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This book develops abstract homotopy theory from the categorical perspective, with
a particular focus on examples. Part I discusses two competing perspectives by which
one typically first encounters homotopy (co)limits: either as derived functors defin-
able when the appropriate diagram categories admit compatible model structures or
through particular formulae that give the right notion in certain examples. Riehl unifies
these seemingly rival perspectives and demonstrates that model structures on diagram
categories are unnecessary. Homotopy (co)limits are explained to be a special case of
weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl
further examines this topic, separating categorical arguments from homotopical ones.
Part III treats the most ubiquitous axiomatic framework for homotopy theory — Quillen’s
model categories. Here Riehl simplifies familiar model categorical lemmas and defini-
tions by focusing on weak factorization systems. Part IV introduces quasi-categories
and homotopy coherence.
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What we are doing is finding ways for people to understand and
think about mathematics.

— William P. Thurston, “On proof
and progress in mathematics”
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Preface

The viewpoint taken by William Thurston’s essay — that mathematical progress
is made by advancing human understanding of mathematics and not only
through the proof of new theorems — succinctly describes the character and
focus of the course that produced this book. Although certain results appear-
ing in this volume may surprise working homotopy theorists, the mathemat-
ical content of this text is not substantially new. Instead, the central value
of this account derives from the more qualitative insights provided by its
perspective. The theorems and topics discussed here illustrate how categor-
ical formalisms can be used to organize and clarify a wealth of homotopical
ideas.

The central project of homotopy theory, broadly defined, is to study the
objects of a category up to a specified notion of “weak equivalence.” These
weak equivalences are morphisms that satisfy a certain closure property vis-a-
vis composition and cancellation that is also satisfied by the isomorphisms in
any category —but weak equivalences are not generally invertible. In experience,
it is inconvenient to work directly in the homotopy category, constructed by
formally inverting these maps. Instead, over the years, homotopy theorists
have produced various axiomatizations that guarantee that certain “point-set
level” constructions respect weak equivalences and have developed models in
which weak constructions behave like strict ones. By design, this patchwork
of mathematical structures can be used to solve a wide variety of problems,
but they can be rather complicated for the novice to navigate. The goal of
this book is to use category theory to illuminate abstract homotopy theory
and, in particular, to distinguish the formal aspects of the theory, principally
having to do with enrichments, from techniques specific to the homotopical
context.

The ordering of topics demands a few words of explanation. Rather than
force the reader to persevere on good faith through pages of prerequisites, we

X1
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xii Preface

wanted to tell one of the most compelling stories right away. Following [22],
we introduce a framework for constructing derived functors between categories
equipped with a reasonable notion of weak equivalence that captures all the
essential features of, but is much more general than, their construction in model
category theory.

Why bother with this generalization? First, it exhibits the truth to the slogan
that the weak equivalences are all that matter in abstract homotopy theory,
showing that particular notions of cofibrations/fibrations and cofibrant/fibrant
objects are irrelevant to the construction of derived functors — any notion will
do. Second, and perhaps most important, this method for producing derived
functors extends to settings, such as categories of diagrams of a generic shape,
where appropriate model structures do not necessarily exist. In the culmination
of the first part of this book, we apply this theory to present a uniform general
construction of homotopy limits and colimits that satisfies both a local universal
property (representing homotopy coherent cones) and a global one (forming a
derived functor).

A further advantage of this approach, which employs the familiar two-sided
(co)bar construction, is that it generalizes seamlessly to the enriched context.
Any discussion of homotopy colimits necessarily encounters enriched category
theory; some sort of topology on the ambient hom-sets is needed to encode the
local universal property. These notes devote a fair amount of isolated attention to
enriched category theory because this preparation greatly simplifies a number of
later proofs. In general, we find it clarifying to separate the categorical aspects of
homotopy theory from the homotopical ones. For instance, certain comparisons
between models of homotopy colimits actually assert an isomorphism between
the representing objects, not just the homotopy types. It is equally interesting
to know when this is not the case.

