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Catch Me if You Can: Evaluating Android
Anti-malware against Transformation Attacks

Vaibhav Rastogi∗, Yan Chen, and Xuxian Jiang

Abstract—Mobile malware threats (e.g., on Android) have
recently become a real concern. In this paper, we evaluate the
state-of-the-art commercial mobile anti-malware products for
Android and test how resistant they are against various common
obfuscation techniques (even with known malware). Such an
evaluation is important for not only measuring the available
defense against mobile malware threats but also proposing effec-
tive, next-generation solutions. We developed DroidChameleon,
a systematic framework with various transformation techniques,
and used it for our study. Our results on ten popular commercial
anti-malware applications for Android are worrisome: none of
these tools is resistant against common malware transformation
techniques. Moreover, a majority of them can be trivially defeated
by applying slight transformation over known malware with little
effort for malware authors. Finally, in the light of our results,
we propose possible remedies for improving the current state of
malware detection on mobile devices.

Index Terms—Mobile, malware, anti-malware, Android.

I. INTRODUCTION

Mobile computing devices such as smartphones and tablets
are becoming increasingly popular. Unfortunately, this popu-
larity attracts malware authors too. In reality, mobile malware
has already become a serious concern. It has been reported that
on Android, one of the most popular smartphone platforms [2],
malware has constantly been on the rise and the platform
is seen as “clearly today’s target” [3], [4]. With the growth
of malware, the platform has also seen an evolution of anti-
malware tools, with a range of free and paid offerings now
available in the official Android app market, Google Play.

In this paper, we aim to evaluate the efficacy of anti-malware
tools on Android in the face of various evasion techniques. For
example, polymorphism is used to evade detection tools by
transforming a malware in different forms (“morphs”) but with
the same code. Metamorphism is another common technique
that can mutate code so that it no longer remains the same
but still has the same behavior. For ease of presentation,
we use the term polymorphism in this paper to represent
both obfuscation techniques. In addition, we use the term
‘transformation’ broadly, to refer to various polymorphic or
metamorphic changes.

Polymorphic attacks have long been a plague for traditional
desktop and server systems. While there exist earlier studies
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on the effectiveness of anti-malware tools on PCs [5], our
domain of study is different in that we exclusively focus on
mobile devices like smartphones, which require different ways
for anti-malware design. Also, malware on mobile devices
have recently escalated their evolution but the capabilities of
existing anti-malware tools are largely not yet understood.
In the meantime, simple forms of polymorphic attacks have
already been seen in the wild [6].

To evaluate existing anti-malware software, we develop
a systematic framework called DroidChameleon with sev-
eral common transformation techniques that may be used to
transform Android applications automatically. Some of these
transformations are highly specific to the Android platform
only. Based on the framework, we pass known malware sam-
ples (from different families) through these transformations
to generate new variants of malware, which are verified to
possess the originals’ malicious functionality. We use these
variants to evaluate the effectiveness and robustness of popular
anti-malware tools.

Our results on ten popular anti-malware products, some of
which even claim resistance against malware transformations,
show that all the anti-malware products used in our study have
little protection against common transformation techniques.
The techniques themselves are simple. The fact that even
without much technical difficulty, we can evade anti-malware
tools, highlights the seriousness of the problem. Many of them
succumb to even trivial transformations such as repacking or
reassembling that do not involve any code-level transforma-
tion. Our results also give insights about detection models used
in existing anti-malware and their capabilities, thus shedding
light on possible ways for their improvements. We hope that
our findings work as a wake-up call and motivation for the
community to improve the current state of mobile malware
detection.

To summarize, this paper makes the following contribu-
tions.
• We systematically evaluate anti-malware products for An-

droid regarding their resistance against various transforma-
tion techniques in known malware. For this purpose, we
developed DroidChameleon, a systematic framework with
various transformation techniques to facilitate anti-malware
evaluation.

• We have implemented a prototype of DroidChameleon and
used it to evaluate ten popular anti-malware products for
Android. Our findings show that all of them are vulnerable
to common evasion techniques. Moreover, we find that 90%
of the signatures studied do not require static analysis of
bytecode.
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• We studied the evolution of anti-malware tools over a
period of one year. Our findings show that some anti-
malware tools have tried to strengthen their signatures with
a trend towards content-based signatures while previously
they were evaded by trivial transformations not involving
code-level changes. The improved signatures are however
still shown to be easily evaded.
• Based on our evaluation results, we also explore possible
ways to improve current anti-malware solutions. Specif-
ically, we point out that Android eases developing ad-
vanced detection techniques because much code is high-
level bytecodes rather than native codes. Furthermore, cer-
tain platform support can be enlisted to cope with advanced
transformations.
The rest of this paper is organized as follows. We present in

Section II the necessary background and detail in Section III
the DroidChameleon design. We then provide implementation
details in Section IV and summarize our malware and anti-
malware data sets in Section V. After that, we present our
findings in Section VI, followed by a brief discussion in
Section VII on how to improve current anti-malware solutions.
Finally, we examine related work in Section VIII and conclude
in Section IX.

