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We show that the derived category of any singularity over a field of characteristic 0

can be embedded fully and faithfully into a smooth triangulated category that has

a semiorthogonal decomposition with components equivalent to derived categories of

smooth varieties. This provides a categorical resolution of the singularity.

1 Introduction

Resolution of singularities is one of central concepts in algebraic geometry. In many

cases, it allows one to reduce the complicated geometry of singular schemes to a much

more tractable geometry of smooth schemes. From the categorical point of view a reso-

lution π : X→Y manifests itself in a pair of adjoint functors

Lπ∗ : D(Y)→D(X) and Rπ∗ : D(X)→D(Y)

(the derived pullback and the derived pushforward) between the derived categories

of quasicoherent sheaves on X and Y, respectively. The functors are related by the
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Categorical Resolutions of Irrational Singularities 4537

projection formula

Rπ∗(Lπ∗(F ))∼= F
L⊗ Rπ∗OX,

which shows that, from the categorical point of view, there are two completely different

situations:

(1) the canonical morphism OY→ Rπ∗OX is an isomorphism;

(2) the canonical morphism OY→ Rπ∗OX is not an isomorphism.

If (1) holds, one says that Y has rational singularities. In this case Rπ∗ ◦ Lπ∗ ∼= id, hence

the pullback functor Lπ∗ is fully faithful, so the singular category D(Y) embeds into a

smooth category D(X). This embedding allows the reductions of geometrical questions

on Y to those on X that we mentioned above. On a contrary, if (2) holds, the functor

Lπ∗ is not fully faithful, so it does not provide such a reduction. So, from a categorical

point of view, the usual resolution of a scheme that has irrational singularities is not a

resolution at all!

The goal of the present paper is to show that, even for a scheme Y with irrational

singularities, one can construct a categorical resolution by gluing appropriately several

derived categories of smooth varieties. To be more precise, for each separated scheme

of finite type Y over a field k of characteristic 0, we construct a nice triangulated cat-

egory T with an adjoint pair of triangulated functors π∗ : D(Y)→T and π∗ : T →D(Y)

such that π∗ ◦ π∗ ∼= id so that π∗ is fully faithful; moreover, T enjoys a number of useful

properties; see Definition 1.3.

Before going to precise definitions we have to explain what we mean by saying

that T is nice. First of all, the category T has to be smooth. The notion of smoothness

is formulated in terms of DG-categories (an introduction into the subject can be found

in Section 3), so we have to start with recalling what is a smooth DG-category.

Definition 1.1. A small DG-category D is smooth if the diagonal bimodule D is perfect.

In other words, if it is contained in the smallest Karoubian-closed triangulated subcat-

egory of the derived category D(Dop ⊗D) generated by representable bimodules. �

This leads to the following definitions.

Definition 1.2. A cocomplete, compactly generated, triangulated category T is smooth

if there exists a smooth DG-category D such that its derived category D(D) is equivalent

to T as a triangulated category. �
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It is well known (see [26]) that if X is a smooth variety, then the derived category

D(X) is smooth.

Now, let us give a precise definition of a categorical resolution. Recall that an

object F of a triangulated category T is compact if the functor HomT (F,−) commutes

with arbitrary direct sums. The subcategory T c ⊂T of compact objects in T is tri-

angulated. Compact objects in D(Y), the unbounded derived category of quasicoherent

sheaves on a separated scheme of finite type Y, are perfect complexes, that is, the objects

that are locally quasiisomorphic to finite complexes of locally free sheaves of finite rank.

The perfect complexes form a triangulated subcategory of Db(coh(Y)) which we denote

by Dperf(Y).

Definition 1.3 ([15]). A categorical resolution of a scheme Y is a smooth, cocomplete,

compactly generated, triangulated category T with an adjoint pair of triangulated

functors

π∗ : D(Y)→T and π∗ : T →D(Y),

such that

(1) π∗ ◦ π∗ = id;

(2) both π∗ and π∗ commute with arbitrary direct sums;

(3) π∗(T c)⊂Db(coh(Y)). �

Note that the second property implies that π∗(Dperf(Y))⊂T c (see Lemma 2.10).

If π : X→Y is a usual resolution and Y has rational singularities, then the cat-

egory T =D(X) with the functors Lπ∗ and Rπ∗ is a categorical resolution of Y. Note,

however, that if the singularities of Y are not rational, then D(X) is not a categorical

resolution of Y since the composition Rπ∗ ◦ Lπ∗ is isomorphic to the tensor product

with Rπ∗OX, which is not the identity functor.

To formulate the main result of the paper, we need one more notion. As we

already have said, the resolution that we construct is a nice triangulated category. In

fact, it is even nicer than just a smooth triangulated category. It has a very geomet-

ric nature—to be more precise, it has a semiorthogonal decomposition with all compo-

nents being derived categories of smooth algebraic varieties. We call such categories

strongly geometric. Recall also that a cocomplete, compactly generated, triangulated cat-

egory T is proper if the category T c is Ext-finite, which means that the vector space

⊕i∈ZHom(F,G[i]) is finite-dimensional for all F,G ∈T c.

The main result of the paper is the following theorem.
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Theorem 1.4. Any separated scheme of finite type Y over a field of characteristic 0 has

a categorical resolution by a strongly geometric triangulated category T . If Y is proper,

then so is the resolving category T . �

Note that we do not put any restrictions on the singularity of Y. In fact, it may

be not normal, reducible, and even nonreduced; the construction still works!

As we shall soon explain, the varieties whose derived categories appear as com-

ponents of the categorical resolution that we construct are strongly related to the usual

process of desingularization of the reduced scheme Yred—if we fix a usual resolution

X→Yred by a sequence of blowups with smooth centers Z0, Z1, . . . , Zm−1, then the com-

ponents of T are D(Z0), D(Z1), . . . ,D(Zm−1) (each of them may be repeated several times!)

and D(X) (with repetitions if Y itself is not reduced).

Let us outline the construction that we use.

First of all, we use heavily the machinery of DG-categories (see Section 3 for an

introduction into the subject). Accordingly, we use a DG-version of the definition of a

categorical resolution.

Definition 1.5. A partial categorical DG-resolution of a small pretriangulated DG-category

D is a small pretriangulated DG-category D̃ with a DG-functor π : D→ D̃,which induces

a fully faithful functor on homotopy categories. If additionally D̃ is smooth, we say that

it is a categorical DG-resolution. �

The first instrument of the construction is the notion of a gluing of DG-categories.

Given two small DG-categories D1, D2 and a D1-D2-bimodule ϕ, we define a DG-category

D1 ×ϕ D2. The definition can be found in Section 4; here we will just say that it is a

straightforward generalization of an upper triangular algebra, with the diagonal entries

being two given algebras and the upper diagonal entry being a bimodule over these alge-

bras. We show that the gluing of two pretriangulated categories is itself pretriangulated.

The derived and homotopy categories of the gluing have semiorthogonal decompositions

[D1 ×ϕ D2]= 〈[D1], [D2]〉, D(D1 ×ϕ D2)= 〈D(D1),D(D2)〉.

The quasiequivalence class of the gluing depends only on the quasiisomorphism class

of the gluing bimodule, and the gluing is smooth if and only if both components D1 and

D2 are smooth and the gluing bimodule is perfect (see Proposition 4.9 and [20]).

Another instrument is the category of A -modules. Given a scheme S, an integer

n, and an ideal r⊂OS such that rn= 0, we define the sheaf of OS-algebras A =AS,r,n as a
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certain subalgebra in EndOS(OS ⊕OS/r
n−1 ⊕ · · · ⊕OS/r); see (30) for the precise formula.

The ringed space (S,AS,r,n) is called an A -space. One of the points of the paper is that

A -spaces share many good properties with schemes (and have some advantages), so one

can use them as building blocks for constructing triangulated categories of geometric

interest.

The category Qcoh(A ) of quasicoherent A -modules on S is an abelian category

and we prove that its derived category D(A ) gives a categorical resolution of D(S) if the

closed subscheme S0 ⊂ S corresponding to the ideal r is smooth. Moreover, D(A ) comes

with semiorthogonal decompositions

D(A )= 〈D(S0),D(S0), . . . ,D(S0)〉,

Db(coh(A ))= 〈Db(coh(S0)),Db(coh(S0)), . . . ,Db(coh(S0))〉

(the number of components equals n). Moreover, taking appropriate DG-enhancement

D(A ) of the derived category of perfect A -modules gives a categorical DG-resolution of

D(S), a DG-model of the category of perfect complexes on S.

Now the main construction looks as follows. We consider a blowup f : Y1→Y

with a smooth center Z ⊂Y. Then, we show that, for nsufficiently, large the nth infinites-

imal neighborhood S of the subscheme Z (i.e., the subscheme with IS = I n
Z ) has the fol-

lowing important property:

Rf∗ I f−1(S)
∼= IS.

Here, f−1(S) is the scheme-theoretic preimage of S. We call such a subscheme S a nonra-

tional locus for f . We consider the nilpotent ideal r := IZ/IS on S, so that we have S0 = Z ,

and the category Qcoh(AS)=Qcoh(AS,r,n) of AS-modules. Furthermore, we construct a

D(AS)-D(Y1)-bimodule ϕ such that the gluing D(AS)×ϕ D(Y1) is a partial categorical

resolution of D(Y). Of course, this is not yet a resolution—there is no reason for Y1 to

be smooth. However, this serves as a step of induction. With a wise choice of the first

blowup center Z the singularities of Y1 are more simple than those of Y and we can

assume by induction that D(Y1) has a categorical DG-resolution D1. Then, we replace

the gluing D(AS)×ϕ D(Y1) by D :=D(AS)×ϕ̃ D1, where ϕ̃ = ϕ L⊗D(Y1) D1 (this procedure is

called regluing) and show that D is a categorical DG-resolution of D(Y).

The base of the induction is the case of a (possibly nonreduced) scheme Y such

that the associated reduced scheme Yred is smooth. In this case, the resolution is again

provided by the derived category of A -modules D(AY). Thus, we use the category of
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A -modules both in the base and in the step of the induction. Note also that this cate-

gory is essential for the construction even if the original scheme Y is reduced since the

nonrational locus typically has nonreduced structure which has to be resolved.

