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ABSTRACT

The human brain is able to flexibly adapt its information processing capacity to meet a

variety of cognitive challenges. Recent evidence suggests that this flexibility is reflected in the

dynamic reorganization of the functional connectome. The ascending catecholaminergic

arousal systems of the brain are a plausible candidate mechanism for driving alterations

in network architecture, enabling efficient deployment of cognitive resources when the

environment demands them. We tested this hypothesis by analyzing both resting-state and

task-based fMRI data following the administration of atomoxetine, a noradrenaline reuptake

inhibitor, compared with placebo, in two separate human fMRI studies. Our results

demonstrate that the manipulation of central catecholamine levels leads to a reorganization

of the functional connectome in a manner that is sensitive to ongoing cognitive demands.

AUTHOR SUMMARY

There is emerging evidence that the flexible network structure of the brain is related to

activity within the ascending arousal systems of the brain, such as the noradrenergic locus

coeruleus. Here, we explored the role of catecholaminergic activity on network architecture

by analyzing the graph structure of the brain measured using functional MRI following the

administration of atomoxetine, a selective noradrenaline reuptake inhibitor. We estimated

functional network topology in two double-blind, placebo-controlled datasets: one from the

resting state and another from a parametric N-back task. Our results demonstrate that the

nature of catecholaminergic network reconfiguration is differentially related to cognitive state

and provide confirmatory evidence for the hypothesis that the functional network signature of

the brain is sensitive to the ascending catecholaminergic arousal system.

INTRODUCTION

A fundamental question facing modern neuroscience is how local computations are integrated

across the brain to support the vast repertoire of mammalian behavior and cognition. Conver-

gent results from multimodal neuroimaging studies (de Pasquale, Penna, Sporns, Romani, &

Corbetta, 2016; Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011; Shine et al., 2016;

Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015) have demonstrated that brain
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Catecholaminergic manipulation and cognitive states

activity during cognitive tasks reflects a balance between regional segregation and network-Segregation:
A state in which there is a relatively
high modularity in a network, i.e.,
there are distinct modules with weak
interconnections.

level integration (Shine & Poldrack, in press), in which communication across distributed

Integration:
A state in which there is a relatively
low modularity in a network, i.e.,
there are less distinct modules with
strong interconnections.

circuits enables fast and effective cognitive performance (Shine et al., 2016).

There is growing evidence that ascending catecholaminergic neuromodulatory projections

from the brainstemmediate this integration (Samuels & Szabadi, 2008; Shine et al., 2016). Pro-

jections from arousal-related nuclei, such as the noradrenergic locus coeruleus (Sara, 2009),

arborize widely in target regions and putatively alter network architecture by modulating the

Network:
A system comprising a set of distinct
nodes, interconnected by a set of
edges.

impact of incoming neuronal input in an activity-dependent manner (Aston-Jones & Cohen,

2005). Previous neuroimaging studies in humans have highlighted a close relationship be-

tween noradrenaline, network topology, and cognitive performance (Eldar, Cohen, & Niv,

Noradrenaline:
A catecholaminergic
neurotransmitter that provides a
widespread, modulatory role over
neuronal processing in the central
nervous system.

2013; Shine et al., 2016). Specifically, increased free noradrenaline has been shown to in-

crease the phasic-to-tonic ratio of neuronal firing in both the locus coeruleus and the cortex.

As such, neurons that are less tonically active during the unstimulated state may also si-

multaneously demonstrate a heightened responsivity to relevant stimuli (Bari & Aston-Jones,

2013; Devilbiss & Waterhouse, 2011). We have previously used a biophysical computational

model to demonstrate that fluctuations in neural gain, the potential computational role of cat-

echolamines (Aston-Jones & Cohen, 2005; Servan-Schreiber, Printz, & Cohen, 1990), controls

the balance between network-level segregation and integration (Shine, Aburn, Breakspear, &

Poldrack, in press). However, it is not yet known whether directly manipulating noradrenaline

shapes network topology, or indeed whether the effects of noradrenergic function on network

topology differ across behavioral contexts.

To test the hypothesis that ascending catecholamines modulate global network topology as

a function of cognitive state, we analyzed two separate fMRI datasets in which individuals

were scanned following administration of either atomoxetine (ATX), a noradrenergic reuptakeAtomoxetine:
A chemical that inhibits the
transporter chemical that normally
facilitates the reuptake of
noradrenaline.

inhibitor (Robbins & Arnsten, 2009), or a pharmacologically inactive placebo. In the first

study, subjects were scanned in the “resting” state (van den Brink et al., 2016); in the sec-

ond, subjects were scanned while performing a cognitively challenging N-back task (Hernaus,

Casales Santa, Offermann, & Van Amelsvoort, 2017). Based on the opposing effects of ATX

on functional connectivity observed in these two studies (Hernaus et al., 2017; van den Brink

et al., 2016), animal studies that highlight differential effects of ATX on phasic versus tonic

locus coeruleus activity (Bari & Aston-Jones, 2013) and the hypothesized link between nor-

adrenaline and network topology (Eldar et al., 2013; Shine et al., 2016), we expected that ATX

administration would manifest distinct topological effects as a function of cognitive state.

