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Catchment-scale biogeography of riverine
bacterioplankton

Daniel S Read, Hyun S Gweon, Michael J Bowes, Lindsay K Newbold, Dawn Field,
Mark J Bailey and Robert I Griffiths
Centre for Ecology & Hydrology, Wallingford, UK

Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both
space and time during the transition from headwaters to the river mouth. As microbes have very
different controls over their ecology, distribution and dispersion compared with macrobiota, we
wished to explore biogeographical patterns within a river catchment and uncover the major drivers
structuring bacterioplankton communities. Water samples collected across the River Thames Basin,
UK, covering the transition from headwater tributaries to the lower reaches of the main river channel
were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological
succession in the bacterial community composition along the river continuum, moving from a
community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated down-
stream. Location of the sampling point in the river network (measured as the cumulative water
channel distance upstream) was found to be the most predictive spatial feature; inferring that
ecological processes pertaining to temporal community succession are of prime importance in
driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity
rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid
bacteria were found to correspond with these downstream changes in community structure,
suggesting corresponding functional changes. Our findings show that bacterial communities
across the Thames basin exhibit an ecological succession along the river continuum, and that this is
primarily driven by water residence time rather than the physico-chemical status of the river.
The ISME Journal (2015) 9, 516–526; doi:10.1038/ismej.2014.166; published online 19 September 2014

Introduction

Lotic environments such as rivers and streams are
unique ecosystems in that they represent a con-
tinuum of both space and time during the transition
from headwaters to the river mouth. This is
accompanied by significant downstream hydrologi-
cal and biogeochemical changes and a succession of
biotic communities. In many rivers there is a change
in the nature of inputs from both natural and
anthropogenic sources during this transition. In
addition, fluvial networks differ from most terres-
trial ecosystems in that biological dispersal is
limited, where landscape structure and physical
flows determine the distance and direction of
movement (Altermatt, 2013; Mari et al., 2014). The
downstream gradient in riverine communities has
been described by the River Continuum Concept,
that explains the response of the structure and
function of river biota to the gradient of physical

factors (physico-chemical and hydrological) within
the catchment (Vannote et al., 1980). The concept
describes how riverine biotic assemblages exhibit
longitudinal shifts in response to upstream pro-
cesses and changing hydromorphology. The concept
also postulates that the majority of organic inputs in
the higher reaches of the catchment are derived from
allochthonous sources such as leaf litter and from
autochthonous production by phytoplankton in the
lower reaches. Further developments to this concept
have included an increased weighting of the role of
flooding (Junk et al., 1989), and autochthonous
production from phytoplankton, benthic algae and
plants (Thorp and Delong, 1994) in structuring
aquatic ecosystems.

The relationship between the longitudinal dimen-
sions of a river (that is, distance downstream) and
biological diversity is not always clear and can
depend upon the river system and the organisms
being examined. Studies on fish have shown strong
relationships of increasing biological diversity
with decreasing distance to the river outlet
(Muneepeerakul et al., 2008) and this relationship
has been linked to river discharge (McGarvey and
Ward, 2008). Research on invertebrates has shown
similar patterns, with positive relationships
between species richness and catchment area
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(Altermatt et al., 2013). However, there is evidence
that these patterns may not be universal (Perry and
Schaeffer, 1987), leading to more complex patch
(Thorp et al., 2006)- and network (Altermatt, 2013)-
based models in an attempt to describe patterns of
lotic biocomplexity.

