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Abstract. In this paper, we compare case-based spam filters, focusing
on their resilience to concept drift. In particular, we evaluate how to
track concept drift using a case-based spam filter that uses a feature-
free distance measure based on text compression. In our experiments, we
compare two ways to normalise such a distance measure, finding that the
one proposed in [1] performs better. We show that a policy as simple as
retaining misclassified examples has a hugely beneficial effect on handling
concept drift in spam but, on its own, it results in the case base growing
by over 30%. We then compare two different retention policies and two
different forgetting policies (one a form of instance selection, the other a
form of instance weighting) and find that they perform roughly as well as
each other while keeping the case base size constant. Finally, we compare
a feature-based textual case-based spam filter with our feature-free ap-
proach. In the face of concept drift, the feature-based approach requires
the case base to be rebuilt periodically so that we can select a new
feature set that better predicts the target concept. We find feature-free
approaches to have lower error rates than their feature-based equivalents.

1 Introduction

Spam filtering is a classification task. The filter must predict whether an incom-
ing email is ‘ham’ (legitimate) or ‘spam’ (illegitimate).

Different filters work in different ways. In procedural approaches users deploy
whitelists, blacklists and authentication protocols3; in collaborative approaches
users share signatures computed from the spam they receive4; and in content-
based approaches the filter inspects the header, body and attachments of each
email, or features computed from these, for content that is indicative of spam.
Of course, filters may also combine the different approaches.5

In content-based filters, the classifier may make its decisions using, for ex-
ample, rules, decision trees or boosted trees [2], Support Vector Machines [3],
3 E.g. www.email-policy.com/Spam-black-lists.htm, www.emailauthentication.org/
4 E.g. http://razor.sourceforge.net/, http://www.rhyolite.com/anti-spam/dcc/
5 E.g. http://spamassassin.apache.org/



probabilities [4, 5] or exemplars [5–8]. Except in the case of rules, which are
most often human-authored, a learning algorithm usually induces the classifier
from a set of labelled training examples. This is a form of concept learning. But
spam has the following characteristics that make this form of concept learning
especially challenging. First, there is a subjective and personal aspect to spam:
what is spam to one person may not be spam to another [9]. Second, spam is
a heterogeneous concept: spam that advertises replica watches shares little con-
tent with pornographic spam. Third, there is a high cost to false positives: it is
unacceptable to most users if ham is incorrectly classified as spam. Finally, there
is on-going concept drift: spam is constantly changing.

We have been taking a Case-Based Reasoning (CBR) approach to spam fil-
tering [6, 7, 10], as have others [8], in the belief that this approach can overcome
the challenges. First, individual users can maintain their own case bases to repre-
sent their personal, subjective interests. Second, instance-based approaches, such
as CBR, often perform well when learning complex target concepts, including
heterogeneous and disjunctive ones [11]. Third, as we explain in Section 2.1, by
using a unanimous voting mechanism we can bias a k-nearest neighbours clas-
sifier away from false positives. Finally, lazy learners including CBR can easily
be updated incrementally to cope with concept drift [12].

We recently introduced a ‘feature-free’ distance measure into our case-based
spam filter, resulting in significant improvements in classification accuracy [10,
13]. In this paper, we show that the feature-free distance measure is also more
resilient to concept drift.

In Section 2, we describe our case-based approach to spam filtering. We de-
scribe both the feature-based distance measure that we used in earlier work and
the feature-free distance measure, based on text compression, which we have
been using in our more recent work. In Section 3, we describe concept drift in
more detail and we review techniques for handling concept drift especially in
instance-based learners. In Section 4, we present our new experimental results.
These include a comparison of two different distance measures that are based
on text compression; a comparison of instance selection and instance weighting
approaches to tracking concept drift; and a comparison of feature-based and
feature-free approaches to handling concept drift, based on periodically rebuild-
ing the case base.

2 Case-Based Spam Filtering

2.1 Email Classification Using Examples (ECUE)

Our case-based spam filter is called ECUE [7, 14]. Its case base is a set of labelled
training examples, both ham and spam. ECUE retrieves an incoming email’s k
nearest-neighbours (k-NN) from the case base and uses unanimous voting in
reaching the classification. In other words, ECUE classifies the incoming email
as spam only if all k of the nearest-neighbours are spam. The case base is a Case
Retrieval Net [15], which speeds up the retrieval process.