Classical definitions of homotopy colimits, as in [10], are as weighted co-
limits. An ordinary colimit is an object that represents cones under a fixed
diagram, whereas a homotopy colimit is an object representing “homotopy
coherent” cones. The functor that takes an object in the diagram to the appro-
priately shaped homotopy coherent cone above it is called the weight. We
believe that weighted limits and colimits provide a useful conceptual simplifi-
cation for many areas of mathematics, and thus we begin the second part of this
book with a thorough introduction, starting with the Set-enriched case, which
already contains a number of important ideas. As we expect this topic to be
unfamiliar, our approach is quite leisurely.

Our facility with enriched category theory allows us to be quite explicit
about the role enrichment plays in homotopy theory. For instance, it is well
known that the homotopy category of a simplicial model category is enriched
over the homotopy category of spaces. Following [79], we present a general
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Preface xiii

framework that detects when derived functors and more exotic structures, such
as weighted homotopy colimits, admit compatible enrichments. Enrichment
over the homotopy category of spaces provides a good indication that these
definitions are “homotopically correct.” Our formalism also allows us to prove
that in an appropriate general context, total derived functors of left adjoints,
themselves enriched over the homotopy category of spaces, preserve homotopy
colimits.

We conclude this part with an interesting observation due to Michael Shul-
man: in the setting for these derived enrichment results, the weak equivalences
can be productively compared with another notion of “homotopy equivalence”
arising directly from the enrichment. Here we are using “homotopy” very
abstractly; for instance, we do not require an interval object. Nonetheless, in
close analogy with classical homotopy theory, the localization at the weak
equivalences factors through the localization at the homotopy equivalences.
Furthermore, the former homotopy category is equivalent to a restriction of the
latter to the “fibrant—cofibrant” objects, between which these two notions of
weak equivalence coincide.

After telling this story, we turn in the third part, perhaps rather belatedly,
to the model categories of Daniel Quillen. Our purpose here is not to give
a full account — this theory is well documented elsewhere — but rather to
emphasize the clarifying perspective provided by weak factorization systems,
the constituent parts in a model structure that are in some sense orthogonal
to the underlying homotopical structure visible to the axiomatization of [22].
Many arguments in simplicial homotopy theory and in the development of the
theory of quasi-categories take place on the level of weak factorization systems
and are better understood in this context.

The highlight of this section is the presentation of a new variant of Quillen’s
small object argument due to Richard Garner [31] that, at essentially no cost,
produces functorial factorizations in cofibrantly generated model categories
with significantly better categorical properties. In particular, we show that
a cofibrantly generated simplicial model category admits a fibrant replace-
ment monad and a cofibrant replacement monad that are simplicially enriched.
Related observations have been made elsewhere, but we do not suspect that
this precise statement appears in the literature.

The proofs of these results introduce ideas with broader applicability. A
main theme is that the functorial factorizations produced by Garner’s construc-
tion have a much closer relationship to the lifting properties that character-
ize the cofibrations and fibrations in a model structure. Indeed, observations
related to this “algebraic” perspective on the cofibrations and fibrations can be
used to produce functorial factorizations for non—cofibrantly generated model
structures [3].
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Our construction of enriched functorial factorizations is complemented by a
discussion of enriched lifting properties. There are notions of enriched weak
factorization systems and enriched cofibrant generation, and these behave sim-
ilarly to the familiar unenriched case. In the model structure context, this leads
to a notion of an enriched model category that is reminiscent of but neither
implies nor is implied by the usual axioms. This theory, which we believe is not
found in the literature (the nLab aside), illuminates the distinction between the
(classical) Quillen-type and Hurewicz-type model structures on the category
of chain complexes over a commutative ring: the latter is an enrichment of the
former. Indeed, the same sets of generating cofibrations and trivial cofibrations
produce both model structures! We find it particularly interesting to note that
the Hurewicz-type model structure, which is not cofibrantly generated in the
traditional sense, is cofibrantly generated when this notion is enriched in the
category of modules over the commutative ring (see [2]).

The section on model categories concludes with a brief exposition of Reedy
category theory, which makes use of weighted limits and colimits to simplify
foundational definitions. This chapter contains some immediate applications,
proving that familiar procedures for computing homotopy limits and colimits
in certain special cases have the same homotopy type as the general formulae
introduced in Part I. Further applications of Reedy category theory follow later
in our explorations of various “geometric” underpinnings of quasi-category
theory.