For bacterial communities the relationship
between diversity and geographic space has been
well studied; with a particular focus on soil bacterial
communities at a range of scales, from field studies
(Sayer et al., 2013) to country-scale surveys
(Griffiths et al., 2011; Ranjard et al., 2013), but also
including work on aquatic environments, from rock
pools (Langenheder et al., 2012) to lakes (Logue
et al., 2012). However, lotic environments such as
rivers represent an understudied and unusual
habitat owing to their constant turnover and there-
fore rules relevant to more static habitats such as
soils or even lentic environments may not apply. In
addition, microorganisms differ from many macro-
organisms in that they are generally passive dis-
persers (Nemergut et al., 2013), with the direction of
dispersal determined by the movement of water.
Rivers and streams also have a large number of
potential inputs, each adding new microbial com-
munities to the mix. For example, although at any
point in a fluvial system the majority of the water,
and therefore microbial community, is likely to have
originated from upstream, additional inputs can
arrive from groundwater (Sorensen et al., 2013), soil
and surface runoff (Crump et al., 2007), atmospheric
and precipitation inputs (Christner et al., 2008;
DeLeon-Rodriguez et al., 2013) and anthropogenic
point sources such as sewage outlets (Newton et al.,
2013). Moreover, many fluvial networks worldwide
are highly modified by land use changes and the
connection of man-made waterways such as canals
and reservoirs, causing significant changes in water

chemistry, flow velocities and water residence times
(Whitehead et al., 2013).

Gaining a better understanding of the spatial and
temporal patterns of freshwater microbial diversity,
their major drivers and their resistance and resilience
to environmental change is of critical importance.
Microbes are involved with a large array of ecological
process in fluvial systems, from recycling, releasing,
storing and transforming nutrients (Tatariw et al.,
2013), biogeochemical processes linked to climate
change (Butman and Raymond, 2011; Raymond et al.,
2013), persistence and transport of pathogens (Marti
et al., 2013) to acting as reservoirs of antibiotic
resistance (Marti et al., 2014).

This study addresses the fundamental question of
how bacterioplankton community composition var-
ies across a major river basin (the River Thames in
England) subject to wide gradients in physical
conditions and anthropogenic pressures. By reveal-
ing successional patterns in the composition and
function of bacteria across a river basin, we have
identified a significant physical control over the
structure of free-living riverine bacteria, setting a
framework for future research on this topic.

Materials and methods

Sampling and contextual environmental variables
The study site was the River Thames basin in
southern England, UK. The River Thames is the
largest river completely in England, with a total
length of 354 km to its tidal limit and a catchment
area of 9948 km2 (Marsh and Hannaford, 2008)
(Figure 1). Although the basin has a high population
density (960 people per km2), much of the upstream
catchment is relatively rural, comprising mainly
arable crops and grassland (Bowes et al., 2014).

Figure 1 A map of the River Thames basin showing the sampling sites used in this study. Lines indicate the main river channel and do
not include higher order tributaries for clarity.
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Samples were taken from 23 monitoring sites, as
part of the Centre for Ecology and Hydrology’s
Thames Initiative research platform, during low
flow conditions on 13 September 2011. The sam-
pling sites were located on all major tributaries
joining the River Thames between Hannington Wick
(site TH) in the upper Thames basin and Runny-
mede (site TR) on the outskirts of London, and also
six sites along the main channel of the River Thames
(Figure 1). This represents a wide range of river
types, in terms of water quality, flow, land use and
sewage input, and covered the majority of the basin
above the tidal limit. For example, mean concentra-
tions of total phosphorus (September 2009–April
2011) range from 31 mg l� 1 (River Leach—Le) to
700 mg l�1 (River Thame—Tm). Mean nitrate con-
centrations are generally high across the catchment
owing to groundwater contamination, but range
from 3.97mg NO3-N l� 1 (Enborne—En) to 19.94mg
NO3-N l�1 (the Cut—Cu). Mean flow varies consid-
erably across the catchment, from 1.2m3 s�1

(Enborne—En) in the tributaries to 46.8m3 s� 1 in
the lower reaches of the River Thames (Runny-
mede—TR). Supplementary Table 1 summarises the
site names and locations, and further catchment and
monitoring site details are given elsewhere (Bowes
et al., 2012; Bowes et al., 2014).

