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Abstract

Unattended sensor networks operating in hostile envi-
ronments might collect data that represents a high-value
target for the adversary. The unattended sensor’s inability
to off-load – in real time – sensitive data to a safe external
entity makes it easy for the adversary to mount a focused
attack aimed at eliminating certain target data. In order
to facilitate survival of this data, sensors can collectively
attempt to confuse the adversary by changing its location
and content, i.e., by periodically moving the data around
the network and encrypting it.

In this paper, we focus on data survival in unattended
sensor networks faced with an adversary intent on surgi-
cally destroying data which it considers to be of high value.
After motivating the problem and considering several attack
flavors, we propose several simple techniques and provide
their detailed evaluation.

1. Prelude

Sensors and sensor networks have generated a veritable
flurry of research activity in the past decade. Much of the
prior research concentrated on so-called Wireless Sensor
Networks (WSNs) and included: routing, security, power-
awareness, data abstraction as well as many other aspects
of WSN operation.

One common assumption in most prior WSN security re-
search has been that data collection is performed in a more-
or-less real time fashion. In other words, a trusted entity
(such as a collector or a sink) is assumed to be present. A
variation of this assumption is that the this entity is able to
query the WSN in real time and obtain a reply. While it may
well be true that many – or even most – sensor networks
operate in such general settings, there remains a segment
of WSNs and their applications that do not fit within the
real time data collection model. Such networks are some-

times referred to as Unattended WSNs or UWSNs, for short.
There are also hybrid UWSNs where the set of nodes, in ad-
dition to sensors, includes some small number of collector
nodes, each serving as a temporary repository for their con-
stituent sensors. The real sink later obtains data directly
from the collector nodes.

In this paper, we are interested in homogeneous UWSNs,
meaning that the network is composed of peer sensors. Fur-
thermore, we focus primarily on UWSNs operating in hos-
tile, or at least untrusted, environments where the adversary
has relatively free reign. In particular, the adversary is as-
sumed to be single-mindedly focused on destroying certain
target data collected by sensors. We elaborate on this below.

There are a number of real and easily imagined hostile
environments that match the above description. Consider,
for example, a network of nuclear emission sensors de-
ployed in a recalcitrant country (say, under an international
treaty) in order to monitor any potential nuclear activity.
Another example is an underground sensor network aimed
at monitoring sound and vibration produced by troop move-
ments (or border crossings). One can also imagine an air-
borne sensor network tracking fluctuations in air turbulence
and pressure in order to detect enemy aircrafts. Among the
features that unify these examples is the likely presence of a
powerful – yet careful – adversary. Informally speaking, we
say that the adversary is powerful if it can subvert a number
of sensors at will, while it is considered careful if it wishes
to remain undetected in the process.

In such settings, one of the biggest challenges is to en-
sure data survival for long enough that it can be collected
by the itinerant sink. Clearly, if the adversary is unable
to break into (i.e., compromise) a single sensor or inhibit
communication between a sensor and an eventual collector
or sink, it has no hope of destroying the data. However,
we envisage a more realistic adversary that is aware of the
origin(s) of target data and is also assumed capable of com-
promising any sensor it chooses, up to a specific threshold
(fraction or absolute number) of sensors, within a certain



time interval. Such an adversary has been studied in the
cryptographic literature where it is usually referred to as
a Mobile Adversary [13]. An entire branch of cryptogra-
phy, called Proactive Cryptography has been dedicated to
developing cryptographic techniques (e.g., decryption and
digital signatures [7, 8]) that remain secure in the presence
of a mobile adversary. Although our adversary models are
identical, the UWSN application domain is very different
from that in proactive cryptography (as described below),
thus motivating radically different solutions.

UWSNs have also recently been considered in the con-
text of minimizing storage and bandwidth overhead due to
data authentication in the presence of a powerful adversary
[12]. The resulting forward-secure aggregate authentication
techniques can efficiently provide for so-called forward se-
curity, i.e., having compromised a sensor, the adversary is
unable to modify any data collected by the sensor prior to
compromise (other than by deleting all accumulated data).
Our focus is quite different: we assume that the adversary is
actively hunting certain data and is not afraid to delete/erase
any data it finds.

1.1 Contributions

The work described in this paper makes three main con-
tributions:

1. Problem Exposure: we believe that this paper is the
first to identify the problem of data survival in UWSNs
in the presence of a powerful mobile adversary. Be-
sides exposing the problem, we probe a number of rel-
evant issues having to do with the exact power of the
adversary and the resilience of the network.