In the final part of this book, we give an elementary introduction to quasi-
categories, seeking, wherever possible, to avoid repeating things that are clearly
explained in [49]. After some preliminaries, we use a discussion of homotopy
coherent diagrams to motivate a translation between quasi-categories and sim-
plicial categories, which are by now more familiar. Returning our attention
to simplicial sets, we study isomorphisms within and equivalences between
quasi-categories, with a particular focus on inverting edges in diagrams. The
last chapter describes geometrical and 2-categorical motivations for definitions
encoding the category theory of quasi-categories, presenting a number of not-
yet-published insights of Dominic Verity. This perspective will be developed
much more fully in [74, 75]. A reader interested principally in quasi-categories
would do well to read Chapters 7, 11, and 14 first. Without this preparation,
many of our proofs become considerably more difficult.

Finally, the very first topic is the author’s personal favorite: Kan extensions.
Part of this choice has to do with Harvard’s unique course structure. The first
week of each term is “shopping period,” during which students pop in and out
of a number of courses prior to making their official selections. Anticipating
a number of students who might not return, it seemed sensible to discuss a
topic that is reasonably self-contained and of the broadest interest — indeed,
significant applications appear throughout this text.
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Preface XV

Prerequisites

An ideal student might have passing acquaintance with some of the literature
on this subject: simplicial homotopy theory via [32, 55]; homotopy (co)limits
via [10]; model categories via one of [24, 36, 38, 58, 65]; quasi-categories
via [40, 49]. Rather than present material that one could easily read else-
where, we chart a less-familiar course that should complement the insights
of the experienced and provide context for the naive student who might later
read the classical accounts of this theory. The one prerequisite on which we
insist is an acquaintance with and affinity for the basic concepts of category
theory: functors and natural transformations; representability and the Yoneda
lemma; limits and colimits; adjunctions; and (co)monads. Indeed, we hope that
a careful reader with sufficient categorical background will emerge from this
book confident that he or she fully understands each of the topics discussed
here.

While the categorical prerequisites are essential, acquaintance with specific
topics in homotopy theory is merely desired and not strictly necessary. Starting
from Chapter 2, we occasionally use the language of model category theory
to suggest the right context and intuition to those readers who have some
familiarity with it, but these remarks are inessential. For particular examples
appearing in the following, some acquaintance with simplicial sets in homotopy
theory would also be helpful. Because these combinatorial details are essential
for quasi-category theory, we give a brief overview in Chapter 15, which could
be positioned earlier, were it not for our preference to delay boring those for
whom this is second nature.

Dual results are rarely mentioned explicitly, except in cases where there are
some subtleties involved in converting to the dual statement. In Chapters 1
and 2, we make casual mention of 2-categories before their formal definition —
categories enriched in Cat — is given in Chapter 3. Note all 2-categories that
appear are strict. Interestingly for a monograph devoted to the study of a
weakened notion of equivalence between objects, we have no need for the
weaker variants of 2-category theory.

Notational Conventions

We use boldface for technical terms that are currently being or will soon be
defined and quotation marks for nontechnical usages meant to suggest particular
intuition. Italics are for emphasis.

We write ¢} and * for initial and terminal objects in a category. In a symmetric
monoidal category, we also use * to denote the unit object, whether or not the
unit is terminal. We use 1, 2, ... for ordinal categories; for example, 2 is the
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category e — e of the “walking arrow.” Familiar categories of sets, pointed
sets, abelian groups, k-vector spaces, categories, and so on are denoted by Set,
Set,, Ab, Vect,, Cat, and so on; Top should be a convenient category of spaces,
as treated in Section 6.1. Generally, the objects of the category so denoted are
suggested by a boldface abbreviation, and the morphisms are left unmentioned,
assuming the intention is the obvious one.

We generally label the composite of named morphisms through elision but
may use a - when the result would be either ambiguous or excessively ugly. The
hom-set between objects x and y in a category C is most commonly denoted
by C(x, y), although hom(x, y) is also used on occasion. An underline, for
example C(x, y) or hom(x, y), signals that extra structure is present; the form
this structure takes depends on what sort of enrichment is being discussed. In
the case where the enrichment is over the ambient category itself, we frequently
use exponential notion y* for the internal hom-object. For instance, D¢ denotes
the category of functors C — D.

