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Abstract

Prediction and estimation based on Bayesian model selection and model averaging, and derived

methods such as BIC, do not always converge at the fastest possible rate. We identify the catch-up

phenomenon as a novel explanation for the slow convergence of Bayesian methods, and use it to define

a modification of the Bayesian predictive distribution, called the switch distribution. When used as

an adaptive estimator, the switch distribution does achieve optimal cumulative risk convergence rates

in nonparametric density estimation and Gaussian regression problems. We show that the minimax

cumulative risk is obtained under very weak conditions and without knowledge of the underlying

degree of smoothness.

Unlike other adaptive model selection procedures such as AIC and leave-one-out cross-validation,

BIC and Bayes factor model selection are typically statistically consistent. We show that this prop-

erty is retained by the switch distribution, which thus solves the AIC-BIC dilemma for cumulative

risk. The switch distribution has an efficient implementation. We compare its performance to AIC,

BIC and Bayes on a regression problem with simulated data.

1 Introduction

Given a countable number of models (sets of probability distributions), we consider the related tasks
of model selection, model averaging and adaptive estimation. In model selection, the goal is to find the
model that best explains the given data. In model averaging, one aims to predict future data from the
same source based on a weighted combination of the models. The inferred model or model average may
further be used as a basis for adaptive density and regression estimation, in which the goal is to construct
estimators that are simultaneously minimax rate optimal with respect to different classes of smoothness.

Some broadly applicable model selection methods such as AIC [Akaike, 1974] and leave-one-out
cross-validation (LOO) [Stone, 1977] lead to predictions and corresponding adaptive estimators that
are risk optimal in a variety of settings. On the other hand, other popular methods such as the BIC
criterion [Schwarz, 1978] and related methods such as Bayes factor model selection [Kass and Raftery,
1995], standard minimum description length (MDL) model selection [Barron et al., 1998] and prequential
model validation [Dawid, 1984] are typically suboptimal for prediction and estimation: in many settings,
at sample size n the convergence of Bayes factors, MDL, and BIC is a factor O(log n) slower [Rissanen
et al., 1992, Foster and George, 1994, Yang, 1999, Grünwald, 2007]. In this paper we argue that the slow
convergence of Bayes factors (and other BIC-like methods) is caused by the catch-up phenomenon, which
we will introduce shortly. Our attempt to address this problem takes the form of the switch distribution,
a practical method (its computational efficiency is discussed in Section 2.3) that can be used either
directly to predict new outcomes sequentially, or as a basis for model selection and adaptive estimation.
The switch distribution may be viewed as an extension of Bayesian Model Averaging or Bayes factor
model selection. The standard Bayes factor method is based on a prior distribution on a countable set of
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distributions p1, p2, . . .; usually, but not necessarily, these are themselves Bayesian marginal distributions
relative to some parametric models M1,M2, . . . In contrast to a prior on p1, p2, . . ., the switch distribution
employs a prior defined on sequences of the p1, p2, . . ., allowing different pj , and thus different models
Mj , to be used for prediction at different sample sizes. In our treatment, as explained in Section 3,
the pj are viewed as prediction strategies which may be Bayesian marginal distributions but can also be
based on estimators such as maximum likelihood or least-squares. In this sense the switch distribution
is more general than a Bayesian marginal distribution and is best interpreted as a prequential forecasting
system [Dawid, 1984].

The general idea behind the switch distribution is explained further in Section 1.2. Our first main
result, Theorem 2 in Section 5.3, shows that in a general i.i.d. setting that includes many nonparametric
density and Gaussian regression estimation problems, adaptive estimation based on the switch distribu-
tion is optimal relative to the cumulative Kullback-Leibler (KL) risk. More precisely, suppose that data
are sampled from a density p∗, and p∗ is estimated based on a collection of parametric models, where
the number of considered models is not more than polynomial in the sample size. Then, as long as the
problem is not “too easy”, unlike for Bayesian model averaging, the ratio of the cumulative risk incurred
by the switch distribution and that incurred by any model selection criterion whatsoever converges to 1.
By the problem being “not too easy” we mean that the minimax cumulative risk should be at least of
order (log n)2+α for some α > 0, a requirement that is satisfied for all nonparametric classes including
the standard Sobolev, Hölder and Besov classes [Yang and Barron, 1999]. Thus, the switch distribution
may be interpreted as an adaptive estimator which achieves minimax rates without knowledge of the
underlying degree of smoothness. The proof requires that the switch distribution is defined with respect
to an augmented set of prediction strategies, which increases the time required to process a sample of
size n by a factor n. As an alternative we provide Theorem 5, which is based on a version of the switch
distribution that uses only two prediction strategies per considered model, and therefore has a faster
implementation. The drawbacks are that we impose stronger conditions on the considered models, and
that the ratio of cumulative risks may converge to a constant larger than 1. In Section 7 we provide ex-
periments with simulated data which suggest that both switch distributions also perform well in practice
with small samples. In the statistical literature, predictive performance is usually measured in terms of
instantaneous risk rather than cumulative risk. As shown in Proposition 8 (Section 8.2), under the con-
ditions of the fast switch distribution, both versions of the switch distribution may be further modified
so that they achieve the minimax instantaneous KL risk to within a constant factor larger than one.

1.1 Main Application: a Cumulative Risk Version of the AIC-BIC Dilemma

Compared to other broadly applicable model selection criteria such as AIC and LOO, the main advantage
of the switch distribution is its provable rate optimality under substantially weaker conditions. A second
advantage is that, unlike AIC and LOO, the switch distribution is statistically consistent under fairly weak
conditions, i.e. the probability under the true distribution that the correct model is selected converges
to 1. This is shown in our third main result, Theorem 7. Thus, switching resolves a version of the
AIC-BIC dilemma where predictive performance is measured in terms of cumulative risk [Yang, 2005,
2007a,b]. This dilemma concerns the question whether in any given practical situation, one should
adopt an AIC-type method (close to optimal for prediction, yet inconsistent) or a BIC-type method
(suboptimal for prediction, yet consistent): we show that, when one is interested in cumulative risk,
then in contrast to AIC, the switch distribution is consistent, and in contrast to BIC, it is rate optimal.
In adaptive estimation however, it may often be more appropriate to consider the instantaneous rather
than the cumulative risk. In this scenario, a result of Yang [2005] applies, which (roughly) states that in
the parametric context, there can be no method that achieves both consistency and a minimax optimal
convergence rate. Relating our results to this second interpretation is more subtle; some connections are
indicated in the discussion (Section 8).

1.2 Main Idea: the Catch-Up Phenomenon

Suppose we use parametric models Mk = {pθ | θ ∈ Θk} to describe a sequence of observations xn =
x1, . . . , xn, where each outcome is drawn from some space X ; for simplicity we assume X to be countable
in this introduction, but we do not have this restriction in the rest of the paper.
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In Bayes factors model selection or Bayesian model averaging, prior densities wk are defined for the
parameter spaces Θk of each model Mk. We can subsequently compute the Bayesian marginal likelihood
of the data as follows:

pk(xn) =

∫

θ∈Θk

pk,θ(x
n)wk(θ) dθ. (1)

Additionally, a prior mass function π on the model indices {1, 2, . . .} is defined. The Bayes factors
approach to model selection is to select the model k with maximum posterior probability

π(k | xn) =
pk(xn)π(k)

∑

k′ pk′(xn)π(k′)
.

In prediction, Bayesian model averaging (BMA) proceeds based on the marginal distribution on data
pbma(x

n) =
∑

k pk(xn)π(k). BMA predicts any new outcome xn+1 ∈ X outside of the sample xn

according to pbma(xn+1 | xn), which is equal to a combination of the models’ predictions in which the
models are weighted according to their posterior probability:

pbma(xn+1 | xn) =
∑

k

pk(xn+1 | xn)π(k | xn). (2)

We now discuss how the predictions pbma(xn+1 | xn) and pk(xn+1 | xn) may be interpreted as a contin-
uation of predictions on the sample xn, and how − log pbma(x

n) and − log pk(xn) may be interpreted as
the cumulative prediction error of pbma and pk on xn.

Let p be any distribution on xn = x1, . . . , xn, like for example pk or pbma. Then the negative log-
likelihood − log p(xn) may be interpreted as the cumulative log(arithmic) loss incurred when sequentially
predicting x1, . . . , xn by conditioning p on the past [Barron et al., 1998, Grünwald, 2007, Dawid, 1984,
Rissanen, 1984]. To see this, assume the outcomes x1, . . . , xn are given in a natural order (if not, pick
some order at random), and let xi = x1, . . . , xi denote the first i of them. Let the (i + 1)-th outcome be
predicted by the conditional probability p(xi+1 | xi) = p(xi+1)/p(xi), and the quality of this prediction
be measured by the log loss − log p(xi+1 | xi). Here and in the remainder we let log denote the binary
logarithm, such that log loss is measured in bits. Summing up the prediction errors, we see that the
negative log-likelihood of the sample is equal to the cumulative log loss of the predictions:

n
∑

i=1

− log p(xi | xi−1) = − log

n
∏

i=1

p(xi | xi−1) = − log p(xn). (3)

In particular, − log pbma(x
n) and − log pk(xn) may be interpreted as cumulative prediction errors on

the sample. Furthermore, if we predict an (n + 1)-st outcome outside of the sample xn according to
p(xn+1 | xn), the loss we incur may be viewed as the continuation of the sequence of losses within the
sample. (Again, this holds for both pbma and pk.) As such, the fact that the sample contains n outcomes
is not particularly special, and may equivalently be viewed as truncating an infinite sample after the first
n observations. From this perspective, it is natural to study what happens when n is varied, even if one
is only interested in prediction for any particular n.

Like the prediction pbma(xn+1 | xn), the posterior probability π(k | xn) ∝ pk(xn)π(k) may also be
interpreted in terms of cumulative loss: apart from the constant (i.e. not dependent on n) influence of
the prior π(k), it assigns large probability to models Mk that give large probability pk(xn) to the data
or, equivalently, achieve small cumulative prediction error as measured by log loss. Note that the ratio
of posterior probabilities of two models is exponential in their difference in cumulative loss!

We are now ready to compare the predictive performance of BMA to the best possible predictions
based on the models. To this end, let k̂ ≡ k̂(xn) = arg mink − log pk(xn) denote the index of the model
achieving the smallest cumulative loss when sequentially predicting xn. Then prediction using BMA
guarantees that the difference between our cumulative loss and the cumulative loss achieved by k̂ is in
the range [0,− log π(k̂)], whatever data xn are observed. (This follows by (3) and bounding the sum
∑

k pk(xn)π(k) from below by the term for k̂ and from above by pk̂(xn).) If, for all k, − log π(k) (which
is constant in n) is small compared to − log pk(xn) (which is typically linear in n), then this implies that
BMA predicts essentially as well as the model that turns out to be the best one in retrospect, whatever
this model may be. Although this is quite remarkable, the main insight of this paper is that it is often
possible to combine the predictions of the models in a way that achieves smaller cumulative loss even
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Figure 1: The Catch-up Phenomenon

than k̂! This can be done if the index of the best predicting model changes with the sample size n in a
predictable way. Such cases are common in model selection. We now give two examples, the first one,
based on Figure 1, involving Markov models and the second one based on the normal location family.

The figure compares the cumulative loss of two Markov chain models of different order on the first n
characters of Lewis Carroll’s “Alice’s Adventures in Wonderland” as a function of n, where each character
in the book is considered an outcome. It shows the difference − log p2(x

n)−(− log p1(x
n)), where pk is the

Bayesian marginal likelihood for the model Mk containing the k-th order Markov chains, parametrised by
their transition probabilities. The book uses 84 distinct symbols, such that Mk has 84k · 83 parameters.
For simplicity we used uniform (Dirichlet(1, 1, . . . , 1)) priors, but the same phenomenon occurs for other
common priors such as Jeffreys’ prior. The graph is restricted to the first half of the book only, to
highlight the region of interest; the full text is 166 926 characters long.1

Note that if the difference in negative log-likelihood increases over an interval, this means that on
average p1 is making better predictions of those outcomes than p2, and vice versa. To select the best
predictor, one would therefore like to estimate the (sign of the) slope of the graph. We see that on the
first 26 000 outcomes, p1 gets ahead by about 7 200 bits, but that p2 predicts better afterwards. Ideally,
we would therefore like to predict the first 26 000 outcomes like p1 and then switch to predicting like p2

for the remainder of the novel. However, as also shown in the figure, BMA (with prior π(1) = π(2) = 1/2
on the models) only starts to behave like p2 when p2 catches up with p1 around n = 58 000. This is
explained by the fact that the posterior depends, not on the slope, but on the height of the graph, and
is exponentially concentrated on the model with smallest cumulative loss. The result is that, between
the maximum of the graph and the point where it reaches zero, pbma behaves like p1 while p2 is making
better predictions: since at n = 26 000, p2 is 7 200 bits behind, and at n = 58 000, it has caught up, in
between p2 must have outperformed p1 by 7 200 bits!

The models M1 and M2 in this example are very crude; for this particular application much better
models are available. Figure 1 is intended as a simple illustration of the catch-up phenomenon only.
It shows that, if the difference in the number of parameters between M1 and M2 is really large, then
the catch-up phenomenon can be substantial. Our second example, which highlights the connection to
estimation, shows that the phenomenon is still present, though at a smaller scale, if M2 contains the
true distribution, and has just one additional parameter over M1.