2. Simple Technique & Analysis: we propose a straight-
forward non-cryptographic technique aimed at hiding
the data from the adversary. Our evaluations show a
surprising degree of data survival even when the ad-
versary is relatively capable and the time between suc-
cessive sink visits is relatively long. However, we also
demonstrate the eventual futility of hiding data loca-
tion without hiding its contents.

3. Raising the Stakes: after observing that the simple
technique has certain basic limitations, we gradually
introduce a more advanced approach based on standard
cryptographic tools.

Organization of this paper: Section 2 overviews related
work, followed by Section 3 which introduces our envi-
ronment assumptions. Then, Section 4 explores potential
strategies for both the UWSN and the adversary and Section
5 provides both analyses and simulation results for various

strategies. Section 6 considers using replication as an addi-
tional survival aid and demonstrates a set of corresponding
simulation results. Section 7 sketches how the introduction
of cryptography helps data survival. The paper ends in Sec-
tion 8 with discussion and directions for future work.

2. Related Work

Since WSNs share many features with Mobile Ad Hoc
Networks (MANETs), it is not surprising that some related
work comes from the MANET research literature. The
problem of data availability in MANETs has been studied
extensively in the relatively benign context of communica-
tion faults and network partitions. This research thread aims
to maintain data availability to any MANET node, even if
the network is fragmented. For example, Hara, et al. [10]
introduced some simple and effective algorithms to repli-
cate data in MANETs, such that a node in a disconnected
partition can access any data with high probability. The sys-
tem also provides some means to deal with replica consis-
tency (in case of updates to the original data) and a simple
location management technique to guarantee that nodes ac-
cess the closest replica.

In another related result, Giannuzzi, et al. [9] studied
data availability through replication in paritioned MANETs.
This work shows that the probability of accessing certain
data is dependent not only on the number of replicas but also
on the network density as well as on the nodes’ transmission
radius.

Chessa, et al. [5] introduced a distributed data stor-
age approach for MANETs, based on the peer-to-peer
paradigm. This approach provides support for creating and
sharing files under a write-once model; it also ensures data
confidentiality and dependability by encoding files in a Re-
dundant Residue Number System (RRNS).

One more recent result addressed data availability in
WSNs [11]. It develops a way to maximize the amount
of data recovered at the sink and shows how the proposed
scheme improves data availability when a portion of the net-
work is unavailable due to natural disasters.

Finally, another set of results [4, 14] leverages the avail-
ability of multiple paths between end-nodes to statisti-
cally improve data confidentiality and availability in hostile
MANET settings, in the presence of both insider and out-
sider adversaries.

3. System Assumptions

In this section we describe our assumptions about the
network and the adversary.



3.1 Network Assumptions

The envisaged UWSN is assumed to operate as follows:

• Sensors are programmed to collect data periodically.
There is a fixed global periodicity parameter p which
denotes the time interval between successive sensing
actions. Note that this rules out certain sensor environ-
ments which operate on query basis, i.e., where sensors
only obtain data when explicitly requested to do so.

• Each sensor collects a single unit of data for each in-
terval. In an UWSN composed of n sensors, we say,
each sensor si collects data di

r for interval r.

• The network is unattended. There exists a parameter
q > p which denotes the maximum time between suc-
cessive visits of the sink or collector. (We use the term
sink from here on to mean both). We use v = q/p
to represent the maximum number of sensing intervals
between successive sink visits.

• The network is connected at all times. Any two sen-
sors can communicate either directly or indirectly, via
other sensors. Although we use the term UWSN, we
make no assumption about the wireless medium. (The
network can, in fact, be connected with wires.)

• There is no power constraint. At least initially, we
are not concerned with power consumption of vari-
ous defensive techniques. (This assumption will be
re-considered later.)

• Ample storage. Each sensor is equipped with enough
storage to accommodate O(v) sensed data.

As seen from our assumptions, even apart from its unat-
tended nature, we are considering a kind of a sensor net-
work not typically encountered in the research literature.

3.2 Adversary Model

We now focus on the description of the anticipated ad-
versary. We refer to it as A from here on.

• Compromise power: A is capable of compromising at
most k out of the total of n sensors during one collec-
tion interval. The parameter k may be absolute, i.e., an
integer, or relative, i.e., a fraction of n – the total num-
ber of sensor nodes. When A compromises a node,
and for as long as it remains in control of that node,
we assume that it reads all of memory and monitors all
incoming and outgoing communication.

