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Abstract 

A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical 

arms race. This examined differential co-factor dependence, variations relative to dietary 

preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in 

the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor 

Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an 

extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this 

toxin type. Consistent with this, the venoms did not display differences on the plasma of different 

taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme 

negative selection pressure for diversification, this in turn puts a strong negative selection pressure 

upon the toxins as sequence diversification could result in a drift away from the target. Thus this 

study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the 

target is under negative selection pressure for diversification. Consistent with this high level of 

toxin conservation, the antivenom showed extremely high-levels cross-reactivity. There was 

however a strong statistical correlation between relative degree of phospholipid-dependence and 

clotting time, with the least dependent venoms producing faster clotting times than the other 

venoms even in the presence of phospholipid. The results of this study are not only of interest to 

evolutionary and ecological disciplines, but also have implications for clinical toxinology.   

 

Keywords: venom; toxin; adaptive evolution; coagulopathy; disseminated intravascular 

coagulation; antivenom; elapid 

 

Introduction 

Venom is a bioactive secretion produced in specialised cells which is injected into a target animal 

through a wound (Fry et al. 2009a; Fry et al. 2009b). Venom typically consists of a complex 

combination of enzymes, toxic proteins, peptides, organic and inorganic ions and salts (Fry et al. 

2009a; Fry et al. 2009b) and is an evolutionary innovation typically utilised for either a defensive or 

predatory purpose. Once injected, the numerous toxic compounds act to facilitate subjugation of 

prey by disrupting homeostasis through the perturbation of normal action of vital enzymes, 

receptors, and/or ion channels (Calvete et al., 2009).  
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Venomous reptiles evolved within the clade Toxicofera—the common ancestor of the Iguania 

lizards, Anguimorpha lizards, and snakes possessed the substrate from which divergent venom 

systems later evolved (Fry et al., 2006; Fry et al., 2012). Venom has been hypothesised as the key 

initiator behind the explosive radiation of the advanced snakes (Caenophidia) (Daltry et al., 1996; 

Vidal et al. 2009) and indeed the evolution of venom seems to be associated with increased 

diversification rates across all groups of tetrapods (Harris and Arbuckle, 2016).  

 

Globally, Australia is the only continent whose snake fauna is dominated by front-fanged venomous 

snakes (Keogh et al., 2002). The Notechis genus is among the most medically important species of 

Australian elapid snakes and historically has been responsible for many bites and fatalities 

(Sutherland and Tibballs 2001). While snake identification can be critical for snakebite treatment, 

species classification across tiger snake populations has long been a complex taxonomic issue. For 

example, previous studies used body size and colour variation as the two major characteristics to 

classify tiger snake populations into subspecies (Rawlinson 1991; Cogger 2000); however, Keogh 

et al. (2005) used molecular data to reveal that neither of these characteristics are phylogenetically 

useful in the taxonomy of this group. This supported earlier suggestions by Schwaner (1985a, 

1985b) and Schwaner and Sarre (1988) that distinctions based on colour or size were arbitrary and 

that all populations of Notechis comprise a single, polymorphic species with extremely low levels 

of sequence diversification. As tiger snakes are amongst the most well-known and best studied of 

Australian elapid taxa, the clade which includes Notechis and the closely related genera Austrelaps, 

Tropidechis, Hoplocephalus and Paroplocephalus is known as the ―tiger snake clade‖. Austrelaps is 

basal to all other genera in this clade (Lee et al. 2016). 

 

Variation in the composition and activity of snake venoms can have serious implications for 

snakebite treatment and can be attributed to a number of factors, one of which is population 

isolation. Detailed studies of sea levels have helped determine the age of N. scutatus populations 

(Keogh et al., 2005). Prior to the last inter-glacial period, N. scutatus presumably formed a 

continuous series of interbreeding populations, from Western Australia through to Queensland 

(Rawlinson 1974; Schwaner 1985a; Keogh et al., 2005). Rising sea levels 6,000-10,000 years ago 

inundated the coastal plain in South Australia, causing tiger snake populations to become 

fragmented (Rawlinson 1974).  

 

Species with fragmented populations are excellent models for the study of venom evolution, as 

geographically isolated populations with differing environments may evolve significant variation in 

venom composition (Chippaux et al. 1991, Daltry et al., 1996).  This may lead to geographically 

distinct clinical patterns observed in envenomed humans (Daltry et al., 1997; Barlow et al., 2009; 

Gibbs et al. 2011; Sunagar et al., 2014). Consequently, even when the offending snake has been 

correctly identified, the indicated antivenom may provide effective treatment in one region, but 

could have limited effectiveness or even fail to neutralise venoms of the same species from different 

regions. This has serious implications for snakes in the Notechis clade, as tiger snake antivenom is 

currently used to treat Notechis, Austrelaps, Hoplocephalus, and Tropidechis carinatus. Pseudechis 

porphyriacus is not a member of this clade but is also treated with tiger snake antivenom because 

this the venom of species is also rich in FXa (White 2001). Thus, furthering the understanding of 

venomous taxa and the factors influencing evolution and bioactivity of their venoms is imperative 

to improving the therapeutic management and medical effectiveness of antivenoms (Calvete et al., 

2009; Gutiérrez et al., 2009).  

 

Dietary specialisation is another important factor thought to be a major selective force shaping 

venom composition, as venom directly relates to a species‘ ability to subjugate prey (Daltry et al., 

1996; Pough et al., 2001; Vonk et al., 2011; Jackson et al. 2016a). Specialisation of diet is more 

common in snakes than in other reptiles (Toft 1985) and has played a fundamental part in their 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

 

 

adaptive radiation (Greene 1983). The genus Austrelaps has a specialist diet of ectothermic prey 

(Shine 1987b) and early studies suggested that anurans are the primary prey species for mainland N. 

scutatus (Shine 1977; Shine 1987a; Tan et al., 1993), whereas, island populations consume 

primarily endotherms (Schwaner 1985a). Hoplocephalus species, conversely, exploit more densely 

forested habitats compared to Notechis, and the diet of the two more derived species is 

predominantly lizards and small mammals, whilst H. bitorquatus continues to primarily feed upon 

frogs (Shine 1983; Webb & Shine, 1998). Sixty percent of the lizards consumed by the highly 

specialised broad-headed snake (H. bungaroides) are a single species of gecko (Oedura lesueurii) 

(Webb & Shine, 1998), and Hoplocephalus stephensii diets include significant quantities of small 

mammals (rats and pygmy possums) (Fitzgerald et al., 2004). The nocturnal predator Tropidechis 

carinatus feeds primarily on both mammals and anurans (Shine & Charles 1982). Thus, there is 

clearly variable dietary specialisation within the ―tiger snake‖ clade, and this may correlate with 
geographical variation in the venoms of these species.  

 

Studies that focus on the variability of venom composition are critical for the research and 

production of antivenoms, which is currently the only specific treatment for snakebite (Maduwage 

& Isbister, 2014). Antivenom contains antibodies which bind to the toxic components (via the 

recognition of binding sites – epitopes) in the venom, thereby neutralising them and preventing or 

reversing clinical effects (Isbister 2010; Maduwage & Isbister, 2014). However, the effects of 

venom-induced consumption coagulopathy (VICC) resulting from Australasian elapid 

envenomations have been shown to be irreversible and cannot be neutralised by the antivenom once 

the damage has already occurred (Isbister et al., 2009; Tanos et al., 2008). The antivenom thus 

serves to prevent further coagulopathy from developing. 

 

Australian elapid snake venoms produce deleterious effects in humans, sometimes resulting in the 

collapse of central and peripheral nervous systems, failure of the cardiovascular system, blood 

coagulation pathways, or disrupting other critical homeostatic systems (Sutherland and Tibballs 

2001). Australian elapid snakes are unique amongst elapids in their potent procoagulant effects. 

