t · n)

Namely, based on Mr,j(i), we compute the corresponding gradients gradr,j(i) =
∂L(yi,s)

∂s

∣

∣

s=Mr,j(i)
.

Then, while constructing a tree, we approximate the gradient G in terms of the cosine similarity
cos(·, ·), where, for each example i, we take the gradient gradr,σ(i)−1(i) (it is based only on the

previous examples in σr). At the candidate splits evaluation step, the leaf value ∆(i) for example i is
obtained individually by averaging the gradients gradr,σr(i)−1 of the preceding examples p lying

in the same leaf leafr(i) the example i belongs to. Note that leafr(i) depends on the chosen
permutation σr, because σr can influence the values of ordered TS for example i. When the tree
structure Tt (i.e., the sequence of splitting attributes) is built, we use it to boost all the models Mr′,j .
Let us stress that one common tree structure Tt is used for all the models, but this tree is added to
different Mr′,j with different sets of leaf values depending on r′ and j, as described in Algorithm 2.

The Plain boosting mode works similarly to a standard GBDT procedure, but, if categorical features
are present, it maintains s supporting models Mr corresponding to TS based on σ1, . . . , σs.

Choosing leaf values Given all the trees constructed, the leaf values of the final model F are
calculated by the standard gradient boosting procedure equally for both modes. Training examples i
are matched to leaves leaf0(i), i.e., we use permutation σ0 to calculate TS here. When the final
model F is applied to a new example at testing time, we use TS calculated on the whole training data
according to Section 3.2.

Complexity In our practical implementation, we use one important trick, which significantly
reduces the computational complexity of the algorithm. Namely, in the Ordered mode, instead
of O(s n2) values Mr,j(i), we store and update only the values M ′

r,j(i) := Mr,2j (i) for j =

1, . . . , ⌈log2 n⌉ and all i with σr(i) ≤ 2j+1, what reduces the number of maintained supporting
predictions to O(s n). See Section B of the supplementary material for the pseudocode of this
modification of Algorithm 2.

In Table 1, we present the computational complexity of different components of both CatBoost modes
per one iteration (see Section C.1 of the supplementary material for the proof). Here NTS,t is the
number of TS to be calculated at the iteration t and C is the set of candidate splits to be considered at
the given iteration. It follows that our implementation of ordered boosting with decision trees has
the same asymptotic complexity as the standard GBDT with ordered TS. In comparison with other
types of TS (Section 3.2), ordered TS slow down by s times the procedures CalcGradient, updating
supporting models M , and computation of TS.

Feature combinations Another important detail of CatBoost is using combinations of categorical
features as additional categorical features which capture high-order dependencies like joint informa-
tion of user ID and ad topic in the task of ad click prediction. The number of possible combinations
grows exponentially with the number of categorical features in the dataset, and it is infeasible to
process all of them. CatBoost constructs combinations in a greedy way. Namely, for each split of a
tree, CatBoost combines (concatenates) all categorical features (and their combinations) already used
for previous splits in the current tree with all categorical features in the dataset. Combinations are
converted to TS on the fly.

Other important details Finally, let us discuss two options of the CatBoost algorithm not covered
above. The first one is subsampling of the dataset at each iteration of boosting procedure, as proposed
by Friedman [13]. We claimed earlier in Section 4.1 that this approach alone cannot fully avoid
the problem of prediction shift. However, since it has proved effective, we implemented it in both
modes of CatBoost as a Bayesian bootstrap procedure. Specifically, before training a tree according
to Algorithm 2, we assign a weight wi = ati to each example i, where ati are generated according
to the Bayesian bootstrap procedure (see [28, Section 2]). These weights are used as multipliers for
gradients gradr(i) and gradr,j(i), when we calculate ∆(i) and the components of the vector ∆−G
to define loss(Tc).
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The second option deals with first several examples in a permutation. For examples i with small
values σr(i), the variance of gradr,σr(i)−1(i) can be high. Therefore, we discard ∆(i) from the

beginning of the permutation, when we calculate loss(Tc) in Algorithm 2. Particularly, we eliminate
the corresponding components of vectors G and ∆ when calculating the cosine similarity between
them.