II. BACKGROUND

Android is an operating system for mobile devices such as
smartphones and tablets. It is based on the Linux kernel and
provides a middleware implementing subsystems such as tele-
phony, window management, management of communication
with and between applications, managing application lifecycle,
and so on.

Applications are programmed primarily in Java though the
programmers are allowed to do native programming via JNI
(Java native interface). Instead of running Java bytecode,
Android runs Dalvik bytecode, which is produced from Java
bytecode. In Dalvik, instead of having multiple .class files
as in the case of Java, all the classes are packed together in a
single .dex file.

Android applications are made of four types of components,
namely activities, services, broadcast receivers, and content
providers. These application components are implemented
as classes in application code and are declared in the An-
droidManifest (see next paragraph). The Android middleware
interacts with the application through these components.

Android application packages are jar files containing the
application bytecode as a classes.dex file, any native code
libraries, application resources such as images, config files and
so on, and a manifest, called AndroidManifest. It is a binary
XML file, which declares the application package name, a
string that is supposed to be unique to an application, and
the different components in the application. It also declares
other things (such as application permissions) which are not so
relevant to the present work. The AndroidManifest is written
in human readable XML and is transformed to binary XML
during application build.

Only digitally signed applications may be installed on an
Android device. Signing keys are usually owned by individual

developers and not by a central authority, and there is no
chain of trust. All third party applications run unprivileged
on Android.

III. FRAMEWORK DESIGN

In this work, we focus on the evaluation of anti-malware
products for Android. Specifically, we attempt to deduce the
kind of signatures that these products use to detect malware
and how resistant these signatures are against changes in the
malware binaries. In this paper, we generally use the term
transformation to denote semantics preserving changes to a
program. Since we are dealing with malware, we only care
about the interested semantics such as sending SMS message
to a premium number and not things like change of application
name in the system logs.

In this work, we develop several different kinds of trans-
formations that may be applied to malware samples while
preserving their malicious behavior. Each malware sample un-
dergoes one or more transformations and then passes through
the anti-malware tools. The detection results are then collected
and used to make deductions about the detection strengths of
these anti-malware tools.

We classify our transformations as trivial (which do not
require code level changes), those which result in variants that
can still be detected by static analysis (DSA), and those which
can render malware undetectable by static analysis (NSA). In
the rest of this section, we describe the different kinds of
transformations that we have in the DroidChameleon frame-
work. Where appropriate we give examples, using original
and transformed code. Transformations for Dalvik bytecode
are given in Smali (as in Listing 1), an intuitive assembly
language for Dalvik bytecode.

const-string v10, "profile"
const-string v11, "mount -o remount rw system\nexit\n"
invoke-static {v10, v11}, Lcom/android/root/Setting;->

runRootCommand(Ljava/lang/String;Ljava/lang/String;)
Ljava/lang/String;

move-result-object v7

Listing 1: A code fragment from DroidDream malware

A. Trivial Transformations

Trivial transformations do not require code-level changes.
We have the following transformations in this category.

1) Repacking: Recall that Android packages are signed jar
files. These may be unzipped with the regular zip utilities
and then repacked again with tools offered in the Android
SDK. Once repacked, applications are signed with custom
keys (the original developer keys are not available). Detection
signatures that match the developer keys or a checksum of
the entire application package are rendered ineffective by
this transformation. Note that this transformation applies to
Android applications only; there is no counterpart in general
for Windows applications although the malware in the latter
operating systems are known to use sophisticated packers for
the purpose of evading anti-malware tools.
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2) Disassembling and Reassembling: The compiled Dalvik
bytecode in classes.dex of the application package may
be disassembled and then reassembled back again. The various
items (classes, methods, strings, and so on) in a dex file
may be arranged or represented in more than one way and
thus a compiled program may be represented in different
forms. Signatures that match the whole classes.dex are
beaten by this transformation. Signatures that depend on the
order of different items in the dex file will also likely break
with this transformation. Similar assembling/disassembling
also applies to the resources in an Android package and to
the conversion of AndroidManifest between binary and human
readable formats.

3) Changing Package Name: Every application is identified
by a package name unique to the application. This name is
defined in the package’s AndroidManifest. We change the
package name in a given malicious application to another
name. Package names of apps are concepts unique to An-
droid and hence similar transformations do not exist in other
systems.

B. Transformation Attacks Detectable by Static Analysis
(DSA)

The application of DSA transformations does not break all
types of static analysis. Specifically, forms of analysis that
describe the semantics, such as data flows are still possible.
Only simpler checks such as string matching or matching API
calls may be thwarted.