A single water sample was collected from each
site by lowering a clean bucket into the centre of the
river channel, transferred and subdivided into
autoclaved polypropylene bottles and stored in the
dark until they were taken back to the lab for
filtering on the same day. Samples (0.5–1.0 l) for
microbiological analysis were pre-filtered through
glass fibre GF/A filters (Whatman, Buckinghamshire,
UK) to reduce particulate and algal biomass, and
then through a 0.22-mm Durapore membrane filter
(Merck Millipore, Watford, UK) to collect microbial
cells. Filters were stored at � 80 1C for later analysis.

Water chemistry parameters, including pH,
alkalinity, suspended sediment, soluble reactive
phosphorus, total dissolved phosphorus, total phos-
phorus, ammonia (NH4), dissolved reactive silicon,
fluoride (F), chloride (Cl), nitrite (NO2), nitrate (NO3),
total dissolved N, sulphate (SO4) and dissolved
organic carbon (DOC) were measured as detailed in
Neal et al. (2012). In addition, the concentrations of a
suite of metals, including sodium (Na), boron (B),
iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu)
and aluminium (Al) were measured by inductively
coupled plasma–optical emission spectrometry (ICP-
OES). Site physico-chemical and biotic data is given
in Supplementary Table 1.

Flow cytometry of bacterioplankton and phytoplankton
Phytoplankton enumeration and characterisation
was carried out using a dual colour flow cytometry
protocol as described in Read et al. (2014),
identifying 10 major groups of phytoplankton in
the Thames, including diatoms (one group),

chlorophytes (three groups), cryptophytes (two
groups) and cyanobacteria (four groups). To count
total bacterioplankton, samples were fixed in 2%
formaldehyde for 1 h at room temperature, stored in
the dark at 4 1C overnight and analysed the follow-
ing day. An aliquot of 0.5ml from each sample was
stained with SYBR Green I (Sigma-Aldrich, Gillingham,
UK) at a final concentration of 1:1000 for 30min at
room temperature in the dark. An addition of 2.5 ml
of 1mm diameter beads (Life Technologies, Paisley,
UK) to each sample was used as a calibration and
counting standard. Each sample was run for 1min at
a low flow rate (B5 ml per min) on a Gallios flow
cytometer (Beckman-Coulter, High Wycombe, UK),
using excitation with a 488nm laser. Gates were
manually drawn in Kaluza 1.2 software (Beckman-
Coulter) to distinguish and count both high (HNA)
and low (LNA) nucleic acid bacteria.

Bacterial activity was measured by flow cytometry
using the dye 5-cyano-2,3-ditolyl tetrazolium chlor-
ide (CTC) to infer bacterioplankton activity rates
(Sieracki et al., 1999). Briefly, a final concentration
of 5mM CTC (Sigma-Aldrich) was incubated with
each water sample at room temperature for 2 h
in the dark. The reaction was stopped by the
addition of 0.2 mm filtered 2% (wt/vol) final con-
centration formaldehyde, freshly made from
reagent-grade paraformaldehyde (Sigma-Aldrich).
A cytogram of side scatter (SS) against FL3
(620nm BP 30nm) drawn in Kaluza 1.2 software
(Beckman-Coulter) was used to distinguish CTC-
positive cells. The percentage positive CTC cells
were calculated as a proportion of the total
bacterioplankton count.

DNA extraction and sequencing
DNA was extracted from 0.22 mm membrane filters
using methods described in Huang et al. (2009).
DNA amplification and pyrosequencing were car-
ried out at Molecular Research LP (Lubbock, TX,
USA). Microbial tag-encoded FLX amplicon pyrose-
quencing was carried out using 16S V1-V3 spanning
primers Gray28F 50-GAGTTTGATCNTGGCTCAG-30

and Gray519r 50-GTNTTACNGCGGCKGCTG-30.
Initial generation of the sequencing library utilised
a one-step PCR with a total of 30 cycles, a mixture of
Hot Start and HotStart high fihigh fi taq poly-
merases, and amplicons originating and extending
from the forward primers. Tag-encoded FLX ampli-
con pyrosequencing analyses utilised Roche 454
FLX instrument (Roche 454 Life Sciences, Branford,
CT, USA) with titanium reagents.