Let M1 = {N (0, 1)} correspond to the mean of a Gaussian being zero, and M2 = {N (µ, 1) | µ ∈ R}
1The total cumulative losses for the full book are 603 906, 554 494, 554 495, and 546 698 bits for the first order and

second order Markov chains, BMA and the switch distribution respectively.
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to it being nonzero. Suppose that X1,X2, . . . are independently distributed according to a distribution
N (µ∗, 1) ∈ M2 with mean µ∗ 6= 0 that is close to 0. For convenience, let µ∗ be such that (µ∗)2 = 1/n0 for
some integer n0. Then, given a sample of size n, the quadratic risk for the maximum likelihood estimator µ̂
in M2 is E(µ∗−µ̂)2 = 1/n. And based on M1, we would always estimate with µ = 0, which has quadratic
risk E(µ∗ − 0)2 = (µ∗)2. Hence, to get the smallest risk, we should ideally estimate with model M1 up
to sample size n0, and switch to M2 for n > n0. The same holds for the expected prediction error if we
use the ML estimator for prediction with the logarithmic loss: the expected difference in log loss between
predicting with µ̂ and µ = 0 at sample size n is E[− log pµ̂(Xn+1) + log pµ(Xn+1)] = 1

2 (1/n − (µ∗)2).
Nothing essential changes either if we replace estimation using µ̂ by Bayesian prediction based on M2:
let p2(X

n) be the Bayesian marginal likelihood for Jeffreys’ prior or a Normal N (0, 1) prior. Then
the predictive distribution p2(Xn+1 | Xn) is Gaussian with variance 1 + O(1/n), and the expected
loss difference between the models becomes r(n) := 1

2 (1/n − (µ∗)2) + O(1/n2) (see e.g. [Grünwald,
2007, Section 12.3.1, (12.50) and Example 12.8, combined with Section 12.2.2, Lemma 12.2, Part 4 and
Example 12.3]). Summing r(n) from 1 to n, it follows that the expected cumulative difference in log
loss is (1/2) log n − (n/2)(µ∗)2 + O(1). Ignoring the O(1) term, when π(1) = π(2), we would (roughly)
expect the posterior to give larger mass to M2 for all n > n1, where n1 is the smallest n such that
(1/2) log n < (n/2)(µ∗)2, i.e. when (log n)/n < 1/n0. Because of the exponential concentration of the
posterior on the model with the smallest cumulative loss, BMA will tend to follow p1 (predicting based
on M1, i.e. with µ = 0) until this sample size, and follow p2 afterwards. However, the instantaneous
risk of p2 is already smaller than that of p1 at all sample sizes n > n0. On the interval [n0, n1], BMA
follows p2 whereas p1 is optimal for prediction. These informal calculations can be verified by computer
simulation. We encounter the same phenomenon in regression with polynomials (see Section 7).

We claim that the general phenomenon that different models predict better at different sample sizes
occurs widely, both in theoretical settings and on real-world data. We argue that failure to take this
effect into account explains the suboptimal convergence rates of Bayes factors model selection and related
methods. In Section 2 we define an alternative way of combining two distributions p1 and p2 into a single
distribution psw, which we call the switch distribution. Figure 1 shows that, in the Markov example, the
switch distribution first predicts roughly like p1, but switches to p2 almost immediately after it starts
making better predictions.2 It essentially does this no matter what sequence xn is actually observed
(see Section 8.2 for its performance on the Gaussian location models). The switch distribution is a
modification of the Bayesian marginal distribution that assigns positive prior weight to predicting with
different models at different sample sizes, instead of putting all prior weight on prediction with the same
model for all sample sizes, like BMA. This allows us to avoid the implicit, and often wrong, a priori
assumption that a single model will be the best predictor at all sample sizes. After conditioning on data,
the posterior we obtain therefore gives a better indication of which model predicts best at the actual
sample size, and hence achieves smaller risk. Indeed, the switch distribution, when viewed in terms of
the sequential predictions it induces, is closely related to earlier algorithms for tracking the best expert
in the universal prediction literature [Koolen and de Rooij, 2008b, Herbster and Warmuth, 1998, Vovk,
1999, Volf and Willems, 1998, Cesa-Bianchi and Lugosi, 2006]; however, both the context in which we
apply the switch distribution and the theorems that we prove, are very different.

1.3 Overview

In Section 2 we define the switch distribution and discuss the computational efficiency of its implemen-
tation. While we switched between only two models in the example above, the general definition allows
switching between any countable number of models. The predictions for each model may either be based
on the Bayesian predictive distribution or on parameter estimation, like for example maximum likelihood.
This is explained in Section 3, which also discusses model selection in the sequential prediction setting.
A first (minor) result is presented in Section 4, were we define minimax (cumulative) risk and it is shown
that, like Bayesian model averaging, the switch distribution achieves the minimax cumulative risk in typ-
ical parametric settings. Our main cumulative risk convergence results, however, are for nonparametric
model classes. These results, which are presented in Section 5, apply regardless of whether prediction

2In fact, p2 already slightly outperforms p1 over short sequences of outcomes before n = 26 000. This is exploited by
the switch distribution, which can switch back and forth between the available predictors if necessary (see Section 2.2).
The sharp drop around sample size 29 100 corresponds to “The Mouse’s Tale” which uses long strings of spaces for unusual
indentation, a structure that cannot be represented well by a first order Markov chain.
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is based on the Bayesian predictive distribution or on parameter estimation. They are followed by our
main consistency result in Section 6, which only applies to Bayesian prediction strategies. Section 7
contains a simulation study of linear regression with polynomials. The discussion in Section 8 puts our
work in a broader context and explains how it fits into the existing literature. In particular, Section 8.2
shows how the switch distribution may be further modified to achieve the minimax instantaneous rather
than cumulative risk. We end with a brief conclusion. The proofs of all results are in the Appendix.

2 The Switch Distribution

2.1 Preliminaries

For any set S, let Sn denote the n-fold Cartesian product, let S∗ :=
⋃∞

n=0 Sn and let S∞ denote the
(uncountable) set of infinite sequences over S. Analogously, let xn denote an n-tuple x1, . . . , xn (x0 is
the empty sequence) and let x∞ denote an infinite sequence.

Consider a random process X∞ ∈ X∞, where each outcome takes values in a space X ⊆ Rd of finite
dimension d ∈ N = {1, 2, . . .}. We call p a (sequential) prediction strategy for X∞ if it issues a density
p(xn+1 | xn) on xn+1 ∈ X for all xn ∈ X ∗. If the data are assumed to be drawn from a distribution p∗

we sometimes call the prediction strategy p an estimator to emphasize that p is intended to approximate
p∗. For simplicity, we assume throughout that this density is taken relative to either the usual Lebesgue
measure (if X is continuous) or the counting measure (if X is countable). In the latter case p(xn+1 | xn)
is a probability mass function. Such sequential prediction strategies are sometimes called prequential
forecasting systems [Dawid, 1984]. An instance is given in Example 1 below.

Our notation emphasises that the conditional densities of a distribution may always be viewed as
a prediction strategy; vice versa, the predictions of any prediction strategy p may be viewed as the
(regular) conditional probabilities of a distribution for X∞ with density

p(xn) = p(x1) · p(x2 | x1) · . . . · p(xn | xn−1). (4)

With some abuse of notation, we also use the symbol p to denote this distribution. For countable sample
spaces, such a distribution can always be defined; for uncountable X we require the following standard
measurability assumption: for any n ∈ N and any fixed measurable event An+1 ⊆ X the probability
p(An+1 | xn) should be a measurable function of xn (see e.g. [Shiryaev, 1996, p. 249, Theorem 2]).

2.2 Definition

We start with a given, countable set of prediction strategies {pk | k ∈ A}; see Example 1 below for a
concrete case. Based on the set {pk | k ∈ A}, we first define a new family Q = {qs | s ∈ S} of prediction
strategies that switch between them. The parameter set S for these switching strategies is defined as

S =
{

(

(t1, k1), . . . , (tm, km)
)

∈ (N ×A)m | m ∈ N, 1 = t1 < . . . < tm

}

. (5)

Each parameter s ∈ S specifies the indices k1, . . . , km of m original prediction strategies to be used by
qs in sequence, and the sample sizes t1, . . . , tm at which switches occur from one strategy to the next.
Formally,

qs(xn+1 | xn) = pkj
(xn+1 | xn) for tj ≤ n + 1 < tj+1, (6)

with the convention that tm+1 = ∞. For example, t4 is the index of the first outcome that is predicted
using pk4

. The extra switch-point t1 is included to simplify boundary cases; we fix t1 = 1 so that k1

represents the strategy that is used first, before any actual switch takes place. Thus the total number of
switches is m − 1. Switching to the same predictor multiple times (consecutively or not) is allowed.

The switch distribution is a Bayesian mixture of the elements of Q according to a prior π on S:

Definition 1 (Switch Distribution). The switch distribution psw, defined with respect to a prior proba-
bility mass function π on s, is the distribution for (X∞, s) with density

psw(xn, s) := qs(x
n)π(s) (7)

for xn ∈ X ∗ and s ∈ S.
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Hence the marginal switch distribution on n outcomes has density

psw(xn) =
∑

s∈S

qs(x
n)π(s). (8)

By Bayes’ theorem, the prior π, conditioned on observed data xn, induces a posterior distribution psw(s |
xn) ∝ qs(x

n)π(s) on switching strategies s. The marginal of this posterior on the prediction strategy
that is used to predict the next outcome will be of special interest. For s =

(

(t1, k1), . . . , (tm, km)
)

, define
the random variable Kn+1(s) = kj for j such that tj ≤ n + 1 < tj+1. Then Kn+1(s) is the prediction
strategy that is used by qs to predict the (n + 1)-th outcome. We can then consider, say, the posterior
probability assigned to each prediction strategy upon observing xn:

psw(Kn+1 = k | xn) =





∑

s:Kn+1(s)=k

psw(xn, s)



 /psw(xn). (9)

This quantity is used to define a model selection criterion based on the switch distribution in Section 3.

2.3 Structure of the Prior and Efficient Computation

Partly to allow for an efficient algorithm and partly because it facilitates our further results, we require
that π can be written in the form

π((t1, k1), . . . , (tm, km)) = µ(m)





m−1
∏

j=1

κtj
(kj)τ(Z = tj+1 | Z > tj)



 λtm
(km). (10)

Here, µ is a prior probability mass function on the number of prediction strategies m, which is equal to
the number of switches plus one. Further, τ is a prior mass function on the switching indices, which are
the integers greater than one. Its conditioning in (10) exploits the prior knowledge that tj+1 > tj . For
all n ∈ N, κn is a prior mass function on some subset of strategies indexed by K ⊆ A and λn is a prior
on some subset of strategies indexed by L ⊆ A. The set K indexes the prediction strategies that can be
switched to while switching has not yet stabilized, i.e. if one will switch at least once more in the future.
The set L indexes the set of final prediction strategies that can be switched to at the last switch. We
sometimes blur the distinction between prediction strategies and their indices and say, for example, that
K “contains” prediction strategies.

In the basic version of the switch distribution, we do not distinguish between L and K, and set
L = K = A. For our convergence rate results, however, we will consider advanced versions of the switch
distribution, in which L is still a given set of prediction strategies, but K contains slightly modified
versions of the prediction strategies in L. These will be introduced in Section 5.1. For computational
reasons it is convenient to allow κn and λn to depend on n (since no computation is necessary for
prediction strategies with zero prior probability), and we therefore allow this in our definitions.

Our consistency and convergence rate theorems impose some further conditions on the prior π. For
concreteness, we remark that every prior of the following form is compatible with all our results:

µ(m) = 2−m, τ(t) = 1/(t(t − 1)), and κn and λn are uniform on their support, (11)

as long as the supports of κn and λn never shrink with n and are at most of polynomial size in n. For
this τ , we have τ(Z = tj+1 | Z > tj) = (tj+1(tj+1 − 1))−1/(1 − ∑tj

i=2(i(i − 1))−1) = tj/(tj+1(tj+1 − 1)).

Example 1. In the Markov chain example of Figure 1, psw is instantiated as follows. We set L = K =
A = {1, 2}, and define the prior π using (11), with the support of κn and λn equal to A for all n. For
k ∈ A, pk, as used in (6), is defined as the Bayesian marginal likelihood (see (1)) relative to the k-th order
Markov model equipped with the uniform prior. The pk are viewed as prediction strategies by defining
pk(xn+1 | xn) = pk(xn+1)/pk(xn), such that the corresponding distribution is the standard Bayesian
predictive distribution after conditioning on observations xn [Bernardo and Smith, 1994].

In all applications in this paper, the prediction strategies pk will be based on (parametric) models
Mk. They will either be Bayesian predictive distributions as in Example 1, or parameter estimators
relative to Mk, as explained in Section 3. Note however that, in principle, the switch distribution may
be applied to completely arbitrary prediction strategies: pk could just as well represent the prediction of
next day’s probability of rain as issued by a weather forecaster on television.
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Hidden Markov Model and Efficient Computation In [Van Erven, 2010, Chapter 2] an algo-
rithm is presented that sequentially computes the posterior probabilities psw(Ki+1 = k | xi) for i =

0, . . . , n−1. It requires that µ(m) is a geometric distribution, like in (11). Let si = |⋃i
j=1 support(λj)|+

|⋃i
j=1 support(κj)| denote the number of strategies considered by time i. Then the total running time of

the algorithm is O(
∑n

i=1 si), which is linear in the number of outcomes n and the sizes of the supports.
For example, if support(κi) = support(λi) = A for all i, then the running time is |A| · O(n), which is
typically of the same order as that of model selection criteria like AIC and BIC. For an example where
the supports do depend on i, see Section 5.3, Example 2.