ECUE incorporates case base editing algorithms, which, prior to classifica-
tion, can remove redundant or noisy cases from the case base. Such algorithms
aim to reduce the size of the case base and hence reduce retrieval time, while
endeavouring to maintain or even improve the generalisation accuracy [16–18].

The case base editing technique that we use is called Competence-Based
Editing (CBE) [6]. CBE builds a competence model of the case base by iden-
tifying for each case its usefulness (represented by the cases that it contributes
to classifying correctly) and also the damage that it causes (represented by the
cases that it causes to be misclassified). A two step process uses these case prop-
erties to identify the cases to be removed. The first step, Blame-Based Noise
Reduction, removes noisy cases that adversely affect classification accuracy. The
second step, Conservative Redundancy Reduction, removes redundant cases that
are not needed for correct classification. CBE has been shown to conservatively
reduce the size of an email case base while maintaining and even improving its
generalisation accuracy. We describe CBE in detail in [6].

We have recently been experimenting with two variants of the ECUE system,
one which uses a feature-based case representation and distance measure (Section
2.2), and another which takes a feature-free approach, based on text compression
(Section 2.3).

2.2 The Feature-Based Distance Measure

In the feature-based version of ECUE, we represent each email ej as a vector of
feature values, ej = (f1j , f2j, . . . fnj). We use binary-valued features only: if
the feature exists in the email the feature value fij = 1, otherwise fij = 0.
We do not use numeric-valued features (e.g. occurrence frequencies) because we
found that they resulted in only minor improvements in overall accuracy, no
significant decrease in false positives, and much increased classification and case
base editing times [7].

The distance between a target case (an incoming email) et and a case from
the case base ec is simply a count of features on which they disagree:

FDM (et, ec) =def

n∑

i=1

|fit − fic| (1)

We found it better, especially from the point of view of false positives, not to
use feature weighting on the binary representation [7].

We compute features from some of the header fields and the body of the
emails, with no stop-word removal or stemming. We have three types of features:
word, character and structural. For word features, the feature is set to 1 if
and only if the word appears in the email. For character features, whether the
feature is set to 1 or 0 depends on the frequency of occurrence of the character
in the email. The Information Gain (IG) is calculated for each character over
the full dataset, where the character is represented as a continuous, and not
binary, feature [19] (i.e. the value in each email is the frequency of the character
normalised by the maximum character frequency). The normalised frequency



that returns the highest IG value in this calculation is used as a threshold for
that character across the dataset. The character feature value in each email is set
to 1 if and only if the normalised frequency of the character in the email is greater
than or equal to this threshold. For structural features (e.g. the proportion of
uppercase characters, lowercase characters or white space in the email), we again
use Information Gain as a threshold to give a binary representation.

Feature extraction on the training examples finds a large set of candidate
features; feature selection on these candidates uses Information Gain to identify
a subset that is predictive of ham and spam. Based on the results of preliminary
cross-validation experiments, we chose to use 700 features for the evaluations
in this paper. One observation, which we will return to in Section 3, is that to
handle concept drift in spam filtering it is advantageous to periodically re-run
the feature extraction and feature selection processes using the most recently
received emails.

2.3 The Feature-Free Distance Measure

In the feature-free version of ECUE, we compute distance directly on the textual
content of some of the header fields and the bodies of the emails using a distance
measure that is based on text compression.

Distance measures based on data compression have a long history in bioin-
formatics, where they have been used, e.g., for DNA sequence classification [20].
Outside of bioinformatics, compression-based distance measures have been ap-
plied to clustering of time-series data [21] and languages [22, 23]. They have also
been applied to classification of time series data [21]. But, to the best of our
knowledge, ours is the first application of these distance measures to text classi-
fication in general and spam filtering in particular6 [10, 13]. There have, however,
been other classifiers based on text compression. In these classifiers, for each class
an adaptive statistical compressor builds a compression model from training ex-
amples belonging to that class. The classifier assigns a target document to the
class whose compression model best accounts for that document [24–26]. Bratko
et al. have recently used classifiers of this kind for spam filtering [27, 28]. Rennie
and Jaakkola, on the other hand, propose using text compression to discover
features indicative of spam [29].

