
CATCH: A Mechanism for Dynamically Detecting Cache-Content-Duplication
and its Application to Instruction Caches

Marios Kleanthous and Yiannakis Sazeides
Department of Computer Science, University of Cyprus

Abstract

Cache-Content-Duplication (CCD) occurs when there is
a miss for a block in a cache and the entire content of
the missed block is already in the cache in a block with
a different tag. Caches aware of content-duplication can
have lower miss rates by allowing only blocks with unique
content to enter a cache. This work examines the poten-
tial of CCD for instruction caches. We show that CCD is
a frequent phenomenon and that an idealized duplication-
detection mechanism for instruction caches has the poten-
tial to increase performance of an out-of-order processor,
with a 2-way eight instruction per block 16KB instruction
cache, often by more than 5% and up to 20%. This work
also proposes CATCH, a hardware based mechanism for
dynamically detecting CCD. Experimental results for an
out-of-order processor show that a CATCH with a 2.32KB
cost usually captures 60% or more of the CCD’s idealized
potential.

1 Introduction

The importance of caches and memory hierarchy has in-
creased over time due to the growing gap between processor
and memory performance [12]. Caches, consequently, have
been central to numerous research studies. Several tech-
niques have been proposed to improve various aspects of
caches by reducing their miss rates, size, latency and en-
ergy. Most of these techniques attempt to exploit different
types of properties of memory addresses and data.
This work identifies a new cache property that may in-

fluence cache performance: the Cache-Content-Duplication
(CCD). This phenomenon occurs when there is a miss for
a block in a cache and the content of the missed block re-
sides already in the cache in another block with a different
tag. For example, Fig. 1.a shows an instruction cache where
each block is identified by its tag and Fig. 1.b shows an in-
struction cache which is aware of the block content. This
example shows that two different blocks, with tags 103 and
115, have identical content. If block 115 is evicted and later

109

103

148

115

Tag Content

109 r1=0+1, r2=r2+r3, if(r2)targ1

103 r3=82(r5), r4=0+r1, r3=r4+4

148 r6=0+r1, r1=r4+r2, if(!r1)targ2

115 r3=82(r5), r4=0+r1, r3=r4+4

Tag Content
without CCD with CCD

a b

Cache
Content

Duplication

Figure 1. Cache Content Duplication
we have a miss on it, the content of 103 can be used without
accessing a lower level of the memory hierarchy.
What mainly distinguishes CCD from previous work is

that it exploits cache content redundancy at the granularity
of cache blocks instead of considering the compression of
patterns in the cache content or the elimination of redundant
memory content irrespective of its cache placement. An ex-
ample of CCD based optimization is the Unique-Content-
Cache (UCC) that can lower the miss ratio by allowing only
blocks with unique content to enter the cache.
As a first step toward understanding and exploiting CCD

this work is focused on the content duplication in instruction
caches. CCD in instruction caches exists because: (a) high
level language programs often contain identical instruction
sequences [9] in different segments of a program due to:
copy-paste programming practices and reuse of standard li-
braries and loops in different parts of code, (b) conventions,
such as for calls and returns, produce similar sequences,
(c) compiler transformations, such as compiler inlining and
macro expansion, lead to duplicated code sequences.
The main contributions of this work are, the phenomenon

of Cache-Content-Duplication, Unique-Content-Cache a
new cache type that exploits CCD, CATCH a hardware
mechanism that can dynamically detect CCD, an investiga-
tion of its performance for a UCC cache, and several opti-
mizations to increase the CATCH’s cost-efficiency.
In Section 2, previous work is discussed. Section 3, dis-

cusses CCD detection. Section 4 presents the simulation en-
vironment. In Section 5, CATCH is introduced and different
optimizations to improve its cost-efficiency are discussed.
Section 6 evaluates the performance of CATCH. Section 7
provides conclusions and directions for future work.