Data processing and analysis
Sequencing reads were demultiplexed and filtered
for quality and size (reads o367 or 4548 bp were
discarded as possible errors) using the QIIME pipe-
line (Caporaso et al., 2010), denoised with ACACIA
(Bragg et al., 2012) and chimeras were identified and
removed with ChimeraSlayer (Haas et al., 2011).
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The sequences were clustered into operational
taxonomic units (OTUs) with UCLUST (Edgar,
2010) as part of the QIIME package and representa-
tive sequences were selected (pick_rep_set.py,
QIIME). The taxonomy of OTUs was determined
by RDP Classifier with 80% bootstrapping classifi-
cation confidence (Wang et al., 2007) using the
Greengenes Oct 2012 database (McDonald et al.,
2012) and Newton freshwater 16S SSU database
(Newton et al., 2011). The OTU table was subse-
quently rarefied down to 2179 sequences per sample
for comparative diversity analyses (multiple_rare-
factions_even_depth.py, QIIME). A table with OTU
identities from both databases is given in
Supplementary Table 2. Sequences are deposited
in the European Nucleotide Archive under the
accession number PRJEB6879 (http://www.ebi.
ac.uk/ena/data/view/PRJEB6879).

All statistical analyses were carried out in R
(v.3.0.1) (R Core Team 2013) using the package
‘Vegan’ v2.0–10 (Oksanen et al., 2013). Environ-
mental and flow cytometry (biotic) data were
individually tested for normality (Shapiro–Wilkes
test, Po0.05). Variables that were not normally
distributed were transformed to normality or as
close to normality as possible using either log or
square root transformations. In order to determine
the major drivers of bacterial community composi-
tion, a Bray–Curtis dissimilarity matrix generated
from the OTU table was compared to three broad
categories of potential drivers: spatial, environmen-
tal and biotic. These were, in turn, represented by
the location of the sites within the river network, the
physico-chemical variables and the flow cytometry-
derived phytoplankton community. To explore the
best spatial predictor of bacterial community com-
position, three contrasting measurements that repre-
sented site location within river catchment were
compared. These were: (1) the dendritic network
length (km), which is a measure of the cumulative
length of the branching river network upstream of
the sampling site, (2) the Euclidian distance (km)
between sites, which is simply the straight line
distance between sampling points and (3) the
drainage catchment area (km2) for each site. All
geographic measures were calculated using ArcGIS
(Esri Ltd, Aylesbury, UK). Mantel tests and correlo-
grams were carried out on OTU data using Bray–
Curtis dissimilarity matrices to examine the strength
of the relationship between each spatial predictor
and bacterial composition. Function ‘Bioenv’
in the R package ‘Vegan’ was used to identify the
subsets of environmental and phytoplankton vari-
ables that best predicted bacterial community
composition (Clarke and Ainsworth, 1993). The
selected subset of variables for each category was
reanalysed using Mantel tests and correlograms to
examine the strength of the relationship between
dissimilarity matrices from each optimised group of
predictors and the bacterial community composition
as before.

Before calculating alpha diversity for each site,
sequences were subsampled to the site with the
lowest number of sequences (2179 sequences). To
explore whether the freshwater component of the
bacterial community behaved in a different manner
to the whole community, Shannon’s H index was
calculated from species-level abundance tables (sum-
marize_taxa.py, QIIME) derived from the Greengenes
16S rRNA gene database that is not habitat specific
(McDonald et al., 2012) or the ‘Newton database’
comprising a curated selection of known freshwater
microbes (Newton et al., 2011). Visual examination of
the relationships between the bacterial community
structure and the physico-chemical and biotic para-
meters were assessed using non-metric multidimen-
sional scaling using the ‘metaMDS’ function in
Vegan, based on dissimilarities calculated using the
Bray–Curtis index. To examine the OTUs that had the
highest contribution to the ordination, the function
‘Envfit’ was run with 999 permutations and used to
plot significantly (Po0.001) correlated variables. To
examine relationships between the OTU ordination
and the environmental and biotic variables, ‘Envfit’
was again used to plot significantly (Po0.05)
correlated variables on the ordination.