1) Identifier Renaming: Most class, method, and field iden-
tifiers in bytecode can be renamed. We note that several
free obfuscation tools such as ProGuard [7] provide identifier
renaming. Listing 2 presents an example transformation for
code in Listing 1.

const-string v10, "profile"
const-string v11, "mount -o remount rw system\nexit\n"
invoke-static {v10, v11}, Lcom/hxbvgH/IWNcZs/jFAbKo;->

axDnBL(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/
String;

move-result-object v7

Listing 2: Code in Listing 1 after identifier renaming

2) Data Encoding: The dex files contain all the strings and
array data that have been used in the code. These strings and
arrays may be used to develop signatures against malware.
To beat such signatures we can keep these in encoded form.
Listing 3 shows code in Listing 1, transformed by string
encoding.

const-string v10, "qspgjmf"
invoke-static {v10}, Lcom/EncodeString;->applyCaesar(Ljava/

lang/String;)Ljava/lang/String;
move-result-object v10
const-string v11, "npvou!.p!sfnpvou!sx!tztufn]ofyju]o"
invoke-static {v11}, Lcom/EncodeString;->applyCaesar(Ljava/

lang/String;)Ljava/lang/String;
move-result-object v11
invoke-static {v10, v11}, Lcom/android/root/Setting;->

runRootCommand(Ljava/lang/String;Ljava/lang/String;)
Ljava/lang/String;

move-result-object v7

Listing 3: Code in Listing 1 after string encoding. Strings are encoded
with a Caesar cipher of shift +1.

3) Call Indirections: This transformation can be seen as
a simple way to manipulate call graph of the application to
defeat automatic matching. Given a method call, the call is
converted to a call to a previously non-existing method that
then calls the method in the original call. This can be done
for all calls, those going out into framework libraries as well
as those within the application code. This transformation may
be seen as trivial function outlining [8].

4) Code Reordering: Code reordering reorders the instruc-
tions in the methods of a program. This transformation is
accomplished by reordering the instructions and inserting
goto instructions to preserve the runtime execution sequence
of the instructions. Listing 4 shows an example reordering.
goto :i_1
:i_3
invoke-static {v10, v11}, Lcom/android/root/Setting;->

runRootCommand(Ljava/lang/String;Ljava/lang/String;)
Ljava/lang/String;

move-result-object v7
goto :i_4 # next instruction
:i_2
const-string v11, "mount -o remount rw system\nexit\n"
goto :i_3
:i_1
const-string v10, "profile"
goto :i_2

Listing 4: Code in Listing 1 reverse ordered

5) Junk Code Insertion: These transformations introduce
code sequences that are executed but do not affect rest of the
program. Detection based on analyzing instruction (or opcode)
sequences may be defeated by junk code insertion. Junk code
may constitute simple nop sequences or more sophisticated
sequences and branches that actually have no effect on the
semantics.
const/16 v0, 0x5
const/16 v1, 0x3
add-int v0, v0, v1
add-int v0, v0, v1
rem-int v0, v0, v1
if-lez v0, :junk_1

Listing 5: An example of a junk code fragment

6) Encrypting Payloads and Native Exploits: In Android,
native code is usually made available as libraries accessed
via JNI. However, some malware such as DroidDream also
pack native code exploits meant to run from a command
line in non-standard locations in the application package.
All such files may be stored encrypted in the application
package and be decrypted at runtime. Certain malware such as
DroidDream also carry payload applications that are installed
once the system has been compromised. These payloads may
also be stored encrypted. We categorize payload and exploit
encryption as DSA because signature based static detection is
still possible based on the main application’s bytecode. These
are easily implemented and have been seen in practice as well
(e.g., DroidKungFu malware uses encrypted exploit).

7) Other Simple Transformations: There are a few other
transformations as well, specific to Android. Debug informa-
tion, such as source file names, local and parameter vari-
able names, and source line numbers may be stripped off.
Moreover, non-code files and resources contained in Android
packages may be renamed or modified.
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8) Composite Transformations: Any of the above trans-
formations may be combined with one another to generate
stronger obfuscations. While compositions are not commuta-
tive, anti-malware detection results should be agnostic to the
order of application of transformations in all cases discussed
here.

C. Transformation Attacks Non-Detectable by Static Analysis
(NSA)

These transformations can break all kinds of static analysis.
Some encoding or encryption is typically required so that no
static analysis scheme can infer parts of the code. Parts of
the encryption keys may even be fetched remotely. In this
scenario, interpreting or emulating the code (i.e., dynamic
analysis) is still possible but static analysis becomes infeasible.

1) Reflection: The Java reflection API allows a program
to invoke a method by using the name of the methods. We
can convert any method call into a call to that method via
reflection. This makes it difficult to analyze statically which
method is being called. A subsequent encryption of the method
name can make it impossible for any static analysis to recover
the call.