Note that each step of the above construction seriously depends on a choice of

integer n (which, as mentioned above, can be chosen arbitrarily as soon as it is suffi-

ciently large). It is worth mentioning that increasing n by 1 has an effect of adding one

more semiorthogonal component equivalent to D(Z) to the resolving category. This is

analogous to making an extra smooth blowup of a resolution of singularities in geo-

metric situation. Thus, if one would like to construct “smaller” resolution, one should

choose n as small as possible.

The constructed resolution has several important properties. First of all, replac-

ing Y by its open subsets, one obtains a presheaf of DG-categories on Y. If Y is gener-

ically reduced, then, on a sufficiently small open subset U ⊂Y, the corresponding DG-

category coincides with D(U )—this expresses birationality of the resolution. If Y comes

with an action of a group G, one can choose a resolution on which the same group G

acts in a compatible way.

Since our categorical resolution requires a usual resolution as an input it is

restricted to characteristic 0. On the other hand, in cases where a usual resolution is

known in positive characteristic (e.g., in dimension 3 and sufficiently large characteris-

tic), our construction can be applied to give a categorical resolution.

We expect that both the result and the approach of the paper will be very use-

ful for investigation of derived categories of singular varieties, especially those with

irrational singularities. For example, one can use our results to investigate generalized

Jacobians of singular curves (including nonplanar curves).

Another application that we originally had in mind was to the following conjec-

ture suggested by M. Kontsevich.

Conjecture 1.6. Let Y be a separated scheme of finite type over a field of characteristic

zero. Then, the bounded derived category of coherent sheaves Db(coh(Y)) is homotopi-

cally finitely presented. �

We refer the reader to [26] for the definition of homotopically finitely presented

(hfp for short) DG-categories. Here, we just mention that one of the ways to prove that

a category is hfp is by showing that it is a quotient of another hfp category by sub-

category generated by one object. So, we suggested to use the categorical resolution

constructed here (it is hfp because it is strongly geometric) as the category to start with.
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This approach was accomplished by Efimov [11]. In Efimov’s proof of Kontsevich’s Con-

jecture, it is essential that one can increase the width of the blowup centers (integer

n mentioned above); so even for varieties with rational singularities (when the usual

resolution is categorical) our approach gives new significant results!

Finally, let us explain the history of notions of a categorical resolution in the

literature. To our best knowledge, the first example of a categorical resolution was a

theorem of Auslander [2]. It appeared in the language of representations of Artin alge-

bras. This theorem served as a guideline for us and is a prototype of our A-space.

Categorical resolutions with the accent on triangulated categories (rather than

abelian ones) seem to have first appeared in [16]. The examples given in that paper were

intended to show that a categorical resolution may be better than the usual one in some

aspects.

The first definition of a categorical resolution is due to Bondal and Orlov [9]. The

definition suggested in [9] is much stronger than one used in our paper—it is assumed

there that the resolving category is the bounded derived category of an abelian category

of finite homological dimension (in particular, the resolving category has a bounded t-

structure), and moreover that Db(coh(Y)) is a localization of that category. We believe

that the first assumption is irrelevant and too restrictive; this is why we construct reso-

lutions as derived categories of DG-categories (note, however, that the resolution D(AS)

of a nonreduced scheme S with smooth S0 enjoys all the properties asked for in [9]).

On the other hand, we believe that the resolutions that we construct enjoy the second

property—that Db(coh(Y)) is the quotient of T c. As it follows from results of Efimov

[11], this is true if the integers n in the construction are large enough. In fact, we believe

that this is true for any choice of these integers.

Another notion, a noncommutative crepant resolution, was introduced by Van

den Bergh [28]. It was even more restrictive than the original definition of Bondal and

Orlov. In addition, it was assumed that the resolving abelian category can be realized

as the category of sheaves of modules over a certain sheaf of algebras on Y with nice

homological properties.

On the other hand, in [15] the definition of a categorical resolution (in the context

of small categories) used here first appeared. However, it was expected that such reso-

lution may exist only if Y has rational singularities, and the point of the paper was in

finding minimal resolutions by starting from a commutative resolution and then shrink-

ing it by chopping out some irrelevant semiorthogonal components. So, in a sense the

result of the present paper shows that the same approach may be used for nonrational

singularities as well.
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Finally, in papers [17, 18] the notion of a categorical resolution in the context of

big categories was considered. In particular, it was shown in [18] that one can construct

a categorical resolution of D(Y) by a so-called smooth poset scheme if and only if Y has

Du Bois singularities. A smooth poset scheme is obtained by “gluing” a finite number

of smooth schemes Xα (indexed by a poset) along arbitrary morphisms fαβ : Xα→ Xβ

(if α ≥ β). Thus, in case Y has Du Bois singularities, its categorical resolution (as in

Theorem 1.4) can be chosen in a more geometric way: one only needs to glue smooth

schemes along honest morphisms, and A -modules can be avoided.

2 Preliminaries on Triangulated Categories

General reference for the material on triangulated categories is [6, 8, 9].

2.1 Semiorthogonal decompositions

Let k be a field and T be a k-linear triangulated category.

Definition 2.1 ([6, 8]). A semiorthogonal decomposition of triangulated category T is a col-

lection T1, . . . ,Tm of strictly full triangulated subcategories in T (components of the

decomposition) such that

(1) HomT (Ti,T j)= 0 for i > j;

(2) for any F ∈T there is a chain of maps

0= Fm→ Fm−1→· · ·→ F1→ F0 = F (1)

such that Cone(Fi→ Fi−1) ∈Ti for all i = 1, . . . ,m.

If only the first property holds, we will say that T1, . . . ,Tm is a semiorthogonal collection

of subcategories. We will use notation

T = 〈T1, . . . ,Tm〉

to express a semiorthogonal decomposition of T with components T1,. . . , Tm. �

It follows from the definition that the chain of maps (1) is functorial in F , and

moreover, the cones of the maps in the chain are also functorial. In other words, there
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are functors

T →Ti, F �→ pi(F ) :=Cone(Fi→ Fi−1)

known as the projection functors of the semiorthogonal decomposition.

For future convenience, we will need to restate the definition of a semiorthogo-

nal decomposition in the special case of m= 2 components. In this case, the chain (1)

for F ∈T looks as 0→ F ′ → F and the conditions are that F ′ =Cone(0→ F ′) ∈T2 and

Cone(F ′ → F ) ∈T1. In other words, T = 〈T1,T2〉 is a semiorthogonal decomposition if

and only if

(1) Hom(T2,T1)= 0 and

(2) for each F ∈T there is a distinguished triangle

p2(F )→ F → p1(F )→ p2(F )[1]

with pi(F ) ∈Ti.

One can also express the last property by saying that each object in T can be represented

as a cone of a morphism from an object of T1 to an object of T2.

The following result is well known.

Lemma 2.2 ([6]). Assume that T1,T2 ⊂T is a semiorthogonal pair of full triangulated

subcategories, such that

(1) the embedding functor i1 : T1→T has a left adjoint i∗1 : T →T1 and

(2) the embedding functor i2 : T2→T has a right adjoint i!
2 : T →T2.

Then, there is a semiorthogonal decomposition

T = 〈T1,
⊥T1 ∩T ⊥2 ,T2〉,

where

⊥T1 = {T ∈T |Hom(T,T1)= 0} =Ker i∗1,

T ⊥2 = {T ∈T |Hom(T2, T)= 0} =Ker i!
2.

In particular, if ⊥T1 ∩T ⊥2 = 0, then T = 〈T1,T2〉. Moreover, p1 = i1i∗1, p2 = i2i!
2. �

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Categorical Resolutions of Irrational Singularities 4545

2.2 The gluing functor

Let T = 〈T1,T2〉 be a semiorthogonal decomposition.

Definition 2.3. The gluing bifunctor of a semiorthogonal decomposition T = 〈T1,T2〉 is

the functor Φ : T op
1 ×T2→ k-mod defined by

Φ(F1, F2)=HomT (F1, F2[1]). �

For each object F2 ∈T2,we have a contravariant cohomological functor Φ(−, F2) :

T
op

1 → k-mod. Assume that, for all F2 ∈T2, this functor is representable. Then, there

exists a functor φ : T2→T1 with a functorial isomorphism

Φ(F1, F2)∼=HomT1(F1, φ(F2)). (2)

If such a functor φ exists, then it is unique up to an isomorphism.

Definition 2.4. The functor φ with the property (2) is called the gluing functor of a

semiorthogonal decomposition T = 〈T1,T2〉. �

It is easy to see that if i1 has also right adjoint i!
1, then

φ = i!
1i2[1] (3)

is the gluing functor.

The importance of the gluing functor is shown by the following lemma.

Lemma 2.5. Assume T = 〈T1,T2〉 and a gluing functor φ exists. To give an object F

of T is equivalent to giving an object F1 of T1, an object F2 of T2, and a morphism

f : F1→ φ(F2) in T1. �

Proof. Let F ∈T and put Fi = pi(F ). Then, we have a distinguished triangle

F2→ F → F1→ F2[1].

The connecting morphism F1→ F2[1] is given by an element f of HomT (F1, F2[1]) that

is of HomT1(F1, φ(F2)). Thus, we produce F1, F2, and f from F . Conversely, if F1, F2,

and f are given, we interpret f as a morphism F1→ F2[1] in T and take F =Cone(F1→
F2[1])[−1]. �
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This lemma motivates the definition of the gluing category in Section 4.

2.3 Compact objects

Recall that a triangulated category T is cocomplete if it has arbitrary small direct sums.

Definition 2.6 ([21]). An object F ∈T in a cocomplete triangulated category T is com-

pact if, for any set of objects Gi ∈T , the canonical morphism

⊕Hom(F,Gi)→Hom(F,⊕Gi) (4)

is an isomorphism. �

Compact objects of a cocomplete triangulated category T form a triangulated

subcategory in T which we denote by T c.

Definition 2.7 ([21]). Triangulated category T is generated by a class S of compact

objects if S⊥ = 0. In particular, T is compactly generated if (T c)⊥ = 0. �

An important result of Neeman which we will frequently use is the following

proposition.