The algorithm is closely related to algorithms for tracking the best expert from the universal prediction
literature. It may also be interpreted as an instance of the forward algorithm for a hidden Markov model
with hidden variables K1,K2, . . . This perspective is taken by Koolen and de Rooij [2008a], who also
verify that this hidden Markov model corresponds exactly to the switch distribution as defined above.

2.4 Comparison to Bayesian model averaging

As discussed in the introduction, one advantage of averaging over a set of predictors P = {p1, p2, . . .}
using pbma is that it guarantees a bound − log π(k̂) on the difference in cumulative log loss with the best
predictor pk̂. This property is shared by psw, which multiplicatively dominates pbma. To see this, let
L = P and define λ1 to be equal to the prior used in pbma. (The set K may be arbitrary, for example
equal to L.) Then comparison with the switch distribution shows that BMA corresponds to using a prior
that allows no switches at all between predictors. This corresponds to the case m = 1 in the prior from
(10). We therefore find that

psw(xn) ≥
∑

s∈{((1,k))|k∈L}

π(s)qs(x
n) = µ(1)

∑

k∈L

λ1(k)pk(xn) = µ(1)pbma(x
n)

for all n, xn. Thus, psw can be smaller than pbma by at most a constant factor µ(1), which is the prior
probability of never switching between predictors. The converse of this is not true however: as Figure 1
illustrates, the switch distribution may achieve substantially smaller cumulative loss than pbma. This is
also seen in the simulation study in Section 7.

3 Model Selection, Prediction and Estimation

We consider a two-stage approach to inference based on a sequence of models M1,M2, . . . In the first
stage, for all k = 1, 2, . . ., a single “meta” prediction strategy pk is associated with each model Mk.
In the second stage, these prediction strategies are either used to select a single model based on the
observed data xn, or they are combined further into a “meta meta” prediction strategy for prediction
of future outcomes. We treat these stages as orthogonal to gain flexibility, even though many methods
described in the literature define both stages in tandem.

3.1 Stage 1: Models and Associated Prediction Strategies

We define a model M as a set of prediction strategies. With each model, we associate a single “meta”
prediction strategy; the models themselves are only used in terms of these meta strategies: our results
about predictive performance in Sections 4 and 5 apply regardless of how these meta strategies are
defined; for our consistency result there are some restrictions that are explained in Section 6. For
example, a prediction strategy for a parametric model M = {pθ | θ ∈ Θ ⊆ Rd} may be defined in terms

of a parameter estimator θ̂ : X ∗ → Θ. The next outcome is subsequently predicted using p(xn+1 | xn) =
pθ̂(xn)(xn+1 | xn). Recall that by (4) this also defines a joint density p(xn) = p(x1 | x0) · . . . ·p(xn | xn−1).
A second important example is to take the Bayesian approach: given a prior density w on Θ, define the
marginal likelihood by

p(xn) =

∫

θ∈Θ

pθ(x
n)w(θ) dθ. (12)

We obtain a prediction strategy by applying (4) in the other direction: p(xn+1 | xn) = p(xn+1)/p(xn).
Using a model in terms of a single associated prediction strategy p is known as the prequential approach
to statistics [Dawid, 1984] or predictive MDL [Rissanen, 1984].
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3.2 Stage 2: Model Based Prediction and Model Selection

Let M1,M2, . . . be parametric models, with associated prediction strategies p1, p2, . . . For example, Mk

may be the set of all k-th order Markov chains, or it may be the set of k-bin histograms in a density
estimation setting, parametrised by the densities in the bins, or, in a regression setting, Mk may be the
set of degree (k − 1) polynomials with standard normal noise. In general, the number of parameters in
Mk does not need to be a straightforward function of k.

Model based prediction means combining the “meta” prediction strategies p1, p2, . . . into yet another,
“meta meta” prediction strategy p. Analogous to when the prediction strategies in the model were
combined into a single prediction strategy associated with the model, we describe the two main methods
to achieve this.

Model Selection Criteria Define a function δ : X ∗ → A which maps any data xn of any length n
to a “best guess” of the true/best model. We can then predict the next outcome using the prediction
strategy that is selected by δ: p(xn+1 | xn) = pδ(xn)(xn+1 | xn). This is the analogue of using a parameter
estimator in stage 1; on this level we call such a function a model selection criterion. AIC, BIC and LOO
are examples of model selection criteria; in a Bayesian setting reporting the full posterior distribution
on the model index is usually advocated, but when pressed for a single answer, a Bayesian may report
the “maximum a posteriori” (MAP) model (as in Bayes factors model selection), which is also a model
selection criterion in the sense considered here.

Model selection can either be used to obtain adaptive estimators, or to determine which model (if
any) contains the true distribution. In the latter case the model selection criterion needs to be consistent,
see Section 6.

Model Averaging The strategies associated with the models can also be combined by taking a
weighted mixture of their predictions. The prototypical example is Bayesian model averaging, in which
the predictions associated with the models are weighted by the posterior probability of the model, as in
(2). It has been found that prediction using model averaging often performs substantially better than
prediction based on model selection (see, for example [Kontkanen et al., 2000]); for this reason, while
strictly AIC is a model selection criterion, its definition is sometimes extended to assign weights to the
models when it is used for prediction [Akaike, 1979] (see also Section 7).

3.3 Model Selection and Prediction with the Switch Distribution

Model selection and prediction with the switch distribution is very similar to normal Bayes factors
model selection and Bayesian model averaging. There are two important differences: first, the posterior
distribution is on the switch parameters S rather than simply on the models. In prediction, the models
are therefore averaged by marginalising the posterior using the random variable Kn+1 from (9):

psw(xn+1 | xn) =
∑

k∈A

pk(xn+1 | xn)psw(Kn+1 = k | xn). (13)

A second difference is that the switch distribution can be defined with respect to more prediction strate-
gies than just those corresponding to the models: in our results, the set L indexes the models, but the
set K indexes a set of variations of the corresponding prediction strategies (see Section 5). Hence we
define the following model selection criterion for the switch distribution, which selects a model index
from L only:

δsw(xn) = arg max
k∈L

psw(Kn+1 = k | xn). (14)

4 Risk Bounds: Preliminaries and Parametric Case

In this section we analyse the performance of the switch distribution in terms of cumulative Kullback-
Leibler risk. We define the central notions of (parametric and nonparametric) model classes, Kullback-
Leibler risk, and worst-case and minimax (cumulative) risk. We illustrate these by showing that, in the
parametric case, like Bayesian model averaging, the switch distribution achieves the minimax cumulative
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risk under mild conditions. This serves as a preparation for Section 5, where we consider nonparamet-
ric model classes and show that unlike Bayesian model averaging, the switch distribution under mild
conditions still achieves the minimax cumulative risk.

4.1 Model Classes

Suppose M1,M2, . . . is a sequence of parametric models with associated prediction strategies p1, p2, . . .
as before. Let us write M = ∪∞

k=1Mk for the union of the models. To test the predictions of the switch
distribution, we will want to assume that X∞ is distributed according to a distribution p∗ from a class
M∗ that is not necessarily equal to M.3 For simplicity, we will also assume throughout that, for any n,
the conditional distribution p∗(Xn | Xn−1) has a density (relative to the Lebesgue or counting measure)
with probability one under p∗. For example, if X = [0, 1], then M∗ might be the set of all product
measures that have uniformly bounded densities with uniformly bounded first derivatives.

We call M and M∗ model classes. In the parametric setting, we have M∗ ⊆ M; we briefly consider
this case in Section 4.4. Our strongest risk convergence results however, presented in Section 5, deal
with situations in which M∗ \M is non-empty. We are mostly interested in cases where M∗ represents
what is commonly called a nonparametric model class.

4.2 Risk

The Kullback-Leibler (KL) risk of an estimator p is

r(p∗, p, n) = E
Xn−1∼p∗

[

D
(

p∗(Xn | Xn−1)‖p(Xn | Xn−1)
)]

, (15)

where p∗ is the true distribution and D(p‖q) = EY ∼p

[

log p(Y )
q(Y )

]

is the KL divergence (which is nonnega-

tive). In a sequential prediction setting, it is natural to consider not only the standard KL risk, but also
the cumulative risk

R(p∗, p, n) =

n
∑

i=1

r(p∗, p, i).

The cumulative risk is equal to the information theoretic redundancy, i.e. the Kullback-Leibler divergence
on n outcomes (see e.g. [Barron, 1998b] or [Grünwald, 2007, Chapter 15]). This implies the following
proposition, which underlies all our convergence rate results:

Proposition 1. Let p1 and p2 be densities on n outcomes. Suppose that p1 dominates p2 by a factor of
c ∈ (0, 1], i.e. for all xn ∈ Xn, p1(x

n) ≥ c · p2(x
n). Then for every p∗, R(p∗, p1, n) ≤ R(p∗, p2, n)− log c.

Note that the proposition does not require X∞ ∼ p∗ to be i.i.d.

Remark 1. As we observed in Section 2.4, the switch distribution dominates Bayesian model averaging
by a factor µ(1), so by Proposition 1

R(p∗, psw, n) ≤ R(p∗, pbma, n) − log µ(1),

for any p∗ whatsoever.

4.3 Minimax Risk Convergence

Define the worst case instantaneous risk and worst-case cumulative risk of an estimator p as, respectively,

rm(p, n) = sup
p∗∈M∗

r(p∗, p, n); Rm(p, n) = sup
p∗∈M∗

n
∑

i=1

r(p∗, p, i).

Note that the supremum is taken outside of the sum: we consider worst-case cumulative risk rather than
cumulative worst-case risk, which is unreasonably adversarial in the sequential setting. The corresponding
minimax risk notions are obtained by minimising the worst-case risk:

rmm(n) = inf
p

rm(p, n); Rmm(n) = inf
p

Rm(p, n),

3In p∗ and M∗, the star is simply part of the name, not the Kleene star operator.
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where the infimum is over all possible estimators, as defined in Section 2.1. (Note that p is not required
to be a member of M∗ or M.) Minimax cumulative risk has previously been studied by, among others,
Haussler and Opper [1997], Rissanen et al. [1992], Barron [1998b], Yang and Barron [1999] and Poland
and Hutter [2005].

To conveniently compare asymptotic behaviour of functions we use the following notation:

Definition 2. For any two nonnegative functions g, h : N → [0,∞], we write g � h or h � g if for all
ǫ > 0 there exists an n0 such that g(n) ≤ (1 + ǫ)h(n) for all n ≥ n0.

Like ordinary inequality, � is reflexive (f � f for all f) and transitive (f � g and g � h implies f � h).
Note that g � h is equivalent to lim supn→∞ g(n)/h(n) ≤ 1 as long as h(n) is never zero, and that g ≤ h
implies g � h.

We can now easily define the two notions of minimax risk convergence that are of interest in this
paper: we say that an estimator p achieves the minimax risk up to factor c if rm(p, n) � c · rmm(n), and
similarly, p achieves the minimax cumulative risk up to factor c if Rm(p, n) � c ·Rmm(n). See Section 8.2
for further discussion of the relationships between these two convergence notions.

4.4 The Parametric Case

Let Mk = {pθ | θ ∈ Θk} be a d-dimensional parametric family, and let pk be a corresponding Bayesian
prediction strategy, defined as in (12). Then Clarke and Barron [1990] show that, under suitable regularity
conditions, which include a compactness condition on Θk, the cumulative risk of pk satisfies

R(p∗, pk, n) =
d

2
log n + O(1),

uniformly for all p∗ ∈ Mk. They also show [Clarke and Barron, 1994] that the minimax cumulative risk
relative to the model class M∗ := Mk satisfies Rmm(n) = (d/2) log n + O(1). It follows that pk achieves
the minimax cumulative risk relative to Mk. Since pbma dominates pk (by a factor determined by its
prior probability), Proposition 1 implies that pbma also achieves the minimax cumulative risk up to factor
1. Subsequently, Remark 1 implies that the switch distribution also achieves the minimax cumulative
risk up to factor 1.

Actually, our experiments for the parametric case in Section 7 suggest that the cumulative risk of the
switch distribution may be smaller than that of Bayesian model averaging by a constant, but we have
no general theorems to substantiate this.

5 Two Cumulative Risk Bounds

In the nonparametric case, where p∗ is in none of the considered models, the minimax optimal cumulative
risk grows more quickly than in the parametric case. As a result the cumulative risk of pbma may not
be minimax optimal anymore [Rissanen et al., 1992]. In contrast, in this section we establish minimax
optimality of the switch distribution.

To present our risk bounds for nonparametric adaptive estimation based on the switch distribution, we
first need to introduce the notion of “frozen” prediction strategies, which keep issuing the same prediction
even as they are conditioned on more and more data. These will be required in the proofs of both
cumulative risk theorems. We then introduce the notion of an oracle, which is essentially a model selection
criterion augmented with knowledge of the true distribution. Theorem 2, our strongest cumulative risk
result, is presented in Section 5.3. As mentioned in the introduction it requires augmenting the set of
considered prediction strategies with linearly many frozen strategies, leading to a slower algorithm. A
faster, but somewhat weaker, alternative is provided by Theorem 5 in Section 5.4.