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



2 Related work

The redundancy of the memory and cache content has
been the subject of several previous papers. The main objec-
tives were to increase the effective memory/cache capacity
and to achieve higher bandwidth during information trans-
ferring between different levels of the memory hierarchy.
A scheme for main memory on-line compression was

first proposed by Douglis [7]. The compression cache pro-
posed allows both software and hardware based compres-
sion using different compression algorithms. Lefurgy et
al. [10] explored the idea of keeping compressed code in
instruction memories of embedded processors. Based on
static analysis, common sequences of instructions are as-
signed unique codes. These codes are stored in instruction
memory and are expanded to their original form after be-
ing read. The high redundancy of a subset of values in data
caches was identified in [13]. A frequent-value cache was
proposed to hold the frequent values in compressed form.
Very relevant to our work is [11] that introduces the no-

tion of address correlation: two different addresses are cor-
related when at the same time they contain the same value.
Nonetheless, our work is distinct because: (a) we consider
the duplication of instruction blocks whereas in [11] the fo-
cus is individual data values, and (b) we propose a hardware
mechanism for detecting and exploiting CCD.
CCDwork can also borrowmany concepts from research

in the area of code compaction [2, 5, 6]. The main cost of
code compaction is runtime overhead due to the extra in-
structions executed to steer the control flow to/from unique
copies of repeated sequences and to transform dissimilar se-
quences to similar. This overhead, however, can be offset by
a possible reduction in instruction cache misses. Both code
compaction and CCD aim to detect and exploit redundancy
in code. However, compaction methods are compiler based
whereas the method considered here is dynamic hardware
based. Code compaction typically reduces code size and
cache misses, at the expense of increasing the dynamic in-
struction count. CCD, on the other hand, aims to reduce
execution time using extra hardware, instead of extra in-
structions, to minimize/eliminate the penalty for misses on
duplicated sequences. Furthermore, CCD may be the only
way to exploit duplication in legacy code where there is no
opportunity for re-optimization.
Previous work considered either the compression and

compaction of arbitrary length sequences of data or in-
structions, or the compression at the granularity of indi-
vidual instructions or values. Approaching redundancy in
terms of cache blocks enables new memory hierarchy opti-
mizations but requires mechanisms for detecting block level
redundancy. The organization and performance of these
novel memory optimizations and of the duplication detec-
tion mechanisms are the main issues examined in this work.

3 Cache-Content-Duplication

3.1 What is the cache content considered
for duplication

One important parameter than can influence the fre-
quency of CCD is the cache content that is considered for
duplication. By CCD’s definition this is an entire cache
block. It is expected that CCD will occur more likely be-
tween blocks that have fewer instructions (smaller cache
blocks) and are basic block aligned. Smaller sequences
are more likely to match, and sequences aligned at basic
block boundaries are more likely to be identical. To clarify,
consider two basic blocks that are identical. In an instruc-
tion cache, the duplication may not be detected because the
blocks that contain them are not aligned, and/or because the
instruction cache block may contain other instructions, in
addition to the duplicated basic block, that are different.
A way to increase the frequency of CCD for instruction

caches is to consider the duplication between valid instruc-
tions sent down the pipeline on an instruction cache ac-
cess, instead of entire instruction cache blocks. In [4] a
valid block is defined as the static consecutive instruction
sequence starting from the current PC until: (a) the first
predicted-taken conditional branch, or (b) the first uncondi-
tional branch, or (c) a number of instructions equal to fetch
bandwidth are read from the cache. A valid block is identi-
fied by the starting PC and a bit mask that can be produced
at each cycle using the BTB and the direction predictor [4].
This mask indicates the location of the first taken branch in
a sequential instruction sequence. Valid blocks have proper-
ties that make them more amenable to CCD. They are usu-
ally basic block aligned and their size roughly corresponds
to a basic block.

3.2 When to learn the cache content

To detect duplication between valid blocks, it is neces-
sary to know the content of blocks already in the cache.
This way, when a block misses the cache, it can be detected
whether or not its content is duplicate with a block already
in the cache.
The content of a valid block can be learned by remem-

bering its content when it is inserted in the cache. This is re-
ferred to as learn-on-miss learn policy. However, the learn-
on-miss is not sufficient to learn all the relevant content in
a cache because, on a cache miss, an entire cache block is
filled in the cache and the missed valid block covers only a
subsequence of the entire block. Another method is to learn
on a cache miss the missed valid block content and heuris-
tically learn other valid blocks in the missed block. We re-
fer to this policy as learn-all-on-miss. An example heuris-
tic is to build an additional valid block using the remain-
ing instructions in the block after the missed valid block,



benchmark Skip (millions) Simulate (millions)
gcc95 0 177
go95 0 133
perl95 0 40
vortex00 100 100
mesa00 350 100
basicmath 0 100

Table 1. Simulated benchmarks
fetch/issue/commit width 4/4/4
Issue Queue/LSQ/ROB 64/32/64
Stages 14
L1 instruction cache 16KB 2-way 32B/block, 1 cycle
L1 data cache 32KB 2-way 64B/block, 2 cycles
L2 unified cache 2MB 8-way 128B/block, 20 cycles
Main memory latency 200 cycles
Cond. branch predictor 8KB combining predictor
BTB/RAS/Ind. predictor 1024/32/512 entries

Table 2. Processor Configuration
and treat the next conditional branch to be encountered as
taken. Henceforth, unless indicated otherwise, the learn-
all-on-miss policy is used for learning valid blocks.