Proposition 2.8 ([21, 23]). If S ⊂T c is a set of compact objects that generates T , then

the minimal triangulated subcategory of T containing S and closed under arbitrary

direct sums is T itself. �

If X is a separated k-scheme of finite type and D(X) is the unbounded derived

category of quasicoherent sheaves on X, then D(X) is cocomplete, its subcategory of

compact objects coincides with the category of perfect complexes on X,

D(X)c =Dperf(X), (5)

and D(X) is compactly generated (see [22]). Recall that a perfect complex on X is an object

of D(X) that is locally quasiisomorphic to a bounded complex of locally free sheaves of

finite rank. In particular, if X is smooth, then

D(X)c =Db(coh(X)), (6)

the bounded derived category of coherent sheaves.
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Definition 2.9. A functor Φ : T1→T2 between cocomplete triangulated categories com-

mutes with direct sums if, for any set of objects Gi ∈T1, the canonical morphism

⊕Φ(Gi)→Φ(⊕Gi)

is an isomorphism. We also say that Φ preserves compactness if Φ(T c
1 )⊂T c

2 . �

The following simple observation will be used very frequently.

Lemma 2.10. Let Φ : T1→T2 be a triangulated functor.

(1) Assume that Φ is fully faithful and commutes with direct sums. If Φ(F ) is

compact, then F is compact.

(2) Assume that Φ has a right adjoint functor Φ!, and T1 is compactly gener-

ated. Then, Φ preserves compactness if and only if Φ! commutes with direct

sums. �

Proof. (1) Let F, Fi ∈T1. Consider the following commutative diagram:

⊕Hom(F, Fi) ��

Φ

��

Hom(F,⊕Fi)

Φ

��

⊕Hom(Φ(F ),Φ(Fi)) �� Hom(Φ(F ),⊕Φ(Fi))

The vertical arrows are isomorphisms since Φ is fully faithful and commutes with direct

sums. The bottom arrow is an isomorphism since Φ(F ) is compact. Hence, the top arrow

is an isomorphism, so F is compact.

(2) Let F ∈T1, Gi ∈T2. Consider the following commutative diagram:

⊕Hom(Φ(F ),Gi)

��

⊕Hom(F, Φ!(Gi))
�� Hom(F,⊕Φ!(Gi))

��

Hom(Φ(F ),⊕Gi) Hom(F, Φ!(⊕Gi))

where equalities stand for the adjunction isomorphisms. Let F be compact. Then, the

arrow in the top row is an isomorphism. If Φ preserves compactness, then the left ver-

tical arrow is an isomorphism, hence the right arrow is an isomorphism as well. Since

this is true for any compact F and T1 is compactly generated, it follows that the cone
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of the canonical map ⊕Φ!(Gi)→Φ!(⊕Gi) is zero, hence Φ! commutes with direct sums.

Vice versa, if Φ! commutes with the direct sums, then the right arrow is an isomor-

phism, hence the left arrow is an isomorphism as well; hence Φ(F ) is compact. Thus, Φ

preserves compactness. �

The following result is very useful to ensure the existence of a right adjoint

functor.

Theorem 2.11 (Brown representability [22]). Assume that Φ : T1→T2 is a triangulated

functor, T1 is cocomplete and generated by a set of compact objects. Then, Φ has a right

adjoint functor if and only if Φ commutes with direct sums. �

Another useful observation is the following lemma.

Lemma 2.12. Let Φ : T →T ′ be a triangulated functor between cocomplete triangu-

lated categories that commutes with arbitrary direct sums. Let T0 ⊂T be a subcategory

of compact objects that generates T . If Φ preserves compactness and is fully faithful on

T0, then Φ is fully faithful on the whole T . If, moreover, Φ(T0) generates T ′, then Φ is

an equivalence. �

Proof. By Brown representability Φ has a right adjoint functor Φ!. Since Φ preserves

compactness, the adjoint Φ! also commutes with arbitrary direct sums by Lemma 2.10.

Consider the adjunction unit id→Φ!Φ and let T1 ⊂T be the full subcategory consisting

of all objects F on which this morphism is an isomorphism. Clearly, it is triangulated

and closed under arbitrary direct sums (since both Φ and Φ! commute with those). Let

us show that it contains T0. Indeed, take any F,G ∈T0, consider the triangle

G→Φ!(Φ(G))→G ′,

and apply Hom(F,−) to it. Since the functor Φ is full and faithful on T0 we have

Hom(F, Φ!(Φ(G)))∼=Hom(Φ(F ),Φ(G))∼=Hom(F,G), hence Hom(F,G ′)= 0. Since this is

true for any F ∈T0 and T0 generates T , we conclude that G ′ = 0. Thus, G ∈T1. Since

this is true for any G, we conclude that T0 ⊂T1. Now, since T0 generates T and T1 is

closed under arbitrary direct sums, using Proposition 2.8 we conclude that T1 =T , and

so Φ!Φ ∼= id. This implies that Φ is fully faithful on the whole T .

Finally, assume that Φ(T0) generates T ′. Note that Φ(T ) is a full triangulated

subcategory of T ′ (since Φ is fully faithful), closed under arbitrary direct sums (since Φ
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commutes with those) and containing Φ(T0). Consequently, by Proposition 2.8 we have

Φ(T )=T ′, hence Φ is an equivalence. �

3 Preliminaries on DG-Categories

A general reference for DG-categories is an excellent review of Keller [14]. See also [10,

27].

3.1 DG-categories and DG-functors

A DG-category D over a field k is a k-linear category such that

(1) for all X1, X2 ∈D the space HomD(X1, X2) is equipped with a structure of a

complex of k-vector spaces, and

(2) the multiplication map

HomD(X2, X3)⊗k HomD(X1, X2)→HomD(X1, X3)

is a morphism of complexes.

By definition HomD(X,Y)=⊕k∈ZHomk
D(X,Y) is a graded vector space with a dif-

ferential d : Homk
D(X,Y)→Homk+1

D (X,Y). The elements f ∈Homk
D(X,Y) are called homo-

geneous morphisms of degree k, deg f = k. The second part of the definition of a DG-

category is just the Leibniz rule for the composition of homogeneous morphisms

d( fg)= (df)g+ (−1)deg f f(dg).

If D is a DG-category, then the opposite DG-category Dop is defined as the cat-

egory with the same objects and HomDop(X1, X2)=HomD(X2, X1) and the composition

induced by the composition in D twisted by the sign (−1)deg f deg g.

If D1 and D2 are DG-categories, we define their tensor product D1 ⊗k D2 as the

DG-category with objects D1 ×D2 and morphisms defined by

HomD1⊗kD2((X1, X2), (Y1,Y2))=HomD1(X1,Y1)⊗k HomD2(X2,Y2).

The simplest example of a DG-category is the category k-dgm of complexes of

k-vector spaces with

Homk(V1,V2)=
∏
i∈Z

Hom(Vi
1,Vi+k

2 ), d( f)=dV2 ◦ f − (−1)deg f f ◦ dV1 .
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Also note that each k-linear category can be considered as a DG-category with

the same Hom-spaces with zero differential and zero grading.

A k-linear functor F : D1→D2 is a DG-functor if the morphisms

FX1,X2 : HomD1(X1, X2)→HomD2(F (X1), F (X2))

are morphisms of complexes, that is, they preserve the grading and commute with the

differentials.

If D1 is a small DG-category (i.e., objects of D1 form a set), then all DG-functors

from D1 to D2 form a DG-category Fun(D1,D2) with HomFun(D1,D2)(F,G) defined as

Ker

⎛
⎝ ∏

X∈D1

HomD2(F (X),G(X))−→
∏

X,Y∈D1

Hom(HomD1(X,Y),HomD2(F (X),G(Y)))

⎞
⎠

In other words, an element f ∈Homk
Fun(D1,D2)

(F,G) is a collection of morphisms fX ∈
Homk

D2
(F (X),G(X)) given for all X ∈D1 such that, for any morphism g∈Homl

D1
(X,Y),

one has fY ◦ F (g)= (−1)kl G(g) ◦ fX. The differential is induced by the differentials in

HomD2(F (X),G(X)).

A right DG-module over D is a DG-functor M : Dop→ k-dgm. If D is small, then

the category D-dgm of right DG-modules over D is a DG-category and the Yoneda functor

Y : D→D-dgm, X �→HomD(−, X)

is a DG-functor. The DG-module Y(X) obtained by applying the Yoneda functor to an

object X ∈D will be denoted by YX. It is called representable DG-module, and one says

that the object X is the corresponding representing object. One has an analog of the

Yoneda Lemma

HomD-dgm(Y
X
,M)∼=M(X) (7)

for any DG-module M ∈D-dgm. In other words, the Yoneda functor is fully faithful, so

D can be considered as a full DG-subcategory in D-dgm.

Analogously, a left DG-module over D is a DG-functor D→ k-dgm. Note that a left

D-module is the same as a right Dop-module. So, the Yoneda functor can be considered

also in this case

Yop : Dop→Dop-dgm, X �→HomD(X,−).

We will write YX for Yop
(X).
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3.2 The homotopy category

The homotopy category [D ] of a DG-category D is defined as the category with

(1) Ob[D ]=ObD ;

(2) Hom[D](X,Y)= H0(HomD(X,Y)).

The homotopy category is a k-linear category.

One says that closed morphisms of degree zero f, g∈HomD(X,Y) are homotopic

if they induce equal morphisms in [D ]; in other words, if there is h∈Hom−1
D (X,Y) such

that f − g=dh (this h is a homotopy between f and g). Further, two objects X and Y

in D are homotopic (or homotopy equivalent) if they are isomorphic in [D ]. In other words,

if there are closed morphisms of degree zero f ∈HomD(X,Y) and g∈HomD(Y, X) such

that fg is homotopic to idY and gf is homotopic to idX.