Listing 6 illustrates code in Listing 1 after reflection trans-
formation.
const-string v10, "profile"
const-string v11, "mount -o remount rw system\nexit\n"
const/4 v13, 0x2
new-array v14, v13, [Ljava/lang/Class;
new-array v15, v13, [Ljava/lang/Object;
const/4 v13, 0x0
const-class v12, Ljava/lang/String;
aput-object v12, v14, v13
aput-object v10, v15, v13
const/4 v13, 0x1
const-class v12, Ljava/lang/String;
aput-object v12, v14, v13
aput-object v11, v15, v13
const-string v13, "runRootCommand"
const-class v12, Lcom/android/root/Setting;
invoke-virtual {v12, v13, v14}, Ljava/lang/Class;->

getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/
lang/reflect/Method;

move-result-object v13
const/4 v16, 0x0
invoke-virtual {v13, v12, v15}, Ljava/lang/reflect/Method

;->invoke(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/
lang/Object;

move-result-object v7
check-cast v7, Ljava/lang/String;

Listing 6: Listing 1 with method call by reflection

2) Bytecode Encryption: Code encryption tries to make
the code unavailable for static analysis. The relevant piece
of the application code is stored in an encrypted form and is
decrypted at runtime via a decryption routine. Code encryption
has long been used in polymorphic viruses; the only code
available to signature based antivirus applications remains the
decryption routine, which is typically obfuscated in different
ways at each replication of the virus to evade detection.
We discuss here code encryption alone; obfuscation of the
decryption routine may be possible by other methods discussed
above.

We accomplish bytecode encryption by moving most of the
application in a separate dex file (packed as a jar) and storing it
in the application package in an encrypted form. When one of

the application components (such as an activity or a service) is
created, it first calls a decryption routine that decrypts the dex
file and loads it via a user defined class loader. In Android,
the DexClassLoader provides the functionality to load
arbitrary dex files. Following this operation, calls can be made
into the code in the newly loaded dex file. Alternatively, one
could define a custom class loader that loads classes from
a custom file format, possibly containing encrypted classes.
We note that classes which have been defined as components
need to be available in classes.dex (one that is loaded by
default) so that they are available to the Android middleware
in the default class loader. These classes then act as wrappers
for component classes that have been moved to other dex files.

IV. IMPLEMENTATION

We applied all the above DroidChameleon transformations
to the malware samples. We have implemented most of the
transformations so that they may be applied automatically to
the application. Automation implies that the malware authors
can generate polymorphic malware at a very fast pace. Certain
transformations such as native code encryption are not possible
to completely automate because one needs to know how native
code files are being handled in the code.1 Transformations
that require modification of the AndroidManifest (rename
packages and renaming components) have not been completely
automated because we felt it was more convenient to modify
manually the AndroidManifest for our study. Nevertheless, it is
certainly possible to automate this as well. Finally, we did not
automate bytecode encryption, although there are no technical
barriers to doing that. However, we have implemented a proof-
of-concept bytecode encryption transformation manually on
existing malware.

We utilize the Smali/Baksmali [9] and its companion tool
Apktool [10] for our implementation. Our code-level transfor-
mations are implemented over Smali. Moreover, disassembling
and assembling transformation uses Apktool. This has the
effect of repacking, changing the order and representation
of items in the classes.dex file, and changing the An-
droidManifest (while preserving the semantics of it). All other
transformations in our implementation (apart from repacking)
make use of Apktool to unpack/repack application packages.
Our overall implementation comprises about 1,100 lines of
Python and Scala code.

We verified that our implementation of transformations do
not modify the semantics of the programs. Specifically, we
tested our transformations against several test cases and ver-
ified their correctness on two malware samples, DroidDream
and Fakeplayer. In general, verifying correctness on actual
malware is challenging because some of the original samples
have turned non-functional owing to, for example, the remote
server not responding, and because being able to detect all the
malicious functionality requires a custom, appropriately mon-
itored environment. Indeed, our original DroidDream sample
would not work because it failed to get a reply from a remote

1Native code stored in non standard locations is typically copied from
the application package to the application directory by the application itself
(possibly through an available Android API).
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TABLE I: Anti-malware products evaluated.

Vendor Product Package name Version # downloads
AVG Antivirus Free com.antivirus 3.1 50M-100M
Symantec Norton Mobile Security com.symantec.mobilesecurity 3.3.0.892 5M-10M
Lookout Lookout Mobile Security com.lookout 8.7.1-EDC6DFS 10M-50M
ESET ESET Mobile Security com.eset.ems 1.1.995.1221 500K-1M
Dr. Web Dr. Web anti-virus Light com.drweb 7.00.3 10M-50M
Kaspersky Kaspersky Mobile Security com.kms 9.36.28 1M-5M
Trend micro Mobile Security Personal Ed. com.trendmicro.tmmspersonal 2.6.2 100K-500K
ESTSoft ALYac Android com.estsoft.alyac 1.3.5.2 5M-10M
Zoner Zoner Antivirus Free com.zoner.android.antivirus 1.7.2 1M-5M
Webroot Webroot Security & Antivirus com.webroot.security 3.1.0.4547 500K-1M