Finally, a Pearson’s correlation matrix with
P-values was generated using the R package HMISC
(Harrell, 2013) and used to identify individual OTUs
from the core river microbiome (present in 450% of
the sites) with significant (Po0.05) positive or
negative relationships to dendritic distance.

Results

Sequencing generated a total of 123 068 sequences,
averaging 5351 sequences per site, which were
classified into 2492 distinct OTUs. Across all
catchment sites, the most common phyla of bacteria
were Actinobacteria, Bacteroidetes, Proteobacteria
and to a lesser extent, Verrucomicrobia (Figure 2).
Genus-level composition of Actinobacteria, Bacter-
oidetes and Alpha-, Beta- and Gammaproteobacteria
are shown in bar charts in Supplementary Figures
S1–S5. The most abundant OTUs were represented
by species of known specialist freshwater bacteria
(Greengenes classification followed by Newton
database classification in parentheses), including
the Actinobacteria ‘Candidatus Rhodoluna’ (Luna1-A3),
ACK-M1 (acI-A1), Microbacteriaceae (Luna1-A3)
and ‘Candidatus Aquiluna rubra’ (Luna1). Abun-
dant Bacteroidetes OTUs comprised Arcicella
(bacIII-A), Flavobacterium (bacII-A), Fluviicola
(bacV) and Chitinophagaceae (bacI-A1). The most
abundant Proteobacteria were Limnohabitans (Lhab-
A1, Lhab-A4), Rickettsiales (LD12 alfV-A), Polynu-
cleobacter (PnecC) and Sphingomonadaceae (alfIV-
B). Verrucomicrobia were represented by one abun-
dant group of OTUs; Cerasicoccaceae (Opitutaceae).

Our study found a clear relationship between
bacterial composition at the phylum level and
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dendritic distance upstream (Figure 2); OTUs
belonging to the phylum Actinobacteria increased
in abundance within the community with increas-
ing dendritic distance. Although making up a far
smaller proportion of the community, Verrucomi-
crobia OTUs followed a similar pattern. Conversely,
OTUs belonging to the phylum Bacteroidetes went
from being the dominant phylum in sites with short
dendritic distances upstream to a minor component
in downstream sites (Figure 2).

The best spatial measurement for predicting bacter-
ial community composition was the (log) sum of the
dendritic distance upstream (Mantel r2¼ 0.5999,
Po0.001), followed by (log) catchment size (Mantel
r2¼ 0.256, P¼ 0.014) and then Euclidian distance
between sites (Mantel r2¼ 0.1214, P¼ 0.048) (Figures
3a–c). The optimal subset of environmental variables
with the best correlation to the bacterial composition
dissimilarity matrix contained three parameters—
nitrite (NO2), sulphate (SO4) and log copper
(Cu) concentrations (Bioenv correlation¼ 0.2663)
(Supplementary Figure S6A). However, this subset
was not strongly correlated to the bacterial
community dissimilarity matrix (Mantel r2¼ 0.2314,
P¼ 0.014), especially when compared to dendritic
distance upstream. The optimal biotic model con-
tained four parameters; log group 2 Chlorophytes,
group 4 pico Chlorophytes, bacterial HNA/LNA ratio
and log CTC-positive bacterial cells (Bioenv
correlation¼ 0.599) (Supplementary Figure S6B).
This subset of biotic variables was more strongly
correlated to the bacterial community dissimilarity
matrix (Mantel r2¼ 0.5993, P¼ 0.001) than the envir-
onmental subset.

There was no significant correlation between
dendritic distance upstream and Shannon H0 diver-
sity of the species-level abundance table based on
the Greengenes database (Figure 4). However, there
was a significant relationship between the species-
level diversity (Shannon H0) of the freshwater

component of the community (Newton database)
and dendritic distance upstream (lm, r2¼ 0.712,
Po0.001). This implies that a greater number of
taxa related to known freshwater taxa were found at
increasing dendritic distance.