5.1 Frozen Strategies

In the definition of the switch distribution we distinguished between K, which indexes prediction strate-
gies from which one will switch at least once more in the future, and the set L, which indexes the set
of final prediction strategies that can be switched to at the last switch. In the basic version of the
switch distribution, we set L = K. This version works well empirically, and can be proved to achieve the
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minimax cumulative risk in some particular nonparametric settings (such as those of Barron and Sheu
[1991]; see [Van Erven et al., 2008] for details). Yet it is hard to prove general results about its risk
behaviour, for reasons we explain below. To make the switch distribution more amenable to mathemat-
ical analysis, we allow K to contain “frozen” (explained below) versions of the strategies in L, so that
K 6= L. Employing frozen strategies allows us to prove convergence rate results for quite general settings.
Since our definition of frozen strategies only applies to i.i.d. data, we will restrict to this setting for the
remainder of this section:

Definition 3 (Standard i.i.d.). We call a distribution p∗ for X∞ = X1, X2, . . . “standard i.i.d.”
if the random variables X1,X2, . . . are independent and identically distributed under p∗, and p∗(X1)
has a density (relative to the Lebesgue or counting measure). We call a model class M∗ “standard
i.i.d.” if all p∗ ∈ M∗ are standard i.i.d. For any two standard i.i.d. distributions p∗, p, we abbreviate
D(p∗‖p) := D(p∗(X1)‖p(X1)).

For sufficiently regular i.i.d. models and suitable estimators pk, the risk r(p∗, pk, n) converges to
infp∈Mk

D(p∗‖p), the smallest risk obtainable by any distribution within Mk. Roughly, the larger n,
the more data available to base the prediction pk(xn+1 | xn) on, and the smaller the risk r(p∗, pk, n).
However, it turns out that the risk does not always decrease monotonically; for an example of temporarily
increasing risk, see [Barron, 1998a, Section 7]. The proof techniques we have developed, however, only
apply if r(p∗, pk, n) is either nonincreasing or increases only very little in that supk∈A(r(p∗, pk, n + 1) −
r(p∗, pk, n)) = O(1/n). To prove risk convergence rates, we could simply impose this condition on the
predictors pk, but, since it turns out to be hard to verify, this is not satisfactory. Instead, we therefore
include modified prediction strategies whose risk can be guaranteed to be nonincreasing on appropriate
intervals. This is achieved by “freezing” the issued predictions as follows.

Definition 4 (Frozen Strategies). Let pk be a prediction strategy and t a positive integer. Then pk frozen
at time t is a new prediction strategy defined by pk◦t(xn+1 | xn) = pk(xn+1 | xmin{t−1,n}). Similarly, for
a (finite or infinite) increasing sequence of positive integers t = t1, t2, . . . with t1 = 1, the strategy pk

frozen at times t is pk◦t(xn+1 | xn) = pk(xn+1 | xtj−1) when tj ≤ n + 1 < tj+1, with the convention that
tm+1 = ∞ if t = t1, . . . , tm is finite.

Note that, when the data are i.i.d., any prediction strategy pk that is frozen at time t keeps issuing
the same predictions for all n + 1 ≥ t and consequently has a fixed risk. Similarly, a prediction strategy
pk frozen at times t = t1, t2, . . . has the same fixed risk between any two freezing times tj and tj+1.

5.2 Oracles, Fast and Slow Switch Distribution

Let {pk | k ∈ L} be a countable set of prediction strategies, each associated with a corresponding model
Mk. We define two advanced versions of the switch distribution, in which K contains frozen versions of
these prediction strategies, and A = L ∪ K: in the slow switch distribution

K = {k ◦ t | k ∈ L, t ∈ N}; (16)

and in the fast switch distribution
K = {k ◦ t | k ∈ L} (17)

for a fixed increasing sequence t = t1, t2, . . . that may be chosen by the practitioner. The basic switch
distribution corresponds to the special case of the fast switch distribution with t = 1, 2, 3, . . . (such that
freezing has no effect), but Theorem 5 below will require the freezing times to be exponentially increasing.

We will bound the cumulative risk of these switch distributions by that of an oracle [Donoho and
Johnstone, 1994] that selects a prediction strategy based on the data and knowledge of the true distri-
bution p∗. Model selection criteria are examples of oracles, but because they know p∗ oracles are more
powerful. In this paper, we adopt a broad definition that gives the oracle full access to p∗:

Definition 5 (Oracle). An oracle is a function ω : M∗ × X ∗ → A that, given not only the observed
data xn ∈ X ∗, but also the true distribution p∗ ∈ M∗, selects a prediction strategy with index ω(p∗, xn).
For S1,S2, . . . subsets of A, we say that ω is an oracle relative to S1,S2, . . . if ω(p∗, xn) ∈ Sn+1 for all
p∗ ∈ M∗, n ≥ 0, xn ∈ Xn. We let pω(xn+1 | xn) := pω(p∗,xn)(xn+1 | xn) denote the prediction strategy
associated with oracle ω.
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Our theorems will apply to oracles relative to sets L1 ⊆ L2 ⊆ . . . ⊆ L, where the size of Ln grows at
most polynomially in n. To formulate the condition that enforces this requirement, define

Kn = {k ◦ t | k ∈ Ln, t ∈ {1, . . . , n}} ⊂ K (slow switch distribution)

Kn = {k ◦ t | k ∈ Ln} ⊂ K (fast switch distribution),
(18)

analogously to (16) and (17). Then we impose the following condition on the prior:

Condition 1. The prior π of the switch distribution is defined as in (10) and satisfies

− log µ(m) = O(m),

− log τ(t) = O(log t),

− log κn(k) = O(log n) uniformly for all k ∈ Kn,

where Kn is as defined in (18).

This condition implies that the tails of the distributions τ and κn are of polynomial thickness, and
that Kn is at most polynomially large in n. As |Kn| = n|Ln| for the slow switch distribution, and
|Kn| = |Ln| for the fast switch distribution, this implies that Ln is also at most polynomially large.
Thus, the number of models we allow an oracle to consider is at most polynomial in n.

Example 2. Suppose that L = N. We may set, for example, Ln = {1, . . . , ⌈na⌉} for some finite a > 0.
Note that the number of models of a given dimension may be large, as long as the total number of models
equals ⌈na⌉. Then, in order to satisfy Condition 1, we may make suitable choices for µ and τ and take
λn = λ and κn = κ independent of n, for example as λ(k) = 1/(k(k+1)) and κ(k◦t) = 1/(k(k+1) t(t+1)).
Although this satisfies Condition 1, having infinite supports for λn and κn leads to computational issues.
These can be addressed by reducing the supports of λn and κn to Ln and Kn (or suitably small supersets),
respectively, and using the sample size dependent prior suggested in (11). The resulting running time for
the algorithm on data x1, . . . , xn will then be of order

∑n
i=1(|Ki|+ |Li|), which is O(n2+a) and O(n1+a)

for the slow and fast switch distributions, respectively.

The difference in running time in Example 2 motivates the adjectives “slow” and “fast” for the two
switch distributions. As will be seen in the next two sections, the smaller running time of the fast switch
distribution does come at a price: whereas, under weak conditions, the slow switch distribution achieves
the minimax cumulative risk up to factor one (which is optimal), we can only prove that the fast switch
distribution achieves the minimax cumulative risk under somewhat stronger conditions, and only up to
a suboptimal constant factor.

5.3 Cumulative Risk Bound for the Slow Switch Distribution

The cumulative risk of the slow switch distribution asymptotically grows at the same rate as that of any
oracle, provided that the cumulative risk of that oracle is not too small:

Theorem 2 (Cumulative Risk for Slow Switch Distribution). Fix L1 ⊆ L2 ⊆ · · · ⊆ L, let M∗ be standard
i.i.d. and choose a prior that satisfies Condition 1. Then, for any oracle ω relative to L1,L2, . . . that
satisfies

(log n)2+α

Rm(pω, n)
→ 0 (19)

for some α > 0, the worst-case cumulative risk of the slow switch distribution grows no faster than the
worst-case cumulative risk of ω:

Rm(psw, n) � Rm(pω, n). (20)

Note that every model selection criterion such as AIC or BIC that, at sample size n, is allowed
to choose a model in Ln, is a special case of an oracle relative to L1,L2, . . . Therefore, to make the
theorem more concrete, it is useful to explicitly consider the case in which ω is in fact a model selection
criterion. In that case, the condition (19) will be satisfied for all model classes M∗ that are usually called
“nonparametric”: for such model classes, the minimax risk rmm(n) is typically of order n−α(log n)β for
some 0 < α < 1 and β ∈ R and thus satisfies rmm(n) � n−γ for some 0 < γ < 1. If ω is a model
selection criterion, then (by Proposition 4 below) Rm(pω, n) ≥ Rmm(n) � nrmm(n) � n1−γ , and (19)
holds. Hence Theorem 2 implies the following:
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Corollary 3. Suppose M∗ is a standard i.i.d. model class such that (log n)2+α/Rmm(n) → 0 for some
positive α, for example if rmm(n) � n−γ for some γ < 1. Then for any model selection criterion
δ : Xn → Ln+1, which selects only prediction strategies from Ln+1, the worst-case cumulative risk of
the slow switch distribution (with a prior that satisfies Condition 1) grows no faster than the worst-case
cumulative risk of δ. That is,

Rm(psw, n) � Rm(pδ, n), (21)

where pδ is the prediction strategy with predictions pδ(xn)(xn+1 | xn).

In particular, for all model classes that are commonly called “nonparametric”, the slow switch dis-
tribution performs at least as well as, for example, AIC and leave-one-out cross-validation (LOO). Note
however that AIC and LOO always output a single model index whereas the switch distribution is allowed
to predict using a weighted mixture of the pk’s.

Example 3. Ghosal et al. [2008] analyse exponential families defined on X = [0, 1]. In their set-up, MJ

is a log spline density model for splines of some fixed order q and resolution K, where J = q + K − 1,
which is a (J − 1)-dimensional exponential family. For each J , they construct a fixed smooth prior
density wJ on the canonical parameters of MJ . Now suppose that the true density p∗ belongs to the
class of α-smooth functions Cα[0, 1]. Then it follows from Theorem 5.2 of Ghosal et al. that the Bayesian
prediction strategy with prior wJ of dimension J = Jn,α =

⌊

n1/(2α+1)
⌋

achieves the minimax rate of

convergence n−α/(2α+1) in Hellinger risk. Since they make the further assumption that the density of p∗

and all densities in MJ are uniformly bounded away from 0 and ∞, convergence in Hellinger risk at rate
of order r(n) implies convergence in instantaneous KL risk at rate of order r(n)2 and vice versa [Barron
and Cover, 1991]. Thus, they also achieve the minimax rate n−2α/(2α+1) in KL risk.

To obtain an adaptive procedure, they consider various priors on α. In particular, they show that by
putting a discrete prior on the set of rational-valued smoothnesses α ∈ Q+, the optimal rate is achieved
up to a logarithmic factor, which they believe “is not a defect of [their] proof, but connected to this
prior.” In this case the same prior would also lead to an extra logarithmic factor in the cumulative KL
rate of the Bayesian procedure. This may be viewed as an instance of the catch-up phenomenon, which
makes Bayes prefer overly simple models (with too small Jn,α or, equivalently, too large α). Indeed,
Ghosal et al. show that for an alternative, sample size-dependent prior on α that puts less mass on small
models, the extra logarithmic factor is avoided.

In terms of cumulative risk, the logarithmic factor is also avoided by the switch distribution, even
without the use of any sample size-dependent priors: for J ∈ L = N define Bayesian prediction strategies
pJ based on the same priors wJ as Ghosal et al., and take λn(J) = 1/J(J + 1) and κn(J ◦ t) =
1/(J(J + 1) t(t + 1)) independent of n as in Example 2. In addition any suitable µ and τ such that
Condition 1 holds may be chosen. Note that neither L nor the prior depend on α, which therefore does
not have to be known in advance. Now Theorem 2 may be applied with the oracle ω(p∗, xn) =

⌊

n1/(2α+1)
⌋

and Ln = {1, . . . ,
⌊

n1/(2α+1)
⌋

}, showing that the switch distribution adaptively achieves the minimax

cumulative rate, which is n1/(2α+1) by Proposition 4 below.

5.3.1 Remarks

1. Interestingly, the theorem and corollary also apply in the “misspecified” case in which M∗ con-
tains some p∗ that cannot be approximated arbitrarily well by the list of models M1,M2, . . ., i.e.
if infk∈L,p∈Mk

D(p∗‖p) > 0. In that case, the cumulative risk of any oracle, including any model
selection method, will increase, to first order, as αn for some α > 0, and the cumulative risk of the
switch distribution will increase as αn for the α achieved by the best oracle.

2. Condition 1 implies that the model selection criterion δ mentioned in Corollary 6 must output a
model with index in a set that grows at most polynomially in n. While it may grow superlinearly, it
cannot grow exponentially, which precludes application of the corollary in the general variable selection
problem, where, at time n, one wants to select between a number of models that is exponential in n.
This is discussed further in the Section 8.4.

3. Since ω in Theorem 2 is an oracle with access to p∗, it may in some cases perform substantially better
than any (known) model selection criterion that does not know p∗. Thus, in principle, Theorem 2 is
much stronger than Corollary 3.
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4. The theorem is asymptotic, but by going through the steps of the proof with α = 0 and keeping track
of constants, one can also show that Rm(psw, n) ≤ 2Rm(pω, n) + c1(log n)2 + c2, where the constants
c1 and c2 depend on the prior. Thus, in this sense the cumulative risk of the switch distribution is
close to that of the oracle for every n.

5. The theorem is interesting only if Rm(pδ, n) is finite, which implies that Rm(psw, n) is finite, and
therefore rmm(i) ≤ Rmm(n) ≤ Rm(psw, n) should be finite as well, for all i ≤ n. Note, however, that
when p∗ is standard i.i.d., finiteness of rmm(1) implies finiteness of rmm(i) for all i ≥ 1 and hence
finiteness of Rmm(n) ≤ ∑n

i=1 rmm(i).