TABLE II: Malware samples used for testing anti-malware tools

Family Package name SHA-1 code Date found Remarks

DroidDream com.droiddream. bowl-
ingtime

72adcf43e5f945ca9f72
064b81dc0062007f0fbf

03/2011 Root exploit

Geinimi com.sgg.spp 1317d996682f4ae4cce6
0d90c43fe3e674f60c22

10/2011 Information exfiltration; bot-
like capabilities

Fakeplayer org.me.androidappli-
cation1

1e993b0632d5bc6f0741
0ee31e41dd316435d997

08/2010 SMS trojan

Bgserv com.android.vending.
sectool.v1

bc2dedad0507a916604f
86167a9fa306939e2080

03/2011 Information exfiltration; bot-
like capabilities; SMS trojan

BaseBridge com.keji.unclear 508353d18cb9f5544b1e
d1cf7ef8a0b6a5552414

05/2011 Root exploit; SMS trojan
packed as payload

Plankton com.crazyapps.angry.
birds.rio.unlocker

bee2661a4e4b347b5cd2
a58f7c4b17bcc3efd550

06/2011 Dynamic code loading

server; we removed the functionality of contacting the remote
server to confirm that the malicious functionality works as
intended.

V. THE DATASET

This section describes the anti-malware products and the
malware samples we used for our study. We evaluated ten anti-
malware tools, which are listed in Table I. There are dozens of
free and paid anti-malware offerings for Android from various
well-established anti-malware vendors as well as not-so-well-
known developers. We selected the most popular products; in
addition, we included Kaspersky and Trend Micro, which were
then not very popular but are well established vendors in the
security industry. We had to omit a couple of products in the
most popular list because they would fail to identify many
original, unmodified malware samples we tested. One of the
tools, Dr. Web, actually claims that its detection algorithms
are resilient to malware modifications.

Our malware set is summarized in Table II. We used
a few criteria for choosing malware samples. First, all the
anti-malware tools being evaluated should detect the original
samples. We here have a question of completeness of the
signature set, which is an important evaluation metric for
antivirus applications. In this work however, we do not focus
on this question. Based on this criterion, we rejected Tapsnake,
jSMSHider and a variant of Plankton. Second, the malware
samples should be sufficiently old so that signatures against
them are well stabilized. All the samples in our set were
discovered in or before October 2011. All the samples are
publicly available on Contagio Minidump [11].

Our malware set spans over multiple malware kinds. Droid-
Dream [12] and BaseBridge [13] are malware with root ex-
ploits packed into benign applications. DroidDream tries to get

root privileges using two different root exploits, rage against
the cage, and exploid exploit. BaseBridge includes only one
exploit, rage against the cage. If these exploits are successful,
both DroidDream and BaseBridge install payload applications.
Geinimi [14] is a trojan packed into benign applications. It
communicates with remote C&C servers and exfiltrates user
information. Fakeplayer [15], the first known malware on An-
droid, sends SMS messages to premium numbers, thus costing
money to the user. Bgserv [16] is a malware injected into
Google’s security tool to clean out DroidDream and distributed
in third party application markets. It opens a backdoor on
the device and exfiltrates user information. Plankton [17] is a
malware family that loads classes from additional downloaded
dex files to extend its capabilities dynamically.

VI. RESULTS

As has already been discussed, we transform malware
samples using various techniques discussed in Section III and
pass them through anti-malware tools we evaluate. We will
now briefly describe our methodology and then discuss the
findings of our study.

We describe our methodology through Figure 1 and through
Tables IV and V, which depict the series of transformations
applied to DroidDream and Fakeplayer samples and the detec-
tion results on various anti-malware tools. Empty cells in the
tables indicate positive detection while cells with ‘x’ indicate
that the corresponding anti-malware tool failed to detect the
malware sample after the given transformations were applied
to the sample. The tables reflect a general approach of our
study. We begin testing with trivial transformations and then
proceed with transformations that are more complex. Each
transformation is applied to a malware sample (of course,
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Figure 1: Evaluating anti-malware

TABLE III: Key to Tables IV, V and VI. Trans-
formations coded with single letters are trivial
transformations. All others are DSA. We did not
need NSA transformations to thwart anti-malware
tools.

Code Technique

P Repack
A Dissassemble & assemble
RP Rename package
EE Encrypt native exploit or payload
RI Rename identifiers
RF Rename files
ED Encode strings and array data
CR Reorder code
CI Call indirection
JN Insert junk code

All transformations contain P
All transformations except P contain A

some like exploit encryption apply only in certain cases)
and the transformed sample is passed through anti-malware.
If detection breaks with trivial transformations, we stop.2

Next, we apply all the DSA transformations. If detection
still does not break, we apply combinations of DSA trans-
formations. In general there is no well-defined order in which
transformations should be applied (in some cases a heuristic
works; for example, malware that include native exploits are
likely to be detected based on those exploits). Fortunately, in
our study, we did not need to apply combinations of more
than two transformations to break detection. When applying
combinations of transformations, we stopped when detection
broke. We do not show the redundant combinations in the
tables for the sake of conciseness. The last rows do not form
part of our methodology; we construct them manually to show
the set of transformations with which all anti-malware tools
yield.