These actions are driven by a venom-specific form of factor Xa, the recruitment of which into the 

venom proteome occurred near the base of the Australian elapid radiation but was only amplified to 

high levels in divergent genera (Trabi et al., 2015). Factor Xa binds with activated factor V (FVa), 

which together cleaves prothrombin (factor II) to form thrombin (factor IIa), with thrombin 

activating fibrinogen to fibrin resulting in clot formation (St Pierre et al., 2005). An exception to the 

requirement of endogenous FVa as a co-factor is the Oxyuranus/Pseudonaja clade, which have 

additionally recruited FVa into their venom and thus no-longer need to interact with endogenous 

FVa (Kini et al., 2001).  

 

Snake venom prothrombin-activators are either metalloproteases or serine proteases and are 

grouped into four categories based on their cofactor requirement; A, B, C and D (Kini et al., 2001). 

Australian elapids are limited to groups C and D based upon their relative need for endogenous FVa 

as a co-factor (Joseph & Kini, 2001; Joseph et al., 1999; Rao et al., 2003; Reza et al., 2005). Group 

C venoms contain both FXa and FVa, therefore, the complete 1:1 prothrombin-activating complex 

(FVa:FXa) is already expressed in their venoms, and they only require calcium and phospholipid 

for full activity. The FXa:FVa complex constitutes a high percentage of the total venom protein 

content in group C; approximately 10-20% of the total Oxyuranus scutellatus (coastal taipan) 

venom (Lavin & Masci, 2009) and 20-40% of Pseudonaja textilis (eastern brown snake) venom 

(Lavin & Masci, 2009; Rao & Kini, 2002). Group D snake venoms contain only FXa, which must 

bind with endogenous FVa present in the envenomed prey‘s plasma, as well as calcium and 

phospholipid for optimal activity (Kini & Chow, 2001; Reza et al., 2006). Group D FXa accounts 

for approximately 5% the total venom content in N. scutatus (Kini 2005). Consequently, the relative 

rate of action for group D venoms is slower than that of the group C venoms due to lower amounts 
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of FXa and their requirement for endogenous FVa and the rate-limiting step of FVa:FXa binding. 

Expression levels of FXa are highest in endotherm specialists (e.g. Notechis and Oxyuranus 

species), with reduced expression levels in extreme lizard specialists like Pseudonaja modesta and 

juveniles of other Pseudonaja species (White et al., 1987; Jackson et al. 2016b; Cipriani et al. 

2017).  

 

The adaptive evolution of procoagulant toxins in venom has remained under-investigated. For 

example, previous studies have analysed the venom of N. scutatus from only a small subset of 

different populations (e.g. Williams et al., 1988; Francis et al., 1991; St. Pierre et al., 2005; 

Munawar et al., 2014). Thus intraspecific variations within this clade are as unknown as 

interspecific and intragenera variations. Therefore this study will test 1) if diet is a selection 

pressure operating on prothrombin-activating toxins by comparing the coagulation ability, 2) the 

efficacy of tiger snake antivenom on an in vitro procoagulant test across all venoms in this clade, 

and 3) the relative calcium and phospholipid co-factor dependency for each venom.  

 

Methodology 

Sample collection and preparation 

Venom samples were sourced from the pre-existing, cryogenic venom research collection of the 

Venom Evolution Lab with additional venoms purchased from Venom Supplies (Tanunda 5352, 

South Australia). A total of 25 venom samples from the Notechis clade were used in this study 

Austrelaps ramsayi (Paddys River ACT); Hoplocephalus bitorquatus (Texas QLD); Hoplocephalus 

bitorquatus (Brigalow NSW); Hoplocephalus bungaroides (Sydney NSW); Hoplocephalus 

stephensii (Brisbane QLD); Notechis scutatus (Melbourne VIC); Notechis scutatus (Melbourne 

1935); Notechis scutatus (Werribee VIC); Notechis scutatus (Barmah VIC); Notechis scutatus 

(Chappell Island); Notechis scutatus (Tasmania); Notechis scutatus (Kangaroo Island); Notechis 

scutatus (Perth WA); Notechis scutatus (Margaret River WA); Notechis scutatus (Coomalbidgup 

WA); Notechis scutatus (Bunya Mt QLD); Notechis scutatus (Bruny Island); Notechis scutatus 

(New Year Island); Notechis scutatus (Franklin Island); Notechis scutatus (Mt Gambier SA); 

Notechis scutatus (Lake Alexandrina SA); Paroplocephalus atriceps (Lake Cronin WA); 

Tropidechis carinatus (Brisbane QLD); Tropidechis carinatus (Eumundi QLD); and Tropidechis 

carinatus (Numbinbah Valley QLD).Venom variation may occur between individuals in the same 

population due to differences in sex and age. To account for individual variation in expression level, 

pooled samples were used when possible (Table 1). For populations which were not represented by 

pooled venom samples, multiple samples from different individuals were used where available 

(Table 1).  

Lyophilized crude venom was resuspended in deionized water before being centrifuged. It was then 

passed through a 0.45nm filter (0.45μm Econofltr PES, Agilent Technologies, China) and prepared 

in a 1:1 mixture as a 1mg/mL stock concentration in 50% glycerol (to prevent freezing) and stored 

at -20°C. Bioactivity of venoms was preserved during venom preparation by keeping the samples 

on ice at all times. Human plasma (Batch# 398892, citrate 3.2%) was donated by Australian Red-

Cross (research approval# 16-04QLD-10) and was aliquoted into 2mL tubes, flash frozen in liquid 

nitrogen and stored at -80°C until use. When required, plasma was rapidly thawed in a Thermo 

Haake ARCTIC immersion bath circulator SC150-A40 at 37°C and immediately used for 

experimentation. 

 

STA-R MAX  

Procoagulation tests were performed using a STA-R-Max® (Stago, Asnières sur Seine, France) 

with a analyser viscosity-based (mechanical) detection system to measure clotting time of human 

plasma as a proxy for bioactivity of prothrombin-activating toxins. The efficacy of antivenom in 
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prolonging coagulation times was also tested using the analyser.  

 

 Procoagulation tests 

Prior to experimentation, the viability of human plasma was tested daily as a positive control using 

a standard activated Partial Thromboplastin Time (aPTT) test. For these tests, kaolin (adapted from 

STA C.K Prest standard kit, Stago Catalog#00597) which is a coagulation-activator, was added to 

plasma and incubated for 120 seconds before CaCl2 (0.025M, Stago Catalog#00367) was added and 

clot formation was measured. All tests were performed in triplicate. Human plasma which clotted 

within 45-50 seconds was deemed healthy (reference range determined by testing coagulation times 

on the plasma batch daily for 30 experimentation days). For negative controls, 1:1 water/glycerol 

stock (same volume as venom stock, with water in replacement of venom) was used to ensure that 

the plasma did not self-clot.  The normal range for this control was deemed to be 340-400 seconds 

(reference range determined by testing coagulation times on the plasma batch for 30 

experimentation days).  

 

A 10-point dilution series with incremental, decreasing concentrations of venom (from 20µg/ml to 

0.05µg/ml final concentrations) were used to quantitatively compare the relative coagulation 

capacity across all venoms in this study. Owren Koller (OK) Buffer (Stago Catalog#00360) was 

used to dilute the venom. CaCl2 (50µL) was added with 50µL Phospholipid (cephalin prepared 

from rabbit cerebral tissue adapted from STA C.K Prest standard kit, Stago Catalog#00597, and 

solubilized in 5ml of OK Buffer). OK Buffer (25µL) was then added to the cuvette and incubated at 

37°C for 120 seconds before adding 75µL of plasma (also heated to 37°C), with an end total 

volume of 250µL. Coagulation time started immediately and was continuously measured until the 

plasma had clotted or reached the maximum allotted time (999 seconds). Once the venom sample 

was loaded into the STA-R-Max® analyser, the pipetting, incubation, and recording was all 

automated by the analyser.  