3.3 Which sequences are duplicated

Two valid blocks are considered duplicates if each in-
struction in a block is bitwise identical in the exact or-
der with its corresponding instruction in the other block.
Nonetheless, the duplication criteria can be relaxed for di-
rect (conditional or unconditional) control transfer instruc-
tions by allowing differences in their immediate offset or
target fields in order to increase duplication frequency. This
technique is known in the area of code compaction as tar-
get abstraction [2]. Section 5 discusses, in detail, how using
a table that stores small target differences between other-
wise identical sequences, facilitates more duplication while
maintaining correctness. We note that other abstraction
transformations, such as register and constant abstraction
[2], can be applied to increase the duplication frequency.
However, in this work we focus mainly on duplication de-
tection. For the experimental results, unless stated other-
wise, it is assumed that CCD employs target abstraction.

4 Experimental Framework

The experiments in this paper were performed using
benchmarks from the SPEC95, SPEC2000 and MiBench1.0
suites with train or reference inputs. All benchmarks are
compiled with gcc 2.7 with -O3 optimizations for the PISA
ISA [3]. We report results for the following six bench-
marks: gcc95, go95, perl95, vortex00, mesa00 and basic-
math. These benchmarks were selected because they have
the largest miss rates for the cache configurations we con-
sidered and, therefore, more likely to benefit from the tech-
niques proposed in this work. Table 1 shows the dynamic
instructions skipped and simulated for these benchmarks.

tag content

Instruction Cache
Hashed Duplicate
Detection Table

BCU

3

HDD
index

in
de

xhash

hash
hash-code

2

if match then check I$
for possible

duplicated block else
create entry in HDD

Missed block
from L2

1

PC content

Miss sequence
selected from

block using mask

==

PChash-code mask

maskPC content

hash

if duplicated
content create

entry in DR else
update entry in

HDD

Duplicate Relation Table

maskmissed
PC

duplicate
PC

Create entry in DR
4

filter mask

filter

Figure 2. Cache miss, DR miss and HDD hit
We assess and compare the performance impact of the

different techniques using a modified sim-out-of-order [3]
simulator with the configuration listed in Table 2. The in-
struction size is 4 bytes and therefore a 32B cache block
contains 8 instructions.

5 Unique-Content-Cache and CATCH

CCD can be used to reduce misses by allowing only
blocks with unique content to enter the cache. We refer
to such cache as the Unique-Content-Cache (UCC). A UCC
can reduce capacity misses because it allows a smaller num-
ber of blocks to enter a cache. A UCC needs to be also
duplicate-aware to detect misses to duplicated blocks.
A hardware implementation of a UCC requires a mech-

anism for detecting and remembering duplicate relations.
Specifically, this mechanism given the starting PC and mask
of a valid block that caused a cache miss, should return
whether there is a duplicate in the cache and also the start-
ing PC of the duplicated block. This section presents a
method for dynamically detecting CCD. We will refer to
this mechanism as CATCH. Recall that valid blocks are
identified with their starting PC and a bit mask provided
by the branch predictor (see Section 3). The microarchi-
tecture of a cache with a CATCH is shown in Fig. 2. It
includes the Duplicate-Relation cache (DR), the Hashed-
Duplicate-Detection cache (HDD) and the Block Compare
Unit (BCU). The functionality of the different components
and their updating policies is the subject of this section.

5.1 Duplicate-Relation cache

The Duplicate-Relation cache (DR) contains
duplication-relations detected by the CATCH. Each
DR entry contains a starting PC and a mask of a missed
valid block and the starting PC of its duplicate valid



block. The use of a PC and a mask is sufficient to prevent
false duplicate relations. Once a duplicated relation is
established it is assumed to be always correct (in the case of
self-modifying code or page remapping the DR may need
to be flushed to ensure correctness).
DR can be either virtually or physically tagged. A virtu-

ally tagged DR can be used in combination with a virtually
tagged cache or by keeping virtual tags in the HDD. A vir-
tually tagged DR in combination with a physically tagged
cache may add an extra penalty for translating the tag using
the Instruction Translation Look-aside buffer (ITLB) each
time we access the cache for a secondary hit (secondary hit
is a cache hit to a duplicate sequence using CATCH). On
the other hand, using a physically tagged DR will eliminate
this overhead but the DR may need to be flushed each time
we have a page remapping. However, page remapping is
a very rare phenomenon. For our experiments, we used a
physically tagged DR with a physically tagged cache.
On a cache miss, the DR is accessed with the starting PC

and mask of a missed block. When there is a DR hit and the
duplicate PC hits in the cache, a secondary-hit occurs. The
content of the duplicate-block will be read and no miss will
be requested from a lower level of the memory hierarchy.