• Network knowledge: A knows the composition and
the topology of the network; even if the network topol-
ogy changes over time.

• One chance to kill: in the time between two successive
sink visits, A can erase only one data unit from only
one sensor it compromises. (Erasing any more than
that raises an alarm on the sink; we will re-consider
this assumption later on.)

• No interference: except for the above, A does not in-
terfere with communications of any sensor and does
not modify any data collected by, or stored on, any sen-
sors it compromises.

• Stealthy operation: A’s movements between intervals
are unpredictable and untraceable. Specifically, it is
impossible to detect when and if the adversary ever
visited (compromised) a particular sensor.

• Atomic movement: A moves in one fell swoop, i.e., at
the end of each interval, it selects at most k nodes for
the next round and migrates to them in one monolithic
step. Note that the two sets of compromised nodes may
intersect or even be the same.

• Leave nothing behind: as it moves from one set of k
nodes to the next, A leaves no trace behind.

Table 1 summarizes the notation used in the remainder of
the paper.

n size of the UWSN
N set of the sensor nodes of the UWSN
i, j sensor indexes
si sensor i
r round index

di
r sensed data collected by sensor i at interval r
x target data

s̄r sensor that at round r stores x
v number of rounds between successive sink visits

Cr set of compromised sensors (controlled by A)
at round r

k size of Cr; we assume it to be constant

Table 1. Notation Summary

4. Strategies and Design Space

As discussed earlier, our main goal is to ensure survival
of data collected by some sensor si at interval r. (Recall
that survival means that this data is eventually delivered to
the sink.) A picks both si and r. Unfortunately for us, since
A does not reveal the data it is interested in erasing, we
know neither of these values, other than 1 ≤ i ≤ n and
0 ≤ r ≤ v.

As a consequence, we have to assume the worst, mean-
ing that A will target some data collected during round 0,



immediately following the sink visit. (Hence, A has max-
imum time to look for the target data.) Similarly, we must
assume that all data is potentially targeted by A, i.e., every
di

r is equally likely to be the adversary’s target.
We now consider several survival strategies. From the

network’s perspective, there are three intuitive options:

• DO-NOTHING. The easiest thing is to do nothing:
simply leave data resident on the sensor that collected
it and wait for the sink. In this case, A succeeds
quickly by compromising the target sensor and eras-
ing the target data.

• MOVE-ONCE. A trivial alternative is for each sensor
– right after collection – to move the newly obtained
data to some other randomly picked sensor. The data
then remains at its new “home” until the next sink visit.

• KEEP-MOVING. A more laborious option is to move
data continiously, i.e., at every interval, each sensor
moves each data item individually to another randomly
chosen sensor.

No matter what survival strategy is used, we must assume
that A is fully aware of it. Knowing the network’s survival
strategy, A can formulate an attack strategy that maximizes
its chances of destroying the target data.1 We consider the
following possibilities:

• LAZY: The easiest thing for A is to do nothing: com-
promise k nodes at the start and stay put. In other
words, Cr+1 = Cr for 0 < r ≤ v. This attack
strategy is not sensible if the survival strategy is, for
example, DO-NOTHING or MOVE-ONCE. (This is
becauseAmight never capture the target data, no mat-
ter how large v is). It is more effective in other cases,
as will be seen below.

• FRANTIC: Another extreme is for A to move at the
beginning of each interval r + 1 to a set Cr+1 of k
nodes randomly chosen among the set N \ Cr. In
other words, Cr+1 ∩ Cr = ∅ for 0 < r ≤ v.

• SMART: An alternative counter-strategy is for A to
pre-select two sets of nodes: C0 and C1, each of size k.
Then, A simply alternates control between these two
sets at each interval. In other words, Cr = Cr mod 2

for 0 < r ≤ v. This attack strategy is clearly
a poor match for DO-NOTHING and MOVE-ONCE
(but works well for KEEP-MOVING, as discussed be-
low.)

It is easy to see that not all attack-survival strategy com-
binations make sense. Table 2 illustrates the possibilities.

1The reverse is not true, i.e., we do not assume that the adversarial
strategy is known to the UWSN.