Each DG-functor F : D1→D2 induces a functor [F ] : [D1]→ [D2] on homotopy cat-

egories. A DG-functor F : D1→D2 is a quasiequivalence if, for all X1,Y1 ∈D1, the mor-

phism F : HomD1(X1,Y1)→HomD2(F (X1), F (Y1)) is a quasiisomorphism of complexes (in

this case F is called quasifully faithful) and for each object X2 ∈D2, there is an object

X1 ∈D1 such that F (X1) is homotopy equivalent to X2. In particular, [F ] is an equiva-

lence of categories.

Two DG-categories D and D ′ are called quasiequivalent if there is a pair of

quasiequivalences D
∼=←− D̃

∼=−→D ′. It is clear that quasiequivalent DG-categories have

equivalent homotopy categories.

3.3 Pretriangulated categories

Let D be a DG-category and M be a DG-module over D . For each integer k∈Z the shift

M[k] is defined as the DG-module over D with

M[k](X)=M(X)[k]

for all X ∈D , where the RHS is the usual shift of the complex M(X). Further, let

f : M→ N be a closed morphism of DG-modules of degree 0. Then, for any object X ∈D

we have a morphism of complexes fX : M(X)→ N(X). The cone of the morphism f is

defined by

Cone( f)(X)=Cone( fX : M(X)→ N(X)).

Again, the RHS is the usual cone of a morphism of complexes.
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Remark 3.1. In other words, the value of Cone( f) on X ∈D is the direct sum of graded

vector spaces N(X)⊕ M(X)[1] with the differential d(n,m)= (dn+ f(m),−dm). Thus, the

cone comes with a bunch of morphisms:

M[1]
i−→Cone( f)

p−→M[1], N
j−→Cone( f)

s−→ N,

such that

pi = idM[1], sj = idN, ip+ js= idCone( f), dj =dp= 0, di = j f, ds=− fp.

Vice versa, given a DG-module C with morphisms M[1]
i−→ C

p−→M[1], N
j−→ C

s−→ N satisfy-

ing the above conditions it is easy to check that C is isomorphic to the cone of f . �

Note also that Cone(M[−1]
0−→ N)∼=M ⊕ N is the direct sum of DG-modules.

For any small DG-category D the shift functor and the cone functor defined above

induce on the homotopy category [D-dgm] of DG-modules over D a structure of a trian-

gulated category [7].

Definition 3.2 ([7]). Let D be a small DG-category. A DG-subcategory D ′ ⊂D-dgm is

pretriangulated if its homotopy category [D ′] is a triangulated subcategory of [D-dgm]. In

particular, a small DG-category D is pretriangulated if

(1) for any X ∈D and any k∈Z, the DG-module YX[k] is homotopic to a repre-

sentable DG-module;

(2) for any closed morphism f ∈HomD(X1, X2) of degree 0 in D, the DG-module

Cone(Y f : YX1→YX2) is homotopic to a representable DG-module. �

The homotopy category of a pretriangulated DG-category is triangulated. Note

also that if F : D1→D2 is a DG-functor between small pretriangulated DG-categories,

then the functor [F ] : [D1]→ [D2] is triangulated.

Definition 3.3 ([7]). An enhancement for a triangulated category T is a pretriangulated

DG-category D with an equivalence T ∼= [D ] of triangulated categories. �

3.4 Derived category

Note that the category of DG-modules over a DG-category D has arbitrary direct sums,

which are just componentwise

(⊕Mi)(X)=⊕Mi(X) (8)

for any set of DG-modules Mi and any X ∈D .
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A DG-module M over D is acyclic, if for any X ∈D, the complex M(X) is acyclic.

The DG-subcategory of acyclic DG-modules is denoted by Acycl(D). It is evidently

pretriangulated and closed under arbitrary direct sums, hence its homotopy category

[Acycl(D)] is a localizing triangulated subcategory in [D-dgm].

The derived category of DG-modules over D is defined as the Verdier quotient

D(D)= [D-dgm]/[Acycl(D)].

It is a triangulated category. Two DG-modules are called quasiisomorphic if they are iso-

morphic in the derived category of DG-modules.

By [21], the functor [D-dgm]→D(D) commutes with direct sums. It follows that

the images of representable objects are compact in D(D). In particular, D(D) is com-

pactly generated. In fact, compact objects in D(D) can be described as follows.

Consider the minimal subcategory of D-dgm containing all representable DG-

modules and closed under shifts, cones of closed morphisms, and homotopy direct sum-

mands. Objects of this category are called perfect DG-modules. By [14, Theorem 3.4],

compact objects of D(D) are given by perfect DG-modules. In particular, if D is pretri-

angulated and closed under homotopy direct summands, then

D(D)c = [D ].

A DG-module P is called h-projective if, for any acyclic DG-module A, the complex

HomD-dgm(P , A) is acyclic. The DG-subcategory of D-dgm consisting of h-projective DG-

modules is denoted by h-proj(D). A DG-module I is called h-injective if, for any acyclic

DG-module A, the complex HomD-dgm(A, I ) is acyclic. The DG-subcategory of D-dgm

consisting of h-injective DG-modules is denoted by h-inj(D). Note that by definition

h-proj(D) is just the left orthogonal to Acycl(D) in [D-dgm], while h-inj(D) is just the

right orthogonal. In fact, the following is well known.

Theorem 3.4 ([14, Proposition 3.1]). There are semiorthogonal decompositions

[D-dgm]= 〈[Acycl(D)], [h-proj(D)]〉, [D-dgm]= 〈[h-inj(D)], [Acycl(D)]〉.

In particular, we have equivalences of triangulated categories

[h-proj(D)]∼=D(D)∼= [h-inj(D)].

Thus, the categories h-proj(D) and h-inj(D) are pretriangulated. �
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It follows from Theorem 3.4 that each DG-module M is quasiisomorphic to

an h-projective DG-module PM, which is called its h-projective resolution. Analogously,

each DG-module M is quasiisomorphic to an h-injective DG-module IM, which is called

its h-injective resolution. Thus, the category of h-projective (respectively, h-injective) D-

modules provides an enhancement for the derived category.

Note also that the image of the Yoneda functor consists of h-projective

D-modules—this follows immediately from (7). Thus, [D ] can be considered as a full

subcategory of D(D) and D is pretriangulated if and only if this subcategory is

triangulated.

3.5 Tensor products

If D is a small DG-category, the tensor product of a right and a left DG-module, M ∈
D-dgm and N ∈Dop-dgm, is defined as

M ⊗D N =Coker

⎛
⎝ ⊕

X,Y∈D
M(X)⊗k HomD(Y, X)⊗k N(Y)−→

⊕
X∈D

M(X)⊗k N(X)

⎞
⎠ .

It is a complex of vector spaces. One checks immediately that

YX ⊗D N = N(X), M ⊗D YX =M(X). (9)

A DG-module F is called h-flat if for any acyclic left DG-module A, the tensor

product F ⊗D A is acyclic. It follows from (9) that each representable DG-module is

h-flat. Also one can check that each h-projective DG-module is h-flat.

The derived tensor product is defined by using h-flat resolutions of either of the

factors

M
L⊗D N := FM ⊗D N ∼= FM ⊗D FN

∼=M ⊗D FN,

where FM and FN are h-flat resolutions of M and N, respectively (e.g., one can use h-

projective resolutions). By definition the derived tensor product is defined up to a quasi-

isomorphism.

Since, as we already mentioned, each representable DG-module is h-flat, we con-

clude that

YX L⊗D N = N(X), M
L⊗D YX =M(X). (10)
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3.6 Bimodules

Let D1 and D2 be DG-categories. A D1 −D2 DG-bimodule is a DG-module over D
op
1 ⊗D2,

that is, a DG-functor D1 ⊗D
op
2 → k-dgm.

One says that a DG-bimodule ϕ ∈D
op
1 ⊗D2-dgm has some property as a left

(right) DG-module, if, for each X2 ∈D2 (respectively, for each X1 ∈D1), DG-module

ϕ(−, X2) ∈D
op
1 -dgm (respectively, ϕ(X1,−) ∈D2-dgm) has this property. In particular, we

can say that a bimodule is representable (h-projective, h-flat, h-injective, . . . ) as a left

(right) DG-module (for short left representable, h-projective, . . . ).

Given a left DG-module M1 over D1 and a right DG-module M2 over D2 one defines

their exterior tensor product as

(M1 ⊗k M2)(X1, X2) :=M1(X1)⊗k M2(X2).

Clearly, this is a DG-bimodule. Moreover, it is clear that an exterior product of two

representable bimodules is representable

YX1 ⊗k YX2 ∼=Y(X1,X2).

One can check that exterior tensor product of h-projective DG-modules is an h-

projective DG-bimodule. Vice versa, an h-projective DG-bimodule is both left and right

h-projective. Also one can check that an h-flat DG-bimodule is both left and right h-flat.

Let ϕ12 ∈ (Dop
1 ⊗D2)-dgm and ϕ23 ∈ (Dop

2 ⊗D3)-dgm be two DG-bimodules. Their

tensor product is the D1 −D3-DG-bimodule defined by

(ϕ12 ⊗D2 ϕ23)(X1, X3)= ϕ12(X1,−)⊗D2 ϕ23(−, X3)

for all X1 ∈D1 and X3 ∈D3.

Analogously, the derived tensor product of bimodules is defined by replacing the

first bimodule with a right h-flat resolution or the second with a left h-flat resolution.

For each DG-category D we denote by D the diagonal bimodule

D(X1, X2)=HomD(X2, X1) ∈Dop ⊗D-dgm.

Remark 3.5. Note that the positions of X1 and X2 in the left-hand and in the right-hand

sides of the formula are interchanged. �
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It is clear that the diagonal bimodule is both left and right representable. More-

over, it follows immediately from (9) that

M1 ⊗D D ∼=M1, D ⊗D M2
∼=M2, (11)

for all M1 ∈D1-dgm and M2 ∈D
op
2 -dgm. In particular, the diagonal bimodule is both left

and right h-flat (but not h-flat as a bimodule), so one can derive freely the tensor product

in the above formulas:

M1
L⊗D D ∼=M1, D

L⊗D M2
∼=M2. (12)

Let ϕ ∈D
op
1 ⊗D2-dgm be a DG-bimodule. If F : D ′1→D1 and G : D ′2→D2 are DG-

functors, we define FϕG to be a D ′1-D ′2 DG-bimodule defined by

FϕG(X
′
1, X′2)= ϕ(F (X′1),G(X′2)).