5.2 Hashed-Duplicate-Detection cache

An entry in the DR is created when a block with a cache
miss is fetched from a lower level cache and is found to be
a duplicate with a block already in the cache. Therefore,
the detection of CCD requires a mechanism that given the
content of a block, it provides a starting PC and a mask for
a candidate duplicate-block currently in the cache.
This functionality is provided by the Hashed-Duplicate-

Detection cache (HDD). Each entry in the HDD contains a
hash-code, which encodes the content of a block, and the
corresponding starting PC and mask of the valid block. The
use of a hash-code reduces the cost and complexity of de-
tecting duplication but may lead to unnecessary tests for du-
plication. Nevertheless, we found that a simple folding of
the block content to 16 bits provides very accurate encod-
ings (often 99.9% accurate).
The HDD is indexed using a hash of the content of a

missed block after it is fetched from the lower-level of mem-
ory hierarchy. When a missed block’s hash-code and the
hash-code in a valid HDD entry match, we may have con-
tent duplication. In this case, the cache is accessed using
the starting PC found in the HDD to determine whether the
two valid blocks are indeed duplicates. The test for duplica-
tion is performed by the Block Compare Unit (BCU). If the
BCU indicates that the blocks are duplicates then an entry
is created in the DR. Fig. 2 illustrates the sequence of steps
in the case of a cache miss that has a duplicate in the cache
but not an entry in DR.

5.3 The Block Compare Unit

When two blocks are signaled by the HDD as possible
duplicates, their contents are compared using the Block-
Compare Unit (BCU) to detect whether there is indeed
duplication. The compare function used in the BCU can
be a simple bitwise comparison of the instructions in the
two blocks. BCU optimizations that use more advanced
compare functions to tolerate differences in the targets of
branches are considered and discussed in Section 5.5.

5.4 Allocating and Updating an HDD and
a DR entry

An HDD entry is allocated when a block is both a cache
and an HDD miss. There are two different scenarios for
allocating an HDD entry:
1. Cache miss, DR miss, HDDmiss: The block is fetched
from a lower level of memory hierarchy, its content’s
hash-code is calculated and then HDD is accessed with
this hash-code. On a miss a new HDD entry is created.

2. Cache miss, DR hit, Cache miss, HDD miss: Same
as above except that there is a DR hit that leads to a
cache access and misses because the duplicate block
was evicted. If we miss in the HDD then an entry is
allocated and points to the fetched block in the cache.

There are also two cases for updating an HDD entry and
allocating or updating a DR entry:
1. Cache miss, DR miss, HDD hit: The block is fetched
from a lower level in the memory hierarchy and its
hash-code is calculated. The HDD is accessed with
the hash-code. If we hit in the HDD then the cache
is accessed with the duplicate-PC. The two block con-
tents are compared and if they match, a DR entry is
created with the missed starting PC and mask, and the
duplicate-PC pointed by the HDD. When the content
of the missed block and the one pointed by the HDD
do not match in the BCU, we have a case of a false
hash-code match. This was found to occur very rarely
for hash-codes of 16 bits. When this happens, the HDD
entry will be updated to point to the missed block.

2. Cache miss, DR hit, Cache miss, HDD hit: Same as
above except: (a) there is a DR hit that leads to a cache
access that does not hit and (b) if the HDD points to a
truly duplicate block then the DR entry will be updated
with the duplicate starting PC pointed by the HDD.