RESULTS

Effect of Atomoxetine on the Topological Signature of the Resting State

In the double-blind, placebo-controlled crossover resting-state study (van den Brink et al.,

2016), 24 healthy subjects (age = 19–26) underwent fMRI scanning prior to (t = −20 minutes)

and following (t = +90 minutes) the administration of either 40 mg of ATX or placebo. To

estimate time-resolved network topology, we submitted preprocessed BOLD fMRI data from

each subject to a preregistered analysis pipeline that calculates sliding-window connectivity

between regional time series (Shine et al., 2015) (Supporting Information Figure S1a, Shine,

van den Brink, Hernaus, Nieuwenhuis, & Poldrack, 2018) and then estimates the resulting

topological signature of each windowed graph (Shine et al., 2016). Specifically, we used a

weighted- and signed-version of the Louvain algorithm (Rubinov & Sporns, 2010) to identify

tightly connected communities of regions within each temporal window. We then determined

how strongly each region was connected to other regions within its own module (quantified

Module:
A group of nodes that is more tightly
interconnected than the connections
between modules.
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Catecholaminergic manipulation and cognitive states

using the within-module degree Z-score: WT) as well as to regions outside of its own module

(quantified using the participation coefficient: BT) over time. The resultant topology can be

summarized at the regional level (e.g., to determine which regions were the most integrated

during a particular cognitive state) or at the global level by using a joint histogram of WT

and BT values (known as a “cartographic profile”). Rightward fluctuations in the density of

the cartographic profile along the horizontal (i.e., BT) axis reflect a more highly integrated

functional connectome and have been shown to relate positively to individual differences

in effective cognitive performance (Mattar, Cole, Thompson-Schill, & Bassett, 2015; Shine

et al., 2016). Importantly, the participation coefficient measures the distribution of connections

rather than their magnitude, such that BT can be elevated in cases with relatively weak overall

connectivity between regions.

As predicted (https://osf.io/utqq2), the administration of ATX compared with placebo at rest

led to a significant reconfiguration of network-level topology (Figure 1A). Specifically, ATX

administration caused a global shift toward segregation that was maximal in lateral frontal,

frontopolar, and occipital cortices, along with the bilateral amygdala (Figure 1B). A parsimo-

nious explanation for this result is that increases in free synaptic noradrenaline are known to

downregulate tonic activity within the locus coeruleus, which has a dense expression of in-

hibitory α2-autoreceptors (Bari & Aston-Jones, 2013; Sara, 2009). As such, our results suggest

Figure 1. (A) Effect of atomoxetine versus placebo on the cartographic profile, which demonstrates
a shift toward segregation: red/yellow, increased frequency postatomoxetine; and blue, decreased
frequency postatomoxetine (FDR q ≤ 0.05). (B) Parcels with decreases in their between-module
connectivity (i.e., participation coefficient) following atomoxetine (vs. placebo); see Supporting
Information Table S1 (Shine et al., 2018) for parcel MNI coordinates (FDR q ≤ 0.05). (C) Effect of
atomoxetine versus placebo on the relationship between the cartographic profile and pupil diam-
eter, which demonstrates a shift toward integration: red/yellow, increased frequency postatomoxe-
tine; and blue, decreased frequency postatomoxetine (FDR q ≤ 0.05). (D) Parcels with increased
time-varying connectivity between between-module connectivity (i.e., participation coefficient) and
pupil diameter following atomoxetine (vs. placebo); see Table S1 for parcel MNI coordinates (FDR
q ≤ 0.05). Key: ATX, atomoxetine; BT, between-module connectivity; WT , within-module connec-
tivity; see Table S1 for parcel coordinates.
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Catecholaminergic manipulation and cognitive states

that network topology in the resting state became segregated because of a reduction in the

tonic firing rate of the locus coeruleus (Bari & Aston-Jones, 2013). This interpretation is consis-

tent with recent computational models that demonstrate a strong link between the tonic firing

rate of the locus coeruleus and functional signatures of brain network activity (Safaai, Neves,

Eschenko, Logothetis, & Panzeri, 2015).

Network Topology is Sensitive to Phasic and Tonic Catecholaminergic Levels

Although the topological signature observed in the resting state is consistent with a decrease in

tonic noradrenaline, in vivo experiments in rodents have demonstrated that ATX administration

also enhances phasic firing patterns in the locus coeruleus (Bari & Aston-Jones, 2013). This in

turn should be expected to potentiate phasic noradrenergic responses and hence integrate the

brain; however, this will happen only under conditions necessary to elicit phasic noradrenergic

signaling, such as sensory salience (Nieuwenhuis, De Geus, & Aston-Jones, 2011) and acute

stress (Hermans, van Marle, & Ossewaarde, 2011). Thus, in the context of an increase in free

noradrenaline, we might expect that the strength of the relationship between network topology

and phasic noradrenaline should increase following ATX administration. That is, the presence

of extra noradrenaline should facilitate additional network reconfiguration as a function of

behavioral requirements.