Natural transformations are most commonly denoted with a double arrow
= rather than a single arrow. This usage continues in a special case: a natural
transformation f = g between diagrams of shape 2, that is, between mor-
phisms f and g, is simply a commutative square with f and g as opposing
faces. The symbol = is used to suggest a parallel pair of morphisms, with
common domain and codomain. Given a pair of functors F: C = D: G, use
of areversed turnstile ' - G indicates that F is left adjoint to G.

Displayed diagrams should be assumed to commute, unless explicitly stated
otherwise. The use of dotted arrows signals an assertion or hypothesis that
a particular map exists. Commutative squares decorated with a ™ or a _ are
pushouts or pullbacks, respectively. We sometimes use ~ to decorate weak
equivalences. The symbol = is reserved for isomorphisms, sometimes simply
denoted with an equality. The symbol =~ signals that the abutting objects are
equivalent in whatever sense is appropriate, for example, homotopy equivalent
or equivalent as quasi-categories.

Certain simplicial sets are given the following names: A" is the standard
(represented) n-simplex; dA”" is its boundary, the subset generated by non-
degenerate simplices in degree less than n; A} is the subset with the kth
codimension-one face also omitted. We follow the conventions of [32] and
write d’ and s/ for the elementary simplicial operators (maps in A between [n]
and [n — 1]). The contrasting variance of the corresponding maps in a simplicial
set is indicated by the use of lower subscripts — d; and s; — though whenever
practical, we prefer instead to describe these morphisms as right actions by the
simplicial operators d’ and s/. This convention is in harmony with the Yoneda
lemma: the map d’ acts on an n-simplex x of X, represented by a morphism
x: A" — X, by precomposing with d': A""! — A",
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The title and familiar content from Chapter 1 were of course borrowed from
[50]. The presentation of the material in Chapters 2, 5, and 9—10 was strongly
influenced by a preprint of Michael Shulman [79] and subsequent conversations
with its author. His paper gives a much more thorough account of this story
than is presented here; I highly recommend the original. The title of Chapter 3
was chosen to acknowledge its debt to the expository paper [46]. The content
of Chapter 4 was surely absorbed by osmosis from my advisor, Peter May,
whose unacknowledged influence can also be felt elsewhere. Several examples,
intuitions, and observations appearing throughout this text can be found in the
notes [18]; in the books [32, 36, 58]; or on the nlLab, whose collaborative
authors deserve accolades. The material on weighted limits and colimits is
heavily influenced by current and past members of the Centre of Australian
Category Theory. I was first introduced to the perspective on model categories
taken in Chapter 11 by Martin Hyland. Richard Garner shared many of the
observations attributed to him in Chapters 12 and 13 in private conversation,
and I wish to thank him for enduring endless discussions on this topic. It is not
possible to overstate the influence Dominic Verity has had on this presentation
of the material on quasi-categories. Any interesting unattributed results on that
topic should be assumed to be due to him.
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course. This work is dedicated to them. Comments, questions, and observa-
tions from Michael Andrews, Omar Antolin Camarena, David Ayala, Tobias
Barthel, Kestutis Cesnavicius, Jeremy Hahn, Markus Hausmann, Gijs Heuts,
Akhil Mathew, Luis Pereira, Chris Schommer-Pries, Kirsten Wickelgren, Eric
Wofsey, and Inna Zakharevich led to direct improvements in this text. Tobias
Barthel and Moritz Groth made several helpful comments and caught a number
of typos. Philip Hirschhorn, Barry Mazur, and Sophia Roosth were consulted
on matters of style. I am grateful for the moral support and stimulating math-
ematical environment provided by the Boston homotopy theory community,
particularly Mike Hopkins and Jacob Lurie at Harvard and Clark Barwick,
Mark Behrens, and Haynes Miller at MIT. I would also like to thank Harvard
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University for giving me the opportunity to create and teach this course and
the National Science Foundation for support through their Mathematical Sci-
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but not least, I am grateful for years of love and encouragement from friends
and family, who made all things possible.
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