 

All reagents were from Stago (Asnières sur Seine, France) and clotting times were recorded in 

seconds. A 10-dilution series starting at 20µg/ml and ending in 0.05µg/ml was performed in 

triplicate. To test for co-factor dependency, 20µg/ml screenings were also performed with and 

without phospholipid and CaCl2. To keep the final volume (250µL) constant, OK buffer was used 

as a substitute.  

  

Antivenom tests 

Monovalent Tiger Snake Antivenom (lot# 0550-09401; expiry 2003) from Commonwealth Serum 

Laboratories (CSL) Limited (Parkville 3052, Victoria) used. A previous study showed that 

antivenom is effective long past expiry date and therefore is useful for research purposes (O‘Leary 
et al. 2009). Antivenom was centrifuged (using Allegra

TM
 X-22R Centrifuge, Beckman Coulter, 

USA) at 12000rpm for 10 minutes at 4
o
C. The supernatant fluid was removed, filtered (0.45μm 

Econofltr PES, Agilent Technologies, China), then aliquoted into 2ml Eppendorf tubes and stored at 

4
o
C until use. Immediately before use, antivenom was diluted into a 5% antivenom/95% OK Buffer 

solution. The protocol for procoagulation tests was modified so that 25µL of OK Buffer was 

replaced with 25µL of the antivenom/OK buffer solution before being incubated so as to not change 

the final 250µL sample volume. To determine if the antivenom had any additional effects on the 

plasma, a negative control was performed by measuring the plasma clotting times of antivenom 

with water in replacement of venom in the sample mixture. 

 

Calibrated Automated Thrombogram (CAT) 

Thrombin generation was measured by a Calibrated Automated Thrombogram (CAT, Stago), using 

the method previously described by Hemker et al. (2002; 2003). The following was pipetted into a 

96-well round-bottom microtiter plate (Thermo Fisher Scientific, Waltham, Massachusetts, USA):  
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a starting volume of 80μL of pre-warmed human plasma (37°C), 10μL of venom, and 10μL of 
phospholipid. The plate was then inserted into a Thermo Fisher Fluoroskan fluorometer (Thermo 

Labsystem, Helsinki, Finland). The default 10-minute incubation step was removed so as to not 

omit the initial thrombin formation. Prior to starting, dispensing lines were washed and then primed 

with pre-warmed 2.5 mmol/l fluorogenic substrate in 5 mmol/l CaCl2 (FluCa-Kit; Diagnostica 

Stago). The test was then automatically initiated by dispensing 20μl of the fluorogenic substrate 
into each well and run at 37°C for 60-minutes, with readings automatically taken every 20 seconds.  

 

For each venom, three different venom amounts (0.000001μg, 0.00001μg, and 0.0001μg) were 

added to an enzymatic buffer (150mM NaCl & 50mM Tris-HCL, pH 7.4) and manually pipetted 

into the wells for final concentrations of (0.0000083μg, 0.000083μg, and 0.00083μg/ml). Tests were 

performed in triplicate for each experiment with three calibrators per half plate. Calibrators adjusted 

for any internal filter effects and eliminated any variation in plasmas. For the calibrator assays, 

phospholipid and venom trigger was substituted with a thrombin-α2-macroglobulin complex 

solution of a known concentration (thrombin calibrator, Stago, US).  

 

For each thrombin generation measurement, the following parameters were recorded by the 

Thrombinoscope software (Maastricht, The Netherlands): the endogenous thrombin potential 

(ETP), represented by the activity of free thrombin multiplied by the time it remains active in the 

plasma (area under the curve); maximum concentration of thrombin (peak); and lag-time (time to 

start).  The RAW data was then converted by the Thrombinoscope software into thrombin activity 

(nM) corresponding to the calibrator (Hemker et al., 2002). 

 

Statistical analysis 

Coagulation times (seconds) for each of the venoms and antivenoms were graphed using Prism 7.0 

software (GraphPad Software Inc, La Jolla, CA, USA) to produce concentration response curves. 

CAT thrombin generation times were also graphed over time (minutes) using GraphPad Prism. 

Calculation of EC50 (concentration of venom at which 50% of the effect is observed) values for the 

venom and antivenom concentration curves for each dataset were performed using Prism 7.0 

software (GraphPad Software Inc, La Jolla, CA, USA). Data is expressed as mean±SD. After 

EC50‘s were calculated, the relative antivenom efficacy was calculated using the formula: 

x=(((antivenom EC50 x-axis)/(venom EC50 x-axis))*((antivenom EC50 y-axis)/(venomEC50 y-

axis)))*(antivenom maximal clotting time/venom maximal clotting). 

 

The relationships between the different tests were analysed using phylogenetic Generalized Least 

Squares (PGLS). The phylogenetic tree used was based upon (Keogh et al 2005; Lee et al 2016) and 

created using Mesquite software (version 3.2) which was then imported into Rstudio using the APE 

package (Paradis et al., 2004). Ancestral states were estimated for all traits (including the 

proportional shift of the relative co-factor dependency and relative antivenom efficacy) using 

maximum likelihood as implemented in the contMap function of the R package phytools (Revell, 

2012). To calculate the correlation between diet and the different tests, diet preference for each 

species and population was determined from previous ecological studies (e.g. Shine 1977; 

Schwaner 1985b; Shine 1987a; Shine 1987b; Schwaner & Sarre, 1988; Tan et al., 1993; Fitzgerald 

et al., 2004; Fearn et al., 2012) (Table 1). Dietary preference was then ranked according to 

metabolism and circulatory rates for preferred prey, the highest metabolism and circulation rate was 

ranked as 1 and the lowest circulation rate levels ranked as 6. PGLS models (Symonds and 

Blomberg, 2014) were fit in Caper (Orme et al., 2015) with coagulation time as the response 

variable and diet class as the explanatory variable to assess whether metabolic attributes of prey 

predict haemotoxicity of the venom. P-values ≤0.05 were considered statistically significant.  
 

Results 
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Clotting time  

The basal species A. ramsayi showed very weak procoagulant properties (222.22±3.4 second 

clotting time at 20µg/ml concentration relative to the 300-350 second spontaneous clotting time of 

plasma without venom), the dilution curve was therefore not carried out. All other venoms 

displayed potent procoagulant effects, with Notechis and Tropidechis being more potent than 

Hoplocephalus and Paroplocephalus (ANOVA: F2,33=44.82, P<0.001) (Table 2, Figure 1). An 

historical sample of N. scutatus venom (collected in 1935) displayed equipotent activity to freshly 

obtained venom, thus validating previous studies which demonstrated the stability of venoms over 

time. This result demonstrates that even samples which are decades old may be valuable 

bioresources (Jesupret et al. 2014).  

 

Although there was variation in clotting activity among Notechis populations (ANOVA: F15,53 

=14.94, P<0.001), there was no particular geographical pattern to this variation. The Tasmanian 

population had the fastest coagulation times within N. scutatus (9.43±0.38 seconds) while also 

maintaining their potency throughout the dilution series, with only a 3.2-fold decrease in 

coagulation time from the 20µg/ml to 0.05µg/ml concentrations. With only intermediate clotting 

times compared to the rest of Notechis and Tropidechis, the Chappell Island population venom 

exhibited the least amount of activity loss during the dilution series with only a 2.8-fold decrease 

from the 20µg/ml to 0.05µg/ml concentrations. Hoplocephalus bungaroides venom was the fastest 

clotting of any amongst the Hoplocephalus or Paroplocephalus species (Table 2). H. stephensii, H. 

bitorquatus, and P. atriceps were the least coagulant species overall at the initial 20µg/ml 

concentration, while also losing the most amount of procoagulant activity during the dilution series. 