In particular, if F : D ′ →D is a DG-functor, we have DG-bimodules F D , DF , and F DF .

3.7 Smoothness and properness

As we already mentioned in Section 1, a small DG-category D is smooth if the diagonal

bimodule D is a perfect bimodule. In other words, if D is a homotopy direct summand

of a bimodule obtained from representative bimodules by finite number of shifts and

cones of closed morphisms.

A small DG-category is proper if, for all objects X,Y ∈D, the complex D(X,Y) has

bounded and finite-dimensional cohomology.

We will need the following result of Toën and Vaquié, which allows one to prove

the perfectness of a bimodule. Let ϕ ∈ (D1 ⊗D
op
2 )-dgm be a DG-bimodule. Consider the

derived tensor product functor

Lϕ : D(D2)→D(D1), Lϕ(−)=− L⊗D2 ϕ. (13)

This is a triangulated functor commuting with arbitrary direct sums.

Proposition 3.6 ([26, Lemma 2.8.2]). If DG-category D2 is smooth and the derived

tensor product functor Lϕ : D(D2)→D(D1) preserves compactness, then ϕ is a perfect

DG-bimodule. �
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3.8 Drinfeld quotient

Let D be a DG-category and D0 ⊂D be its small full DG-subcategory. In [10], Drinfeld

defined a new DG-category D/D0, which is known as Drinfeld quotient. By definition D/D0

has the same objects as D and HomD/D0 is freely generated over HomD by generators εX,

one for each object X of D0, such that

deg εX =−1, d(εX)= 1X.

Thus, HomD/D0(Y,Y
′) is given by

∞⊕
p=0

⊕
X1,...,Xp∈D0

HomD(Y, X1)⊗ εX1 ⊗HomD(X1, X2)⊗ εX2 ⊗ · · · ⊗ εXp ⊗HomD(Xp,Y
′). (14)

The Drinfeld quotient D/D0 comes with a natural DG-functor ηD,D0 : D→D/D0, which

takes HomD(Y,Y′) to the p= 0 summand above. The following nice property of the Drin-

feld quotient follows from the definition.

Proposition 3.7. Let D , D ′ be DG-categories and D0 ⊂D , D ′0 ⊂D ′ their DG-subcategories.

If F : D→D ′ is a DG-functor such that F (D0)⊂D ′0, then there is a DG-functor F̄ : D/D0→
D ′/D ′0 such that the diagram

D
F

��

ηD,D0

��

D ′

ηD′,D′0
��

D/D0

F̄
�� D ′/D ′0

commutes, that is, F̄ ◦ ηD,D0 = ηD ′,D ′0 ◦ F . �

Proof. We define F̄ to be the same as F on objects, and to extend it on morphisms we

define F̄ (εX)= εF (X). By definition of D/D0 this uniquely defines F̄ . �

The definition of the Drinfeld quotient D/D0 as presented above makes sense

only in case when D0 is a small DG-category. Otherwise, the Hom-spaces defined by (14)

are not sets. However, one can use the machinery of Grothendieck universes to define the

Drinfeld quotient for arbitrary D0. We skip the details and refer the interested reader
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to the Appendix in [19]. Note, by the way, that the Drinfeld quotient provides a natural

enhancement for the Verdier quotient.

Theorem 3.8 ([10]). If D is a pretriangulated DG-category and D0 ⊂D is its pretriangu-

lated DG-subcategory, then D/D0 is also pretriangulated and there is an equivalence of

triangulated categories [D/D0]∼= [D ]/[D0]. �

3.9 Extensions of DG-functors

Let F : D1→D2 be a DG-functor between small DG-categories. For each right DG-module

M over D2 we have a DG-module MF (X)=M(F (X)) over D1. This defines a DG-functor of

restriction ResF : D2-dgm→D1-dgm which evidently takes acyclic DG-modules to acyclic

DG-modules and so descends to a functor between derived categories which we also

define as

ResF : D(D2)→D(D1), M �→MF .

On the other hand, the DG-functor F produces a D1-D2-bimodule F D2, so one can define

the induction functor IndF : D1-dgm→D2-dgm, N �→ N ⊗D1 F D2 as well as its derived

functor

LIndF : D(D1)→D(D2), N �→ N
L⊗D1 F D2.

Proposition 3.9. The derived induction functor LIndF is left adjoint to the restriction

functor ResF . Both functors ResF and LIndF commute with arbitrary direct sums. More-

over,

LIndF (Y
X
)∼=YF (X)

.

If [F ] is fully faithful, then LIndF is fully faithful. Finally, if F is a quasiequivalence,

then both ResF and LIndF are equivalences. �

Proof. First of all, note that ResF commutes with arbitrary direct sums by definition

and LIndF commutes since a tensor product does. Further, the formula for LIndF (Y
X
)

follows immediately from (10).

To prove the adjunction, note that the right adjoint of LIndF exists by Brown

representability. Let us denote it temporarily by G. Note that, for any D2-module M,
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Categorical Resolutions of Irrational Singularities 4559

we have

G(M)(X)∼=HomD(D1)(Y
X
,G(M))∼=HomD(D2)(LInd(YX

),M)

∼=HomD(D2)(Y
F (X)

,M)∼=M(F (X))∼=MF (X),

which shows that G is isomorphic to the restriction functor ResF .

Finally, to show that LIndF is fully faithful, we use Lemma 2.12 with T =D(D1),

T ′ =D(D2), and T0 = [D ], and the same lemma shows that LIndF is an equivalence if F

is a quasiequivalence. �

In fact, the functors (IndF ,ResF ) form what is called a DG-adjoint pair.

3.10 Derived category of quasicoherent sheaves

Let S be a separated scheme of finite type. Denote by Qcoh(S) the abelian category of

quasicoherent sheaves on S. The derived category D(S) is defined as the Verdier quotient

D(S) := [com(S)]/[com◦(S)],

where com(S) is the DG-category of complexes over Qcoh(S) and com◦(S)⊂ com(S) is the

DG-category of acyclic complexes. However, for our purposes another description of the

derived category is more convenient.

Recall that a complex of quasicoherent sheaves F is h-flat if, for any acyclic com-

plex A, the complex Tot⊕(F ⊗OS A) (the direct sum totalization of the bicomplex F ⊗OS A)

is acyclic. By [1, Proposition 1.1], there are enough h-flat complexes in com(S) (that is

each complex is quasiisomorphic to an h-flat complex), hence there is an equivalence

D(S)∼= [h-flat(S)]/[h-flat◦(S)],

where h-flat(S) is the category of h-flat complexes and h-flat◦(S)⊂ h-flat(S) is the cate-

gory of acyclic h-flat complexes. Using Theorem 3.8, this can be rewritten as the homo-

topy category of the Drinfeld quotient

D(S)∼= [h-flat(S)/h-flat◦(S)]. (15)

This definition is especially useful when one is interested in the derived pullback and

tensor product functors because of the following observation of Spaltenstein.
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Lemma 3.10 ([24]). For any morphism of schemes f : T→ S the termwise pullback func-

tor f∗ : com(S)→ com(T) takes h-flat complexes to h-flat complexes and h-flat acyclic

complexes to h-flat acyclic complexes. The tensor product of an h-flat acyclic complex

with any complex is acyclic. �

This lemma shows that, for a morphism f : T→ S, the pullback functor f∗

induces a DG-functor

f∗ : h-flat(S)→ h-flat(T) such that f∗(h-flat◦(S))⊂ h-flat◦(T).

Consequently, by Proposition 3.7 it induces a DG-functor of Drinfeld quotients

f∗ : h-flat(S)/h-flat◦(S)→ h-flat(T)/h-flat◦(T).

The induced functor on the homotopy categories is the derived pullback functor

L f∗ : D(S)→D(T).

Analogously, one defines the derived tensor product functor.

Note that by construction the derived pullback functor commutes with direct

sums. Therefore, by Brown Representability (Theorem 2.11) it has a right adjoint functor

Rf∗ : D(T)→D(S).

Let Sch be the category of separated schemes of finite type over k and Tria be the

2-category of k-linear triangulated categories. Associating with a scheme S its derived

category D(S) and with each morphism of schemes f : T→ S its derived pullback functor

L f∗ : D(S)→D(T) defines a pseudofunctor

D : Schop→ Tria, S �→D(S), f : (T→ S) �→ (L f∗ : D(S)→D(T)),

which we will call the derived category pseudofunctor. In the next section, we will show

that it factors through the 2-category of small DG-categories.

3.11 DG-enhancements for schemes

Let sDG denote the 2-category of small DG-categories over k. Associating with a small

DG-category D its derived category D(D) and with a DG-functor F : D1→D2 its derived
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induction functor LIndF : D(D1)→D(D2) gives a pseudofunctor D : sDG→ Tria. The main

result of this section is the following theorem.

Theorem 3.11. There is a pseudofunctor D : Schop→ sDG such that the diagram

Schop
D

��

D ����������
sDG

D����
��

��
��

Tria

is commutative. �

Proof. We want to associate with any scheme S a small DG-category D(S) and with

any morphism of schemes f : T→ S a DG-functor f∗ : D(S)→D(T). Let h-flat-perf(S)

be the full DG-subcategory of h-flat(S) consisting of h-flat perfect complexes. Then

h-flat-perf(S)/h-flat◦(S) is a full DG-subcategory in h-flat(S)/h-flat◦(S). Note that its

homotopy category is the subcategory Dperf(S)⊂D(S) of perfect complexes. This category

is essentially small. Choose a small DG-subcategory D(S)⊂ h-flat-perf(S)/h-flat◦(S) such

that

[D(S)]= [h-flat-perf(S)/h-flat◦(S)]=Dperf(S) (16)

and such that, for any morphism of schemes f : T→ S, we have

f∗(D(S))⊂D(T). (17)

For this, we can first take D0(S) to be just an arbitrary choice of a small DG-subcategory

D0(S)⊂ h-flat-perf(S)/h-flat◦(S) for which (16) holds and then replace it by

D(S) :=
⋃

g:S→S′
g∗(D0(S

′)).