Table 2. Viability of Survival and Attack Strate-
gies

Attack Strategy:
Survival Strategy: LAZY FRANTIC SMART
DO NOTHING NO YES NO
MOVE ONCE NO YES NO
KEEP MOVING YES YES YES

A ”YES” label in a table cell implies that the correspond-
ing combination of defense and attack strategies is viable.
Whereas, a ”NO” means that the corresponding combina-
tion is not sensible, at least for A. For example, consider a
DO-NOTHING defense: if the adversary is LAZY, it stands
little chance of finding target data (unless it gets lucky and
C1 includes the sensor that collected target data).

In the rest of this paper, we will investigate viable com-
binations reflected in Table 2.

Encryption. An important issue is whether UWSN nodes
can use encryption. If encryption is available, nodes can
hide not only the collected data itself but also the identity
of the sensor that collected it, as well as the round identifier.
(Of course, this does not help at all with the DO-NOTHING
defense strategy.) Use of encryption is a natural choice,
however it comes with certain non-negligible costs, includ-
ing key management and encryption overhead. Encryption
also motivates certain assumptions and technicalities which
we discuss later in the paper (see Section 7). In summary,
we do not mandate the use of encryption but treat it as an
option. Our initial investigation focuses on encryption-free
UWSNs.

Replication. Another design dimension is replication,
i.e., whether sensors create multiple copies of sensed data
before moving it to other locations. Replication has some
obvious advantages and drawbacks. The main advantage is
increased chances of data survival, while the main drawback
is increased storage and communication overhead. If repli-
cation is used, the next issue is its degree, i.e., how many
replicas are sufficient to guarantee a certain probability of
survival, given a particular attack strategy. We begin exam-
ining the case of no replication and then proceed to consider
replication as an additional survival aid.

5. Evaluation

We now investigate in more detail some possible survival
and attacks strategies.



5.1 DO-NOTHING and MOVE-ONCE

For the sake of completeness, we start with the DO-
NOTHING defense strategy. As the name suggests, there
is not much to evaluate. Clearly, A can attain its goal very
quickly and certainly: it learns the identity of s̄0 at the end
of round 0. Then, at round 1, it compromises any set of
nodes that includes s̄0, and proceeds to delete x.

We now turn to the MOVE-ONCE strategy, as described
in Section 4. Even thoughA knows s̄0 identity at the end of
round 0, it has no knowledge of s̄1 – the node selected by s̄0

as home for data x. Since any sensor is equally likely to be
s̄1, A cannot do better than selecting the next compromised
set C1 at random.

The best attack strategy for A is FRANTIC. The reason
for this is intuitive: If A chooses to be LAZY, its proba-
bility of success is fixed at k

n , since it only has one round
to capture x. Whereas, if A adopts the SMART strategy,
since data does not continuously move around, the proba-
bility of success, though higher, is also fixed at: 2k

n . (Recall
that A alternates between compromising two k-sized fixed
sets.) Assuming a FRANTIC adversary, if s̄1 ∈ C1, then A
wins at round 1. Otherwise, it proceeds, round-by-round, to
select a new set Cr such that Cr ∩ (C1 ∩ ... ∩ Cr−1) = ∅.
Trivially, it takes dn

k e rounds for A to inspect the memory
of all UWSN nodes. Thus, after n

2k expected rounds,A suc-
ceeds in finding and deleting x. Moreover, if n

k < v, A is
guaranteed to win the game, i.e., delete x before the next
sink visit.

Assuming, for simplicity, that n
k = c (for some integer

c), the probability of the event: Gr =“A finds x at round r”
(1 < r ≤ c), conditioned on the event Fr−1=“A does not
find x in prior r − 1 rounds”, is:

Pr[Gr|Fr−1] =
k

n− (r − 1)k
(1)

Also, the probability Pr[Gr] can be derived as:

Pr[Gr] =
k

n
(2)

It might seem that A’s chances to win the game are low in
the first rounds, while increasing as rounds go by. However,
in every round,A has the same probability (k/n) of success.
For justification of Equation 2, please refer to [6].