Our results with all the malware samples are summarized
in Table VI. This table gives the minimal transformations
necessary to evade detection for malware-anti-malware pairs.
For example, DroidDream requires both exploit encryption and
call indirection to evade Dr. Web’s detection. These minimal
transformations also give insight into what kind of detection
signatures are being used. Our tool produces actual malware;
we take special precaution to avoid spreading these samples
and are careful with whom we share these samples. We next
describe our key findings in the light of the detection results.
These findings are not meant to be statistical conclusions; yet
they give a general idea of the capabilities of anti-malware
tools.

Finding 1 All the studied anti-malware products are vul-
nerable to common transformations. All the transformations
appearing in Table VI are easy to develop and apply, redefine
only certain syntactic properties of the malware, and are
common ways to transform malware. Transformations like
identifier renaming and data encryption are easily available

2All DSA and NSA transformations also result in trivial transformations
because of involving disassembling, assembling and repacking. Hence, there
is no use in proceeding further.

using free and commercial tools [7], [18]. Exploit and pay-
load encryption is also easy to achieve. Although most of
current Android malware uses simple techniques, without
the use of sophisticated transformations, we point out that
some of these transformations may already be seen in the
wild in current malware. For example, Geinimi variants have
encrypted strings [19]. Similarly, the DroidKungFu malware
uses encrypted exploit code [20]; a similar transformation to
DroidDream allows easy evasion across almost all the anti-
malware tools we studied. Finally, there are reports of similar
server-side polymorphism as well [6]. In future, it is likely that
more and more malware will adopt sophisticated techniques
for polymorphism. No transformations just discussed thwart
static analysis.

We found that only Dr. Web uses a somewhat more so-
phisticated algorithm for detection. Our findings indicate that
the general detection scheme of Dr. Web is as follows. The
set of method calls from every method is obtained. These
sets are then used as signatures and the detection phase
consists of matching these sets against sets obtained from the
sample under test. We also tested Dr. Web against reflection
transformation (not shown in the tables) and were able to evade
it. This offers another confirmation that signatures are based
on method calls. Furthermore, we also found (by limiting
our transformations) that only framework API calls matter;
calls within the application make no difference. It seems that
the matching is somewhat fuzzy (requiring only a threshold
percentage of matches) because we found on DroidDream and
Fakeplayer that results are positive even when a few classes are
removed from the dex file. For these two families, we could
create multiple minimal sets of classes that would result in pos-
itive detection. As mentioned earlier, Dr. Web indeed claims
it has signatures that are resilient to malware modifications.
It is difficult to say if the polymorphic resistance of these
signatures is any stronger than other signatures depending on
identifier names and string and data values. In particular, such
signatures do not capture semantic properties of malware such
as data and control flow. Our results aptly demonstrate the low
resistance.
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TABLE IV: DroidDream transformations and anti-malware failure. Please see Table III for key. ‘x’ indicates failure in detection.

AVG Symantec Lookout ESET Dr. Web Kaspersky Trend M. ESTSoft Zoner Webroot
P
A x
RP x x x
EE x x
RI x x x
ED x
CR x
CI x
JN x
RI+EE x x x x x
EE+ED x x x
EE+RF x x x
EE+CI x x x
RP+RI+EE+ED+RF+CI x x x x x x x x x x

TABLE V: Fakeplayer transformations and anti-malware failure. Please see Table III for key. ‘x’ indicates failure in detection. EE
transformation does not apply for lack of native exploit or payload in Fakeplayer.

AVG Symantec Lookout ESET Dr. Web Kaspersky Trend Micro ESTSoft Zoner Webroot
P
A x x
RP x x x x
RI x x x x
ED x x
CR x x
CI x x x
JN x x
RP+RI x x x x x x x x x
RP+RI+CI x x x x x x x x x x

TABLE VI: Evaluation summary. Please see Table III for key. ‘+’ indicates the composition of two transformations.

DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton
AVG RP RI RP + RI RI RI RP + RI
Symantec RI RI RP + RI RI + ED ED P
Lookout EE RI + ED RP + RI RI + ED EE + ED RI
ESET RI + EE ED RI RI EE + ED RI + ED
Dr. Web EE + CI CI CI CI EE + CI CI
Kaspersky EE + ED RI RI RI + ED EE + ED A
Trend M. EE + RF RI A A EE + RF A
ESTSoft RP RP RP RP RP RP
Zoner A RI A A A RI
Webroot RI RI RP RI RP RI

Finding 2 At least 43% signatures are not based on code-
level artifacts. That is, these are based on file names, check-
sums (or binary sequences) or information easily obtained by
the PackageManager API. We also found all AVG signatures
to be derived from the content of AndroidManifest only (and
hence that of the PackageManager API). In case of AVG,
the signatures are based on application component classes
or package names or both. Furthermore, this information is
derived from AndroidManifest only. We confirmed this by
placing a fake AndroidManifest in malware packages and
assembling them with the rest of the package kept as it is.
This AndroidManifest did not have any of the components
or package names declared by the malware applications. The
detection was negative for all the malware samples.