6 Experiments

Comparison with baselines We compare our algorithm with the most popular open-source li-
braries — XGBoost and LightGBM — on several well-known machine learning tasks. The detailed
description of the experimental setup together with dataset descriptions is available in the supple-
mentary material (Section D). The source code of the experiment is available, and the results can
be reproduced.7 For all learning algorithms, we preprocess categorical features using the ordered
TS method described in Section 3.2. The parameter tuning and training were performed on 4/5
of the data and the testing was performed on the remaining 1/5.8 The results measured by logloss
and zero-one loss are presented in Table 2 (the absolute values for the baselines can be found in
Section G of the supplementary material). For CatBoost, we used Ordered boosting mode in this
experiment.9 One can see that CatBoost outperforms other algorithms on all the considered datasets.
We also measured statistical significance of improvements presented in Table 2: except three datasets
(Appetency, Churn and Upselling) the improvements are statistically significant with p-value≪ 0.01
measured by the paired one-tailed t-test.

To demonstrate that our implementation of plain boosting is an appropriate baseline for our research,
we show that a raw setting of CatBoost provides state-of-the-art quality. Particularly, we take a
setting of CatBoost, which is close to classical GBDT [12], and compare it with the baseline boosting
implementations in Section G of the supplementary material. Experiments show that this raw setting
differs from the baselines insignificantly.

Table 2: Comparison with baselines: logloss /
zero-one loss (relative increase for baselines).

CatBoost LightGBM XGBoost

Adult 0.270 / 0.127 +2.4% / +1.9% +2.2% / +1.0%

Amazon 0.139 / 0.044 +17% / +21% +17% / +21%

Click 0.392 / 0.156 +1.2% / +1.2% +1.2% / +1.2%

Epsilon 0.265 / 0.109 +1.5% / +4.1% +11% / +12%

Appetency 0.072 / 0.018 +0.4% / +0.2% +0.4% / +0.7%

Churn 0.232 / 0.072 +0.1% / +0.6% +0.5% / +1.6%

Internet 0.209 / 0.094 +6.8% / +8.6% +7.9% / +8.0%

Upselling 0.166 / 0.049 +0.3% / +0.1% +0.04% / +0.3%

Kick 0.286 / 0.095 +3.5% / +4.4% +3.2% / +4.1%

Table 3: Plain boosting mode: logloss, zero-
one loss and their change relative to Ordered
boosting mode.

Logloss Zero-one loss

Adult 0.272 (+1.1%) 0.127 (-0.1%)

Amazon 0.139 (-0.6%) 0.044 (-1.5%)

Click 0.392 (-0.05%) 0.156 (+0.19%)

Epsilon 0.266 (+0.6%) 0.110 (+0.9%)

Appetency 0.072 (+0.5%) 0.018 (+1.5%)

Churn 0.232 (-0.06%) 0.072 (-0.17%)

Internet 0.217 (+3.9%) 0.099 (+5.4%)

Upselling 0.166 (+0.1%) 0.049 (+0.4%)

Kick 0.285 (-0.2%) 0.095 (-0.1%)

We also empirically analyzed the running times of the algorithms on Epsilon dataset. The details
of the comparison can be found in the supplementary material (Section C.2). To summarize, we
obtained that CatBoost Plain and LightGBM are the fastest ones followed by Ordered mode, which is
about 1.7 times slower.