5.4 Cumulative Risk Bound for the Fast Switch Distribution

To get minimax convergence rates for the fast switch distribution, we need to impose the following
condition on the model class:

Condition 2. Relative to M∗, the minimax risk rmm does not decrease too fast in the sense that, for
some nondecreasing, strictly positive function h0 and constants 0 < c1 ≤ c2 and 0 ≤ γ < 1, it satisfies

c1h0(n) � nγrmm(n) � c2h0(n). (22)

As can be seen by inspecting the proof of Theorem 5 below, this condition implies that
(log n)2+α/Rmm(n) → 0 for any α and is therefore stronger than what is required for Corollary 3.
Yet, it is still weak enough to be satisfied by all model classes that are usually called nonparametric.
Note that it allows cases such as rmm(n) = Θ(n−α(log n)β) for α < 1, β ∈ R. (For β < 0, take γ > α
and let h0(n) = Θ(nγ−α(log n)β).) The smaller γ, the better the bound in Theorem 5 below.

If Condition 2 holds, we can establish minimax cumulative risk rates up to a constant factor c
determined by the constants c1 and c2 and γ. The key here is the following relation between cumulative
and instantaneous risk, proved in Appendix A.3:

Proposition 4. Suppose that M∗ is a standard i.i.d. model class. Then

rmm(n) � n−1Rmm(n) ≤ n−1
n

∑

i=1

rmm(i).

Furthermore, if M∗ satisfies Condition 2 with constants c1, c2 and γ, and rmm(n) < ∞ for all n, then
also

n−1
n

∑

i=1

rmm(i) � c2

c1

1

1 − γ
rmm(n).

Based on this proposition, in Appendix A.4 we prove the following theorem:

Theorem 5 (Cumulative Risk for Fast Switch Distribution). Fix L1 ⊆ L2 ⊆ · · · ⊆ L, let M∗ be a
standard i.i.d. model class that satisfies Condition 2 with constants c1, c2 and γ, and choose a prior that
satisfies Condition 1. Suppose there exists an oracle ω relative to L1,L2, . . . that achieves the minimax
risk up to a nondecreasing function f : N → [1,∞), i.e. rm(pω, n) � f(n) rmm(n), and is such that
rm(pω, n) < ∞ for all n. Then for any infinite increasing sequence of freezing times t = t1, t2, . . . with
t1 = 1 and tj ≥ a exp(bj) for positive constants a and b, the corresponding fast switch distribution
achieves the minimax cumulative risk up to factor cf(n) for a constant c. Specifically,

Rm(psw, n) � c f(n)Rmm(n),

with c given by

c =

(

c2

c1

)2

· 1

1 − γ
sup
j≥1

(

tj+1 − 1

tj

)γ

. (23)

In applications we can take, for example, tj = 2j−1, or, to get slightly better bounds, we may take
tj = max{j, ⌈(1+ǫ)j−1⌉} for some small ǫ > 0, so that the rightmost factor in (23) is bounded by (1+ǫ)γ .
Analogously to Corollary 3, Theorem 5 implies the following:
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Corollary 6. Suppose M∗ is a standard i.i.d. model class that satisfies Condition 2. Let the fast switch
distribution be as in Theorem 5. If there exists any model selection criterion δ : Xn → Ln+1 at all that
achieves the minimax risk up to a factor c3, and δ has finite worst-case risk for all n, then the fast switch
distribution achieves the minimax cumulative risk up to factor c′ = c · c3, where c is as in (23), i.e.

Rm(psw, n) � c′Rmm(n).

Thus, in typical nonparametric settings in which AIC or leave-one-out cross-validation achieve the
minimax risk, the fast switch distribution always achieves the minimax cumulative risk, albeit only up
to a factor c′, which may be larger than 1. Remarks analogous to remarks 1–5 below Corollary 3 apply
to Corollary 6 as well.

6 Consistency

In Section 3.3 we have introduced the model selection criterion δsw, which selects the model from L with
highest posterior probability under the switch distribution. It is natural to ask whether δsw is consistent,
in the sense that it asymptotically selects the true model Mk∗ with probability one if the data X∞ are
actually distributed according to a distribution in Mk∗ .

Ordinary Bayes factor model selection is consistent if the prediction strategies associated with the
models are also Bayesian, and if the models are sufficiently distinct in the sense that the corresponding
prediction strategies are mutually singular [Barron et al., 1998]. (Two distributions p1 and p2 on X∞

are mutually singular if there exists a measurable set A ⊆ X∞ such that p1(A) = 1 and p2(A) = 0.) To
prove consistency of δsw we require similar conditions, except that the mutual singularity requirement is
made somewhat stricter; this is discussed below the theorem.

Theorem 7 (Consistency of the Switch Distribution). Let support(λ1) ⊆ support(λ2) ⊆ · · · and assume
L =

⋃∞
n=1 support(λn). For all k ∈ L, let pk be a Bayesian prediction strategy relative to some parametric

model Mk = {pθ | θ ∈ Θk} with corresponding prior density wk. Let psw be the switch distribution with
prior π as in (10). Suppose the following conditions hold:

1. If k, k′ ∈ support(λn+1), then pk(X∞ | Xn) and pk′(X∞ | Xn) are mutually singular with probability
one if Xn is distributed according to either pk or pk′ .

2. Let Bk
n = {((t1, k1), . . . , (tm, km)) ∈ S | tm ≤ n + 1, km = k} denote the set of switching parameters

that select pk at their last switch, which also occurs no later than n + 1. For all k ∈ L, there should
exist an nk ≥ 0 such that

∑

s∈Bk
nk

π(s)qs(X
nk) > 0 (pk-a.s.) (24)

Then, for all k∗ ∈ L, for all θ∗ ∈ Θk∗ except for a subset of Θk∗ of wk∗-measure 0, the posterior
distribution on Kn+1 satisfies

psw(Kn+1 = k∗ | Xn)
n→∞−→ 1 with pθ∗-probability 1, (25)

which implies consistency of δsw as defined in (14).

For k ∈ L such that λ1(k) is positive, (24) in the second requirement is trivially satisfied with nk = 0.
This is the case case for all k ∈ L if the support of λn equals L. For nk > 0, the second requirement
expresses that if λ1(k) = 0, but λnk+1(k) > 0, then there should be some way for the switch distribution
to switch to k without giving zero density to the data. This requirement is already satisfied if there is a
single prediction strategy pk with λ1(k) > 0 such that pk(xn+1 | xn) > 0 for all xn, xn+1.

Thus the requirements of Theorem 7 are primarily about the prediction strategies pk indexed by
L; the second condition is the only constraint on the prediction strategies indexed by K. As such, the
consistency theorem applies to the basic version of the switch distribution, as well as to the slow and
fast switch distributions of Section 5. It is even more widely applicable, as, in contrast to our risk rate
results above, it does not require i.i.d. data.

Requirement 1 deserves some further discussion. We first consider ordinary mutual singularity. Con-
sider two Bayesian prediction strategies p1 and p2 with priors w1 and w2 on parameter spaces Θ1 and
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Θ2 of the corresponding models M1 and M2. Then p1(X
∞) and p2(X

∞) are mutually singular if the
models contain stationary ergodic distributions and the induced priors on the space of distributions are
mutually singular. This is the case, for example, if the elements of M1 and M2 are i.i.d. or Markov
distributions, and Θ1 and Θ2 are of different dimensionality with priors w1 and w2 that are absolutely
continuous with respect to Lebesgue measure [Barron et al., 1998, Dawid, 1992b]. Note that this includes
the case of nested models M1 ⊂ M2 that are parametrised in the same way (i.e. Θ1 ⊂ Θ2), because
then the difference in dimension ensures that w2(Θ1) = 0.

Thus the requirement that p1(X
∞) and p2(X

∞) are mutually singular is quite weak. However, we
require mutual singularity to hold conditional on almost all initial sequences of outcomes xn. If p1(X

n)
and p2(X

n) are equivalent (i.e. either distribution is absolutely continuous with respect to the other),
then the posteriors w1(θ | Xn) and w2(θ | Xn) are almost surely well defined and mutual singularity
of the priors w1(θ) and w2(θ) implies mutual singularity of the posteriors, such that Requirement 1 is
satisfied under the same weak conditions as were given for mutual singularity of p1(X

∞) and p2(X
∞).

If they are not equivalent, then it matters how p1(Xn+1 | xn) and p2(Xn+1 | xn) are defined when
p1(x

n) = 0 or p2(x
n) = 0. If for all xn this is done such that p1(X

∞ | xn) and p2(X
∞ | xn) are mutually

singular, then again Requirement 1 is satisfied under the conditions above.
Thus, the consistency theorem applies in many of the situations where Bayes factor model selection is

used [Kass and Raftery, 1995], including, for example, learning of the number of components of a mixture
distribution and Markov order estimation (as in the introductory example). In these cases, for k 6= k′,
the models Mk and Mk′ either have empty intersection or are nested but of different dimensionality,
which is sufficient for Requirement 1.

Combining Risk Results and Consistency Although both our cumulative risk theorems and our
consistency theorem are quite general, there is one difficulty in applying both at the same time. The
risk theorems allow us to piggyback on existing results where an estimator is proven to achieve minimax
risk. However, these estimators are often not Bayesian, so that the requirements of Theorem 7 are not
satisfied.

There are two ways to bridge this gap: first, one might show that the risk of a Bayesian estimator is so
close to the risk of an estimator that is known to achieve minimax risk, that it must achieve the minimax
risk itself. This can be done for Gaussian regression with random design, where Bayesian prediction
strategies based on Jeffreys’ prior are sufficiently similar to least-squares estimators. See [Van Erven,
2010, Chapter 2] for details. The experimental set-up in the next section is a special case. In similar
fashion, it is possible to establish both minimax cumulative risk and consistency for histogram density
estimation, where the models Mk are regular, fixed-bin width histograms (as in, e.g., [Rissanen et al.,
1992]).

Secondly, one might extend Theorem 7 to non-Bayesian estimators. An initial such generalisation is
provided by [Van Erven et al., 2008].

7 Simulation Study

In order to test the switch distribution as a general tool for model selection and prediction, we
consider sequential polynomial regression on simulated data. We compare six methods: C =
{Fast switch, Slow switch, Basic switch, Bayes, AIC, BIC}.

The set-up is as follows: let (X1, Y1), (X2, Y2), . . . be independent, identically distributed pairs of
random variables, with Xi sampled uniformly at random from [−1, 1] and

Yi = f∗(Xi) + ξi

for some regression function f∗ and normally distributed noise ξi with mean zero and known variance
σ2 = 1. The regression function is approximated by polynomials

Fk =
{

θkxk + . . . + θ1x + θ0 | (θ0, . . . , θk) ∈ Rk+1
}

of degree k ∈ {0, . . . ,K}. For every polynomial f , let pf (Yi | Xi) be the density of the normal distribution
with mean f(Xi) and variance σ2, and let u(Xi) = 1/2 be the uniform density on [−1, 1]. Then define
the probabilistic models

Mk =
{

pf (Yi | Xi)u(Xi) | f ∈ Fk

}

,
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for which the maximum likelihood estimator equals the least squares estimator in Fk. We note that since
u(Xi) does not depend on f or k, it does not influence any of the procedures we are comparing, so its
choice is unimportant.4

With each model Mk, we associate a Bayesian prediction strategy pk based on Jeffreys’ prior, which
makes the posterior distribution on the parameters of Mk multivariate normal with mean (X′

kXk)−1X′
ky

and covariance matrix σ2(X′
kXk)−1, where Xk is the n×(k+1) design matrix with entries (Xk)ij = Xj−1

i

and y = (Y1, . . . , Yn)′ [Box and Tiao, 1973]. The resulting predictions are pk(Xn+1, Yn+1 | (X,Y )n) =
pk(Yn+1 | Xn+1, (X,Y )n) · u(Xn+1), where pk(Yn+1 | Xn+1, (X,Y )n) is a normal distribution with mean
(X′

kXk)−1X′
ky and variance σ2(1 + Xn+1(X

′
kXk)−1Xn+1) [Grünwald, 2007]. Although Jeffreys’ prior is

improper, this predictive distribution is almost surely well-defined when the number of observations is
at least k +1. To ensure the predictions for all models are well-defined, we therefore evaluate cumulative
risk for n ≥ K + 1.

With each method in C, we associate a model selection criterion and an estimator. The basic, slow
and fast switch distributions are defined as in Sections 2.2 and 5.2; the associated model selection criteria
are given by (14). We use Ln = L = {0, 1, . . . ,K} and in case of the fast switch distribution choose
freezing times tj = max{j,

⌊

1.1j−1
⌋

} for j = 1, 2, . . . The priors are chosen as in (11), where the supports
of λn and κn are Ln and Kn (see (18)), respectively.

The Bayesian method uses a uniform prior on the models; the model that maximises the a posteriori
probability is selected. Prediction proceeds using model averaging, where the models are weighted
according to their posterior probabilities.

The AIC and BIC criteria associate values vk with the order k polynomial models; for AIC this is
vk = − ln p̂k + (k + 1) and for BIC vk = − ln p̂k + 1

2 (k + 1) ln n, where p̂k = max{p(yn | xn) | p ∈ Mk} is
the maximum likelihood of the data using the order k polynomial model. The model k selected by AIC
or BIC is the one that minimises vk; while for AIC and BIC prediction is often done using the selected
model only, to obtain competitive results it is necessary to use a mixture of p0, . . . , pK , as proposed by
Akaike [1979]. Thus, for AIC and BIC the predictions {pk(Yn+1|xn+1, yn) | k ∈ Ln} are weighted using

wk = exp(−vk)/
∑K

k=0 exp(−vk).
We have subjected these model selection criteria to a simulation experiment which is most easily

expressed in the form of an algorithm. As input it takes a regression function f∗ : [−1, 1] → R, the
number of outcomes N to be predicted, the maximal model order K and the number of runs R.