Finding 3 90% of signatures do not require static analysis
of bytecode. Only one of ten anti-malware tools was found
to be using static analysis. Names of classes, methods, and

fields, and all the strings and array data are stored in the
classes.dex file as they are and hence can be obtained by
content matching. The only signatures requiring static analysis
of bytecode are those of Dr. Web because it extracts API calls
made in various methods.

Finding 4 Anti-malware tools have evolved towards
content-based signatures over the past one year. We studied
compare our findings that we obtained in February 2012
(Table VII) to our present findings obtained in February 2013
(Table VI). Some of the anti-malware tools have changed
considerably for the same malware samples. Last year, 45%
of the signatures were evaded by trivial transformations, i.e.,
repacking and assembling/disassembling. Such signatures have
virtually no resilience against polymorphism. Our present
results show a marked decrease in this fraction to 16%.
We find that in all such cases where we see changes, anti-
malware authors have moved to content-based matching, such
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<manifest ... package= "com.crazyapps.angry.birds.rio.unlocker" ... >

<application android:label="@string/app_name" android:icon="@drawable/icon">

<activity android:label="@string/app_name" android:name= ".AngryBirdsRioUnlocker" ... >

:
</activity>

<service android:name= "com.plankton.device.android.AndroidMDKProvider" ... />

</application>

<manifest ... package= "com.hDEWJu.oYlCvk.hFYkwc.FgDOHA.UPkmVF" ... >

<application android:label="@string/app_name" android:icon="@drawable/icon">

<activity android:label="@string/app_name" android:name= ".LncHMH" ... >
:

</activity>

<service android:name= "com.rawJbA.DKPTQc.aaMYse.QUivSk" ... />

</application>

Figure 2: An example evasion. Changes required in AndroidManifest of Plankton to evade AVG (original first and modified second; only
relevant parts are shown with differences highlighted). No other changes are required. The application will not work though until the
components are also renamed in the bytecode. We confirm that AVG’s detection is based on AndroidManifest alone (see Finding 2).

TABLE VII: Summary of results from anti-malware tools downloaded in February 2012. Please see Table III for key. ‘+’ indicates the
composition of two transformations. Results that have changed since then are depicted in bold (see Table VI for comparison).

DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton
AVG RP RI RP + RI RI RI RP + RI
Symantec P RI RP P P P
Lookout P ED P P EE + ED RI
ESET EE ED RI RI EE A
Dr. Web EE + CI CI CI CI EE + CI CI
Kaspersky EE RI RI RI + ED EE + ED A
Trend M. EE RI A A EE A
ESTSoft P P P P P P
Zoner A A A A A A
Webroot RP P RP P P RP

as matching identifiers and strings.
Furthermore, for malware using native code exploits, many

anti-malware tools previously matched on the native exploits
and payloads alone. The situation has changed now as all of
these additionally match on some content in the rest of the
application as well. Although the changes in the signatures
over the past one year may be seen as improvement, we
point out that the new signatures still lack resilience against
polymorphic malware as our results aptly demonstrate.

VII. DEFENSES

Semantics-based Malware Detection. We point out that ow-
ing to the use of bytecodes, which contain high-level structural
information, analyses of Android applications becomes much
simpler than those of native binaries. Hence, semantics-based
detection schemes could prove especially helpful in the case
of Android. For example, Christodorescu et al. [21] describe
a technique for semantics based detection. Their algorithms
are based on unifying nodes in a given program with nodes in
a signature template (nodes may be understood as abstract
instructions), while preserving def-use paths3 described in
the template. The signature template abstracts data flows and
control flows, which are semantics properties of a program.
Since this technique is based on data flows rather than a

3A def-use path for a variable signifies a definition of that variable in a
program and all uses of that variable, reachable from that definition.

superficial property of the program such as certain strings or
names of methods being defined or called, it is not vulnerable
to any of the transformations (all of which are trivial or
DSA) that show up in Table VI. These techniques further
have a potential for a very low false positive rate as the
authors demonstrate in their work. Such a detection scheme
is arguably slower than current detection schemes but offers
higher confidence in detection. This is just another instance of
the traditional security-performance tradeoff. Christodorescu
et al. had actually reported the running times to be in the
order of a couple of minutes on their prototype and had
suggested real performance is possible with an optimized
implementation [21]. Developing signature templates manually
may be challenging. Automatic signature generation has been
discussed in the context of dynamic analysis [22], [23] but
may be adapted to static analysis as well.

Semantics-based detection is quite challenging for native
codes; their analyses frequently encounters issues such as
missing information on function boundaries, pointer aliasing,
and so on [24], [25]. Bytecodes, on the other hand, preserve
much of the source-level information, thus easing analysis. We
therefore believe that anti-malware tools have greater incen-
tive to implement semantic analysis techniques on Android
bytecodes than they had for developing these for native code.
Support from Platform. Note that the use of code encryption
and reflection (NSA transformations) can still defeat the above
scheme. Code encryption does not leave much visible code on
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which signatures can be developed. The use of reflection sim-
ply hides away the edges in the call graph. If the method names
used for reflective invocations are encrypted, these edges are
rendered completely opaque to static analysis. Furthermore, it
is possible to use function outlining to thwart any forms of
intra-procedural analysis as well. Owing to these limitations,
the use of dynamic monitoring is essential.