Non-metric multidimensional scaling was used to
explore the relationships between the bacterial com-
munity composition at each site, along with the biotic
(phytoplankton) and environmental variables. There
was separation along axis 1 between sites from
headwaters (low dendritic distance) and downstream
sites (high dendritic distance) (Figure 5a). Envfit
analysis confirmed that downstream sites were asso-
ciated with OTUs belonging to Actinobacteria,
Proteobacteria and Verrucomicrobia, whereas head-
water sites were strongly associated with OTUs from
the phylum Bacteroidetes (Figure 5b). Only two
environmental and one spatial variable were signifi-
cantly (Po0.05) correlated with the ordination; log
dendritic distance, log copper (Cu) and log nitrate
(NO3) (Figure 5c). Three chlorophyte, two cryptophyte
and one cyanobacterial group were significantly
(Po0.05) associated with the downstream commu-
nities (Figure 5d). The percentage of CTC-positive
cells and the HNA/LNA ratio were associated with the
upstream sites (Figure 5d).

Of the nine OTUs with a significant (Pearson’s r,
Po0.05) negative correlation with dendritic dis-
tance, eight belonged to the phylum Bacteroidetes
(the top four are shown in Figure 6). The 15 OTUs
with a significant positive correlation to dendritic
distance represented more taxa; 3 of the 4 most
abundant OTUs belonged to Actinobacteria
(Figure 6) and 1 to a Verrucomicrobia but also
included Alpha and Betaproteobacteria and 2
Bacteroidetes OTUs belonging to the family Chit-
inophagaceae (Supplementary Table 3).

Bacterial activity and viability rates, measured by
reduction of the dye CTC, showed a significant
positive correlation with the ratio of HNA to LNA
bacteria (r2¼ 0.4648, Po0.001), where a higher
proportion of HNA bacteria in the community
correlate with increased activity (Figure 7a). In
addition, both the number of CTC-positive
cells (r2¼ 0.4933, Po0.001) and HNA/LNA ratio
(r2¼ 0.3437, Po0.05) had significant negative
correlations with dendritic distance (Figure 7b).

Discussion

Our results showed that bacterial community com-
position in this river basin was more related to
spatial parameters than physical and chemical
variables. In particular, site location (measured as
cumulative river network distance upstream from
the site) was found to be the most predictive spatial
feature above other measures of position such as
Euclidian distance and site catchment area (Figures
3a–c). This infers that ecological processes pertain-
ing to river network length are of prime importance
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in driving the assemblages of bacterial communities
in this river system. This contrasts with other, more
static habitats such as soils and even lakes, where
differences in chemical and physical parameters are
known to correlate closely with differences in
community assemblages between sampled sites
(Lindstrom et al., 2005; Griffiths et al., 2011).

A succession in the composition of the bacterial
community from headwaters to downstream was
observed, transitioning from a Bacteroidetes- to an
Actinobacteria-dominated community (Figure 2). Indi-
vidual OTU abundance and their correlation with
dendritic distance confirmed the observed phylum-
level patterns; OTUs with the strongest positive
correlations with dendritic distance were Actinobac-
teria and Verrucomicrobia and those OTUs with

negative correlations belonged to the phylum Bacter-
oidetes. There is a lack of similar studies of whole
river catchments with which to compare these results.
However, research carried out in a subtropical river in
China (Hu et al., 2014), the upper reaches of the
Mississippi (Staley et al., 2013), a stretch of the Ohio
river (Schultz et al., 2013) and the mouth of the
Columbia river (Fortunato et al., 2013) show simila-
rities in terms of bacterial composition; Actinobac-
teria, Bacteroidetes and Proteobacteria, and in some
cases Cyanobacteria, Firmicutes and Verrucomicrobia
make up the dominant members of riverine bacterial
communities.