P. atriceps venom had a 6.2-fold decrease in clotting times during the dilution series. 

 

Co-factor dependency  

In addition to variation in the speed at which they induced clot formation, the venoms also 

displayed inter-genus phylogenetic patterns in relation to co-factor dependency (Tables 2 and 3, 

Figure 2). Clotting times were significantly shorter for all venoms when calcium was added (Tables 

2 and 3), though Notechis and Tropidechis venoms were less calcium dependent than those of 

Hoplocephalus and Paroplocephalus. In addition, there was significant intraspecific variation 

between different Notechis populations (ANOVA: F15,53=87.48, p<0.001). When phylogenetic 

relationships were considered, there was a significant relationship between the presence of 

phospholipids and maximum clotting time even when all co-factors were present (PGLS: t=2.304, 

df=1, p=0.03) (Figure 3). On the other hand, the effect of calcium was found to be non-significant 

(PGLS: t=0.3625, df=1, p=0.72). Thus, when calcium was present clotting was initiated sooner, but 

phospholipids had a stronger effect on the time taken for complete clot formation. While both co-

factors were required for maximum clotting activity, the venoms studied demonstrated ability to 

cleave prothrombin in the absence of the co-factors, albeit less efficiently.  

 

In the majority of venoms there was also a correlation between co-factors in that venoms that had a 

strong dependency on one co-factor also exhibited a strong dependency on the other and vice versa 

(Figure 2). In contrast, all three populations of T. carinatus had a relatively strong dependency on 

calcium, but only weak dependency on phospholipid.  

 

Calibrated Automated Thrombogram  

Initial examination of multiple concentrations of N. scutatus venom as a representative 

demonstrated some thrombin production by the higher venom concentrations at the start of the 

experiment prior to the commencement of plate reading during the short period of time (seconds) 

between substrate dispensing and plate reading (Figure 4). This was particularly acute for the less 

calcium dependent venoms. Thus lower concentrations were used in the testing of all species. 

Consistent with the clotting time tests, lag times differed between Notechis/Tropidechis and 
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Hoplocephalus/Paroplocephalus (Figure 5). The Eumundi population of T. carinatus exhibited one 

of the shortest lag-times (9.98±2.01 minutes), supporting the results from the coagulation tests. 

There was no association between diet and lag-time for either specialist or generalist feeding 

ecologies (PGLS: t=0.77, df=1, P=0.45 and PGLS: t=0.37, df=1, P=0.72, respectively). Peak height 

and increased thrombin activity, which was assessed as the ETP, showed no clear trends between 

species or populations. As expected the lag-time and time-to-peak were shortened in higher 

concentrations of venom, however, the venoms showed a general trend of increased thrombin peaks 

at the lowest venom concentration (0.0000083µg/ml). 

 

Relative taxa specific effects and influence of dietary specialisation 

The association between dietary preference and coagulation times was investigated under two 

scenarios: 1) Notechis all scored as generalists, or 2) individual populations scored according to 

specific (but limited) feeding ecology study results. In the first scenario, there was a significant 

association between dietary preference and coagulation time (PGLS: t=2.93, df=1, p=0.008), with 

venoms of species that feed on mammals/endotherms exhibiting quicker clotting times than those of 

reptile feeders. There was a marginally non-significant association between dietary preference and 

coagulation time when each population of Notechis was ranked utilising the limited amount of data 

available on the feeding ecologies of each population (PGLS: t=2.05, df=1, p=0.052). 

 

When comparing the venom effects of a bird specialist (Chappell Island population of N. scutatus) 

to that of a frog specialist (T. carinatus) upon cane toad, chicken and human plasmas, no significant 

differences were observed: N. scutatus p-values were cane toad versus chicken 0.9939, cane toad 

versus human 0.9996, chicken versus human 0.9542; T. carinatus p-values were cane toad versus 

chicken 0.9997, cane toad versus human 0.7401, chicken versus human 0.9727 (Figure 6). This 

points towards the venoms acting upon conserved cleavage sites in prothrombin, which was 

confirmed by prothrombin sequence alignment (Figure 7). As the target was so highly conserved, 

we aligned the sequences of the FXa toxins from Hoplocephalus, Notechis and Tropidechis, which 

were revealed to have a 98.5% conservation (Figure 7) despite these three genera having been 

separated for 6 million years (Lee et al. 2016). 

 

Antivenom efficacy  

Consistent with the unusually highly conserved toxins as a consequence of the target site being 

under negative selection pressure for diversification, CSL tiger snake antivenom was not only 

generally efficient against Notechis venoms but displayed strong cross-reactivity with 

Hoplocephalus and Paroplocephalus venoms, with the clotting curve shifting significantly for each 

of the venoms (Figures 8). Of all venoms, the monovalent tiger snake antivenom showed the 

greatest efficacy against P. atriceps venom. When clotting time was tested as an explanatory 

variable for antivenom neutralisation, the correlation was non-significant (PGLS: t=0.615, df=1, 

P=0.544), indicating that the efficacy of antivenom is not dependent on the procoagulant activity of 

the venom. There was also no statistically strong correlation between antivenom efficacy and either 

relative calcium dependence (PGLS: 1.76, df=f, p=0.089) or phospholipid dependence (PGLS: 

t=0.1, df=1, p=0.92).  

 

Testing of an expired vial of CSL antivenom from 1959 which had largely been stored at 

refrigerated temperatures, but had spent 2 years at room temperature demonstrated an efficacy 

similar to that of 2003 (also expired) antivenom (Figure 9). It is possible that the slight difference 

may not in fact be due to degradation, as the vial did not display any turbidity, but rather the 

antivenoms being raised against different venoms. Regardless, this demonstrates that expired 

antivenom may be effective at least for laboratory work (but of course other factors besides efficacy 

must be considered in a clinical setting). 
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Discussion 

Using coagulation times and thrombin production, we were able to 1) determine that there are no 

taxa specific effects of the toxins types but that there may be a correlation between FXa expression 

levels in the venom and diet, 2) establish relative dose-dependent neutralisation efficacy of tiger 

snake antivenom across all venoms in this clade, and 3) determine the relative calcium and 

phospholipid co-factor dependency for each venom. Overall, this study provides the most 

comprehensive investigation of the procoagulant activity of venoms from snakes in the Notechis 

clade to date, with venom from 16 populations of N. scutatus as well as Austrelaps ramsayi, 

Hoplocephalus bitorquatus, H. bungaroides, H. stephensii, Paroplocephalus atriceps, and 

Tropidechis carinatus investigated. 

 

Coagulation Activity 

In other studies, venom composition has been shown to sometimes change significantly between 

populations, depending on the selective advantage conferred due to differences in prey availability, 

use of habitat type, and seasonal variation in prey abundance (c.f. Daltry et al., 1996; Aguilar et al., 

2007, Margreaves et al. 2016). However geographical variation in venom function in this study was 

found to be minor in comparison to interspecific and intergeneric variation, thus facilitating a 

phylogeny based comparison of venom features across the taxa studied. The N. scutatus populations 

underwent rapid divergence in the last 6,000-10,000 and remain extremely genetically similar 

despite the extensive variation in morphology and colour between the different populations (Keogh 

et al., 2005). Consistent with this, the venoms were highly similar to each other relative to that of 

other genera in this same clade. Hoplocephalus spp., and Paroplocephalus atriceps venom showed 

prolonged clotting times in comparison to Notechis venom, which is consistent with their venoms 

being known to express lower levels of prothrombin-activators (St Pierre et al., 2005). Keogh et al. 