5.2 KEEP-MOVING

In this section, we investigate the effectiveness of the
KEEP-MOVING defense strategy – at the end of each in-
terval, every sensor moves its data to a randomly selected
sensor. Algorithm 1 shows the corresponding pseudo-code
executed by the adversary who is following one of the three

Algorithm 1: KEEP-MOVING
/* start round 0 */
all nodes sense their values
each node exchanges data with others

0 A learns s̄0 and x
/* end round 0 */
SET z=min

`
v, n

k

´
SET found=FALSE
for ((r ← 1 to z) and (not found)) do

/* start round r */
1 select Cr /* new set of nodes to compromise */
2 compromise Cr and release Cr−1

3 if (x found on some si ∈ Cr) then
3.1 delete x
3.2 SET found=TRUE

all nodes sense their values
each node exchanges data with others

4 if (x received by some si ∈ Cr) then
4.1 delete x
4.2 SET found=TRUE

/* end round r */

strategies outlined in Section 4.2 The only difference be-
tween them is the particulars of step 1, i.e., how A selects
Cr. Recall that: in LAZY strategy Cr stays the same, in
FRANTIC – it keeps changing each round, and, in SMART
– A alternates between two sets of nodes, each of size k.

We now analyze the three aforementioned attack strate-
gies. Referring to Algorithm 1, for each round r > 0, let s̄r

denote the sensor storing x until step 4 and let s̄r+1 be the
sensor that receives and stores x in step 4 (the same sensor
will keep x until step 4 of the following round).

5.2.1 LAZY

We start with the LAZY attack strategy: at round 1, A ran-
domly chooses a set C1 and keeps it the same for all subse-
quent rounds. This strategy is not completely stupid since
A exploits the fact that data (including the target x) is con-
stantly moving among sensors. A wins the game if some
node currently storing x chooses one of the nodes in C1 as
the new recipient of x.

Referring again to Algorithm 1, it seems that A always
has two chances to delete x in a given round: either (1) x
is stored in one of the sensors it currently controls, or (2) x
gets fortuitously moved by some non-compromised sensor
to another sensor which happens to be in Cr. However,
with a LAZY approach, the first chance only occurs once, at
round 1. Thereafter, sinceA does not move (Cr = C1, r >

2Note that the algorithm depicts the worst-case scenario, i.e., we as-
sume that the target data x is collected in the interval immediately follow-
ing the sink visit. Consequently, A has v rounds at his disposal before the
next sink visit.



1), it can only take advantage of the second chance, i.e.,
some sensor moving x to a node in C1.

We can thus quantify the probability that A wins during
the first round:

Pr[success] =
k

n
+
(

1− k

n

)
k

n
(3)

Intuitively, A wins in r = 1, if s̄1 ∈ C1 or if s̄2 ∈ C1. That
is,Awins if C1 contains the node that received x in round 0
from s̄0 (s̄1 ∈ C1), or if a node in C1 receives x from s̄1 in
round 1 (s̄2 ∈ C1). Pr[{s̄1 ∈ C1}] = k

n , Pr[{s̄2 ∈ C1}] is
the same, conditioned on s̄1 /∈ C1, that is Pr[{s̄2 ∈ C1}] =
Pr[{s̄2 ∈ C1|s̄1 /∈ C1}] · Pr[{s̄1 /∈ C1}].

Let P1 be the probability that A does not win in round
one: we have that P1 is the complement of equation 3, that
is

P1 = 1− Pr[success] =
(

1− k

n

)2

(4)

Now, the probability that the LAZY A fails for v consec-
utive rounds, i.e., the probability that x survives v rounds
is:

PL(v) = P1 · P v−1
2 (5)

where P1 =
(

1− k

n

)2

and P2 =
(

1− k

n

)
For a justification of equation 5, please refer to [6].

As a result, the probability that the LAZY A wins at
round v > 1 is

PL(v) = P1 · P2
v−2 · P2 (6)

where P2 = k
n . By sampling equation 5, we can get an

idea of the effectiveness of this strategy. For example, in a
UWSN of 100 sensors and k = 10, the probability that x
survives at least 5 rounds, PL(5) = 0.5, PL(10) = 0.31,
and PL(20) = 0.11. A more detailed qualitative evaluation
of PL(v) is reported upon in Section 5.3.

5.2.2 FRANTIC

In this section, to evaluate the effectiveness of the frantic
strategy, we introduce the following claim.

The probability that a FRANTICA fails in v consecutive
rounds is:

Pf (v) = P1 · P v−1
2 · P v−1

3 (7)

where

P1 =
(

1− k

n

)2

, P2 =
(

1− k

n

)
and P3 =

(
1− k

n− k

)
The justification for equation 7, can be found in [6].