The lack of cognitive constraints during the resting state make it inherently difficult to directly

test whether the predicted alterations in phasic catecholaminergic activity were indeed related

to changes in network topology. Fortunately, we could interrogate this hypothesis by lever-

aging the relationship between the locus coeruleus and the descending sympathetic circuitry

that controls pupil dilation (Nieuwenhuis et al., 2011), which in turn has been linked to cog-

nitively relevant alterations in cortical arousal ( Joshi, Li, Kalwani, & Gold, 2016; McGinley,

David, & McCormick, 2015a; Reimer et al., 2016). In a previous study, we demonstrated a

positive relationship between pupil diameter and fluctuations in network topology (Shine et al.,

2016), suggesting that ascending neuromodulatory signals may facilitate network-level inte-

gration. In the current study, we hypothesized that the increase in free catecholamines follow-

ing atomoxetine (Warren, van den Brink, Nieuwenhuis, & Bosch, 2017) should heighten this

relationship, and hence lead to a stronger relationship between pupil diameter and network-

and regional-level integration. Consistent with this hypothesis, we observed a stronger rela-

tionship between pupil diameter and network topology following ATX administration than

following placebo (Figure 1C and 1D). Together, these results provide evidence to suggest that

during quiescence, network topology is sensitive to both phasic and tonic patterns of ongoing

noradrenergic activity.

Effect of Atomoxetine on the Topological Signature of Cognitive Function

Apotential benefit of increasing the concentration of free noradrenaline (Invernizzi &Garattini,

2004) is that the liberated catecholamines can be utilized in appropriate contexts to facilitate

activity within task-relevant neural circuits. In other words, ATX may downregulate tonic nor-

adrenergic release during rest, but when required, it may conversely facilitate an increase in

phasic noradrenergic release (Bari & Aston-Jones, 2013) and hence increase network-level

integration. To directly test this hypothesis, we analyzed data from a separate dataset of 19

subjects (age range 18–30) who underwent a cognitively challenging, parametric N-back task

after the administration of either ATX (60 mg) or placebo (Hernaus et al., 2017) (Supporting

Information Figure S1b, Shine et al., 2018). We hypothesized that because of a heightened
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Catecholaminergic manipulation and cognitive states

phasic noradrenergic response, the main effect of network-level integration should be more

pronounced during the task following ATX, when compared with the placebo condition.

Consistent with our hypothesis, we observed a significant increase in network-level integra-

tion during task performance following ATX (Figure 2A). Specifically, there was an inverted

U-shaped relationship between cognitive load and network integration in both conditions that

was significantly elevated in the post-ATX session (t = 2.47; p = 0.009; Figure 2B). This main

effect of ATX was maximal across frontal, parietal, and temporal cortices, along with thalamus,

amygdala, and Crus II of the cerebellum (Figure 2C, red). Importantly, there is a long-standing

research literature linking catecholamines with cognitive function via an inverse U-shaped

relationship (Cools & D’Esposito, 2011; Robbins & Arnsten, 2009); however, few studies have

provided a potential explanation for the algorithmic benefits that such a mechanism might

confer. Here, we demonstrate that network integration may mirror the inverted U-shaped

relationship between catecholamine levels and cognitive performance.

Regional Topological Signatures Change as a Function of Cognitive Load

Although the majority of regions across the brain demonstrated an inverse U-shaped relation-

ship with load, there was a subset of regions that demonstrated a linear increase with cogni-

tive load following atomoxetine administration (Figure 2C, yellow). Specifically, the bilateral

anterior insula, left dorsolateral prefrontal cortex, and right frontopolar cortex demonstrated a

higher extent of integration (BT) with increasing task complexity following ATX, suggesting that

the additional free catecholamines may have facilitated enhanced topological involvement of

Figure 2. (A) Mean cartographic profile across all four blocks of load comparing post-ATX to
postplacebo; similar patterns were observed in each block (FDR q ≤ 0.05). (B) Mean parcelwise B
for each N-back load in both the placebo (PLC, blue) and atomoxetine (ATX, red) conditions (error
bars represent standard error across subjects). (C) Parcels with higher BT post-ATX as a function of
task performance (FDR q ≤ 0.05); main effect (red) and load effect (yellow). (D) Correlation between
the regions that showed highest BT during task performance (ATX > Placebo) and regions that
were shifted toward segregation in the rest study (ATX(Post>Pre) > Placebo(Post>Pre)); see Supporting
Information Table S1 (Shine et al., 2018) for parcel MNI coordinates (FDR q ≤ 0.05). Key: ATX,
atomoxetine; BT , between-module connectivity; WT , within-module connectivity.
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these regions as a function of task performance. Together, the relationship between these re-

gions and ATX suggests that phasic noradrenaline may selectively enhance performance in

task-relevant regions, perhaps through arousal-mediated alterations in neural gain (Devilbiss

& Waterhouse, 2011; Reimer et al., 2014; Waterhouse, Moises, & Woodward, 1980).

Differential Effects of Catecholamines on Network Topology as a Function of Cognitive State

The topological dissociation across the two studies analyzed suggests that the effect of ATX on

network topology may be mediated by a set of similar regions across cognitive states. When

we directly compared the effect of ATX in the two datasets, we observed a spatial correspon-

dence between the effects of ATX on network topology during rest and task. Specifically, the

regional topological signature observed during the N-back task was inversely correlated with

the regional signature observed during rest (r = −0.147 [bootstrapped 95% CI: −0.246 to

−0.037]; p < 0.002; Figure 2D), suggesting that ATX affected similar regions during rest and

task, albeit by shifting them in different topological directions.