(2000) placed Paroplocephalus as a sister group to the genus Hoplocephalus, and the similar 

coagulotoxicity of Hoplocephalus and Paroplocephalus venoms is reflective of this close 

relationship (Figure 1).  

 

The results from this study support the hypothesis that Austrelaps are basal to the Notechis clade, 

thus evolving from an Austrelaps-like ancestor (e.g. Lee et al., 2016). A. ramsayi venom showed 

very weak procoagulation expression in the clotting tests, suggesting that they diverged before the 

up-regulation of prothrombin-activating toxins in this clade. Hoplocephalus/Paroplocephalus likely 

diverged after the up-regulation of FXa toxins in the last common ancestor shared with 

Notechis/Tropidechis after the split with Austrelaps. Notechis+Tropidechis thus represent the most 

derived state, in terms of coagulotoxicity relative to the inferred Austrelaps-like ancestral state. 

These data support the findings of St. Pierre et al. (2005), which demonstrated that H. stephensii 

express moderate levels of FXa in their venom, whereas FXa is expressed at relatively elevated 

levels in Notechis/Tropidechis venoms.  

 

Group D procoagulant toxins target components of the coagulation cascade which are themselves 

structurally constrained, thus the FXa toxins characteristic of this snake clade likely remain 

conserved under strong negative selection pressure against diversification (Figure 7). Indeed, the 

primary structure of group D procoagulant toxins varies very little and share an overall amino acid 

identity of 98.5% with one another (Figure 7). Any changes to the functional sites may result in 

reducing this homology with endogenous FXa, thereby minimising the efficiency of the toxin in 

activating prothrombin. This also explains the similar action of FXa in every species in this clade in 

cleaving prothrombin at identical sites to form thrombin (Joseph & Kini, 2001; Rao et al., 2003; 

Reza et al., 2005; Sajevic et al., 2011). Group D procoagulants are a fascinating example of toxins 

that preserve the primary function of the ancestral gene (the endophysiological blood factor Xa) 

from which they descend, but have co-opted that function for use as a toxin. The genomes of snakes 

expressing group D procoagulants in their venoms thus encode a pair of paralogous proteins, which, 
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despite preserving a high degree of structural similarity, perform completely different functions at 

the organismal level – the ―parent‖ gene maintains haemostasis and the ―child‖ gene facilitates prey 
subjugation (by disrupting the haemostasis of envenomated prey animals) (Reza et al., 2006). Thus, 

group D procoagulant toxins might be considered examples of either sub- or neo-functionalisation, 

depending upon the ―level of analysis‖ – at the molecular level, since they largely preserve the 

―function‖ of the ancestral gene, they may be considered sub-functionalised, but at the organismal 

level, since they have acquired a completely new role in their deployment as toxins, they should be 

considered neo-functionalised. These toxins are therefore also fascinating examples of exaptation, 

in which an ancestral function (maintenance of haemostasis) is co-opted for an entirely novel 

function (prey subjugation), which, prior to the gene‘s duplication and its selective expression in the 
venom gland (i.e. its ―recruitment‖ as a venom toxin), had not featured in the gene‘s selective 
history (Reza et al., 2006; Jackson et al. 2016a).  

 

Co-factor Requirement 
Group D venoms require mammalian FVa, calcium ions, and phospholipids for maximum 

procoagulant activity (Kini et al., 2001; Isbister 2010; Sajevic et al., 2011). These co-factors 

increase the maximum velocity of the enzymatic reaction and the catalytic efficiency of the 

enzymes (Rosing et al., 1980). In the present study, coagulation experiments with and without 

required co-factors revealed more variation in co-factor dependency than expected (Figure 2). 

Although the literature suggests that the co-factor dependency of venoms is relatively simply 

explained in binary terms – either a given co-factor is required for efficient activity, or it is not (i.e. 

Kini et al., 2001; Steen 2002; Isbister 2010; Sajevic et al., 2011) – our results indicate that the 

degree to which group D prothrombin activators rely on its co-factor for optimal efficacy is highly 

variable even between different populations of the same species (Figure 2). 

  

The addition of calcium to venom significantly decreased coagulation time compared to only 

venom, whereas phospholipid had less of a significant effect on the initiation of coagulation. 

Coagulation tests which included both calcium and phospholipid, however, had the quickest 

clotting times. This confirms that the initiation of procoagulation activity is calcium-dependent, and 

that venom, to some extent, is able to bind with FVa with a degree of efficiency in the absence of 

phospholipid. These findings differ from studies which previously reported that Group D venoms 

require both calcium and phospholipids (e.g. Joseph & Kini, 1999; Kini et al., 2001; Isbister 2010; 

Sajevic et al., 2011). While the catalytic process was significantly shorter in the presence of 

calcium, its presence was not necessary to create a clot. That is, the Notechis clade venoms were 

shown here to have the ability to ‗highjack‘ the coagulation cascade without the need for calcium, 
with populations of N. scutatus apparently independently evolving a greater ability to produce 

calcium-independent venoms. This fits with the trend seen in other species (e.g. Pseudonaja and 

Oxyuranus species) (Nakagaki et al., 1992), While there was some correlation between calcium-

dependency and clotting time, the strongest correlation between overall clotting time (as 

distinguished from the speed of clot initiation) and co-factor dependence was in relationship to 

phospholipids (Figure 3). Phospholipids play an important role in the coagulation cascade and can 

alter efficiency of clotting reactions by several orders of magnitude (Steen 2002). Phospholipids are 

a co-factor in forming the prothrombinase (FVa:FXa) complex because a negatively charged 

phospholipid is required for FVa to bind, thereby creating a binding site with high-affinity for FXa 

(Steen 2002). In this study, the less phospholipid-dependent venoms were also shown to be the 

fastest clotting venoms.  

 

Venom and plasma stocks used throughout experimentation were citrated but there may have been 

trace calcium ions remaining. The experimental design to determine calcium dependency may, 

therefore, have been limited due to the possibility that experiments without calcium added were not 

completely calcium free. Additionally, the venom itself may contain trace amounts of calcium. 
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However, we deemed the relative change in calcium concentration with added calcium was 

sufficient to show calcium requirement.  This has shed more light on venom bioactivity within the 

Notechis clade and the relationship between venom evolution and prey. 

 

Calibrated Automated Thrombogram 

Total lag-times were congruent with the results of the coagulation tests, for example with 

Notechis having significantly less lag-time compared to Hoplocephalus (t-test: t=3.6, df=25, 

p=0.001). However, dietary preference was found to have no significant association with lag-time, 

which was unexpected. When venom concentration was increased there was a significant drop in 

peak height with the 8.3µg/ml concentration having no measurable thrombin activity. This possibly 

indicates a limitation in the thrombogram methodology; ETP and peak height are highly sensitive to 

hypercoagulability caused by high levels of prothrombin in the blood (Machlus et al., 2009). 

Therefore, oversensitivity to high prothrombin concentrations could reduce accuracy of results. 

Another possibility is that higher venom concentrations cause the initiation of the coagulation 

pathway to react sooner due to the calcium independence of the action, thus thrombin generation 

occurred before the thrombogram started measuring. The latter consideration was supported by 

results using higher concentrations (Figures 4 and 5), with it being clear that the venom was rapidly 

activating prothrombin in the absence of calcium reducing the ETP prior to the commencement of 

the reaction readings. 