Keogh et al. [21] and Li et al. [1] have both presented generic distance mea-
sures based on data compression and inspired by the theory of Kolmogorov
complexity. The Kolmogorov complexity K(x) of a string x can be defined as the
size of the smallest Turing machine capable (without any input) of outputting
x to its tape. The conditional Kolmogorov complexity K(x|y) of x relative to y
can be defined as the size of the smallest Turing machine capable of outputting
x when y is already on its tape. This can be the basis of a distance measure.
Informally, if K(x|y) < K(x|z), then y contains more information content that
is useful to outputting x than z does, and so y is more similar to x than z is.
6 But see the discussion of the possibility of using compression in instance-based clas-

sification of email at www.kuro5hin.org/story/2003/1/25/224415/367



Unfortunately, Kolmogorov complexity is not computable in general, and so
we must approximate it. Since the Kolmogorov complexity of a string is in some
sense the size of the smallest description of the string, one way of thinking of
K(x) is that it is the length of the best compression we can achieve for x. So,
we can approximate K(x) by C(x), the size of x after compression by a data
compressor.

We can define useful distance measures by comparing C(x), C(y) and C(xy),
where C(xy) is the size after compression of y concatenated to the end of x. The
intuition here is that compression of xy will exploit not only the redundancies
within x and within y but also inter-document redundancies (similarities) be-
tween x and y too. If there are inter-document redundancies, then the amount of
compression of xy should be greater than we obtain by compressing x and y sep-
arately. This still leaves the question of how to combine these into a normalized
measure of distance.

Keogh et al. [21] define the Compression-Based Dissimilarity between strings
x and y as follows:

CDM (x, y) =def
C(xy)

C(x) + C(y)
(2)

CDM produces values in the range (0.5, 1]. Even with the best possible com-
pression algorithm, the lowest value it can produce is slightly above 0.5 because,
even if x = y, C(xy) will be slightly greater than C(x). In principle CDM ’s
maximum value is 1. This would occur when x and y are so different that
C(xy) = C(x)+C(y). In other words, it occurs when there is no inter-document
redundancy.

Li et al. [1] offer an extensive theoretical analysis of their definition, which
normalizes differently. They define the Normalized Compression Distance be-
tween strings x and y as follows:

NCD(x, y) =def
C(xy) − min(C(x), C(y))

max(C(x), C(y))
(3)

NCD produces values in the range [0, 1 + ε], where the upper bound allows for
imperfections in the compression algorithm. Li et al. say that values of ε above
0.1 are unlikely [1]. In fact, in a leave-one-out validation on a case base of 1000
emails, the range we obtained was [0.02, 0.93].

In our previous work [10, 13], we used CDM . In Section 4.2, we report the
first empirical comparison of CDM and NCD, and we find in fact that NCD
generally gives superior results. It is then NCD that we use in the remaining
experiments in this paper.

Note that the properties expected of distance metrics do not in general hold
for CDM and NCD . In general, it is not the case that CDM (x, x) = 0 iff x =
y; CDM (x, y) "= CDM (y, x), i.e. CDM is not symmetric; and CDM (x, y) +
CDM (y, z) "≥ CDM (x, z), i.e. the triangle-inequality does not hold. Similarly,
these do not hold in general for NCD .

None of this prevents use of CDM or NCD in, for example, classification
tasks, provided the classification algorithm does not rely on any of these proper-
ties. For example, an exhaustive implementation of k-NN (in which the algorithm



finds the k nearest neighbours to the query by computing the distance between
the query and every case in the case base) will work correctly. But retrieval
algorithms that rely on these properties to avoid computing some distances (e.g.
k-d trees [30] and Fish and Shrink [31]) are not guaranteed to work correctly.

CDM and NCD give us feature-free approaches to computing distances be-
tween textual cases. They can work directly on the raw text. Hence, this feature-
free approach has negligible set-up costs. Cases are represented by raw text: there
is no need to extract, select or weight features; there is no need to tokenise or
parse queries or cases. This is a major advantage, especially if each user is to
have a personalised case-based filter. By contrast, in the feature-based approach,
we must extract and select features for each individual user case base.

We also believe that the feature-free approach should have an advantage in
tracking concept drift. We explore and test this in the remainder of this paper.

3 Concept Drift

In some tasks, including spam filtering, the target concept is not static. It changes
over time, and the characteristics that are predictive of the target concept change
also. Spam changes according to the season (e.g. an increase after Christmas of
spam that advertises weight loss products) and according to world events (e.g.
the surge in spam related to religion following the death of Pope John Paul II).
What people regard as spam also changes: their interests change (e.g. a person’s
interest in emails that advertise replica watches may cease after buying one) and
their tolerances change (e.g. reminders of a conference or seminar can become
increasingly unwelcome). But, above all, spam changes because there is an arms
race between spammers and those who produce filters: each continually tries to
outwit the other.