As a result, we can state the probability that the FRAN-
TIC A wins at round v > 1 is:

Pf (v) = P1 · (P2P3)v−2 · (P2 + P2P3) (8)

where P3 = k
n−k and P2 = k

n . To get an idea of the
effectiveness of the FRANTIC attack strategy, consider that
in a UWSN with n = 100 sensors and with k = 10, the
probabilities that x survives for 5, 10 and 20 rounds are,
respectively: 0.33, 0.11 and 0.012. Whereas, the corre-
sponding probabilities for the LAZY A are, respectively:
0.5, 0.31 and 0.11.

5.2.3 SMART

As illustrated above, the FRANTIC attack strategy is quite
effective. However, it requiresA to constantly move around
which involves some amount of effort and risk of detection.

To minimize efforts – and knowing that the UWSN is
employing the KEEP-MOVING defense – our adversary
might adopt the SMART strategy, as outlined in Section 4.
Intuitively, because of the constant data mobility inherent
to the KEEP-MOVING defense, a SMART A achieves the
same probability of success as a FRANTIC A. While this
claim might seem counter-intuitive, consider the following
observation:

Regardless of how (randomly or otherwise) a
SMART A selects the two sets of nodes C0 and
C1, the choice of s̄r+1 (the new ”host” of the tar-
get data) is made uniformly, at random.

Therefore, the only condition for the result in Section 5.2.2
to apply to the SMART A is that Cr

⋂
Cr+1 = ∅.

5.3 Simulation Results and Discussion

To confirm the above analytical results, we developed
a UWSN simulator and obtained some simulation results.
In this section, we present these results for the three attack
strategies and discuss some cost-related issues.

Our simulator faithfully follows Algorithm 1 in Sec-
tion 5.2. For every simulation run, we set the size of the
network n, the size of set Cr, and the attack strategy. We
record the round at which A captures the target value x.
This allowed us to obtain an estimate of the effectiveness of
the three attack strategies.

Fig. 1 shows the probability of x surviving r rounds with
k (number of nodes A can compromise in a single round)
varying between 2, 5 and 10. In all of the following sim-
ulations, the network size is fixed to 100 nodes. We stress
the importance of parameter k. Increasing k provides an ad-
vantage to the adversary that is more than linear when k is
small. For instance, between rounds 5 and 10, the survival
probability when A controls k = 5 nodes is three times
the corresponding probability for k = 10. For number of
rounds between 10 and 25, the probability is at least six
times bigger, even if asymptotically both probabilities con-
verge to zero, i.e., A eventually wins as r grows. Note that



scheme #msg at #msg up to #msg in memory at round r #msg received at round r
round r round r

Move-Once n r · n Pr[∃ si s.t. Lr
i ≥ r +

√
nr] ≤ e−r/2+ln n O(ln n)

Keep-Moving r · n r(r−1)
2

n Pr[∃ si s.t. Lr
i ≥ 2er] ≤ 2−r+ln n Pr[∃ si s.t. Mr

i ≥ 2er] ≤ 2−r+ln n

Table 3. Overhead comparison
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Figure 1. Probability of x survival for n = 100
and k = 2, 5, 10, respectively.

k = 10 implies dealing with A controlling 10% of the net-
work, quite a powerful A.

Table 3 shows the overhead for the defense strategies.
The first row corresponds to MOVE-ONCE, and the second
– to KEEP-MOVING. The table illustrates that the over-
head in terms of message transmissions is quite high for
KEEP-MOVING. Regarding the overall storage load and
the number of messages received in a single round, the table
shows the probability bound which, in turn, demonstrates
that these solutions viable.3

6. Replicas

Since our main goal is to keep x alive for v rounds, in-
troducing replicas in the network will increase the proba-
bility that the sink will find at least one surviving copy of
x. If si, after sensing di

r, creates and distributes R copies,
A must delete all copies to win the game. As shown be-
low, the probability of success of A would decrease as R
increases. However, the drawback is the commensurate R-
fold increase in the number of messages in the network,
which affects memory and energy requirements.