 

Dietary Specialisation 

Because prey subjugation is the dominant force in venom evolution, it is likely that dietary 

preference may play a role in co-factor dependence. This study found that the populations of N. 

scutatus which are less calcium-dependent are also less phospholipid-dependent (Figure 2) and that 

these are also the populations producing the most potently procoagulant venoms (Figures 1 and 3). 

These populations are known to include large quantities of endotherms in their diet (e.g. tiger 

snakes from Chappell Island and Tasmania) (Schwaner & Sarre, 1988). Interestingly, Tropidechis 

venom exhibited a strong dependence on calcium for activity but relatively low dependence on 

phospholipids. Independency of one or both co-factors removes rate limiting steps in the pathway, 

thus making venoms more effective at targeting a prey‘s circulatory system. 
  

The evolution of venom specificity results from natural selection on predatory venomous taxa fine-

tuning their toxin arsenal for effective targeting of their prey‘s physiology (Daltry et al., 1996; 

Barlow et al., 2009; Vonk et al., 2011). Indeed, bioactivity studies have shown that the toxic 

properties of venoms from different species are typically most effective on their preferred prey (Da 

Silva & Aird, 2001; Richards et al., 2012), although coevolutionary arms races with prey may lead 

to toxin resistance which can counteract this in some cases (Holding et al., 2016).  

 

This study found a relationship between prey type and relative prothrombin quantity but without 

adaptive evolution of the toxins. In early ecology studies the diets of mainland N. scutatus were 

found to consist primarily of anurans (Shine 1977; 1987a). In contrast, Fearn et al. (2012) found 

that N. scutatus is an opportunistic generalist predator, having the most varied diet of any Australian 

elapid, consisting of mammals, birds, anurans, reptiles, and fish. The only N. scutatus populations 

which may be classed as specialists are those which inhabit islands off the southern cost of 

Australia where prey is limited to only a few species. For example, the Chappell Island population 

predominately feeds almost exclusively on the mutton bird Puffinus tenuirostris and Cape Barren 

goose Cereopsis novaehollandia. Note that this ‗specialist‘ feeding ecology is due to a lack of 
alternative prey on the islands they inhabit and so may not reflect genuine specialisation but rather 

the behaviour of generalists with limited opportunities. Current knowledge of dietary preferences in 

the tiger snake clade is incomplete, which is reflected in our alternative treatments of diet in the 

statistical analyses. When each N. scutatus population was ranked as a generalist, while other 
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species‘ diets were scored as reported in the literature, we found a significant relationship between 
venom which promotes faster clotting and predation upon prey with higher metabolic rates (e.g. 

endotherms). Similarly, when each specific Notechis population diet was considered and ranked 

according to metabolism and circulatory rates the relationship was only marginally non-significant, 

hence these analyses still provide some evidence of an association between venom activity and diet 

(though this effect seems to be stronger in interspecific comparisons than among populations of 

Notechis). 

 

Venoms from snakes which consume predominately reptiles had slower clotting times compared to 

those which feed on endotherms (Figure 1). Many viperid and some elapid snakes tend to rely on 

their procoagulant venom for subjugating prey by inducing stroke (Fry et al. 2009; Jackson et al., 

2016b; Cipriani et al. 2017). Endotherms are highly sensitive to this predatory strategy due to their 

extremely high blood circulatory rates and metabolism relative to ectotherms. It has been 

conjectured that because of the slow-moving circulatory systems of lizards they are generally not as 

vulnerable to procoagulant toxins (Jackson et al., 2016b) and that therefore there may be selection 

against expression of large quantities of procoagulant toxins in the venom of lizard specialists 

(Jackson et al., 2013; 2016b). Instead, venoms from Australian elapids that specialise as reptile 

feeders are dominated by low-molecular weight peptides (Jackson et al., 2016b). An interesting 

exception to this trend in the present study was H. bungaroides, which had the fastest coagulation 

time of any Hoplocephalus spp., and on average clotted plasma only 1.49-fold slower than N. 

scutatus venom. This was unexpected, as they are highly specialised lizard feeders. This may reflect 

their feeding ecology in that H. bungaroides aren‘t typical foragers like many other lizard 

specialists amongst Australian elapids (e.g. Brachyurophis and Pseudonaja modesta), which prey 

upon skinks when they are asleep and thus when their metabolism is at its lowest (Jackson et al., 

2016b). In contrast, H. bungaroides ambush active geckos (Webb & Shine, 1998), when their 

metabolic activity and blood flow is elevated and, therefore, stroke-induction is possibly a viable 

envenomation strategy. Adult H. stephensii feed predominantly on small mammalian prey while 

lizards constitute majority of the diet in neonates and juveniles (Fitzgerald et al., 2004). A possible 

explanation for the relative increase in potency in Notechis along with decreased co-factor 

dependence may be that N. scutatus targets a wide range of mammalian prey, some of which defend 

themselves when attacked (Fearn 2011). As such, injecting potent FXa-rich venom to quickly 

subdue the prey likely limits the risk of injury from prey retaliation. Whereas, H. stephensii tend to 

feed only on small mammals and most likely would not need to rely on high expression levels of 

FXa to subdue their prey. 

 

Globally, the venom of extant elapids is typically dominated by neurotoxins (Birrell et al., 2007), 

which is associated with a diet rich in reptilian prey (Jackson et al., 2016b). Therefore, when 

Australian elapids dispersed from Asia (Wüster et al., 2005) it has been suggested that these 

ancestral elapids primarily fed upon reptiles (Jackson et al., 2016b). The recruitment of FXa into the 

venom proteome is presumed to have occurred near the base of the Australian elapid radiation (Fry 

et al., 2008; Jackson et al., 2013; Trabi et al., 2015) and the FXa toxin appears to have played a vital 

role in the evolutionary history of Australian elapids that predates the last common ancestor of both 

the Pseudonaja and Oxyuranus clade and Notechis clade. The expression of this toxin (and the 

related group C procoagulants in the venoms of Pseudonaja and Oxyuranus) has been up- (e.g. 

Notechis, adult Pseudonaja) and down-regulated (e.g., Austrelaps, juvenile Pseudonaja) in various 

lineages of Australian elapids. Within the tiger snake clade, up-regulation of group D procoagulant 

toxin expression, and thus an increase in the procoagulant potency of the venoms, may have aided 

the transition from a diet consisting primarily of reptiles and frogs (Austrelaps, Hoplocephalus spp., 

and P. atriceps) to one including larger quantities of (potentially dangerous) endothermic prey (N. 

scutatus and T. carinatus). 
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While there was a correlation between diet and effect on plasma, there was no taxon-specific effect 

of the venoms when their activity was compared in a range of plasmas (Figure 6). Thus, while diet 

drives expression levels, the venom FXa appears to target conserved prothrombin regions (i.e. at the 

molecular level the function of all FXa toxins is essentially the same, as discussed above). The 

conservation of function is mirrored by the high degree of sequence similarity of the target and 

toxin sequences (Figure 7).  

 

Antivenom efficacy 

The effect of genetic drift on the molecular scaffolds of the toxins may also be responsible for the 

observed variation in responses to antivenom neutralisation. Variation in antivenom efficacy may 

thus provide information regarding the existence of variations in the surface chemistry of FXa 

toxins among these genera. In this study, CSL tiger snake antivenom effectively neutralised the 

clotting activity of all venoms studied (Figures 8 and 9), consistent with the standard treatment 

protocol for envenomations by these species (Sutherland and Tibbals 2001, Gan et al., 2009). From 

these data, it is evident that the monovalent antivenom had the highest efficacy against P. atriceps 

and H. stephensii venoms, although there were significant differences between the H. stephensii 

venoms that were not reflected in clotting time or co-factor dependency variance.  