Differential Effects of Catecholamines on Network Flexibility as a Function of Cognitive State

Previous work has shown that topological flexibility is important for cognitive performanceFlexibility:
The proportion of time that an
individual node switches modules
over time

(Cole et al., 2013; Medaglia, Lynall, & Bassett, 2015). That is, regions that are important for

defining network architecture should both play a crucial role in network topology (e.g., in-

terconnect otherwise disparate modules), while also maintaining temporal flexibility (e.g., so

that network resources can be deployed at the appropriate time). To test whether atomoxetine

Figure 3. (A) Effect of atomoxetine (vs. placebo) on regional flexibility in the resting state (left, blue)
and during the N-back task (right, red); regions depicted with increased flexibility (FDR q ≤ 0.05).
(B) Correlation between effect of atomoxetine (vs. placebo) on BT and regional flexibility during
rest (left, blue; r = 0.02) and during the N-back task (right, red; r = 0.61); the difference between
the two correlations was also significant (ZI* = 2.08; p = 0.037).
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administration exerted a significant effect on time-resolved network topology as a function of

cognitive state, we calculated the topological flexibility of each region following atomoxetine

(vs. placebo) under both task conditions. Specifically, we estimated the flexibility of each

brain parcel by calculating the percentage of temporal windows in which an individual region

“switched” between modules over the course of each session. We found that atomoxetine

caused an increase in flexibility in a distributed network of regions across temporal, parietal,

and frontal cortex, with distinct signatures in rest and task (Figure 3A). Interestingly, the ad-

ministration of atomoxetine caused an increase in flexibility and integration in the same set of

regions during the N-back task, but not during rest (ZI* = 2.08; p = 0.037; Figure 3B), suggest-

ing that heightened free catecholamine levels may have facilitated network-level integration,

but only during situations with tight cognitive constraints.

DISCUSSION

Our results provide direct evidence that the manipulation of catecholamine levels in the hu-

man brain leads to substantial shifts in network topology. Furthermore, we were also able to

demonstrate that the alterations in network topology critically depend on cognitive state. In the

resting state, an overabundance of free catecholamine levels following ATX administration was

associated with a relatively segregated network topology (Figure 1A). The lack of effortful cog-

nitive engagement during the resting state may have facilitated a decrease in ascending arousal

via ATX-mediated autoinhibition of the locus coeruleus (Bari & Aston-Jones, 2013; Sara, 2009),

allowing the network to settle into a segregated architecture, potentially as a way to minimize

energy expenditure (Bullmore & Sporns, 2012). In contrast, when presented with a complex

cognitive challenge following ATX, an increase in the phasic-to-tonic ratio of noradrenergic

function (Bari & Aston-Jones, 2013) may have facilitated functional connectivity between

otherwise segregated circuits, integrating the functional connectome (Figure 2A) and putatively

increasing the temporal coordination between the brain circuitry required to successfully com-

plete the N-back task. Together, these results thus provide evidence that the ascending arousal

system mediates the balance between network-level integration and segregation as a function

of cognitive demands.

The administration of atomoxetine also differentially effected time-varying network topology

as a function of cognitive state. During the resting state, atomoxetine affected switching and

network integration relatively independently (Figure 3B). In contrast, the administration of

atomoxetine during N-back task performance led to an increase in topological flexibility in

the same regions that showed an increase in network-level integration (as measured by BT;

Figure 3B). These results suggest that fluctuating levels of catecholaminergic neurotransmitters

shape the spatiotemporal architecture of the brain in a manner that is sensitive to ongoing

cognitive demands (Shine & Poldrack, in press). However, it bears mention that some of the

observed differences between rest and task in our study may have been due to dose-related

differences, particularly given the known differences in the sensitivity of different classes of

noradrenergic receptors (Robbins & Arnsten, 2009). Irrespective of any potential dose-related

effects, our results do provide empirical support for the hypothesis that fluctuations in nor-

adrenaline are responsible for reconfiguring the network architecture of the brain. Indeed, the

shift toward higher integration is consistent with the existing hypothesis that heightened phasic

noradrenergic responses bias the network toward salient stimuli by modulating the sensitivity

of the network to incoming sensory input (Sara & Bouret, 2012).

The precise biological mechanism underlying these effects is currently a topic of active inves-

tigation, but there is emerging evidence that the network-level impact of catecholamines may

relate to their ability to modulate the “gain” of neurons across the brain (Aston-Jones & Cohen,
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2005; McGinley et al., 2015b). For instance, it has previously been shown that stimulation

of the locus coeruleus, both using electrical (Toussay, Basu, Lacoste, & Hamel, 2013) and

optogenetic approaches (Carter et al., 2010), leads to the widespread activation of the cortex,

producing a high-frequency, low-amplitude signature that is a known correlate of the awake

brain (Berridge & Waterhouse, 2003). Similar patterns have also been observed during spon-

taneous activity in awake mice, confirming that firing in the locus coeruleus directly facilitates

high-frequency cortical activity during natural behavior (Safaai et al., 2015). We recently used

a biophysical computational model to show that manipulating neural gain transitioned the

network from a segregated to an integrated architecture (Shine et al., 2018). The results of this

study are consistent with these findings, and further confirm the role of catecholaminergic tone

in simultaneously balancing the key topological properties of integration and segregation in a

state-dependent manner. They also provide a mechanistic explanation for the brain’s response

to periods of acute stress, which are also mediated by ascending noradrenergic systems

(Hermans et al., 2011). Future studies will play an important role in solidifying this mech-

anistic explanation and determining the contexts in which the balance between these factors

is most crucial for understanding complex behavior.