Let Xi,j = 1 denote the fact that the i-th replica survives
up to jth round, and Xi,j = 0 denote the fact that A erased

3For the proof of bounds in Table 3, refer to [6].
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Figure 2. Comparison between the three
types of adversary: n = 100, k = 10, R = 5

it. According to equation 7, we have:

Pr[X1,j = 1] = P1 · P j−1
2 · P j−1

3

Now, we need to evaluate the probability P v
R of having no

replicas surviving up to round v. We have:

P v
R = Pr[X1,v = 0 ∧ . . . ∧XR,v = 0] = Pr[X1,v = 0]R =

= (1− Pr[X1,v = 1])R = (1− P1 · P v−1
2 · P v−1

3 )R

The probability of at least one (of R) replicas surviving to
round v is:

P v
R = 1− P v

R = 1− (1− P1 · P v−1
2 · P v−1

3 )R (9)

6.1 Further Simulations

As shown by Equation 9 and the results of our simula-
tions, replicas act as an effective additional counter-measure
to the focused erasure pursued by A. However, replication
is only viable when the network is capable of handling an
R-fold increase in storage and transmission costs.

Figure 2 shows the probability of A succeeding in a
UWSN where n = 100, k = 10, and R = 5. As in the
case of no replication, the LAZY strategy is somewhat less
efficient than either SMART or FRANTIC strategies.
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Figure 3. Survival probability, according to
the degree of replication R, with n=100, k=3

Comparing the FRANTIC curve in Figure 2 with the
third curve in Figure 1 (for k = 10), the benefit of repli-
cas can be easily appreciated. For example, probability of
x surviving 5 rounds when data is not replicated, is 0.33,
while it is 0.87 for R = 5. As expected, the differences be-
tween the two strategies diminish as the number of rounds
increases.

Figure 3 demonstrates how the probability of data sur-
vival changes with respect to the degree of replication in an
UWSN with n = 100 and k = 3. In particular, after 20
rounds, survival probability increases from 0.29 when no
replication is used to 0.82 when R = 5.

In Figure 4, we consider a more capableA that is able to
compromise 10% of the network nodes at each round. With
such an adversary, the survival probability after 20 rounds
becomes almost zero regardless of the degree of replication.
However, it is worth noting that data replication is still ef-
fective during the first few rounds: for example, the proba-
bility of x surviving after 6 rounds, ranges from 0.26 when
x is not replicated, to almost 0.79 when R = 5. Hence, if
the number of rounds exceeds a certain threshold, replica-
tion does not substantially help in data survival. However, if
the number of round between successive sink visit is reason-
ably small, replication does offer substantially higher prob-
ability of survival even against a more capable adversary.

The main conclusions that can be drawn from our re-
sults is the surprising degree of data survival even when the
adversary is relatively capable with respect to the time be-
tween successive sink visits. Furthermore, for small values
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Figure 4. Survival probability, according to
the degree of replication R, with n=100, k=10

of v, benefits of replication are magnified as k increases.

7. Encryption

As mentioned earlier in the paper, the use of encryption
is an obvious aid in data survival. However, it involves cer-
tain costs. We now look into several issues associated with
the use of encryption and sketch out some possible strate-
gies for integrating encryption with the defense (and attack)
strategies discussed above.

Note that we are concerned with encryption as a means
of obtaining data privacy, i.e., hiding the origin and the con-
tent of data. In this context, we are not concerned with data
authenticity, since our adversary’s goal is strictly to elimi-
nate (and not to modify) data. However, since data mod-
ification can be viewed as a form of data erasure, we as-
sume that, data authentication is provided before encryption
is applied to data. More concretely, we assume that all data
is encrypted using Plaintext-Aware Encryption [2] whereby
any modification (without knowledge of the secret key) will
produce gibberish upon attempted decryption.

Furthermore, we assume that, regardless of encryption
particulars, encryption is always randomized, which (infor-
mally) means that given two encryptions under the same
key, it is infeasible to determine whether the corresponding
plaintext messages are the same.

As usual, the choice of public key or conventional tech-
niques is the main variable when it comes to introducing en-
cryption. We prefer to remain agnostic with respect to this



choice and briefly sketch out approaches for both cases.

7.1 Public Key Encryption

Public key encryption is typically avoided in the sensor
network literature since its higher cost is a poor match for
low-cost sensors. However, for the sake of completeness,
we sketch out a possible setting:

• The sink has a public key, PKsink, known to all sen-
sors.

• As soon as a sensor si collects a unit of data
di

r (at round r), it encrypts it to produce Ei
r =

E(PKsink, di
r, r, etc.).

• The rest is identical to Algorithm 1.

Notice that sensors have no secret keys of their own – they
merely use the sink’s public key to encrypt data. However,
A is greatly handicapped by this simple approach since it
can no longer distinguish the target data from any other en-
crypted data it finds on compromised sensors.