 

As there was no correlation between antivenom efficacy and clotting times, this suggests that 

mutations in the epitopes of the FXa toxins are functionally inconsequential for the overall action of 

the toxin. Such mutations would therefore occur in antivenom-binding sites distinct from functional 

(active) sites of the toxin molecule. For antivenoms to be effective against coagulopathic symptoms 

of envenomation, the antibodies are required to bind to the prothrombinase complex which then 

prevents the cleavage of prothrombin to thrombin (Isbister et al., 2007). These minor structural 

changes in the epitope regions of the FXa toxin in the prothrombinase complex may affect the 

ability of the antivenom to bind the complex, which limits the ability of the antivenom to prevent 

the cleavage of prothrombin. This suggests that only slight variation within the molecular structure 

of procoagulant toxins may be required to reduce antivenom efficacy. Nevertheless, our results are 

encouraging in that the antivenom was found to be effective against all of the venoms tested – the 

differences we have detected are merely relative differences and not indicative of a lack of efficacy 

of current antivenom products against any of the snake venoms tested here. 

  

It must be noted that once VICC develops, it has been demonstrated that larger doses or repeated 

doses of antivenom do not reduce recovery time, which is dependent on the re-synthesis of clotting 

factors (Isbister et al., 2009; Isbister et al., 2012). We recognise that there are limitations in 

extrapolating clinical recommendations from laboratory data, for example, studies which incubate 

antivenom with venom in vitro before adding venom to the plasma may demonstrate efficacy in 

preventing the procoagulant activity of the venoms, but not provide an accurate measure of clinical 

effectiveness (Currie 2006). However, absence of efficacy under such ideal scenarios would 

certainly predict a lack of clinical usefulness. Our study suggests that CSL tiger snake antivenom is 

of widespread effectiveness against envenomation by members of the tiger snake clade, and this is 

also congruent with clinical outcome reports (Sutherland & Tibballs, 2001) which indicates that our 

results likely hold relevance for medical applications.  

 

Conclusion  

Venom ecology is an understudied area of research and much remains to be discovered concerning 

the ways in which snakes use their venom in nature. To investigate varying physiological responses 

to envenomations between prey species, working with natural prey items is ideal (Richards et al., 

2012). Unfortunately, natural prey species are logistically difficult and/or expensive to obtain in 

sufficient quantity for experimental purposes, necessitating the use of various model taxa as 

proxies. The focus of future studies should be on the examination of procoagulant activity in the 
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plasma of natural prey, under different treatment groups (e.g. at different temperatures) that reflect 

the possible range of metabolic states in which prey may be encountered in nature. It is notable, 

however, that for the venoms and plasmas studied here, there was no strong variation in activity 

among plasma types. This is congruent with the venom FXa enzymes targeting highly conserved 

regions of prothrombin. Hence these toxins being a notable exception to the paradigm put forth that 

evolutionarily young animals will have toxins undergoing adaptive evolution (Sunagar and Moran 

2015). This is due to the toxins in this study targeting physiological proteins that themselves are 

under extreme negative selection for adaptive evolution. Thus if the target is constrained, there is a 

reciprocal negative selection pressure for diversification put onto the toxins too. 

 

The results presented in this study have demonstrated significant variation in coagulopathic activity 

among the venoms of the clade consisting of Austrelaps, Hoplocephalus, Notechis, 

Paroplocephalus and Tropidechis. Each genus (other than Austrelaps) has procoagulant venom, but 

the relative potency of this activity varies among them, suggesting that strong selection pressures 

driven by diet play a central role in determing the expression levels of group D prothrombin 

activators in these venoms but that due to the structural constraints upon the endogenous 

prothrombin target, the FXa toxins themselves are under similar negative selection pressure for 

diversification. 

  

The adaptive evolution of procoagulant toxins in snake venom has remained under-investigated. 

Due to the existence of closely related genera which have evolved to inhabit different niches with 

differing feeding ecologies, the tiger snake clade is an ideal model for the investigation of 

functional variations among venoms containing group D prothrombin activators. This study not 

only contributes substantially to existing knowledge of the bioactivity of these venoms across 

geographically isolated populations but also to knowledge of the efficacy of currently available 

monovalent antivenoms. Our results demonstrate the efficacy of the antivenom in neutralising the 

procoagulant effects of N. scutatus, as well as cross-reactivity with Hoplocephalus spp., 

Paroplocephalus atriceps, and Tropidechis carinatus venoms, with these results strongly suggestive 

of clinical efficacy.   

 

Antivenoms also acted as selective probes to delineate venom divergence between species and 

populations and revealed that genetic drift is likely responsible for variations in the epitopes of FXa 

toxins recognised by antivenoms. Thus, whilst the functional sites of FXa toxins remain unchanged, 

their immunogenicity may change, in the absence of selection pressures. On the other hand, 

coagulation times and thrombinoscope revealed that the venoms of snakes within this clade vary 

significantly in bioactivity, with diet acting as a selection pressure on expression levels of FXa 

toxins. Thus, our results reveal that, in terms of group D prothrombin activators within the tiger 

snake clade, selection primarily appears to act upon on relative toxin expression levels whereas 

changes in the immunogenicity of the toxins are likely epiphenomenal – unselected byproducts of 

random change (i.e. unconstrained drift).  
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Table 1: Species (including any previous classifications) and localities of venom samples used in this study, and number of venom 

samples used from each population. Feeding ecology and whether the samples were from individual milking‘s or pooled is also 
outlined by the table. 

 

  

Species Previous Classification Location Known Feeding 

Ecology 

Number 

of 

Samples 

Pooled or 

Individual 

Samples 

Austrelaps ramsayi  Paddys River ACT Lizards & Anurans  1 Pooled 

Hoplocephalus 

bitorquatus 
  Texas QLD 

Lizards & Small 

Mammals 
1 Individual 

Hoplocephalus 

bitorquatus 
  Brigalow NSW 

Lizards & Small 

Mammals 
1 Individual 

Hoplocephalus 

bungaroides 
  Sydney NSW Lizards 3 both 

Hoplocephalus 

stephensii 
  Brisbane QLD 

Lizards & Small 

Mammals 
3 Individual 

Notechis scutatus Notechis scutatus scutatus Melbourne VIC Anurans  2 Both  

Notechis scutatus Notechis scutatus scutatus Melbourne 1935 Anurans  1 Pooled 

Notechis scutatus Notechis scutatus scutatus Werribee VIC Anurans  1 Pooled 

Notechis scutatus Notechis scutatus scutatus Barmah VIC Anurans  1 Pooled 

Notechis scutatus Notechis ater serventyi Chappell Island Endotherms 3 Both 

Notechis scutatus Notechis ater humphreysi Tasmania Generalist 3 Both 

Notechis scutatus Notechis ater niger Kangaroo Island Endotherms 2 Pooled  

Notechis scutatus Notechis scutatus occidentalis Perth WA Anurans  1 Pooled 

Notechis scutatus Notechis scutatus occidentalis Margaret River WA Generalist 2 Individual 

Notechis scutatus Notechis scutatus occidentalis Coomalbidgup WA Generalist 1 Individual 

Notechis scutatus   Bunya Mt QLD 
Mammals & 

Anurans  
1 Individual 

Notechis scutatus   Bruny Island Endotherms 1 Pooled 

Notechis scutatus   New Year Island Endotherms 1 Pooled 

Notechis scutatus   Franklin Island Endotherms 1 Pooled 

Notechis scutatus   Mt Gambier SA 
Mammals & 

Anurans  
1 Pooled 

Notechis scutatus   Lake Alexandrina SA Anurans  2 Pooled 

Paroplocephalus 

atriceps 
  Lake Cronin WA Lizards 1 Individual 

Tropidechis carinatus   Brisbane QLD 
Mammals & 

Anurans  
1 Individual 

Tropidechis carinatus   Eumundi QLD 
Mammals & 

Anurans  
1 Individual 

Tropidechis carinatus   Numbinbah Valley QLD 
Mammals & 

Anurans  
1 Individual 
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Table 2: Mean clotting times at the 20µg/ml venom concentration for each of the different co-factor dependency coagulation tests. 