Although our experimental results suggest a crucial role for noradrenaline in the topological

reconfiguration of brain network architecture, it bears mention that biological systems rarely

demonstrate sharp boundaries between function systems. For instance, in addition to modu-

lating noradrenaline, ATX administration has also been shown to modulate the central con-

centrations of other arousal-related neurotransmitters, including serotonin (Ding et al., 2014),

histamine (Liu et al., 2008), and dopamine (Robbins & Arnsten, 2009), suggesting that the ef-

fects observed in our study may relate to the reconfiguration of the ascending arousal system

as a whole. This systemic interdependence is perhaps best exemplified when comparing the

relationship between noradrenaline and dopamine, the two major catecholaminergic neuro-

transmitters in the central nervous system. Whereas the majority of dopaminergic synapses

utilize their own specific transporter (Chen & Reith, 2000), a subgroup of dopaminergic ter-

minals in the cortex can also exploit noradrenergic transporters to reenter presynaptic axons

(Morón, Brockington, & Wise, 2002). In addition, it has been shown that locus coeruleus

neurons can corelease noradrenaline and dopamine (Devoto, Flore, Pira, & Longu, 2004). As

such, our results may reflect the combined improvements in cortical signal-to-noise that relate

to some combination of dopaminergic and noradrenergic effects on neuronal projection tar-

gets (Robbins & Arnsten, 2009). The different concentrations of ATX used in the two studies

may also have affected these nonselective aspects of ATX. Fortunately, future studies that con-

trast the roles of the related neurotransmitter systems at different concentrations across a range

of cognitive states will help to clarify this issue.

Together, our results demonstrate a relationship between network topology and catecholamin-

ergic function that is sensitive to cognitive state. Future experiments should now be designed

to decipher the relative impact of other neurotransmitter systems, both in health and disease.

METHODS

Resting-State Study

Participants. Twenty-four right-handed individuals (age 19–26 years; 5 men) were included

in this study. All participants were screened by a physician for physical health and drug

contraindications. Exclusion criteria included the following: standard contraindications for

MRI; current use of psychoactive or cardiovascular medication; a history of psychiatric ill-

ness or head trauma; cardiovascular disease; renal failure; hepatic insufficiency; glaucoma;
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hypertension; drug or alcohol abuse; learning disabilities; poor eyesight; smoking >5 cigarettes

a day; and current pregnancy. All participants gave written, informed consent before the

experiment.

Study design. We used a double-blind placebo-controlled crossover design (van den Brink

et al., 2016). In each of two sessions, scheduled 1 week apart at the same time of day, partici-

pants received either a single oral dose of atomoxetine (40 mg) or placebo (125 mg of lactose

monohydrate with 1% magnesium stearate, visually identical to the drug). In both sessions,

participants were scanned once before pill ingestion (t = −20 min) and once following inges-

tion (t = 90 min), when approximate peak plasma levels were reached. Each scan comprised

8 min of eyes-open resting-state fMRI. During scanning, the room was dark, and participants

fixated on a black fixation cross presented on a gray background. Drug uptake was confirmed

using cortisol and α-amylase levels in the saliva (van den Brink et al., 2016; Warren et al.,

2017).

MRI data. All MRI data were collected with a Philips 3T MRI scanner. In each of the scan-

ning sessions, we collected T2*-weighted EPI resting-state images (echo time 30 ms, repetition

time 2.2 s, flip angle 80◦, FOV 80 × 80 × 38 voxels of size 2.75 mm isotropic, and 216 vol-

umes). To allow magnetic equilibrium to be reached, the first five volumes were automati-

cally discarded. In addition, each time the participant entered the scanner, we collected a b0

field inhomogeneity scan (echo time 3.2 ms, repetition time 200 ms, flip angle 30◦, and FOV

256 × 256 × 80 voxels with a reconstructed size of 0.86 × 0.86 mm with 3-mm-thick slices).

Finally, at the start of the first session, we collected a high-resolution anatomical T1 image

(echo time 4.6 ms, repetition time 9.77 ms, flip angle 8◦, and FOV 256 × 256 × 140 voxels

with size 0.88 × 0.88 mm with 1.2-mm-thick slices) for image normalization and registration.

Data preprocessing. After realignment (using FSL’s MCFLIRT) and skull stripping (using BET),

b0 unwarping was used to control for potential differences in head position across sessions.

The b0 scans were first reconstructed into an unwrapped phase angle and magnitude im-

age. The phase image was then converted to units of radians per second and median filtered,

and the magnitude image was skull-stripped. We then used FEAT to unwarp the EPI images in

the y-direction with a 10% signal loss threshold and an effective echo spacing of 0.333. The

unwarped EPI images were then prewhitened, smoothed at 5 mm FWHM, and coregistered

with the anatomical T1 to 2-mm isotropic MNI space (degrees of freedom: EPI to T1, 3; T1/EPI

to MNI, 12). FMRIB’s ICA-based X-noiseifier (Salimi-Khorshidi, Douaud, & Beckmann, 2014)

was used with pretrained weights to de-noise the imaging data.