We propose three linked explanations for the
observed pattern in bacterial community composi-
tion related to (1) water residence time, (2) changing
resource availability and (3) biotic interactions in
the form of top-down structuring of bacterial com-
munities. First, we suggest that the change in
community composition downstream is linked to
the residence time of the water and resultant
community succession. The length of the river
network is correlated with water residence time,
with longer networks having further and therefore
more time for surface water to travel (Stewart et al.,
2011). As water transitions downstream, a commu-
nity of bacteria better adapted to the freshwater
environment (the ‘natives’) has time to develop,
outcompeting the transient ‘vagabond’ or ‘tourist’
species (Newton et al., 2011; Crump et al., 2012) that
are washed into the watercourse. This idea is
supported by the increase in abundance and
diversity of known freshwater taxa (that is, from a
database predominantly comprising freshwater taxa)
during the headwater–downstream transition
(Figure 4b).

The succession from a Bacteroidetes to Actino-
bacteria-dominated community may also be viewed
as a succession of species of bacteria with r- and
k-strategist lifestyles (Weinbauer and Hofle, 1998).
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The upper reaches of the river is a ‘new’ environ-
ment with potentially lower levels of competition,
which would favour rapidly growing species that
can utilise available resources quickly (r strategists).
Indeed, previously identified ‘freshwater taxa’
(Newton et al., 2011) in these headwater commu-
nities were notably cultivable fast-growing orders
such as Flavobacteriales and Bacteroidales. Compe-
tition may become more intense downstream as the
community of specialist aquatic bacteria builds in
both number and complexity, resulting in k-strate-
gist species that are more competitive and have

lower growth rates and narrower niches. Freshwater
Actinobacteria have previously been observed to be
slower growing than other phyla (Simek et al.,
2006), which fits with our observation that their
abundance increases downstream as residence time
increases.

These findings are supported by our observation that
high bacterial activity rates were observed in the
tributaries and decreased in downstream sites
(Figure 7b). The ratio of HNA to LNA bacteria also
showed a strong longitudinal trend, with the number
of LNA relative to HNA bacteria increasing
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downstream. As with other studies, we found that
higher abundances of HNA cells were positively
correlated to activity rates (Lebaron et al., 2002).
Examination of the correlation between HNA/LNA
and OTU abundance showed that HNA was corre-
lated with Bacteroidetes OTU abundance, and LNA
was correlated to Actinobacteria OTU abundance
(Supplementary Figure 7), supporting the links
between community composition, activity and den-
dritic distance downstream. Although little informa-
tion on the identities of HNA/LNA bacteria exists for
freshwater systems, we note that in marine systems
Bacteroidetes have been commonly identified as
major components of the HNA group (Schattenhofer
et al., 2011; Vila-Costa et al., 2012)

We were unable to identify a dominant
physico-chemical driver of bacterioplankton com-
munity composition in the Thames. It is possible
that the observed succession is caused by an
unmeasured environmental factor; however, it is to
be noted that we comprehensively measured 29
major nutrients, metals and ions in these samples.
As examples, the rivers Thame (TM), Cut (Cu) and
Ray (Ra) are some of the most polluted in this study
in terms of major nutrient (total phosphorus and
NO3) concentrations, but there was no evidence to
suggest they shared relatively similar communities
(Figure 5a). Likewise, although the ‘clean’ sites on
the Rivers Leach (Le) and Pang (Pa) do cluster
together, the Kennet (Ke), with similar total phos-
phorus and NO3 concentrations, does not. Previous
studies have identified DOC to be a significant
driver of microbial community composition (Jones
et al., 2009; Li et al., 2012) and different taxa of
aquatic bacteria have varying preferences in terms of

carbon utilisation (Salcher et al., 2013). Yet in our
study there was no strong relationship with bacterial
community composition. Overall concentrations of
DOC peaked at the mid dendritic distance and
longer-term weekly data over the course of two years
showed no clear longitudinal pattern in DOC
concentration (data not shown). However, we did
not measure the composition of DOC species in
terms of molecular weight and complexity, and it is
possible that the proportions of labile and recalci-
trant pools could change downstream (Vannote
et al., 1980; del Giorgio and Pace, 2008; Kaplan
et al., 2008), thus influencing communities and in
particular the proportion of r and k strategists.
Although not measured in this study, particulate
carbon and nitrogen have previously been found to
correlate with riverine bacterial communities
(Fortunato et al., 2013), providing possible evidence
for links between the planktonic and sediment
communities.