Here, the union is taken with respect to the set of all isomorphism classes of morphisms

of separated schemes of finite type (two morphisms g′ : S→ S′ and g′′ : S→ S′′ are isomor-

phic if there is an isomorphism s : S′ → S′′ such that g′′ = s ◦ g′). This is indeed a set since

the isomorphism classes of separated schemes of finite type form a set and, for a given

scheme S′, all morphisms S→ S′ also form a set (a morphism is determined by its graph).
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Then

f∗(D(S))= f∗

⎛
⎝ ⋃

g:S→S′
g∗(D0(S

′))

⎞
⎠= ⋃

g:S→S′
f∗(g∗(D0(S

′)))⊂D(T)

since f∗(g∗(D0(S′))= ( f ◦ g)∗(D0(S′))⊂D(T).

Now let f : T→ S be a morphism of separated schemes of finite type. Restrict-

ing the DG-functor f∗ : h-flat(S)/h-flat◦(S)→ h-flat(T)/h-flat◦(T) defined in the previous

section to D(S) and using compatibility (17), we obtain a DG-functor

f∗ : D(S)→D(T).

This defines the pseudofunctor on morphisms.

It remains to prove that the diagram of the theorem commutes. In other words,

we have to check that, for each scheme S, we have an equivalence of categories

ΨS : D(D(S))
∼=−→D(S)

and that the diagram

D(S)
ΨS

��

L f∗

��

D(D(S))

LInd f∗
��

D(T)
ΨT

�� D(D(T))

commutes.

Let us start with the equivalence. Recall that D(S)= [h-flat(S)/h-flat◦(S)] and that

D(S) is a small DG-subcategory in h-flat(S)/h-flat◦(S). Define a DG-functor

h-flat(S)/h-flat◦(S)→D(S)-dgm, M �→Homh-flat(S)/h-flat◦(S)(−,M).

Consider the composition

ΨS : D(S)= [h-flat(S)/h-flat◦(S)]→ [D(S)-dgm]→D(D(S)).

This functor commutes with arbitrary direct sums since all objects in D(S) correspond

to compact objects in D(S). Moreover, by definition ΨS(M)∼=YM ∈D(S)-dgm for any
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perfect complex M, hence ΨS preserves compactness and ΨS(D(S)) generates D(D(S)).

Finally, for all M, N ∈D(S), we have

HomD(D(S))(ΨS(M), ΨS(N))∼=HomD(D(S))(Y
M
,YN

)

∼=Hom[D(S)](M, N)∼=HomD(S)(M, N),

hence ΨS is fully faithful on [D(S)]. Applying Lemma 2.12, we conclude that ΨS is an

equivalence.

It remains to check that the diagram commutes. Let us first construct a mor-

phism of functors LInd f∗ ◦ ΨS→ΨT ◦ L f∗. The right adjoint of the derived induction

functor is the restriction functor, so it suffices to construct a morphism of functors ΨS→
Res f∗ ◦ ΨT ◦ L f∗. Both parts are induced by DG-functors h-flat(S)/h-flat◦(S)→D(S)-dgm,

the first by

M �→Homh-flat(S)/h-flat◦(S)(−,M)

and the second by

M �→Homh-flat(T)/h-flat◦(T)( f∗(−), f∗(M)).

The DG-functor f∗ gives a morphism from the first to the second, which on passing to

homotopy categories induces the required morphism of functors. Let us check that it is

an isomorphism.

Let T ⊂D(S) be the full subcategory of D(S) formed by objects M such that the

morphism LInd f∗(ΨS(M))→ΨT (L f∗(M)) is an isomorphism. Clearly, T is a triangulated

subcategory. Moreover, it contains all objects from [D(S)]⊂D(S). Indeed, if M ∈D(S),

then

LInd f∗(ΨS(M))∼= LInd f∗(Y
M
)∼=Y f∗(M) ∼=ΨT ( f∗(M))∼=ΨT (L f∗(M)),

so M ∈T . Finally, T is closed under arbitrary direct sums, since all the functors ΨS, ΨT ,

L f∗, and LInd f∗ commute with those. By Proposition 2.8, we conclude that T =D(S), so

the diagram is commutative. �

Note that, for a separated scheme S of finite type over a field, the enhancement

D(S) of the category Dperf(S) of perfect complexes on S is smooth (see Definition 1.1) if S

is smooth and proper if S is proper by [26, Lemma 3.27].

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


4564 A. Kuznetsov and V. A. Lunts

3.12 From a DG-resolution to a categorical resolution

Recall the definition 1.5 of a partial DG-resolution.

Lemma 3.12. If π : D→D ′ and π ′ : D ′ →D ′′ are partial DG-resolutions, then the com-

position π ′ ◦ π : D→D ′′ is a partial DG-resolution. Moreover, if in addition π ′ is a DG-

resolution, then so is π ′ ◦ π . �

Proof. The proof evidently follows from the definition. �

If for a scheme Y a DG-resolution of the DG-category D(Y) is given, we can con-

struct a categorical resolution of Y. For this, we use Proposition 3.9 to induce the func-

tors on the derived categories.

Proposition 3.13. Let D be a small pretriangulated DG-category and π : D(Y)→D be a

DG-resolution. Let π∗ = LIndπ : D(Y)=D(D(Y))→D(D) be the derived induction and let

π∗ =Resπ : D(D)→D(Y) be the restriction functors. If π∗([D ])⊂Db(coh(Y)), then D(D) is

a categorical resolution of Db(coh(Y)). �

Proof. By Proposition 3.9, we know that π∗ is fully faithful, commutes with direct

sums, and has a right adjoint functor π∗ also commuting with direct sums. So the first

two conditions of Definition 1.3 are satisfied. Since D(D)c = [D ], the third condition is

satisfied as well. �

Remark 3.14. If Y is projective and D is proper, then one can check that the con-

dition π∗([D ])⊂Db(coh(Y)) holds automatically. Indeed, in this case the subcategory

Db(coh(Y))⊂D(Y) consists of all objects F such that⊕iHom(P , F [i]) is finite-dimensional

for all perfect P . But by adjunction

⊕iHom(P , π∗(G)[i])∼=⊕iHom(π∗(P ),G[i])

is finite-dimensional for all G ∈D since π∗(P )∼= π(P ) is representable and DG-category

D is proper. �

4 The Gluing

The notion of the gluing of two DG-categories is well known to experts. One possible

definition may be found in [25] under the name of upper triangular DG-categories. We
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prefer to use a slightly different definition as it is more adjusted to our goals. Below we

will discuss its relation to the definition of Tabuada.

4.1 The construction

Let D1 and D2 be two small DG-categories. Consider a bimodule ϕ ∈ (Dop
2 ⊗D1)-dgm. The

DG-category D1 ×ϕ D2, called the gluing of D1 with D2 along ϕ, is defined as follows:

(1) The objects of the DG-category D1 ×ϕ D2 are triples M= (M1,M2, μ), where

Mi ∈Di and μ ∈ ϕ(M2,M1) is a closed element of degree 0 (recall that being a

bimodule ϕ associates a complex ϕ(M2,M1) to any pair (M1,M2) of objects of

D1 and D2).

(2) The morphism complexes are defined to be the sums

Homk
D1×ϕD2

(M, N)=Homk
D1
(M1, N1)⊕Homk

D2
(M2, N2)⊕ ϕk−1(N2,M1), (18)

with the differentials given by

d( f1, f2, f21)= (d( f1),d( f2),−d( f21)− f2 ◦ μ+ ν ◦ f1), (19)

where M= (M1,M2, μ) and N = (N1, N2, ν).

(3) The multiplication is defined by

( f1, f2, f21) ◦ (g1, g2, g21)= ( f1 ◦ g1, f2 ◦ g2, f21 ◦ g1 + (−1)deg f2 f2 ◦ g21), (20)

where f ∈HomD1×ϕD2(M, N) and g∈HomD1×ϕD2(L ,M). In particular, the iden-

tity morphism of (M1,M2, μ) is given by

id(M1,M2,μ) = (idM1 , idM2 ,0).

It is an exercise left to the reader to check that this is a DG-category.

Remark 4.1. Another way to understand the definition of the gluing category is by say-

ing that there is a distinguished triangle

HomD1×ϕD2(M, N)→HomD1(M1, N1)⊕HomD2(M2, N2)
(−ν,μ)−−−−→ ϕ(N2,M1)

of complexes of vector spaces (the morphism is given by ( f1, f2) �→ f2 ◦ μ− ν ◦ f1). �
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Remark 4.2. The upper triangular DG-category corresponding to DG-categories D1

and D2 and a bimodule ϕ defined in [25] by Tabuada is DG-equivalent to the full DG-

subcategory D1 �ϕ D2 ⊂D1 ×ϕ[1] D2 with objects of the form (M1,0,0) and (0,M2,0) only.

One can show that the derived category of D1 �ϕ D2 is equivalent to the derived category

of D1 ×ϕ D2, and moreover, even pretriangulated envelopes of these DG-categories coin-

cide. The advantage of the DG-category D1 �ϕ D2 is that it is smaller and its definition is

simpler. The advantage of D1 ×ϕ D2 is that it is more close to a pretriangulated category

as is shown in the following lemma. �

Lemma 4.3. Assume that the categories D1 and D2 are pretriangulated. Then, so is the

gluing category D1 ×ϕ D2. �

Proof. We must check that the shift of an object and the cone of a morphism are rep-

resentable in D1 ×ϕ D2. For the shift this is evident—it is clear that the shift of the

object (M1,M2, μ) is represented by the object (M1[1],M2[1], μ). To check representabil-

ity of the cone, choose a closed morphism of degree zero from (M1,M2, μ) to (N1, N2, ν).

By definition it is given by a pair of closed degree zero morphisms f1 : M1→ N1 and

f2 : M2→ N2 and an element f21 ∈ ϕ(M2, N1) of degree −1 such that

d( f21)= ν ◦ f1 − f2 ◦ μ

(thus, f21 is a homotopy between f2 ◦ μ and ν ◦ f1). Let C1 be the cone of f1 and let C2

be the cone of f2. As was observed in Remark 3.1, the cones come with degree zero

morphisms

Mk[1]
ik−→ Ck

pk−→Mk[1], Nk
jk−→ Ck

sk−→ Nk,

which give decompositions Ck=Mk[1]⊕ Nk in the graded categories associated with Dk.