For many spam filters, this is a losing battle. But where classifiers are induced
from examples, we can retrain the classifier using new examples of ham and
spam, especially misclassified examples. Lazy learners, including the case-based
approach, have the advantage that they can easily learn incrementally. The filter
can insert into the case base new emails, along with their correct classifications, in
the hope that this improves the competence of the system. However, incremental
update is not enough. On its own, it results in an ever larger case base and ever
longer classification times. Importantly also, because of the concept drift, some
cases in the case base may no longer contribute to correct classification.

There are two main solutions: instance selection and instance weighting. The
goal of instance selection is to identify, among all instances in the case base, those
instances that define the current target concept. Other instances are deleted or,
less commonly, are made ineligible for retrieval. Most instance selection algo-
rithms are window-based. A window slides over the training examples, using,
for example, only the most recent examples for prediction. Examples of window-
based algorithms include the FLORA family of algorithms [32], FRANN [33]
and Time-Weighted Forgetting [34]. Some algorithms use a fixed-size window,



while others adjust the window size based on the rate and amount of drift [35,
36, 32].

In instance weighting, instances are weighted according to their age or per-
formance. Instances with low weights are less likely to be used for classification
and, if their weights become low enough, may even be deleted. Klinkenberg de-
scribes how to use Support Vector Machines in this way [36]. Instance-based
approaches to instance weighting include Locally-Weighted Forgetting (LWF)
and Prediction Error Context Switching (PECS) [34]. In LWF, each instance is
weighted by a combination of its age and whether the learner has subsequently
encountered new examples that are similar to it; new examples eventually oust
older similar examples. In PECS, instances are weighted by their predictiveness.
Specifically, if a stored example begins to disagree often with the correct clas-
sifications of its neighbours, then it is moved to an inactive set, from where it
is no longer eligible for retrieval. This kind of performance weighting, and the
use of confidence interval tests in deciding when to move instances between the
active and inactive sets, gives PECS strong similarities with IB3 [37].

For completeness, we mention an altogether different way of handling concept
drift: the use of ensembles of classifiers induced from different subsets of the
training examples [38]. Further consideration of ensemble approaches is beyond
the scope of this paper.

The research we have described above on instance selection, instance weight-
ing and ensembles tracks concept drift by trying to use just the subset of ex-
amples that are predictive of the current target concept. But, it is important
to realise that, additionally in feature-based approaches, the features that were
once predictive may no longer be so. Hence the case-based filter must periodically
extract and select a new feature set from the most recent examples and rebuild
the case base so that it uses these new features. We investigated this in [14]. A
related approach has subsequently been reported in [8], where a case-specific set
of features is computed separately for each email when it arrives.

Of course, in this paper we are comparing a feature-based approach with a
feature-free approach. We believe that the feature-free approach, which we have
already found to be more accurate and to have lower set-up costs, will also be
more resilient to concept drift precisely because its definition of the concept
depends only on the current contents of the case base, and not on any features.

4 Spam Filtering Experiments

4.1 Evaluation Setup

The focus of the experiments reported in this paper is to investigate the effect
of feature-free, compression-based distance measures on concept drift. To that
end, we used two large datasets of date-ordered ham and spam.7 Each dataset
was collected by an individual from the email that they received over a period
of approximately one year. For each dataset, we set up an initial case base
7 The datasets are available for download at www.comp.dit.ie/sjdelany/dataset.htm



using a training set of one thousand cases, five hundred consecutively received
ham emails and five hundred consecutively received spam emails. This left the
remainder of the data for testing and updating the case base. Table 1 shows the
profile of the test data across each month for both datasets.

Table 1. Profile of the test data in Datasets 1 and 2

Feb
’03

Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan
’04

Total

Dataset 1

spam 629 314 216 925 917 1065 1225 1205 1830 576 8902

ham 93 228 102 89 50 71 145 103 85 105 1076

Dataset 2
spam 142 391 405 459 406 476 582 1849 1746 1300 954 746 9456

ham 151 56 144 234 128 19 30 182 123 113 99 130 1409

We presented each test email for classification to the case-based classifiers in
date order. Results were accumulated over each month.