Algorithm 1 Test(f∗, N,K,R)
1 for r = 1, . . . , R do

2 for n = K + 1, . . . , N do

3 for c ∈ C do

4 Ask criterion c to select a model k ∈ L
5 Sample xn uniformly at random from [−1, 1].
6 Ask criterion c to form prediction p(Yn | xn, yn−1).
7 Sample yn from a normal density with mean f∗(xn) and variance 1.

8 Accumulate empirical risk log2

(

ϕ(yn − f∗(xn))

p (yn | xn, yn−1)

)

, where ϕ is

the standard normal density
9 end for

10 end for

11 end for

By subsequently averaging the results from the R runs, we obtain estimates of the mean selected model
and of the cumulative risk as a function of the number of observations for each method.

We ran the testing algorithm with the following two sets of parameters:

1. f∗(x) = 1.5x3 − 0.96x; R = 200, N = 1000 and K = 6.

2. f∗(x) = 2 if x ∈ [− 1
2 , 1

2 ] and −2 otherwise; R = 50, N = 600 and K = 35.

4In fact, it is equivalent to drop u(Xi) altogether and work with the conditional densities pf (Yi | Xi) only, which makes
the procedures discriminative instead of generative. It is also straightforward to extend our theoretical results to cover this
case.
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(For the slow switch distribution we used a reduced value of N , in order to obtain a running time
comparable to that of the other criteria.) In the first experiment, the generating distribution is in M3

(the set of third degree polynomials with standard normal noise), so we are in a parametric scenario
where consistency is relevant. In the second experiment, the true distribution is not in any of the models,
but it can be arbitrarily well approximated by polynomials, a prototypical nonparametric scenario.

Results The left column of Figure 2 shows the results for the first experiment, the right column for
the second experiment. The first row shows an example data set, together with f∗ and an example fit
for one or two reasonable models. The second row shows the average index of the selected model for
each criterion. The third row shows the estimated cumulative risk (measured in bits), with an indication
of the standard error of the estimate (standard deviation of the individual runs divided by

√
R).

In the parametric case, we would expect Bayes, BIC and all versions of the switch distribution to
consistently select a degree of 3 for sufficiently large sample sizes. This is confirmed by the results, but
note in Figure 2(c) that Bayes and BIC appear to require a larger sample on average before detecting that
M3 is true. Also, the slow switch distribution seems to select models of a slightly lower order than the
two fast varieties of switching. Finally, the AIC criterion is by far the most responsive: it is substantially
quicker to determine that at least a degree 3 polynomial is required to obtain the best predictions; on
the other hand even after a lot of data have become available, AIC often selects a polynomial order
larger than three, as it is inconsistent. In Figure 2(e) we see that generally, the quicker a method is
to detect when the third degree polynomial model starts making the best predictions, the smaller its
cumulative risk. Thus, AIC is a clear winner, followed by the fast and basic switch distributions, then
the slow switch distribution, and finally BIC and Bayes. The more conservative behaviour of the latter
two methods is explained by the occurrence of the catch-up phenomenon. Interestingly, over roughly the
first 100 outcomes AIC actually performs worst : it starts selecting higher order models even before the
instantaneous risk for those models drops below that for lower order models. Possibly this effect can be
mitigated using a small sample correction for AIC, such as in AICc [Burnham and Anderson, 2002].

In this parametric experiment, eventually all consistent methods select M3, so their instantaneous
risks converge to the instantaneous risk of p3. Thus, the difference in cumulative risk for these methods
will converge to a constant. In fact, by n = 1000 the lines for each method already appear to run more
or less parallel. Empirically, AIC seems to follow the same trend; it is unclear whether its cumulative
risk has the same asymptotics.

In the nonparametric case, we observe an even greater discrepancy in the model order selected by
BIC and Bayes compared to the methods that do not suffer from the catch-up phenomenon. Again, AIC
initially selects models of an overly high order, for which it is punished slightly in terms of cumulative
risk. From n = 300 onwards AIC and the switch distributions seem to be in approximate agreement on
the best model order, whereas Bayes and BIC lag behind dramatically. As a result, the differences in
cumulative risk for these methods are substantially larger than in the parametric experiment.

Interpretation The experiments confirm the theoretical results of this paper: (1) all considered meth-
ods except AIC are consistent, (2) BIC and Bayes suffer from the catch-up phenomenon and as such
issue inferior predictions. The predictive performance of the switch distribution, at least in its fast and
basic incarnations, is competitive with AIC.

Note that the cumulative risk for all methods is actually quite small in these particular experiments:
only about 20 bits in the parametric case. Because of this, the size of Kn, which determines the over-
head of switching, can have a substantial effect on the results. This is probably why the slow switch
distribution appears to be more “sluggish” in switching to higher order models than the fast and basic
switch distributions: since Kn contains substantially more prediction strategies for the slow switch distri-
bution than for the other two variants, the prior probability κn(k) = 1/|Kn| of switching to a particular
estimator pk will be correspondingly lower.

This is clearly an issue that deserves careful consideration in practice if the cumulative risk is very
small. Whether or not it is small depends very much on the setting; recall that in the Markov chain
example in the introduction a single switch yielded a reduction in cumulative loss of about 7 000 bits.
Compared to this the overhead induced by a couple of switches is negligible. Even when the cumulative
risk is very small, it still cannot do much harm to use the switch distribution; for the prior used in these
experiments the cumulative risk of the switch distribution is at most one bit more than that of Bayes
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Figure 2: Sequential polynomial regression results

(see Remark 1).
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8 Discussion

In this section we put our results in a broader perspective. First we discuss the AIC-BIC dilemma in
more detail. Then we consider two alternative criteria of predictive performance that one might be
interested in: first, how well does the switch distribution predict when only the model with highest
posterior probability is used for prediction, instead of a mixture? Second, our analysis is in terms of
the minimax cumulative risk; to what extent do our results carry over to the instantaneous risk setting?
Then, since most of our results about cumulative risk are for the nonparametric setting, we compare our
approach to the nonparametric Bayesian methods that have proved to be quite effective in recent years.
Finally, we indicate a number of areas where our results might be strengthened in future research.

8.1 The AIC-BIC Dilemma

Over the last 25 years or so, the question of whether to base model selection on AIC or BIC type methods
has received a lot of attention in the theoretical and applied statistics literature, as well as in fields such
as psychology and biology, where model selection plays an important role [Speed and Yu, 1993, Hansen
and Yu, 2001, 2002, Barron et al., 1994, Forster, 2001, De Luna and Skouras, 2003, Sober, 2004]. It has
even been suggested that, since these two types of methods have been designed with different goals in
mind (optimal prediction vs “truth hunting”), it may simply be the case that no procedures exist that
combine the best of both types of approaches [Sober, 2004]. Still, for practitioners, the incompatibility of
the two methods remains worrying. Consider, for example, a psychologist who wants to determine how
some response Y (e.g., reaction times in a memory experiment) depends on input variables X and Z (e.g.
gender and age). He models Y as a sum of a linear function of X and a polynomial of Z. Now according
to some statisticians, we are supposed to tell the psychologist: if you use an AIC-type method, you need
fewer data to learn a model that predicts well. But, in case Y is independent of X, then you may not find
out, even if you do have a lot of data. On the other hand, if you use a BIC-type method, the situation
is reversed. Thus, you should first determine what your goal is — finding out about independency or
prediction — and only then can I tell you what method to use. The problem with this is that in practice,
the psychologist’s main goal is often neither predictive optimality nor consistency; so he cannot tell. He
just wants a method that gives useful insight into the structures underlying the data, and he wants to
use this insight to guide his further research. To gain confidence that the chosen method will do a good
job towards this inherently vague goal, he would like the method to satisfy as many sanity checks as
possible. Thus, consistency and predictive optimality play the role of sanity checks rather than direct
goals, and we feel that if a method exists that satisfies both checks, then this may be a good method
for the practitioner to use.

Now, if the AIC-BIC dilemma is interpreted as a conflict between consistency and optimal sequential
prediction, then cumulative risk is a natural and often considered performance criterion [Haussler and
Opper, 1997, Rissanen et al., 1992, Barron, 1998b, Yang and Barron, 1999, Poland and Hutter, 2005],
and we can reasonably claim that our results solve the dilemma. However it can also be interpreted
as a dichotomy between model selection for truth finding and model selection-based (nonsequential)
estimation. In that case we cannot solve the problem in general, as is discussed in Section 8.2.

8.1.1 Earlier Approaches

Several other authors have provided procedures which have been designed to behave like AIC whenever
AIC is better, and like BIC whenever BIC is better; and which empirically seem to do so. These include
model meta-selection [De Luna and Skouras, 2003, Clarke, 1997], and Hansen and Yu’s gMDL version of
MDL regression [Hansen and Yu, 2001]; also the “mongrel” procedure of Wong and Clarke [2004] has been
designed to improve on Bayesian model averaging for small samples. Compared to these other methods,
ours seems to be the first that provably is both consistent and minimax optimal in terms of cumulative
risk, for some classes M∗. The only other procedure that we know of for which somewhat related results
have been shown, is a version of cross-validation proposed by Yang [2007a] to select between AIC and
BIC in regression problems. Yang shows that a particular form of cross-validation will asymptotically
select AIC in case the use of AIC leads to better predictions, and BIC in the case that BIC leads to better
predictions. The main difference between our approach and Yang’s is that we use a single paradigm rather
than a combination of several ones (such as AIC, BIC and cross-validation) — essentially our paradigm
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is just that of universal individual-sequence prediction, or equivalently, the individual-sequence version
of predictive MDL, or again equivalently, Dawid’s prequential analysis applied to the log scoring rule.
Indeed, our work has been heavily inspired by prequential ideas. In [Dawid, 1992a] it is already suggested,
without giving any details, that model selection should be based on the transient behaviours in terms
of sequential prediction of the estimators for the models: one should select the model that is optimal at
the given sample size, and this will change as more data become available.

8.2 Cumulative vs Instantaneous Risk

In the parametric case, based on Theorem 7 and the discussion in Section 4.4, the switch distribution
is consistent under mild conditions, and achieves the minimax cumulative risk. However, an intriguing
result was obtained by Yang [2005], who shows that there are scenarios in linear regression where no
model selection or model combination criterion can be both consistent and achieve the minimax rate of
convergence; Yang [2007b, Theorem 3] gives an explicit lower bound on the factor by which consistent
model selection procedures must miss the minimax rate in a simple linear regression problem. In other
words, there are parametric scenarios where it is possible, quite straightforward even, to achieve minimax
cumulative risk while retaining consistency, whereas minimax instantaneous risk is impossible to achieve
without losing consistency. In such cases, clearly, the switch distribution does not achieve minimax
instantaneous risk. To see what happens, reconsider the normal location family example of Section 1.2.
A procedure that achieves minimax instantaneous risk would have to switch from M1 to M2 at a sample
size sufficiently close to n0. The switch distribution prior divides its mass over switches at each sample
size n. The total prior mass for sample sizes close enough to n0 is apparently too small to achieve the
minimax instantaneous risk.

Let us nevertheless compare instantaneous risk to cumulative risk for fixed p∗. As shown in [Grünwald,
2007], instantaneous risk convergence is a stronger notion than cumulative risk convergence: for example,
suppose we are in the nonparametric setting and the instantaneous risk satisfies r(p∗, p, n) � cn−γ , then
one can easily verify that the average cumulative risk satisfies n−1R(p∗, p, n) � cn−γ . The converse does
not hold: clearly, the instantaneous risk may be larger than the average cumulative risk for some n.
However [Grünwald, 2007, Theorem 15.2, page 473], the gap between any two n and n′ > n at which
the risk of p exceeds cn−γ must grow without bound as n increases. Thus, small cumulative risk implies
small instantaneous risk at “most” sample sizes.

Perhaps more significantly, in the nonparametric case a simple modification of the switch distribu-
tion actually achieves minimax instantaneous risk, whenever the switch distribution itself achieves the
minimax cumulative risk. Let psw be the fast or the slow switch distribution of Sections 5.3 and 5.4, and
define the time average of the switch distribution as

p̄sw(Xn = x,Kn = k | xn−1) :=
1

n

n
∑

i=1

psw(Xi = x,Ki = k | xi−1),

so that the corresponding predictive distribution satisfies

p̄sw(Xn = x | xn−1) =
∑

k∈A

1

n

n
∑

i=1

psw(Xi = x,Ki = k | xi−1) =
1

n

n
∑

i=1

psw(Xi = x | xi−1).

We have the following result, proved in Appendix A.3:

Proposition 8. Suppose M∗ is a standard i.i.d. model class that satisfies Condition 2 with constants
c1 and c2, and rmm(n) < ∞ for all n. If Rm(psw, n) � c3 Rmm(n) for a constant c3, then rm(p̄sw, n) �
c2

c1

c3

1 − γ
rmm(n).