5.5 Performance Optimizations

The first optimization is to tolerate simple differences be-
tween blocks by using a more advanced compare function
in the BCU. The keep offset in dr optimization aims to in-
crease content-duplication by masking out, from the com-
pare process in BCU, the offsets and targets of conditional



and unconditional direct branches, and keeping in the DR
the offsets and targets of each duplicate block. This aims
to convert blocks that contain exactly the same computation
into duplicates. This is effectively a hardware implementa-
tion of the target abstraction discussed in Section 3.3.
The second performance optimization is to filter the up-

dates in the HDD and DR tables by avoiding the insertion
of entries that are unlikely to have a significant pay-off. A
successful implementation of updating filtering can be con-
ducive in reducing the table sizes and/or improve their per-
formance. CATCH employs a simple but effective filtering
scheme proposed by Behar et al. [1]. The filtering is accom-
plished by allowing a table to be updated every n attempts.
This policy works because it can prevent rare events from
entering the tables, whereas persistently occurring events
will eventually make it into the table. For an extended dis-
cussion on how this method works we refer the interested
reader to [1]. Based on simulation results, not shown here,
it was found that the best strategy was to filter only the up-
dates of the HDD and the filter value should be four, i.e.
updating the HDD every fourth attempt. Although the DR
is not filtered directly, by updating the HDD less frequently,
the updates to the DR are indirectly reduced.
The significance of the keep offset in dr and the filtering

optimizations is investigated in Section 6.

5.6 Cost Reduction Optimizations

This Section describes several optimizations to reduce
the amount of state required by the HDD and DR caches.
A 2-way, 32B block, 16KB instruction cache with four in-
structions maximum valid block length is assumed.
A DR entry represents logically two full tag-indices. For

the PISA instruction set architecture used in this work [3],
the first tag-index contains 30 bits (28 bits for the starting
PC and 2 bits for the number of instructions in the valid
block) and the second tag-index contains 28 bits for the
starting PC of the duplicate valid block. After some cursory
analysis it was observed that usually the 9 leading bits of the
starting PC of the missed and duplicate valid block are the
same. This reduces the cost of a DR entry by 9 bits if only
the entries that satisfy this criterion are inserted into the ta-
ble. When the keep offset in dr optimization is employed,
the DR should keep a maximum of four direct targets. To
reduce the number of bits required by the offsets and direct
targets, extra insertion criterion can be used. Specifically,
duplicated relations are inserted when all of the following
are true: valid blocks have at most one control flow instruc-
tion and the upper 10 bits of direct targets must be the same
with valid block’s starting address. Note that for the ISA
used in this study target offsets for conditional branches are
16 bits and direct targets are 26 bits. With these criterion in
place, the extra cost of the keep offset in dr optimization is
16 bits for each DR entry, for an offset or a target.

Therefore, for the DR the per-entry cost with cost opti-
mization is (28+19+2-log2(number of sets in DR))+16 bits.
An HDD entry contains a hash-code and the PC and

mask of the duplicate block. A 16-bit hash-code causes
false-hash-matches very rarely. Also, the criterion used in
DR (the 9 most significant bits of the two tag-indices must
be the same) can be used here also. That means we only
keep the 21 least significant bits in the HDD and combine
them with the 9 most significant bits of the missed valid
block to create the index-tag and access the cache.
Therefore, for the HDD the per-entry cost with cost op-

timization is 16 + 19 + 2 - log2(number of sets of the HDD)
bits. In Section 6, we compare the performance with and
without the cost optimizations.

6. Performance evaluation of CATCH

In this Section we evaluate the performance of the
CATCH mechanism to detect CCD. The analysis is focused
on the performance of a 16KB instruction cache that is 2-
way 32B per block, with a single cycle secondary hit la-
tency (secondary hit is a cache hit to a duplicate sequence)
in addition to the L1 hit latency.

6.1 CATCH performance

Fig. 3 shows the performance of CATCH compared
to a limit study (CCD Limit) with oracle CCD detection.
”CATCH Limit” corresponds to a CATCH implementation
with unbounded DR and HDD tables. Analysis, not shown
here, suggests that a 4-way 256 entries DR and a 2-way 128
entries HDD represent a good performing CATCH configu-
ration. This configuration (4.56KB perf optim) can provide
an average IPC improvement of 4% which corresponds to
61% of the performance potential of a UCC with oracle
CCD detection (Fig. 3). Note that this CATCH config-
uration has 4.56KB state cost and employs all the perfor-
mance optimizations but none of the cost optimizations. To
reduce the state cost of CATCH we applied the various cost
optimizations discussed in Section 5.6. This lead to a re-
duction in CATCH cost to 2.32KB but with negligible per-
formance degradation (on the average 1% compared to the
CCD Limit).
Fig. 3 also quantifies the significance of the performance

optimizations, discussed earlier, on the 2.32KB CATCH.
The results show that without filtering the performance is
degraded by 10%, without learning an additional valid block
on a miss the degradation is 19%, and without the target ab-
straction the performance benefits are reduced by 34%.
We would like to note that we have also experimented

with the 2.32KB version of CATCH with all SPEC and
MiBench benchmarks that had minimal cache misses and
established that CATCH did not degrade their performance.