Ordered and Plain modes In this section, we compare two essential boosting modes of CatBoost:
Plain and Ordered. First, we compared their performance on all the considered datasets, the results
are presented in Table 3. It can be clearly seen that Ordered mode is particularly useful on small
datasets. Indeed, the largest benefit from Ordered is observed on Adult and Internet datasets, which
are relatively small (less than 40K training examples), which supports our hypothesis that a higher
bias negatively affects the performance. Indeed, according to Theorem 1 and our reasoning in
Section 4.1, bias is expected to be larger for smaller datasets (however, it can also depend on other
properties of the dataset, e.g., on the dependency between features and target). In order to further

7https://github.com/catboost/benchmarks/tree/master/quality_benchmarks
8For Epsilon, we use default parameters instead of parameter tuning due to large running time for all

algorithms. We tune only the number of trees to avoid overfitting.
9The numbers for CatBoost in Table 2 may slightly differ from the corresponding numbers in our GitHub

repository, since we use another version of CatBoost with all the discussed features implemented.
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validate this hypothesis, we make the following experiment: we train CatBoost in Ordered and Plain
modes on randomly filtered datasets and compare the obtained losses, see Figure 2. As we expected,
for smaller datasets the relative performance of Plain mode becomes worse. To save space, here we
present the results only for logloss; the figure for zero-one loss is similar.

We also compare Ordered and Plain modes in the above-mentioned raw setting of CatBoost in
Section G of the supplementary material and conclude that the advantage of Ordered mode is not
caused by interaction with specific CatBoost options.

Table 4: Comparison of target statistics, relative
change in logloss / zero-one loss compared to or-
dered TS.

Greedy Holdout Leave-one-out

Adult +1.1% / +0.8% +2.1% / +2.0% +5.5% / +3.7%

Amazon +40% / +32% +8.3% / +8.3% +4.5% / +5.6%

Click +13% / +6.7% +1.5% / +0.5% +2.7% / +0.9%

Appetency +24% / +0.7% +1.6% / -0.5% +8.5% / +0.7%

Churn +12% / +2.1% +0.9% / +1.3% +1.6% / +1.8%

Internet +33% / +22% +2.6% / +1.8% +27% / +19%

Upselling +57% / +50% +1.6% / +0.9% +3.9% / +2.9%

Kick +22% / +28% +1.3% / +0.32% +3.7% / +3.3%
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Figure 2: Relative error of Plain boosting mode
compared to Ordered boosting mode depending
on the fraction of the dataset.

Analysis of target statistics We compare different TSs introduced in Section 3.2 as options of
CatBoost in Ordered boosting mode keeping all other algorithmic details the same; the results can
be found in Table 4. Here, to save space, we present only relative increase in loss functions for
each algorithm compared to CatBoost with ordered TS. Note that the ordered TS used in CatBoost
significantly outperform all other approaches. Also, among the baselines, the holdout TS is the best
for most of the datasets since it does not suffer from conditional shift discussed in Section 3.2 (P1);
still, it is worse than CatBoost due to less effective usage of training data (P2). Leave-one-out is
usually better than the greedy TS, but it can be much worse on some datasets, e.g., on Adult. The
reason is that the greedy TS suffer from low-frequency categories, while the leave-one-out TS suffer
also from high-frequency ones, and on Adult all the features have high frequency.

Finally, let us note that in Table 4 we combine Ordered mode of CatBoost with different TSs. To
generalize these results, we also made a similar experiment by combining different TS with Plain
mode, used in standard gradient boosting. The obtained results and conclusions turned out to be very
similar to the ones discussed above.

Feature combinations The effect of feature combinations discussed in Section 5 is demonstrated
in Figure 1 of the supplementary material. In average, changing the number cmax of features allowed
to be combined from 1 to 2 provides an outstanding improvement of logloss by 1.86% (reaching
11.3%), changing from 1 to 3 yields 2.04%, and further increase of cmax does not influence the
performance significantly.

Number of permutations The effect of the number s of permutations on the performance of
CatBoost is presented in Figure 2 of the supplementary material. In average, increasing s slightly
decreases logloss, e.g., by 0.19% for s = 3 and by 0.38% for s = 9 compared to s = 1.

7 Conclusion

In this paper, we identify and analyze the problem of prediction shifts present in all existing imple-
mentations of gradient boosting. We propose a general solution, ordered boosting with ordered TS,
which solves the problem. This idea is implemented in CatBoost, which is a new gradient boosting
library. Empirical results demonstrate that CatBoost outperforms leading GBDT packages and leads
to new state-of-the-art results on common benchmarks.
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