Temporal artifacts were identified in each dataset by calculating framewise displacement (FD)

from the derivatives of the six rigid-body realignment parameters estimated during standard

volume realignment (Power et al., 2014), as well as the root-mean-square change in BOLD

signal from volume to volume (DVARS). Frames associated with FD > 0.25 mm or DVARS >

2.5% were identified; however, as no participants were identified with greater than 10% of

the resting time points exceeding these values, no trials were excluded from further analysis.

There were no differences in head motion parameters between the four sessions (p > 0.500).

Following artifact detection, nuisance covariates associated with the six linear head move-

ment parameters (and their temporal derivatives), DVARS, physiological regressors (created

using the RETROICOR method), and anatomical masks from the CSF and deep cerebral WM

were regressed from the data by using the CompCor strategy (Behzadi, Restom, Liau, & Liu,
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2007). Finally, in keeping with previous time-resolved connectivity experiments (Bassett, Yang,

Wymbs, & Grafton, 2015), a temporal band-pass filter (0.01 < f < 0.125 Hz) was applied to

the data. In addition, all results were replicable both with and without frame censoring at the

predefined levels, as well as with and without global signal regression.

Brain parcellation. Following preprocessing, the mean time series was extracted from

375 predefined regions-of-interest (ROIs). To ensure whole-brain coverage, we extracted the

following: 333 cortical parcels (161 and 162 regions from the left and right hemispheres,

respectively) by using the Gordon atlas (Gordon et al., 2014), 14 subcortical regions from

Harvard-Oxford subcortical atlas (bilateral thalamus, caudate, putamen, ventral striatum,

globus pallidus, amygdala, and hippocampus; http://fsl.fmrib.ox.ac.uk/), and 28 cerebellar re-

gions from the SUIT atlas (Diedrichsen et al., 2009) for each participant in the study.

Time-resolved functional connectivity. To estimate time-resolved functional connectivity

(Hutchison et al., 2013; Sakoğlu et al., 2010) between the 375 ROIs, we used the multipli-

cation of temporal derivatives approach (MTD; http://github.com/macshine/coupling/; Shine

et al., 2015). The MTD is computed by calculating the pointwise product of temporal deriva-

tive of pairwise time series (Equation 1). To reduce the contamination of high-frequency noise

in the time-resolved connectivity data, the MTD is averaged by calculating the mean value

over a temporal window, w. Time-resolved functional connectivity was calculated between

all 375 brain regions by using the MTD within a sliding temporal window of 15 time points

(33 seconds at 2.2 s per window), which allowed for estimates of signals amplified at ap-

proximately 0.1 Hz. Individual functional connectivity matrices were then calculated within

each temporal window, thus generating an unthresholded (i.e., signed and weighted) three-

dimensional adjacency matrix (region × region × time) for each participant. The MTD for the

pairwise interaction between region i and j is defined according to Equation 1:

MTDijt =
1

w ∑
t+w/2

t−w/2

(

dtit × dtjt

)

(

σdti
× σdt j

) (1)

where dt is the first temporal derivative of the ith or jth time series at time t, σ is the standard

deviation of the temporal derivative time series for region i or j, and w is the window length

of the simple moving average. This equation can then be calculated over the course of a time

series to obtain an estimate of time-resolved connectivity between pairs of regions.

Time-resolved community structure. The Louvain modularity algorithm from the Brain Con-

nectivity Toolbox (Rubinov & Sporns, 2010) was used to estimate both time-averaged and

time-resolved community structure. The Louvain algorithm iteratively maximizes the modu-

larity statistic, Q, for different community assignments until the maximum possible score of

Q has been obtained (Equation 2). The modularity estimate for a given network is therefore a

quantification of the extent to which the network may be subdivided into communities with

stronger within-module than between-module connections.

QT =
1

v+ ∑ij

(

w+
ij − e+ij

)

δMi Mj
−

1

v+ + v− ∑ij

(

w−
ij − e−ij

)

δMi Mj
(2)

Equation 2 gives the Louvain modularity algorithm, where v is the total weight of the network

(sum of all negative and positive connections), wij is the weighted and signed connection
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between regions i and j, eij is the strength of a connection divided by the total weight of the

network, and δMiMj is set to 1 when regions are in the same community and 0 otherwise.

Superscripts + and − denote all positive and negative connections, respectively.

For each temporal window, the community assignment for each region was assessed 500 times,

and a consensus partition was identified using a fine-tuning algorithm from the Brain Connec-

tivity Toolbox (http://www.brain-connectivity-toolbox.net/ ). This then afforded an estimate of

both the time-resolved modularity (QT) and cluster assignment (CiT) within each temporal

window for each participant in the study. To define an appropriate value for the γ parameter,

we iterated the Louvain algorithm across a range of values (0.5–2.5 in steps of 0.1) for 100

iterations of a single subjects’ time-averaged connectivity matrix and then estimated the sim-

ilarity of the resultant partitions by using mutual information. Across the cohort there were

on average 3.9 ± 1.2 communities found in each window. A γ parameter of 1.1 provided the

most robust estimates of topology across these iterations, both at the group and individual sub-

ject level. Alternatively, a multilayer implementation of the Louvain algorithm could be used,

although this would require the tuning of a separate parameter, ω, that defines the strength of

connection between layers (Mucha, Richardson, Macon, Porter, & Onnela, 2010).