0,99

1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1,09

1,1

1,11

1,12

1,13

1,14

gcc95 go95 perl95 vortex00 mesa00 basicmath average

N
o

rm
a
li

ze
d

 I
P

C

CCD limit

CATCH limit

4.56KB perf_optim

2.32KB CATCH

no_filter

learn_only_on_miss

no_keep_offset

100%

88%

61%
60%

50%

41%

26%

Figure 3. Effects of applying different policies
on CATCH performance

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

gcc95 go95 perl95 vortex00 mesa00 basicmath average

N
o

rm
a
li

ze
d

 I
P

C

2.32KB CATCH victim-8 2.32KB CATCH

Figure 4. CATCH and 8 entry Victim Cache

6.2 CATCH vs Victim cache

An alternative mechanism to reduce cache misses is the
victim cache [8]. Fig. 4 shows the performance improve-
ment of a regular cache using an 8-entry victim cache, the
CATCH with 2.32KB cost, and a combination of the two. In
the combination, the victim cache is accessed first and the
CATCH is used only in case of a victim cache miss.
The data show that in some benchmarks, gcc95, vor-

tex00 and basicmath, CATCH is better than the victim cache
whereas the victim cache is superior for the others. How-
ever, the most important observation is that the performance
gain from the combination of CATCH and victim cache is
additive. This indicates that CATCH captures misses that
are not conflict misses in the same set but across sets.

7 Conclusions and Future Work

This work introduces the notion of CCD and proposes
CATCH, a hardware mechanism for dynamically detect-
ing CCD. The paper evaluates the performance of CATCH
for the UCC cache architecture that exploits CCD. Exper-
imental results for a processor with a 2-way 8-instruction
per block 16KB instruction cache show that a CATCH with

2.32KB cost usually captures 60% or more of the CCD ide-
alized potential. Experimental results comparing CATCH
with victim cache show that CATCH can capture misses
that are not due to conflict misses in the same set. Thus
the performance gain of the two mechanisms is additive.
There are several directions for future work. One is to

investigate other methods to tolerate block differences and
lead to higher CCD frequency. A mechanism for zero cy-
cle secondary hit latency may be also useful to design and
evaluate. Another important direction of research is to con-
sider CCD for data caches and other levels in the memory
hierarchy and for multicores. CCD may also be considered
in combination with static code compaction to investigate
the synergistic potential of the two approaches. CCD must
also be evaluated with other types of workloads, including
database applications. Finally, timing and power complex-
ity issues of CATCH need to be investigated in more detail.

References

[1] M. Behar, A. Mendelson, and A. Kolodny. Trace Cache
Sampling Filter. In PACT, September 2005.

[2] A. Beszedes, R. Ferenc, T. Gyimuthy, A. Dolenc, and
K. Karsisto. Survey of Code-Size Reduction Methods.
ACMCS, 35(3), September 2003.

[3] D. Burger and T. Austin. The SimpleScalar tool set: Ver-
sion 2.0. Technical Report 1342, University of Wisconsin-
Madison, June 1997.

[4] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel.
Optimization of Instruction Fetch Mechanisms for High Is-
sue Rates. In ISCA, June 1995.

[5] K. D. Cooper and N. McIntosh. Enhanced Code Compres-
sion for Embedded RISC Processors. In PLDI, May 1999.

[6] S. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler
Techniques for Code Compaction. ACM TOPLAS, 22(2),
March 2000.

[7] F. Douglis. The Compression Cache: Using On-line Com-
pression to Extend Physical Memory. In USENIX, January
1993.

[8] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In ISCA, June 1990.

[9] R. Komondoor and S. Horwitz. Using Slicing to Identify
Duplication in Source Code. In SAS, July 2001.

[10] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving
Code Density Using Compression Techniques. In MICRO,
December 1997.

[11] R. Sendag, P. Chuang, and D. Lilja. Address Correlation:
Exceeding the Limits of Locality. Computer Architecture
Letters, 2(1), May 2003.

[12] W. A. Wulf and S. A. McKee. Hitting the memory wall:
implications of the obvious. Computer Architecture News,
23(1), March 1995.

[13] Y. Zhang, J. Yang, and R. Gupta. Frequent Value Locality
and Value-Centric Data Cache Design. In ASPLOS, Novem-
ber 2000.