Since False Positive (FP) classifications (ham classified incorrectly as spam)
are much more serious than False Negative (FN) classifications (spam classi-
fied incorrectly as ham), accuracy (or error) as a measure of performance does
not present the full picture. Two filters with similar accuracies may have very
different FP and FN rates. In addition, as the amount of ham is considerably
lower than the amount of spam in the datasets, the actual error figure would
follow the FN rate and not give adequate emphasis to FPs. The measure we
use is the average within-class error rate, Err = FPRate+FNRate

2 , rather than
the actual error rate (Err = number misclassified

total emails ). We also report the FP rate
(FPRate = number of false positives

total negative examples ) and FN rates (defined analogously) sepa-
rately. Where differences exist, we use a two-tailed, paired t-test across the
monthly results to test for significance.

The compression algorithm we use in all experiments reported here is GZip,
a variant of Lempel-Ziv compression, in which a repetition of a string within a
text may be replaced by a pointer to an earlier occurrence.

From the point of view of Kolmogorov complexity, one should use the best
compression algorithm because the better the compression rate, the closer the
compression algorithm will approximate the Kolmogorov complexity. But this
does not necessarily mean that using the better compressor in a compression-
based distance measure such as those defined in Equations (2) and (3) will result
in a better approximation of the distance as it may effect different terms in the
formulae differently [1]. We compared compression algorithms in [13], specifically
GZip with PPM, an adaptive statistical compressor that is considered to achieve
some of the best compression rates. We found GZip to compress the emails in our
datasets slightly more than PPM with little difference in classification accuracy



when used in a distance measure. PPM is considerably slower than GZip and by
truncating each email to 8000 characters (exploiting the fact that substitutions
in GZIP are confined to a 32 Kbytes sliding window) we were able to further
speed up GZip with no appreciable loss of accuracy.

4.2 A Comparison of CDM and NCD

To compare the two distance measures, NCD and CDM , we presented each
email in date order for classification against the full case base of 1000 training
emails. The results are in Figure 1 which show that NCD performs better overall
than CDM . The differences in overall error are significant in both datasets at
the 99% level, but the differences in FP rate are not. Figure 1 also includes the
results of adding each misclassified email as it is found into the case base: the
error rates are considerably lower, with no significant difference between the two
distance measures. These results show that even relatively simple attempts to
track concept drift (in this case, retaining misclassified examples) can work well.

Dataset 1: CDM vs NCD

15.9
2.3 2.60.7 1.5 1.2 1.8

31.2

3.1

41.8

3.4

21.5

0

30

60

NCD NCD: retain-
misclassifieds

CDM CDM: retain-
misclassifieds

%Err
%FPs
%FNs

Dataset 2: CDM vs NCD

12.6
3.2

23.1

3.14.0 3.5 2.4 2.92.9

43.8

3.3

21.3

0

30

60

NCD NCD: retain-
misclassifieds

CDM CDM: retain-
misclassifieds

%Err
%FPs
%FNs

Fig. 1. A comparison of CDM and NCD

4.3 Handling Concept Drift with NCD

As we described in Section 3, one of the difficulties of handling concept drift by
retaining examples is that the size of the case base increases. In the experiments



performed in Section 4.2 above, when the case bases are updated with misclassi-
fied emails they increased in size by 32% and 30% respectively over the duration
of the experiment.

It is necessary therefore to include a forgetting mechanism to remove in-
stances that may no longer be useful in classification. We present results here
of a variety of different approaches to retention and forgetting within an add-1-
delete-1 policy. The approaches to retention can be categorised as either retain-
all, where all examples are added to the case base, or retain-misclassifieds, where
just those examples that are misclassified are added. The forgetting mechanisms
we considered were forget-oldest and forget-least-accurate. Forget-oldest is a sim-
ple form of instance selection, sliding a fixed-size window over the examples and
deleting the oldest. Forget-least-accurate can be considered as a simple form of
instance weighting, inspired by IB3 and PECS. In forget-least-accurate, the ac-
curacy of a case is measured as the proportion of times the case is successfully
retrieved. More formally, accuracy = #successes/#retrievals , where #retrievals
is the number of times a case is retrieved as a nearest neighbour in k-NN clas-
sification and #successes is the number of times the case is both retrieved as a
neighbour and has the same class as the target. In the case of ties, we delete the
oldest of the least accurate cases. So that we compare like with like as much as
possible, we use the accuracy records only for forgetting; they do not, as in IB3,
influence which cases are retrieved as neighbours.
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Fig. 2. NCD with various concept drift tracking mechanisms

It is evident from Figure 2 that all the approaches are successful at tracking
the drift. It is difficult to identify any one approach that is the best, but forget-



least-accurate, in spite of having a significant beneficial effect on FNs, appears
to have a negative effect on FPs which is not desirable.