Proportional shift for calcium and phospholipid tests is the shift in clotting time compared to venom with both calcium and PPL. 

Time is in mean±SD seconds. PPL=Phospholipid. 

 

Species Venom with both calcium 

and PPL 

Venom with calcium, 

no PPL 

Venom 

with 

calcium 

Proportio

nal Shift 

Venom with PPL, no 

calcium 

Venom 

with PPL 

Proportio

nal Shift 

H. bitorquatus Brigalow 

NSW 
31.03±0.26 74.26±0.97 2.39 256.49±5.86 8.26 

H. bitorquatus Texas QLD 24.4± 0.4 67.99±0.94 2.79 240.61±3.41 9.86 

H. bungaroides Sydney 

NSW 
16.98±0.38 33.04±0.56 1.95 153.28±0.77 9.03 

H. bungaroides Sydney 

NSW 
18.96±0.69 34.95±0.31 1.84 174.11±1.5 9.18 

H. stephensi Brisbane QLD 26.02±1.23 48.88±1.01 1.88 236.7±30.61 9.1 

H. stephensi Brisbane QLD 21.49±0.29 38.48±0.88 1.79 168.2±5.92 7.83 

H. stephensi Brisbane QLD 18.51±0.24 35.48±0.25 1.92 202.03±10.7 10.92 

N scutatus Bunya Mt QLD 10.51±0.20 16.52±0.23 1.57 80.78±1.16 7.69 

N. scutatus Barmah VIC 10.74±0.44 19.15±0.17 1.78 62.96±0.99 5.86 

N. scutatus Bruny Island 13.99±0.42 22.07±0.49 1.58 98.91±1.73 7.07 

N. scutatus Chappell 

Island 
13.98±0.33 20.07±0.29 1.44 58.1±0.35 4.15 

N. scutatus Coomalbidgup 

WA 
14.35±0.29 24.7±0.44 1.72 126.84±0.51 8.84 

N. scutatus Franklin Island 11.1±0.14 18.02±0.44 1.62 70.95±0.34 6.39 

N. scutatus Kangaroo 

Island 
12.2±0.77 23.09±0.53 1.89 122.86±1.27 10.07 

N. scutatus Lake 

Alexandrina SA 
9.95±0.22 13.97±0.11 1.4 46.35±1.69 4.66 

N. scutatus Margaret River 

WA 
10.36±0.98 13.59±0.23 1.31 40.74±0.55 3.93 

N. scutatus Melbourne VIC 11.33±0.21 21.76±0.08 1.92 91.89±1.29 8.11 

N. scutatus Melbourne VIC 

1935 
14.68±0.21 25.02±0.46 1.7 112.28±2.12 7.65 

N. scutatus Mt Gambier 

SA 
13.26±0.51 23.04±0.55 1.74 153.74±2.09 11.6 

N. scutatus New Year 

Island 
12.13±0.19 21.03±0.25 1.73 89.06±1.66 7.34 

N. scutatus Perth WA 14.11±0.48 22.01±0.4 1.56 101.55±2.05 7.19 

N. scutatus Tasmania 9.43±0.24 13.5±0.15 1.43 50.67±0.81 5.38 

N. scutatus Werribee VIC 11.21±0.05 19.83±0.17 1.77 78.56±2.07 7.01 

P. atriceps Lake Cronin WA 21.73±0.87 47.33±0.77 2.18 304.82±2.84 14.03 

T. carinatus Brisbane QLD 10.77±0.34 17.33±0.21 1.61 122.91±1.06 11.42 

T. carinatus Eumundi QLD 9.3±0.04 12.49±0.61 1.34 85.96±0.87 15.3 

T. carinatus Numbinbah 

Valley QLD 
9.72±0.11 15.05±0.35 1.55 142.39±2.65 8.84 
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Figure legends 

Figure 1: Ancestral state reconstruction of clotting times, where warmer colours represent faster 

clotting times. Bars indicate 95% confidence intervals for the estimate at each node, Note that due 

to the high dynamicity of venom evolution the ranges quickly become broad as one moves down the 

tree. Numbers at tips are clotting time averages (Table 2). 

 

Figure 2: Calibrated Automated Thrombogram curve for the Melbourne population of Notechis 

scutatus at seven different final concentrations. The decrease in thrombin production at higher 

concentrations is indicative of prothrombin activation occurring prior to the commencement of the 

experiment. X-axis is time (seconds) and y-axis is nM of thrombin production. 

 

Figure 3: Calibrated Automated Thrombogram curves. Coloured lines represent each of the three 

different venom concentrations: green represents 0.00083µg, red 0.000083µg, and blue 

0.0000083µg/ml. X-axis is time (seconds) and y-axis is nM of thrombin production. 

 

Figure 4: Ancestral state reconstruction of relative co-factor dependency as indicated by the 

proportional shift in clotting time when co-factor is not added, where warmer colours represent less 

dependency.  Numbers at tips are means from N=3 tests indicating the x-fold shift in clotting time 

caused by co-factor absence (Table 2). Bars indicate 95% confidence intervals for the estimate at 

each node, Note that due to the high dynamicity of venom evolution the ranges quickly become 

broad as one moves down the tree. 

Figure 5: Ancestral state reconstruction of clotting time versus relative phospholipid dependency, 

where warmer colours represent faster clotting times. Numbers at tips are means from N=3 tests 

indicating the x-fold shift in clotting time caused by co-factor absence (Table 2). Bars indicate 95% 

confidence intervals for the estimate at each node, Note that due to the high dynamicity of venom 

evolution the ranges quickly become broad as one moves down the tree. 

Figure 6. Comparison of a bird specialist (Chappell Island population of N. scutatus) and a frog 

specialist (T. carinatus) effects upon amphibian, avian and mammalian plasmas shown as 

concentration curve views (left panels) and normalised logarithmic transformed views (right 

panels). X-axis is concentration µg/ml) and Y-axis is time (seconds).  

Figure 7: The extremely high levels of conservation of the prothrombin targets from 1) mammal 

(accession code P00734), 2) avian (accession code A0A1L1RV31) and 3) amphibian (accession 

code Q5FVW1) and the FXa toxins from 1) H. stephensii (accession code AY940208), 2) N. 

scutatus (accession code DQ104218) and 3) T. carinatus (accession code AY769963). Cysteines are 

shown in black highlight and signal peptides in lowercase. Conserved cleavage sites indicated by * 

and green highlighting. 

Figure 8: Coagulation dose-response curve views. Red lines represent venom in optimal conditions 

(i.e. with calcium and phospholipid) while blue line represents the clotting after preincubation with 

CSL tiger snake antivenom and then run under the same conditions as the red line protocol. X-axis 

is concentration µg/ml) and Y-axis is time (seconds).  

Figure 9: Coagulation normalised logarithmic transformed views. Red lines represent venom in 

optimal conditions (i.e. with calcium and phospholipid) while blue line represents the clotting after 
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preincubation with CSL tiger snake antivenom and then run under the same conditions as the red 

line protocol.  

Figure 10: Comparative efficacy of 2003 and 1959 antivenoms as concentration curve views (left 

panel) and normalised logarithmic transformed views (right panel). X-axis is concentration µg/ml) 

and Y-axis is time (seconds). 
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Figure 10 