Another candidate for the observed succession is
that biotic interactions have a role in structuring the
bacterial community. We found a correlation of
bacterial composition with the phytoplankton com-
munity (figure 5d), suggesting other planktonic
microbial communities are also changing down-
stream in a similar manner. The relationship
between bacterioplankton and phytoplankton com-
position may simply reflect the same physical driver
(residence time) rather than a direct ecological
interaction. However, there is strong evidence that
phytoplankton blooms can have a significant role in
structuring the composition of bacterial commu-
nities through the input of photosynthetically
derived carbon sources (Kirchman et al., 1991;
Teeling et al., 2012), and the possibility that this is
a significant driver in this system cannot be
discounted. Increasing phytoplankton biomass
across the River Thames basin with increasing river
length and residence time (related to water transfers
with adjacent canal systems) have been observed
previously (Bowes et al., 2012).

Another biotic interaction in the form of mortality
from heterotrophic protists and/or viral lysis could
have a top-down role in structuring the community.
Different bacterial taxa are known to vary in their
resistance to both grazing and viral lysis (Pernthaler,
2005) and predation by flagellates and ciliates have
been shown to structure the composition of bacterial
communities in mesocosm experiments (Salcher
et al., 2005). The increased residence time down-
stream may allow for higher levels of top-down
predation to develop in the lower reaches; lags in
bacterivore abundance have previously been
observed in aquatic systems (Tanaka et al., 1997).
Microscopic observations of freshwater Actinobac-
teria have shown that they are generally free-living
‘ultramicrobacteria’ (Hahn et al., 2003), and this
small size has been linked to avoidance from
grazing, whereas a number of studies have indicated
that members of the Bacteroidetes are vulnerable to
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grazing (Jurgens et al., 1999; Simek et al., 2001;
Salcher et al., 2005).

In conclusion, this study has shown that there
are distinct successional changes in the composi-
tion of the bacterial community during the transi-
tion from tributaries to the lower reaches of a
temperate lowland river. This change, largely
driven by the changing abundance of members of
the phyla Actinobacteria and Bacteroidetes, corre-
sponds to changes in bacterial activity rates and
the composition of cells in terms of their nucleic
acid content. Given the lack of strong correlation
with any of the river’s physico-chemical variables
measured, it would appear that this change is
largely driven by an inherent property of lotic
systems, that is, the residence time of the water.
Rivers have been described as ‘lotic conveyor belts’
(Schultz et al., 2013) owing to the fact that, at least
for planktonic organisms, movement is determined
by the direction and flow of water. Because of this,
the bacterial population at any one site is in a state
of flux, with constant immigration from the
upstream community and emigration to the down-
stream one. In this view, sampling sites in this
study not only represent a spatial distribution but
also a time series, where downstream sites with
longer water residence times contain ‘older’ river
water and a planktonic community that is in the
later stages of ecological succession. The next steps
to better understand this transition are to investi-
gate the substrate preferences, growth rates and
relative contribution of other biotic interactions in
structuring riverine communities. One major
aspect missing from this study is information on
the temporal shifts in community structure. We
purposefully chose a period of basal flow for this
study owing to the relative stability of the river
catchment during this time. However, rivers and
streams are highly dynamic systems and gaining a
better understanding of the magnitude of change
over time would offer key insights into the controls
of bacterial communities along a river continuum.
Finally, a better understanding of the functional
consequences of this shift in composition would
allow us to have a better understanding of the role
of planktonic microbes in rivers.
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