Recall that anti-malware tools in Android are unprivileged
third party applications. This impedes many different kinds of
dynamic monitoring that may enhance malware detection. We
believe special platform support for anti-malware applications
is essential to detect malware amongst stock Android appli-
cations. This can help malware detection in several ways. For
example, a common way to break evasion by code encryption
is to scan the memory at runtime. The Android runtime could
provide all the classes loaded using user-defined class loaders
to the anti-malware application. The loaded classes are already
decrypted and anti-malware tools can analyze them easily.

Google Bouncer performs offline dynamic analysis for
malware detection [26]. Such scanning has its own problems,
ranging from detection of the dynamic environment to the
malicious activity not getting triggered in the limited time for
which the emulation runs [27], [28]. We therefore believe of-
fline emulation must be supplemented by strong static analysis
or real-time dynamic monitoring.

VIII. RELATED WORK

Evaluating Anti-malware Tools. Zheng et al. [29] also stud-
ied the robustness of anti-malware against Android malware
recently using a tool called ADAM. ADAM implements only
a few transformations, renaming methods, introducing junk
methods, code reordering, and string encoding, in addition to
repacking and assembling/disassembling. Our set of transfor-
mations is much more comprehensive and includes renaming
packages, classes, encoding array data, inserting junk state-
ments, encrypting payloads and native exploits, reflection, and
bytecode encryption as well. Finally, we also have compos-
ite transformations. Many of the additional transformations,
including the composite ones, were crucial for evading anti-
malware tools. Based on the above, we point out that ADAM
is not always able to evade an anti-malware tool. Rather than
attempting complete evasion, it simply offers percentages de-
picting how many variants were detected by the anti-malware
tools (and these percentages are also very high). In contrast,
our framework is comprehensive, aimed towards complete
evasion of all anti-malware tools. We believe our results make
a clear statement – all anti-malware tools can be evaded using
common obfuscation techniques. Unlike ADAM, our result
is able to highlight the severity of the problem and is easily
accessible.

Christodorescu and Jha [5] conducted a study similar to ours
on desktop anti-malware applications nine years ago. They
also arrived at the conclusion that these applications have low
resilience against malware obfuscation. Our study is based on
Android anti-malware, and we include several aspects in our
study that are unique to Android. Furthermore, our study dates
after many research works (see below) on obfuscation resilient

detection, and we would expect the proposed techniques to be
readily integrated into new commercial products.
Obfuscation Techniques. Collberg et al. [30] review and pro-
pose different types of obfuscations. DroidChameleon provides
only a few of the transformations proposed by them. Nonethe-
less, the set of transformations provided in DroidChameleon
is comprehensive in the sense that they can break typical
static detection techniques used by anti-malware. Off-the-shelf
tools like Proguard [7] and Klassmaster [18] provide renaming
of classes and class members, flow obfuscation, and string
encryption. While the goal of these tools is to evade manual
reverse engineering, we aim at thwarting analysis by automatic
tools.
Obfuscated Malware Detection. Obfuscation resilient detec-
tion is based on semantics rather than syntac. As discussed
earlier, Christodorescu et al. [21] present one such technique.
Christodorescu et al. [31] and Fredrikson et al. [22] attempt
to generate semantics based signatures by mining malicious
behavior automatically. Kolbitsch et al. [23] also propose
similar techniques. The last three works are for behavior-
based detection and use different behavior representations such
as data dependence graphs and information flows between
system calls. Due to lower privileges for anti-malware tools
on Android, these approaches cannot directly apply to these
tools presently. Sequence alignment from bioinformatics [32],
[33] has also been applied to malware detection and related
problems [34], [35]. Further work is also there to compute
statistical significance of scores given by these classical se-
quence alignment algorithms [36], [37]. It may be possible
to adapt such techniques to detect transformed malware with
high performance.
Smartphone Malware Research. Many works have been
done towards discovery and characterization of smartphone
malware [38], [39], [40], [41], [42], [43], [44]. Our work is
distinct from these as we try to evaluate the efficacy of existing
tools against transformed malware.

IX. CONCLUSION

We evaluated ten anti-malware products on Android for
their resilience against malware transformations. To facilitate
this, we developed DroidChameleon, a systematic framework
with various transformation techniques. Our findings using
transformations of six malware samples show that all the
anti-malware products evaluated are susceptible to common
evasion techniques and may succumb to even trivial trans-
formations not involving code-level changes. Finally, we ex-
plored possible ways in which the current situation may be
improved and next-generation solutions may be developed.
As future work, we plan to perform a more comprehensive
evaluation using a much larger number of malware samples
and anti-malware tools. Interested readers are referred to
http://list.cs.northwestern.edu/mobile for related source code
and technical reports.
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