Cartographic profiling. Based on time-resolved community assignments, we estimatedwithin-

module connectivity by calculating the time-resolved module degree Z-score (WT; within-

module strength) for each region in our analysis (Equation 3) (Guimerà &Nunes Amaral, 2005).

WiT =
κiT − κ́siT

sκsiT

(3)

Equation 3 gives the module degree Z-score, WiT, where κiT is the strength of the connections

of region i to other regions in its module si at time T, κ́siT
is the average of κ over all the regions

in si at time T, and σκsiT
is the standard deviation of κ in si at time T.

To estimate between-module connectivity (BT), we used the participation coefficient, BT,

which quantifies the extent to which a region connects across all modules (i.e., between-

module strength):

BiT = 1 − ∑
nM

s=1

(

κisT

κiT

)2

(4)

Equation 4 gives the participation coefficient BiT, where κisT is the strength of the positive

connections of region i to regions in module s at time T, and κiT is the sum of strengths of all

positive connections of region i at time T. The participation coefficient of a region is therefore

close to 1 if its connections are uniformly distributed among all the modules and 0 if all of its

links are within its own module.

To track fluctuations in cartography over time, for each temporal window, we computed a joint

histogram of within- and between-module connectivity measures, which we refer to here as

a “cartographic profile” (Figure 1A). Code for this analysis is freely available at https://github.

com/macshine/integration/.

Pupilometry. Pupil size was measured from the right eye at 500 Hz with an MRI-compatible

Eyelink 1000 eye tracker. Blinks and other artifacts were interpolated offline by using shape-

preserving piecewise cubic interpolation. Pupil data were low-pass filtered at 5 Hz to re-

move high-frequency noise and Z-scored across conditions. Five participants were excluded

from pupil-related analyses because of poor signal quality (≥50% of continuous time series
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interpolated) or missing data. Of the remaining participants, on average 20%± 9% of the data

were interpolated. We replicated our previous observation (Shine et al., 2016) of a positive

relationship between pupil diameter and integrated network topology (Supporting Information

Figure S2a, Shine et al., 2018).

Null model creation. To determine whether the integrative signature of the brain was more

dynamic than predicted by a stationary null model (Supporting Information Figure S2b, Shine

et al., 2018; Laumann, Snyder, Mitra, & Gordon, 2016); surrogate data was created using a

stationary Vector Auto Regressive model (order was set at 6 to match the expected temporal

signature of the BOLD response in 2.2 s TR data). The mean covariance matrix across the

entire experiment was used to generate 2,500 independent null datasets, which allows for the

appropriate estimation of the tails of nonparametric distributions (Nichols & Holmes, 2002).

These time series were then preprocessed using the same approach outlined for the BOLD data.

For each analysis, we estimated the kurtosis of the mean BT time series for each of the 2,500

simulations. We then calculated the 95th percentile of this distribution and used this value

to determine whether the resting-state data fluctuated more frequently than the null model. We

found that the dynamic network structure within the fMRI data had a higher kurtosis than the

95th percentile of the stationary null model (Supporting Information Figure S2b, Shine et al.,

2018), suggesting the presence of time-varying patterns in the brain. However, this inter-

pretation requires some caution, given that stationary null models are often unable to de-

termine whether interesting time-varying changes are indeed occurring in time series data

(Liégeois et al., 2017; Miller et al., 2017).

Statistical analyses. The following hypotheses were preregistered with the Open Science

Framework (https://osf.io/utqq2/ ):

Hypothesis 1: To explicitly test whether the resting brain fluctuates more frequently than a

stationary null model, we calculated the kurtosis of the window-to-window difference in the

mean BT score for each iteration of a vector autoregression (VAR) null model (model order= 6).

The mean covariance matrix across all 24 subjects from the preplacebo session was be used

to generate 2,500 independent null datasets, which allows for the appropriate estimation of

the tails of nonparametric distributions (Nichols & Holmes, 2002). These time series was then

be filtered in a similar fashion to the BOLD data. For each analysis, we created a statistic for

each independent simulation that summarized the extent of fluctuations in the null dataset.

We then calculated the 95th percentile of this distribution and used this value to determine

whether the resting-state data fluctuated more frequently than the null model (i.e., whether

there deviations as extreme as the 95th percentile of the null dataset occur more than 5% of

the time).

Hypothesis 2: We estimated the Spearman’s rho correlation between the convolved pupil

diameter and the time series of each bin of the cartographic profile. We then fitted a linear

mixed-effects model with random intercept to determine whether the correlation between each

bin of the cartographic profile was more extreme than chance levels (FDR q ≤ 0.05).

Hypothesis 3: Group level differences were investigated by comparing each bin of the carto-

graphic profile for all subjects prior to and postatomoxetine administration, as well as prior

to and postplacebo using a 2 × 2 ANOVA design. Specifically, the percentage of time that

each bin of the cartographic profile was occupied during the resting state for each of the

four sessions was be entered into a 2 × 2 ANOVA. Our hypothesis predicted a significant
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interaction effect between pre- and postplacebo and pre- and postatomoxetine administration.