Note that, if x1, x2, . . . are such that for some fixed k∗, psw(Kn = k∗ | xn) → 1 as n → ∞, then
by definition of p̄sw, we must also have that p̄sw(Kn = k∗ | xn) → 1. Hence, consistency of the
switch distribution implies consistency of the time-averaged switch distribution. Consequently, under
the appropriate conditions, the time-averaged switch distribution resolves the following version of the
AIC-BIC: it is consistent in the parametric case, and achieves the minimax instantaneous risk in the
nonparametric case. Since, intuitively, p̄sw learns (much) “more slowly” than psw, we suspect that when
Condition 2 applies, psw also achieves the minimax instantaneous risk, and hence also resolves this version
of the AIC-BIC dilemma.
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8.3 Nonparametric Bayes

Our results mostly apply to nonparametric inference, where the true distribution is not assumed to be a
member of a parametric model. In practice, Bayesian model averaging on a set of parametric models is
often used in such scenarios, but a subjective Bayesian should not be surprised that this gives suboptimal
results, since under the standard hierarchical prior used in pbma (first a discrete prior on the model index,
then a density on the model parameters), we have that with prior-probability 1, p∗ is “parametric”, i.e.
p∗ ∈ Mk for some k. Thus from the subjective perspective, the hierarchical prior is not really suitable
for the situation that we are trying to model, and one should use a nonparametric prior instead. Indeed,
nonparametric Bayesian methods have become very popular in recent years, and they often work very
well in practice. Still, their practical and theoretical performance strongly depend on the used priors, and
it is often far from clear what prior to use in what situation. In some situations, certain nonparametric
priors achieve optimal rates of convergence, but others can even make Bayes inconsistent [Diaconis and
Freedman, 1986, Grünwald, 2007].

In minimum description length inference, there are no philosophical objections to doing nonparametric
inference using parametric models. In fact, approximating nonparametric families by sequences of finite
dimensional parametric models is a standard approach [Barron and Cover, 1991]. Consequently, we view
the switch distribution as an MDL method, even though its definition is compatible with the Bayesian
framework. Apart from choosing a reasonable sequence of parametric models, it does not require any
difficult modelling decisions. Nevertheless, under reasonable conditions the switch distribution achieves
the minimax cumulative risk in nonparametric settings, while at the same time, in the words of Barron
and Cover, “we retain the possibility of delight in the discovery of the correct family in the finite-
dimensional case”.

8.4 Future Work

We conclude the discussion by suggesting three directions in which our results might be extended.

Other Ways to deal with Increasing Risk — non-i.i.d. settings The fast and slow versions of
the switch distribution differ in their selection of frozen strategies in the definition of K. The basic switch
distribution corresponds to K = L, which works well in practice but invalidates the proofs of Theorems 2
and 5. It seems unlikely to us that increasing risk would harm performance of the switch distribution too
much in practice. The question thus becomes: is there a reasonable assumption one can make about how
much the risk is allowed to grow, so that an analogue of Theorem 2 can be shown for the basic switch
distribution? Relatedly, the basic switch distribution was shown in the introduction to empirically behave
very well in a non-i.i.d. setting, a setting that our current risk convergence theorems cannot deal with.
Dealing with increasing risk may also allow one to extend the convergence rate theorems to non-i.i.d.
settings.

Predictive Performance in the Model Selection Setting It is unclear whether there is an ana-
logue of our cumulative risk theorems for model selection rather than averaging. For example, in Figure 1,
sequentially predicting using the prediction strategy pδsw(xn) for the model with index δsw(xn), which has
maximum a posteriori probability (MAP) under the switch distribution, is only a few bits worse than
predicting by model averaging based on the switch distribution, and still outperforms standard Bayesian
model averaging by about 7 200 bits. However, it is unclear whether or not prediction based on selecting
a single model will always perform this well. Analogous results in the MDL literature suggest that a
theorem bounding the risk of switch-based model selection, if it can be proved at all, would bound the
squared Hellinger rather than the KL risk [Grünwald, 2007, Chapter 15].

Exponentially Many Models Because of Condition 1, our theoretical results do not cover the case
in which |Ln|, the number of considered models, is exponential in the sample size. Yet this case is very
important in practice, for example in the variable selection problem [Shibata, 1983, Li, 1987, Yang, 1999],
where at sample size n one considers all 2n possible subsets of n variables. In such cases AIC is known
to lead to severe overfitting [Yang, 1999], and is therefore not suitable.

As it seems clear that the catch-up phenomenon will also occur in model selection problems with
exponentially many models, it is an interesting open question whether, for suitable priors λ and κ, the
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switch distribution can achieve the minimax cumulative risk. To make the method practical, one would
then also have to address the computational issues that arise with so many models. Finally, the relation
with the popular and computationally efficient L1-approaches to model selection [Tibshirani, 1996] is as
yet also unclear.
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A Cumulative Risk Proofs

A.1 Oracle Approximation Lemma

The proofs of Theorems 2 and 5 both depend on the following bound on the excess cumulative risk of
the switch distribution compared to any oracle.

Lemma 9 (Oracle Approximation Lemma). Let psw be the switch distribution defined with respect to a
prior π (that can be written in the form (10)). Let M∗ be a standard i.i.d. model class, and let ω be an
oracle relative to K1,K2, . . . Finally, let m(n) be the maximum number of different prediction strategies
that ω uses before the n-th outcome, i.e.

m(n) = max
p∗∈M∗

max
xn∈Xn

∣

∣{i : 2 ≤ i ≤ n, ω(p∗, xi) 6= ω(p∗, xi−1)}
∣

∣ + 1. (26)

We then have, for any p∗ ∈ M∗,

R(p∗, psw, n) − R(p∗, pω, n) ≤ Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)
)

,

where

Lm(m) = max{ − log µ(a) | 1 ≤ a ≤ m }
Lt(n) = max{ − log τ(t) | 1 < t ≤ n }
Lk(n) = max{− log κt(k) | k ∈ Kt, 1 ≤ t ≤ n}.

Since this holds uniformly for all p∗ ∈ M∗, we also have

Rm(psw, n) − Rm(pω, n) ≤ Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)
)

.

The bound of the lemma may be interpreted as a uniform bound on the number of bits required to
encode how ω switches between prediction strategies. Note that in particular, if π satisfies Condition 1,
then

Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)
)

= O
(

m(n) log n
)

.

Proof. For arbitrary p∗ ∈ M∗ and xn ∈ X ∗, let m denote the number of different prediction strategies
k′
1, . . . , k

′
m selected by the oracle ω to predict xn, and let 1 = t′1 < t′2 < · · · < t′m denote the sample sizes

at which ω switches between them. That is,

t′j = min
{

i | t′j−1 < i ≤ n, ω(p∗, xi) 6= ω(p∗, xi−1)
}
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for j = 2, . . . ,m, and k′
j = ω(p∗, t′j) for j = 1, . . . ,m.

Because ω selects its predictions from K1,K2, . . ., the switch distribution puts positive prior proba-
bility on switch sequences s such that qs(x

n) = pω(xn), where qs is as in (6). Let

S = {((t1, k1), . . . (tm+1, km+1)) ∈ S | (tj , kj) = (t′j , k
′
j) for 1 ≤ j ≤ m, tm+1 = n + 1}

denote a convenient subset of these sequences, in which the last switch (at switch-point tm+1) occurs
immediately after the n-th outcome. As

psw(xn) =
∑

s∈S

qs(x
n)π(s) ≥

∑

s∈S

qs(x
n)π(s) = pω(xn)π(S),

our plan is to find a uniform lower bound c on π(S), which does not depend on p∗ or xn, and then apply
Proposition 1 to obtain the desired result. Using that π is of the form (10), we see that

π(S) =
∑

km+1

µ(m + 1)





m
∏

j=1

κtj
(kj)τ(Z = tj+1 | Z > tj)



 λtm+1
(km+1)

= µ(m + 1)





m
∏

j=1

κtj
(kj)τ(Z = tj+1 | Z > tj)





≥ µ(m + 1)





m
∏

j=1

κtj
(kj)τ(Z = tj+1)



 .

Hence
− log π(S) ≤ Lm(m(n) + 1) + m(n)

(

Lk(n) + Lt(n + 1)) =: − log c,

and the lemma follows by Proposition 1.

A.2 Proof of Theorem 2

Proof. Let 1 = t1 < t2 < . . . be a sequence of switch-points. We will construct an oracle ω′ (relative to
K1,K2, . . .) that switches only at t2, t3, . . . and is such that

Rm(pω′ , n) � Rm(pω, n) · lim sup
j→∞

dj

dj−1
, (27)

where dj = tj+1 − tj . This construction will work for any choice of switch-points. Let exp2(x) = 2x.
Then in particular, by choosing the switch-points such that dj =

⌈

exp2

(

j1/(1+α)
)⌉

, we obtain

lim sup
j→∞

dj

dj−1
= lim sup

j→∞
exp2

(

j

jα/(1+α)
− j − 1

(j − 1)α/(1+α)

)

≤ lim sup
j→∞

exp2

(

1

jα/(1+α)

)

= 1.

Let m(n) denote the maximum number of different prediction strategies used by ω′ before time n,
as defined in (26). We must have tm(n) > n. Hence m(n) ≤ k for the smallest k such that dk =
⌈

exp2

(

k1/(1+α)
)⌉

> n. Solving for k, we obtain m(n) ≤ (log n)1+α, which by the Oracle Approximation
Lemma implies that

Rm(psw, n) = Rm(pω′ , n) + O((log n)2+α).

Together with (27) and the assumption that (log n)2+α/Rm(pω, n) → 0, the conclusion of the theorem
follows.

It remains to exhibit the oracle ω′ that satisfies (27). To this end we first construct an intermediate
oracle ω′′ (relative to K1,K2, . . .) whose risk is nonincreasing and never exceeds the risk of ω. Let
s(p∗, n) = arg min1≤s≤n r(p∗, pω, s) denote the sample size at which ω achieved minimal risk before
sample size n (ties may be broken arbitrarily). Then for any p∗, n and data xn−1, ω′′ is defined as

ω′′(p∗, xn−1) = ω(p∗, xs(p∗,n)−1) ◦ s(p∗, n),
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where xs(p∗,n)−1 is the prefix of xn−1 of length s(p∗, n) − 1. Thus, at sample size n, ω′′ copies the
prediction made by ω at sample size s(p∗, n), which is possible because that prediction strategy is still
available as a frozen strategy. Because p∗ is i.i.d. by assumption, the construction guarantees that
r(p∗, pω′′ , n) = r(p∗, pω, s(p∗, n)), such that the risk of ω′′ is nonincreasing and never exceeds the risk of
ω.

We proceed to construct the oracle ω′ satisfying (27). It is defined by copying the predictions of
ω′′ at the last switch-point. That is, if i is such that tj ≤ i < tj+1, then ω′(p∗, xi−1) = ω′′(p∗, xtj−1).
As the predictions of ω′ do not change between switch-points, its risk does not change either, and
r(p∗, pω′ , i) = r(p∗, pω′′ , tj) for any p∗ ∈ M∗.

Let c = lim supj→∞ dj/dj−1 and let ε > 0 be arbitrary. Then there exists a j∗ such that supj≥j∗ dj/dj−1 ≤
c + ε. Now for any n, let mn be such that tmn

≤ n < tmn+1. Because the risk of ω′′ is nonincreasing, we
can underestimate its cumulative risk by

t(j∗−1)
∑

i=1

r(p∗, pω′′ , i) ≥
j∗−1
∑

j=1

dj−1rj ,

n
∑

i=t(j∗−1)+1

r(p∗, pω′′ , i) ≥
tmn
∑

i=t(j∗−1)+1

r(p∗, pω′′ , i) ≥
mn
∑

j=j∗

dj−1rj ,

where rj = r(p∗, pω′′ , tj) and we define d0 = 1. We can overestimate the cumulative risk of the derived
oracle ω′ by a similar bound:

tj∗−1
∑

i=1

r(p∗, pω′ , i) =

j∗−1
∑

j=1

djrj ,

n
∑

i=tj∗

r(p∗, pω′ , i) ≤
t(mn+1)−1

∑

i=tj∗

r(p∗, pω′ , i) =

mn
∑

j=j∗

djrj .

If Rm(pω, n) = ∞ from some n onwards, then the theorem is trivially true, so assume without loss of gen-

erality that Rm(pω, n) < ∞ for all n, which implies that supp∗

∑t(j∗−1)

i=1 r(p∗, pω′′ , i) = Rm(pω′′ , t(j∗−1)) ≤
Rm(pω, t(j∗−1)) < ∞. It follows that

sup
p∗

tj∗−1
∑

i=1

r(p∗, pω′ , i) ≤
(

max
j≤j∗

dj

dj−1

)

sup
p∗

t(j∗−1)
∑

i=1

r(p∗, pω′′ , i) < ∞,

and similarly

lim sup
n→∞

supp∗

∑n
i=tj∗

r(p∗, pω′ , i)

supp∗

∑n
i=t(j∗−1)+1 r(p∗, pω′′ , i)

≤ lim sup
n→∞

sup
p∗

∑n
i=tj∗

r(p∗, pω′ , i)
∑n

i=t(j∗−1)+1 r(p∗, pω′′ , i)
≤ sup

j≥j∗

dj

dj−1
≤ c + ε.

Consequently, using that (log n)2+α/Rm(pω, n) → 0 implies Rm(pω, n) → ∞, we find that

lim sup
n→∞

Rm(pω′ , n)

Rm(pω, n)
≤ lim sup

n→∞

supp∗

∑tj∗−1
i=1 r(p∗, pω′ , i)

Rm(pω, n)
+ lim sup

n→∞

supp∗

∑n
i=tj∗

r(p∗, pω′ , i)

supp∗

∑n
i=t(j∗−1)+1 r(p∗, pω′′ , i)

≤ 0 + (c + ε),

and (27) follows by letting ε tend to 0.

A.3 Propositions 4 and 8

Both Proposition 4 and Proposition 8 follow from the following more general proposition.

Proposition 10. Suppose that M∗ is standard i.i.d. and p is an estimator such that Rm(p, n) �
c3 Rmm(n) for some constant c3. Define the time average (or Cesàro average)

p̄(Xn = x | xn−1) =
1

n

n
∑

i=1

p(Xi = x | xi−1).
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Then

rmm(n) ≤ rm(p̄, n) � c3 n−1Rmm(n) ≤ c3 n−1
n

∑

i=1

rmm(i).