We also investigated using Competence-Based Editing on the initial case
bases but found that it did not significantly improve on the results shown in
Figure 2. The consequence of using an add-1-delete-1 policy is that the case
base size remains constant. If case base editing is also used then the sizes of the
case bases will differ across systems.

4.4 Feature-Free versus Feature-Based

Given that we have found that NCD can track concept drift, this section inves-
tigates how well it works compared with an approach that uses a feature-based
representation and distance measure, which we designate FDM . To track con-
cept drift with our feature-based version of ECUE, we incorporate two levels
of learning [14]. Firstly, we retain misclassified emails as they are found. Sec-
ondly, the feature set needs to be periodically updated from the more recent
examples of email. Specifically, at regular intervals (monthly for the purposes of
our evaluation), we re-run feature extraction and selection on the most recent
emails; we rebuild the case base using only more recent examples of email, so
that each included case is now represented using the new set of features; and
we run Competence-Based Editing (CBE) on the rebuilt case base. Since CBE
deletes noisy and redundant cases, it gives us an implicit form of forgetting,
thereby limiting case base growth. Note that previously reported experiments
with FDM show this two-level form of learning to outperform a window-based
instance selection system [14].

Although NCD does not use features, in order to compare like with like we
implemented a version of ECUE that uses NCD , retains misclassified examples
and achieves a degree of forgetting by rebuilding the case base from the most
recent examples and running CBE on the rebuilt case base every month.

Figure 3 shows the results of comparing the FDM approach with the equiva-
lent NCD approach. The Figure shows that when neither the feature-based nor
the feature-free system incorporates any mechanism for handling concept drift,
NCD has significantly lower FP rates; its FN rates are higher for one dataset
and lower for the other.

However, the Figure also shows that when both systems retain misclassified
examples and rebuild their case bases every month (in the way described above),
the feature-free system tracks the concept drift better than the feature-based
system with the differences in overall error significant at the 95% level for Dataset
2 and the 90% level for Dataset 1. There is, however, no significant difference in
the FP rate.

The differences between the NCD tracking results presented in Figure 3 and
those presented for the add-1-delete-one policies in Figure 2, although better in
some cases and worse in others, are for the most part not significant. In any
case, the case base rebuild and edit approach to forgetting offers advantages
over the add-1-delete-1 policies. Firstly it allows the spam filter to use smaller
case bases, which speeds up classification. Secondly, it facilitates bootstrapping
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Fig. 3. NCD compared with FDM

of a personalised spam filter. The system can be installed with small amounts
of training data available from a user’s email but over time will stabilise to
appropriate amounts of training data as periodic rebuild and edit takes place.

A graphical representation of the average monthly error across classifications
is shown in Figure 4. Although NCD is better overall than FDM (Figure 3),
Figure 4 shows that, when the case base is never updated, NCD does not con-
sistently outperform FDM in all months, in particular in Dataset 1. But when
misclassified examples are retained and the case base is rebuilt and edited every
month, the NCD results are as good as or better for all months in Dataset 2 and
for all except one month in Dataset 1.

5 Conclusion

This paper continues our investigation of a feature-free distance measure based
on text compression for case-based spam filtering. We have new results in which
Li et al.’s NCD outperforms Keogh et al.’s CDM . But the real focus of the paper
has been on concept drift.

We have shown that concept drift in spam is very real and, without a way of
handling it, accuracy will be much the lower. We have shown too (Figures 1 and
2) that even quite simple retention and forgetting policies can be very effective.
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Fig. 4. Monthly average error across classifications

Finally, we have shown (Figures 3 and 4) that the feature-free approach can
obtain accuracy that is better than or comparable to that of the feature-based
approach but with lower set-up costs and simpler periodic maintenance demands.

In the future we would like to experiment with feature-free case-based spam
filters using more sophisticated forms of instance weighting, perhaps closer to
IB3 or PECS, and combining recency of use, amount of use and degree of success
in the weighting formula. Encouraged by the success of the periodic case base
rebuild and edit experiments, we would like to develop and evaluate a forgetting
policy based on a competence model, that we hope would be cheaper than run-
ning a full case base edit. We would also like to extend the application of NCD
to texts other than emails, to tasks other than classification, and to text other
than raw text, e.g. text that has undergone POS-tagging.
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