Without access to the sinks’s decryption key (SKsink),
the only way A can attempt to detect target data is by try-
ing to encrypt its duplicate under the sink’s public key,
PKsink. This is, however, where our randomized encryp-
tion assumption comes in handy. Randomized encryption
basically assumes that each encryption operation involves
generating a one-time random number and somehow ”fold-
ing” it into the plaintext (e.g., as in OAEP+ [15]) such that,
without knowledge of that unique random number, it is in-
feasible to re-create the same ciphertext. Consequently, A
is completely unable to distinguish among (as far as which
sensor encrypted them, what values are encrypted and/or at
what interval) different encrypted values it finds on compro-
mised sensors.

Another interesting feature of public key encryption is
that some techniques (e.g., [1]) allow what is referred to
as re-encryption. This means, in our setting, that a sensor
which receives already-encrypted data from another sen-
sor, can re-encrypt that data such that the previous sensor
would be unable to recognize its own encrypted data there-
after. The re-encryption operation does not involve encrypt-
ing something twice – it is usually light-weight, only requir-
ing some minor operations on already-encrypted data. The
use of re-encryption might benefit us considering that A as
it breaks into sensors at each round r, might attempt to copy
and remember the encrypted values that sensors in Cr gen-
erate, encrypt and move out during the same round. (That
way it could detect them later.) If all sensors re-encrypt all
values they receive from others,A would be placed at a fur-
ther disadvantage.

7.2 Conventional Encryption

The construction needs to be somewhat different with
conventional encryption.

• Each sensor si shares a unique initial pairwise key ki
0

with the sink.

• As soon as si collects a unit of data di
r (at round r), it

encrypts it to produce Ei
r = E(ki

r, d
i
r, r, etc.).

• Then, si computes ki
r+1 = OWF (ki

r) where OWF ()
is a cryptographically suitable one-way function, such
as SHA-2.

• The rest is identical to Algorithm 1.

Since conventional encryption is invertible, we need to
worry about what happens when A compromises a given
sensor si. Suppose that a particular si originally generated
the target data x. If we do not change the key (under which
x was encrypted), our adversary will win the game with al-
most the same probability as in the case with no encryption.
To see this, consider that the adversary would simply col-
lect and remember all (conventional) keys of all sensors it
compromises. Then, when it breaks into a particular sensor,
it can essentially decrypt most (or all) of the encrypted data
it finds and eventually find the encrypted version of x.

Thus, we need a property commonly referred to as For-
ward Security [3]. This is the reason for evolving the key
at each round, using the OWF () function. A minor issue
is how the sink would decrypt data: this does not pose a
problem since the sink has all initial keys of the form ki

0.
It can then attempt to decrypt a given encrypted message
using all n ∗ v possible keys. While this might seem ex-
cessive, we point out that conventional encryption is very
inexpensive and the sink is assumed to have no computa-
tional constraints.

7.3 Effects of Encryption

Based on the above discussion, we claim that, regard-
less of the encryption type (public key or conventional), our
adversary has equally diminished capacity to detect (and
erase) target data as it inspects the memory of compromised
sensors.

At the same time, we probably need to re-examine our
adversarial model. Recall that A has one-chance-to-kill as
described in Section 3.2. We need to re-evaluate this fea-
ture mainly because the adversary is now unable to deter-
mine what data to erase. Specifically, it has no idea what
(encrypted) data originated at which sensor. Hence, one-
chance-to-kill no longer applies.

One possible modification is to allow A to erase up to
a certain number (say, b) of encrypted data values. This



immediately motivates a different analytical model, for each
of the defense and attack strategy combinations explored in
this paper. This clearly represents an exciting avenue of
research which is indeed currently on-going. However, due
to space limitations we do not report our preliminary results
but defer them to the later (full) version of this paper.

8. Conclusions

This paper has defined, for the first time, the problem of
data survival in UWSNs in the presence of a capable mo-
bile adversary. Besides exposing the problem, we probed
a number of interesting issues having to do with the power
of the adversary and the degree of data resilience supported
by the network. In particular, we introduced a network and
a threat model which allow systematic study of a variety
of survival/attack strategies. We also considered the use of
replication as one means of increasing survival probability
of high-value data. Both analytical and simulation results
show that proposed techniques offer non-negligible guaran-
tees of data survival. Although we addressed these issue
without resorting to encryption, we sketched out how the
use of encryption prompts a number of new issues. (This is
one of the subjects of our on-going work.)
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