Moreover, we have

d( jk)=d(pk)= 0, d(ik)= jk fk, d(sk)=− fk pk.

Now, we consider the element

γ = i2μp1 + j2νs1 + j2 f21 p1 ∈ ϕ(C2,C1).
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The triple (C1,C2, γ ) is then an object of D1 ×ϕ D2. Indeed,

dγ = (di2)μp1 + j2ν(ds1)+ j2(df21)p1

= j2 f2μp1 − j2ν f1 p1 + j2(df21)p1 = j2( f2μ− ν f1 + df21)p1 = 0,

so γ is a closed element of degree 0. Using again Remark 3.1, it is straightforward to

check that (C1,C2, γ ) is the cone of the morphism we have started with—indeed, one

can take i = (i1, i2,0), p= (p1, p2,0), j = ( j1, j2,0), and s= (s1, s2,0) and check that all the

required relations hold. �

4.2 Semiorthogonal decomposition

For brevity, we denote by D the gluing category D1 ×ϕ D2. Our next goal is to describe

the relation of DG-category D with the original categories D1 and D2. We start by intro-

ducing some natural DG-functors:

i1 : D1→D, M1 �→ (M1,0,0),

i2 : D2→D, M2 �→ (0,M2,0).
(21)

It turns out that these functors have adjoints on the DG-level.

Lemma 4.4.

(i) The left and the right adjoints of i1 and i2, respectively, are given by

i∗1 : D→D1, (M1,M2, μ) �→M1,

i!
2 : D→D2, (M1,M2, μ) �→M2.

(22)

(ii) Assume that D1 is pretriangulated. The right adjoint of i1 is given by

i!
1 : D→D1-dgm, (N1, N2, ν) �→Cone(ν)[−1]. (23)

�

Here, we use a natural identification ϕ(N2, N1)=HomD1-dgm(Y
N1 , ϕ(N2,−)), so ν is

considered as a closed morphism YN1→ ϕ(N2,−), and so we can speak about its cone.
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Proof. (i) Indeed, recalling the definition of D, we see that

HomD((N1, N2, ν), i1(M1))=HomD((N1, N2, ν), (M1,0,0))=HomD1(N1,M1),

hence i∗1(N1, N2, ν)= N1. Analogously,

HomD(i2(M2), (N1, N2, ν))=HomD((0,M2,0), (N1, N2, ν))=HomD2(M2, N2),

hence i!
2(N1, N2, ν)= N2.

(ii) We have

HomD(i1(M1), (N1, N2, ν))=HomD((M1,0,0), (N1, N2, ν))

=HomD1(M1, N1)⊕ ϕ(N2,M1)[−1].

If we think of ϕ(N2,M1) as of the Hom-complex from YM1 to ϕ(N2,−) in the category of

D1-modules, then the differential of the RHS will match with that of the Hom-complex

from YM1 to the shifted by −1 cone of ν considered as a morphism from YN1 to ϕ(N2,−).
This shows that i!

1(N)=Cone(ν)[−1]. �

Using formulas (21), (22), and (23), one easily computes

i∗1 ◦ i1 = idD1 , i!
2 ◦ i2 = idD2 , i∗1 ◦ i2 = 0, i!

1 ◦ i2 = ϕ[−1]. (24)

Recall that the last equation agrees with the definition of the gluing functor for

semiorthogonal decompositions discussed in Section 2.2. In fact, we have the following

corollary.

Corollary 4.5. Assume that D1 and D2 are small pretriangulated categories (hence so is

D ). The functors i1 : [D1]→ [D ] and i2 : [D2]→ [D ] are fully faithful and give a semiorthog-

onal decomposition [D ]= 〈[D1], [D2]〉 with the gluing bifunctor induced by ϕ. �

Proof. We define Ti = [Di], T = [D ] for short. The DG-functors i1, i2, i∗1, and i!
2 descend to

triangulated functors between the homotopy categories; moreover, the adjunctions are

preserved. So, the first two equations of (24) prove that i1 : T1→T and i2 : T2→T are

fully faithful and have left and right adjoints, respectively. The third equation shows

that the essential images of T1 and T2 in T are semiorthogonal. Moreover, the functor
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i!
1 ◦ i2[1] : T2→T1 is isomorphic to the functor Lϕ induced by the bimodule ϕ by the

fourth equation. So, it remains to check that the subcategories T1 and T2 generate T .

Indeed, by Lemma 2.2 there is a semiorthogonal decomposition T = 〈T1,
⊥T1 ∩T ⊥2 ,T2〉,

where
⊥T1 ∩T ⊥2 =Ker i∗1 ∩ Ker i!

2,

so it remains to check that if both i∗1 M=M1 and i!
2M=M2 are null-homotopic, then M

is null-homotopic as well. Indeed, let h1 ∈Hom−1
D1
(M1,M1) and h2 ∈Hom−1

D2
(M2,M2) be the

contracting homotopies of idM1 and idM2 , respectively. In other words, we assume that

d1(h1)= idM1 and d2(h2)= idM2 . We want to extend it to a homotopy of idM. This means

that we have to find h21 ∈ ϕ(M2,M1) such that

d(h21)= h2 ◦ μ− μ ◦ h1.

For this, we first note that the RHS above is closed. Indeed, since dμ= 0, we have

d(h2 ◦ μ− μ ◦ h1)=d(h2) ◦ μ− μ ◦ d(h1)=μ− μ= 0.

Let us take

h21 = (h2 ◦ μ− μ ◦ h1) ◦ h1.

Since the expression in parentheses is a closed morphism, we have

d(h21)= (h2 ◦ μ− μ ◦ h1) ◦ d(h1)= h2 ◦ μ− μ ◦ h1,

and we are done. �

4.3 Derived category

One has also a semiorthogonal decomposition of the derived category of the gluing.

First, note that by Proposition 3.9 the functors i1 and i2 defined by (21) extend to derived

categories and give functors that we denote here by

I1 = LIndi1 : D(D1)→D(D), I2 = LIndi2 : D(D2)→D(D),

and that have right adjoints denoted here by

I !
1 =Resi1 : D(D)→D(D1), I !

2 =Resi2 : D(D)→D(D2),

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


4570 A. Kuznetsov and V. A. Lunts

induced by restriction of DG-modules. In other words,

I !
1(F )= Fi1 , I !

2(F )= Fi2 , (25)

for any F ∈D-dgm.

Proposition 4.6. Let D =D1 ×ϕ D2. Then, one has a semiorthogonal decomposition

D(D)= 〈D(D1),D(D2)〉

with the gluing functor isomorphic to Lϕ : D(D2)→D(D1). Moreover, for any DG-module

F over D there is a distinguished triangle

Fi1→ I ∗1 F → Fi2

L⊗D2 ϕ. (26)

�

Note that one does not need to assume that any of the categories is pretriangu-

lated.

Proof. By Proposition 3.9, the functors I1 and I2 are fully faithful. Moreover,

I !
2 I1(F )= (F

L⊗D1 i1D)i2 = F
L⊗D1 i1Di2 = 0

since i1Di2 = 0 by the definition of gluing. Applying two times Lemma 2.2, we conclude

that there is a semiorthogonal decomposition D(D)= 〈T ,D(D1),D(D2)〉, where

T =D(D1)
⊥ ∩ D(D2)

⊥.

It remains to check that T = 0. For this, we note that, for any object (M1,M2, μ) of D,

one can consider μ ∈ ϕ(M2,M1) as a morphism from Y(M1,0,0) to Y(0,M2,0)[1] in D(D), and the

cone of this morphism is a representable D-module, represented precisely by the initial

object (M1,M2, μ). In other words, in D(D) there is a canonical distinguished triangle

Y(0,M2,0) −→Y(M1,M2,μ) −→Y(M1,0,0) μ−→Y(0,M2,0)[1]. (27)

In particular, it follows that all representable D-modules are contained in the subcate-

gory of D(D) generated by D(D1) and D(D2). Thus, T is orthogonal to all representable

D-modules, hence T = 0.
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To establish the formula for the gluing functor φ : D(D2)→D(D1), we recall that,

as mentioned in Section 2.2, we have φ = I !
1 I2[1]. By definition of I !

1 and I2, we have

I !
1(I2(N))= (N

L⊗D2 i2D)i1 = N
L⊗D2 i2Di1

and it remains to note that, by (18), we have i2Di1 = ϕ[−1], hence φ(N)∼= N
L⊗D2 ϕ.

Finally, to check (26), we first consider the standard triangle

I2 I !
2 F → F → I1 I ∗1 F .

Applying the functor I !
1, we obtain

I !
1 I2 I !

2 F → I !
1 F → I ∗1 F

since I !
1 ◦ I1 is the identity functor. As we already checked that I !

1 I2 is isomorphic to the

derived tensor product by ϕ[−1], using (25) we deduce the claim. �

4.4 Smoothness and properness

It is useful to note that the quasiequivalence class of the gluing depends only on the

quasiisomorphism class of the gluing bimodule.

Lemma 4.7. Assume that ϕ and ψ are quasiisomorphic (Dop
2 ⊗D1)-modules. Then, the

gluings D1 ×ϕ D2 and D1 ×ψ D2 are quasiequivalent. �

Proof. First assume that ξ : ϕ→ψ is a closed degree 0 morphism in the category of

bimodules which is a quasiisomorphism. Then, we define a DG-functor from D1 ×ϕ D2 to

D1 ×ψ D2 by

(M1,M2, μ) �→ (M1,M2, ξ(μ))

on objects and by

( f1, f2, f21) �→ ( f1, f2, ξ( f21))

on morphisms. It is very easy to check that it is a DG-functor that acts by quasiiso-

morphisms on Hom complexes. To check that it is a quasiequivalence, we have to show

that it is homotopically essentially surjective. In other words, for any M= (M1,M2, ν) ∈
D1 ×ψ D2 we have to construct an object in D1 ×ϕ D2 whose image is homotopy equiva-

lent to M. For this, we choose μ ∈ ϕ(M2,M1) such that ξ(μ) is homologous to ν and take

(M1,M2, μ). So, we have to show that (M1,M2, ξ(μ)) is homotopic to (M1,M2, ν). Since
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ξ(μ) and ν are homologous, we have ν − ξ(μ)=dρ for some ρ ∈ψ(M2,M1)[−1]. Therefore,

(idM1 , idM2 , ρ) gives a morphism from (M1,M2, ξ(μ)) to (M1,M2, ν) and (idM1 , idM2 ,−ρ)
gives a morphism in the opposite direction. The compositions are the identity mor-

phisms, and so we are done.