Furthermore, if M∗ satisfies Condition 2 with c1, c2, γ and h0 as in (22), and rmm(n) < ∞ for all n,
then also

c3 n−1
n

∑

i=1

rmm(i) � c2

c1

c3

1 − γ
rmm(n).

To obtain Proposition 8, let p be psw. To prove Proposition 4, note that by definition for every
ε > 0 there exists an estimator p that achieves the minimax cumulative rate up to a factor (1 + ε), i.e.
Rm(p, n) � (1+ε)Rmm(n). The proposition follows from Proposition 10 by letting ε tend to 0, such that
c3 tends to 1.

The proof of Proposition 10 requires the following lemma:

Lemma 11. Let g, h : N → R∪{∞} be nonnegative functions such that
∑n

i=1 h(i) → ∞ as n grows, and
g(i) < ∞ for all i. Then g(i) � h(i) implies

∑n
i=1 g(i) � ∑n

i=1 h(i).

Proof. Let ε > 0 be arbitrary. Then there exists an nε such that g(i) ≤ (1 + ε)h(i) for all i ≥ nε. Hence

lim sup
n→∞

∑n
i=1 g(i)

∑n
i=1 h(i)

= lim sup
n→∞

∑nε−1
i=1 g(i)

∑n
i=1 h(i)

+ lim sup
n→∞

∑n
i=nε

g(i)
∑n

i=1 h(i)
≤ 0 + (1 + ε).

The lemma follows by letting ε tend to 0.

Proof of Proposition 10. We show this by extending an argument from [Yang and Barron, 1999, p. 1582].
By applying Jensen’s inequality as in Proposition 15.2 of [Grünwald, 2007] (or the corresponding results
in [Yang, 2000] or [Yang and Barron, 1999]) it follows that, for all p∗ ∈ M∗, r(p∗, p̄, n) ≤ 1

nR(p∗, p, n),
so that also

rm(p̄, n) ≤ 1

n
Rm(p, n).

This implies that

nrmm(n) ≤ n rm(p̄, n) ≤ Rm(p, n) � c3 Rmm(n) ≤ c3

n
∑

i=1

rmm(i).

If M∗ satisfies Condition 2, we further have:

n
∑

i=1

rmm(i) � c2

n
∑

i=1

i−γh0(i) ≤ c2 h0(n)

n
∑

i=1

i−γ
(a)

≤ c2
1

1 − γ
h0(n)n1−γ � c2

c1

1

1 − γ
n rmm(n),

where the first step uses Lemma 11 and (a) follows by approximating the sum by an integral. The result
follows.

A.4 Proof of Theorem 5

The proof of Theorem 5 is based on the following lemma.

Lemma 12 (Fast Switching Lemma). Let M∗ be standard i.i.d. and assume Condition 2 holds, with
c1n

−γh0(n) � rmm(n) � c2n
−γh0(n), as in (22). Suppose there exists an oracle ω relative to L1,L2, . . .,

with rm(pω, n) < ∞ for all n, that achieves the minimax risk up to some nondecreasing function f : N →
[1,∞), i.e. rm(pω, n) � f(n) rmm(n). Let t = t1, t2, . . . be the freezing times used to define K1,K2, . . .
Then there exists an oracle ω′ relative to K1,K2, . . . that switches only at times t and satisfies

Rm(pω′ , n) � c f(n)Rmm(n),

where c is as in (23).

The proof of Lemma 12 requires the following lemma:
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Lemma 13. If M∗ is a standard i.i.d. model class that satisfies Condition 2, then
∑n

i=1 rmm(i) → ∞ and
for any sequence 1 = t1 < t2 < · · · also

∑m
j=1 djrmm(tj) → ∞ (as a function of m), where dj = tj+1−tj.

Proof. Let c1 > 0 and 0 ≤ γ < 1 be constants and h0 a nondecreasing, strictly positive function that
satisfy Condition 2. Then by assumption there exists an n∗ such that rmm(i) ≥ 1

2c1i
−γh0(i) for all

i ≥ n∗. Hence

n
∑

i=1

rmm(i) ≥
n

∑

i=n∗

rmm(i) ≥
n

∑

i=n∗

c1h0(i)i
−γ ≥ c1h0(1)

n
∑

i=n∗

i−γ → ∞,

as required. Similarly, let j∗ be sufficiently large that tj∗ ≥ n∗. Then

m
∑

j=1

djrmm(tj) ≥
m

∑

j=j∗

djrmm(tj) ≥ c1h0(1)

m
∑

j=j∗

djt
−γ
j . (28)

As t−γ
j is decreasing in tj ,

m
∑

j=j∗

djt
−γ
j ≥

tm+1−1
∑

i=tj∗

i−γ → ∞.

Combining with (28) completes the proof.

Proof of Lemma 12. Let s(n) denote the last freezing time preceding n, i.e. s(n) = tk for k such that
tk ≤ n < tk+1. Then for any p∗, n and xn−1, ω′ is defined such that it copies the prediction made by ω
at time s(n). That is,

ω′(p∗, xn−1) = ω(p∗, xts(n)−1) ◦ s(n).

Thus, at any freezing time tj , the predictions of ω and ω′ coincide and r(p∗, pω′ , tj) = r(p∗, pω, tj).
Let us consider the blocks of indices between subsequent freezing times. For brevity, let ej =

min{n, tj+1 − 1} be the last index in block j and let dj = ej − tj + 1 be the length of block j. For
m(n) such that tm(n) ≤ n < tm(n)+1, we then have

Rm(pω′ , n) = sup
p∗∈M∗

n
∑

i=1

r(p∗, pω′ , i) ≤
n

∑

i=1

rm(pω′ , i) =

m(n)
∑

j=1

djrm(pω′ , tj) =

m(n)
∑

j=1

djrm(pω, tj).

As f(tj) ≥ 1, Lemma 13 implies that
∑m

j=1 djf(tj)rmm(tj) → ∞. Therefore by Lemma 11

m(n)
∑

j=1

djrm(pω, tj) �
m(n)
∑

j=1

djf(tj)rmm(tj) ≤ f(n)

m(n)
∑

j=1

djrmm(tj).

If Rmm(n) is infinite from some n onwards, then the lemma is trivially true. So assume that Rmm(n) < ∞
for all n, which implies that rmm(tj) ≤ Rmm(tj) < ∞ for all tj . Hence, again by Lemma 11 and using
that h0 is nondecreasing,

m(n)
∑

j=1

djrmm(tj) � c2

m(n)
∑

j=1

djt
−γ
j h0(tj)

≤ c2

m(n)
∑

j=1

ej
∑

i=tj

(

i

tj

)γ

i−γh0(i) ≤ c2 sup
j≥1

{(

tj+1 − 1

tj

)γ} n
∑

i=1

i−γh0(i).

By Lemma 13,
∑n

i=1 rmm(i) → ∞. Therefore by Lemma 11

n
∑

i=1

i−γh0(i) �
1

c1

n
∑

i=1

rmm(i).

Finally, by Proposition 4
n

∑

i=1

rmm(i) � c2

c1

1

1 − γ
Rmm(n).

The result is obtained by combining all the bounds above.
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Proof of Theorem 5. By Lemma 12 there exists an oracle ω′ relative to K1,K2, . . . that switches only at
times t and is such that

Rm(pω′ , n) � cf(n)Rmm(n). (29)

Let m(n) denote the maximum number of different prediction strategies ω′ uses before the n-th outcome,
as in (26). Then the choice of t ensures that m(n) = O(log n), such that by the Oracle Approximation
Lemma (Lemma 9) and Condition 1

Rm(psw, n) = Rm(pω′ , n) + O
(

(log n)2
)

. (30)

Finally, Proposition 4 and Condition 2 together imply that Rmm(n) � nrmm(n) � c1h0(1)n1−γ , so that
(log n)2/Rmm(n) → 0. Combining this with (29) and (30), the result follows.

B Consistency Proof

Proof. It is sufficient to show that

lim
n→∞

psw(Kn+1 6= k∗ | Xn) = 0 (pk∗-a.s.), (31)

which is equivalent to (25) except that pθ∗-probability has been replaced by pk∗-probability. To see this,
suppose the theorem is false. Then there exists a set of parameters Φ ⊆ Θk∗ with wk∗(Φ) > 0 such that
(25) does not hold for any θ∗ ∈ Φ. But then by definition of pk∗ , which is a mixture of pθ with weights
w(θ), we have a contradiction with (31).

For any n, let Un = {s ∈ S | Kn+1(s) 6= k∗} denote the set of “bad” parameters that select an
incorrect model. Let n′ be the smallest n ≥ nk∗ such that |support(λn+1)| > 1. (Note that n′ > nk∗ only
in the degenerate case that λn(k∗) = 1 for all n ≤ n′.) The assumption that

∑

s∈Bk∗

nk∗

π(s)qs(X
nk∗ ) > 0

(pk∗ -a.s.) implies that

psw(Xn′

) ≥
∑

s∈Bk∗

nk∗

π(s)qs(X
nk∗ )pk∗(Xn′

nk∗+1 | Xnk∗ ) > 0 (pk∗ -a.s.),

where Xb
a = Xa, . . . ,Xb. Hence the posterior distribution π(s | Xn′

) = π(s)qs(X
n′

)

psw(Xn′ )
is defined (pk∗ -a.s.),

and by substituting definitions we find that (31) is equivalent to

lim
n→∞

psw(Xn′

)
∑

s∈Un
π(s | Xn′

)qs(X
n
n′+1 | Xn′

)

psw(Xn)
= 0 (pk∗ -a.s.). (32)

There are two reasons why a parameter s =
(

(t1, k1), . . . , (tm, km)
)

may be in Un: either tm(s) ≤ n+1
and km 6= k∗ or tm > n+1 and Kn+1(s) 6= k∗. Note that the second case may occur even when the final
prediction strategy km equals k∗. We would like to get rid of such parameters and replace Un by the set

A = {s =
(

(t1, k1), . . . , (tm, km)
)

∈ S | km 6= k∗, π(s) > 0},
which does not depend on n. To this end, fix any k′ 6= k∗ with λn′+1(k

′) > 0. We define an alternative
distribution π′(s | Xn′

), which is equal to π(s | Xn′

), except that it puts all probability mass from any
parameter such that km = k∗ on a corresponding parameter, which is identical except that km = k′.
That is,

π′
(

((t1, k1), . . . , (tm, km)) | Xn′)

=











0 if km = k∗;
∑

k∈{k∗,k′} π
(

((t1, k1), . . . , (tm, k)) | Xn′
)

if km = k′;

π
(

((t1, k1), . . . , (tm, km)) | Xn′
)

otherwise.

Suppose s =
(

(t1, k1), . . . , (tm, k∗)
)

is a parameter with km = k∗ and s′ =
(

(t1, k1), . . . , (tm, k′)
)

is the

corresponding parameter with km = k′. Then if tm > n + 1, we have that qs(X
n
n′+1 | Xn′

) = qs′(X
n
n′+1 |

Xn′

); and if tm ≤ n + 1, then s 6∈ Un. It follows that
∑

s∈Un

π(s | Xn′

)qs(X
n
n′+1 | Xn′

) ≤
∑

s∈A

π′(s | Xn′

)qs(X
n
n′+1 | Xn′

),
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which gives a bound on the numerator of (32). We may also bound the denominator by

psw(Xn) ≥
(

∑

s∈Bk∗

nk∗

π(s)qs(X
nk∗ )

)

pk∗(Xn′

nk∗+1 | Xnk∗ )pk∗(Xn
n′+1 | Xn′

).

As
(

∑

s∈Bk∗

nk∗

π(s)qs(X
nk∗ )

)

pk∗(Xn′

nk∗+1 | Xnk∗ ) is positive (pk∗ -a.s.), it is therefore sufficient to show

that

lim
n→∞

r(Xn
n′+1 | Xn′

)

pk∗(Xn
n′+1 | Xn′)

= 0 (pk∗ -a.s.), (33)

where r(Xn
n′+1 | Xn′

) =
∑

s∈A π′(s | Xn′

)qs(X
n
n′+1 | Xn′

) is a countable mixture of prediction strategies
qs that eventually switch to a prediction strategy pkm

that is mutually singular with pk∗ by assumption.
We will show that, with pk∗-probability 1, the distributions r(X∞

n′+1 | Xn′

) and pk∗(X∞
n′+1 | Xn′

)

are mutually singular, and hence that the density ratio r(X∞
n′+1 | Xn′

)/pk∗(X∞
n′+1 | Xn′

) is 0. As

r(Xn
n′+1 | Xn′

)/pk∗(Xn
n′+1 | Xn′

) tends to r(X∞
n′+1 | Xn′

)/pk∗(X∞
n′+1 | Xn′

) with pk∗ -probability 1 (e.g.
by Lévy’s theorem [Shiryaev, 1996]), this implies (33).

It remains to establish mutual singularity of r(X∞
n′+1 | Xn′

) and pk∗(X∞
n′+1 | Xn′

) with probability

1. To this end, we first observe that if s =
(

(t1, k1), . . . , (tm, km)
)

∈ A then mutual singularity of

pkm
(X∞

n′+1 | Xn′

) and pk∗(X∞
n′+1 | Xn′

) implies mutual singularity of qs(X
∞
n′+1 | Xn′

) and pk∗(X∞
n′+1 |

Xn′

). Hence r(X∞
n′+1 | Xn′

) is a countable mixture of distributions that are mutually singular with

pk∗(X∞
n′+1 | Xn′

) and is therefore itself mutually singular with pk∗(X∞
n′+1 | Xn′

), as required.
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