We corrected for multiple comparisons by using a false discovery rate of q ≤ 0.05. Similar

interaction effects were assessed at the regional level (i.e., regional topological measures, such

as participation coefficient) by using a series of 2 × 2 ANOVA designs.

Task-Based Study

Based on our interim results, we hypothesized that if phasic and tonic noradrenaline release

differentially alter the balance between integration and segregation, then integration should

be stronger following ATX during cognitive task performance. This hypothesis was not identi-

fied as part of our preregistration, but arose as a post hoc interrogation of the data. To test this

hypothesis, we analyzed data from a different dataset, in which 19 participants (age 18–30,

all right-handed males) underwent a cognitively challenging N-back task following either ATX

(60 mg) or placebo in a double-blind, randomized placebo-controlled crossover design

(PLC-ATX n = 8; ATX-PLC n = 11; Hernaus et al., 2017). The study was carried out in

accordance with the Declaration of Helsinki and was approved by the local medical ethics

committee of Maastricht University Medical Centre (NL53913.068.15). All participants gave

written, informed consent prior to each session and were reimbursed for participation.

Cognitive task. Participants performed a parametrically modulated N-back task, in which they

were required to identify target letters that were presented for 1,000 ms on an LCD screen

duringMRI scanning. Targets consisted of letters that were the same as the letter presented one,

two, or three trials previously (i.e., 1-back, 2-back, or 3-back, respectively). A further control

condition was also involved, in which participants were asked to detect the letter ‘X’ (i.e.,

0-back). Every task condition was presented three times in pseudorandom order (3–4 targets

per block). Participants responded to targets and distractors with right index and middle finger

button presses, respectively. Task effects were modeled for fMRI analysis by using a block

design.

MRI data and preprocessing. All MRI data were collected with a Siemens 3T MRI scanner.

In each of the scanning sessions, we collected T2*-weighted EPI images (echo time 30 ms,

repetition time 2.0 s, flip angle 77◦, and 286 volumes). To allow magnetic equilibrium to

be reached, the first five volumes were automatically discarded. In addition, each time the

participant entered the scanner, we collected a b0 field inhomogeneity scan (echo time 3.2 ms,

repetition time 200 ms, flip angle 30◦, and FOV 256 × 256 × 80 voxels with a reconstructed

size of 0.86 × 0.86 mm with 3-mm-thick slices). Finally, at the start of the first session, we

collected a high-resolution anatomical T1 image (echo time 4.6 ms, repetition time 9.77 ms,

flip angle 8◦, and FOV 256 × 256 × 140 voxels with size 0.88 × 0.88 mm with 1.2-mm-thick

slices) for image normalization and registration. Data were preprocessed in a similar fashion to

the resting-state analysis, albeit without correction for physiological parameters, which were

not collected in the study.

fMRI analysis. Preprocessed BOLD data were subjected to the same time-resolved network

analysis pipeline as to the one utilized for the resting-state analysis. Following this step, both

regional (WT and BT) and global (cartographic profile) time series were modeled against the

blocks of the 0-, 1-, 2-, and 3-back conditions in both the post-ATX and postplacebo ses-

sions. Instruction screens, rest blocks, and head motion parameters (6 linear parameters and

their temporal derivatives) were also modeled. We then statistically compared the resultant

β weights for each of the blocks separately using a series of F tests (FDR q ≤ 0.05) with the
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following two contrasts: i) main effects, which were modeled as the mean activity in the 1-,

2-, and 3-back blocks versus the 0-back block; and ii) load effects, which were modeled as a

parametric increase in activity as a function of cognitive load across the four blocks. None of

the effects were significantly correlated with head motion, either within- or between-subjects

(p > 0.5 ).

Finally, we correlated the β weights for the main effect of ATX > PLC during the task for

each parcel with the interaction effect of ATX[Post>Pre] > PLC[Post>Pre] on resting-state topology

by using a Pearson’s correlation (the task data did not contain a “predrug” condition). The

significance of this correlation was determined by randomly permuting the task-based effects

5,000 times and then reestimating the Pearson’s correlation between the shuffled effects and

the original regional effects in the resting state. The inverse correlation between the two parcel

values was more extreme than the 0.2nd percentile of the null distribution (i.e., p < 0.002). A

nonparametric bootstrapping approach was also used to estimate a 95% confidence interval

for the correlation (1,000 iterations).

Regional flexibility. We estimated the flexibility of each brain parcel by calculating the per-

centage of temporal windows in which an individual region “switched” between modules,

normalized to the total number of modules in the data (as estimated in the previous step).

Code was obtained directly from the original author (http://www.danisbassett.com/resources/ ).

As the modular assignment was essentially arbitrary within each unique temporal window, we

used a version of the Hungarian algorithm (Kuhn, 1955), which is a combinatorial optimization

algorithm that calculates the most efficient path between different layers of a multislice net-

work, to assign regions to modules with consistent values over time. Regional flexibility values

were then compared across atomoxetine and placebo trials. Pearson’s correlations were later

used to compare the regional signature of flexibility with regional BT values, and the Dunn

and Clark statistic was used to compare the correlations between rest and task in both datasets

(Bayer, 2016).
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