Thus, we have proved the result when the quasiisomorphism is given by a mor-

phism. In the general case, we can connect ϕ to ψ by a chain of quasiisomorphisms;

each of them gives a quasiequivalence. Thus, the gluings are connected by a chain of

quasiequivalences, so the categories are quasiequivalent. �

For many purposes, it is convenient to have an h-projective gluing bimodule.

By the above lemma, we can always replace ϕ with its h-projective resolution without

changing the quasiequivalence class of the gluing DG-category.

Remark 4.8. Further, we will also show that replacing the categories D1 and D2 by

quasiequivalent DG-categories, one does not change the quasiequivalence class of the

gluing; see Proposition 4.14. �

Recall the notion of smoothness and properness of a DG-category; see

Section 3.7.

Proposition 4.9. Let D1 and D2 be smooth DG-categories. A gluing D =D1 ×ϕ D2 is

smooth if the gluing bimodule ϕ is perfect in D(Dop
2 ⊗D1). If D1 and D2 are proper and ϕ

is perfect, then D is proper. �

Proof. Our goal is to show that the diagonal bimodule D is perfect. Using the same

argument as in [17, Proposition 3.11], we conclude that D fits into a distinguished

triangle

D1
L⊗D

op
1 ⊗D1

(Dop ⊗D)⊕D2
L⊗D

op
2 ⊗D2

(Dop ⊗D)→D→ ϕ
L⊗D

op
2 ⊗D1

(Dop ⊗D)

and observe that in the first term both summands are perfect since Di is a perfect

bimodule over Di by the smoothness of Di. Thus, D is perfect if the third term is

perfect. It remains to note that perfectness of ϕ in D(Dop
2 ⊗D1) implies perfectness of

ϕ
L⊗D

op
2 ⊗D1

(Dop ⊗D) in D(Dop ⊗D) by extension of scalars.

The properness of D follows immediately from the definition. �
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4.5 The gluing and semiorthogonal decompositions

Here, we show that any category with a semiorthogonal decomposition is quasiequiva-

lent to a gluing.

Proposition 4.10. Assume that D is a pretriangulated category and a semiorthogonal

decomposition of its homotopy category is given:

[D ]= 〈T1,T2〉.

Then, DG-category D is quasiequivalent to a gluing of two pretriangulated DG-

categories D1 and D2 such that [D1]=T1 and [D2]=T2. �

Proof. We take Dk to be the full DG-subcategory of D having the same objects as Tk

and take

ϕ := i2Di1 [1].

Note that both DG-categories D1 and D2 are pretriangulated. We construct the DG-

functor α : D1 ×ϕ D2→D-dgm as follows. On objects it is defined by

α(M1,M2, μ)=Cone(μ : M1[−1]→M2).

Here, we observe that μ ∈ ϕ(M2,M1)=HomD(M1,M2)[1]=HomD(M1[−1],M2) by

definition of ϕ. Note that if μ : M1[−1]→M2 and ν : N1[−1]→ N2 are two closed

morphisms of degree zero, then the cones C M =Cone(μ : M1[−1]→M2) and

C N =Cone(ν : N1[−1]→ N2) come with direct sum decompositions

M2

jM
��C M

sM

��

pM

�� M1

iM

�� and N2

jN
��C N

sN

��

pN

�� N1

iN

��

with

djM =dpM = 0, diM = jMμ, dsM =−μpM,

djN =dpN = 0, diN = jNν, dsN =−νpN .

It follows that any f ∈HomD(C M,C N) can be written as

f = (iN pN + jNsN) f(iM pM + jMsM)= iN f11 pM + iN f12sM + jN f21 pM + jN f22sM,
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where

f11 = pN fiM ∈HomD(M1, N1), f12 = pN f jM ∈HomD(M2, N1),

f21 = sN fiM ∈HomD(M1, N2), f22 = sN f jM ∈HomD(M2, N2).

Therefore,

df =d(iN f11 pM + iN f12sM + jN f21 pM + jN f22sM)

= iN(df11 − (−1)deg f f12μ)pM + iNdf12sM

+ jN(df21 + ν f11 − (−1)deg f f22μ)pM + jN(df22 + ν f12)sM.

This formula shows that the map

HomD(C M,C N)→HomD(M2, N1), f �→ f12

is a morphism of complexes. Moreover, the complex HomD(M2, N1) is acyclic, as the

cohomology of HomD(M2, N1) is just Ext spaces from M2 to N1 that are zero since M2 ∈T2

and N1 ∈T1 and those subcategories of T are semiorthogonal. It follows that the map

α : HomD1(M1, N1)⊕HomD2(M2, N2)⊕HomD(M1, N2)→HomD(C M,C N),

( f11, f22, f21) �→ iN f11 pM + jN f21 pM + jN f22sM

is a quasiisomorphism. But since HomD(M1, N2)=D(N2,M1)= ϕ(N2,M1)[−1] (and so the

differentials of D and ϕ differ by a sign), it follows that the LHS literally coincides with

HomD1×ϕD2((M1,M2, μ), (N1, N2, ν)) and we can consider the above map as a definition

of the functor α on morphisms. One can easily check that this is compatible with the

compositions, and so correctly defines a DG-functor. And since we just checked that

the morphism on Hom-complexes is a quasiisomorphism, the functor α is quasi-fully

faithful.

To show that it is a quasiequivalence, we have to check that any object of D is

homotopic to an object in the image of α. Take any M in D and let

M1[−1]→M2→M→M1

be its decomposition in T with respect to the original semiorthogonal decomposition.

Let μ : M1[−1]→M2 be the morphism from that triangle. Then α(M1,M2, μ)=Cone(μ),
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which is isomorphic to M in T = [D ]. Thus, in D there is a homotopy equivalence of M

and α(M1,M2, μ). �

4.6 Regluing

Recall the notion of a partial categorical DG-resolution 1.5. Assume that D1,D2 are small

pretriangulated DG-categories and ϕ ∈ (Dop
2 ⊗D1)-dgm is a DG-bimodule. Assume also

that τ1 : D1→ D̃1 and τ2 : D2→ D̃2 are partial categorical DG-resolutions and ϕ̃ ∈ (D̃op
2 ⊗

D̃1)-dgm is another DG-bimodule. We will say that the bimodules ϕ and ϕ̃ are compatible

if a quasiisomorphism

c : ϕ
∼=−→ τ2 ϕ̃τ1 (28)

is given. Consider the gluings D =D1 ×ϕ D2 and D̃ = D̃1 ×ϕ̃ D̃2. We denote by I1, I2 the

embedding functors of the semiorthogonal decomposition of D(D) and by Ĩ1, Ĩ2 the

embedding functors of the semiorthogonal decomposition of D(D̃).

Proposition 4.11. If the bimodules ϕ and ϕ̃ are compatible, then there is a DG-functor

τ : D1 ×ϕ D2→ D̃1 ×ϕ̃ D̃2 which is a partial categorical DG-resolution, such that

(a) Resτ1 ◦ Lϕ̃ ◦ LIndτ2
∼= Lϕ, an isomorphism of functors D(D2)→D(D1);

(b) Ĩk ◦ LIndτk
∼= LIndτ ◦ Ik for k= 1,2, an isomorphism of functors D(Dk)→D(D̃);

(c) Resτk ◦ Ĩ !
k
∼= I !

k ◦ Resτ for k= 1,2, an isomorphism of functors D(D̃)→D(Dk);

(d) Resτ ◦ Ĩ1
∼= I1 ◦ Resτ1 , an isomorphism of functors D(D̃1)→D(D);

(e) if the canonical morphism Lϕ ◦ Resτ2→Resτ1 ◦ Lϕ̃ of functors is an iso-

morphism, then we have Resτ ◦ Ĩ2
∼= I2 ◦ Resτ2 , an isomorphism of functors

D(D̃2)→D(D). �

Proof. First, we note that, for any (M1,M2, μ) ∈D1 ×ϕ D2, we have

c(μ) ∈ τ2 ϕ̃τ1(M2,M1)= ϕ̃(τ2(M2), τ1(M1)),

so (τ1(M1), τ2(M2), c(μ)) is an object of the gluing D̃1 ×ϕ̃ D̃2. We define a DG-functor

τ : D1 ×ϕ D2→ D̃1 ×ϕ̃ D̃2, (M1,M2, μ) �→ (τ1(M1), τ2(M2), c(μ)).

The fact that τ is a DG-functor is straightforward. Let us check that it is quasi-fully

faithful. For this just note that HomD̃(τM, τN) equals to

HomD̃1
(τ1M1, τ1 N1)⊕HomD̃2

(τ2M2, τ2 N2)⊕ ϕ̃(τ2N2, τ1M1)[−1],
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with appropriate differential. The first summand here is quasiisomorphic to

HomD1(M1, N1) since τ1 is quasi-fully faithful, the second summand is quasiisomorphic

to HomD2(M2, N2) since τ2 is quasi-fully faithful, and the third summand is nothing but

τ2 ϕ̃τ1(N2,M1)[−1], which is quasiisomorphic via the morphism c to ϕ(N2,M1)[−1]. Hence,

τ is quasi-fully faithful.

It remains to verify properties (a)–(d). The first is clear:

Resτ1(Lϕ̃(LIndτ2(M2)))=M2
L⊗D2 τ2D̃2

L⊗D̃2
ϕ̃τ1
∼=M2

L⊗D2 τ2 ϕ̃τ1
∼=M2

L⊗D2 ϕ = Lϕ(M2),

hence the required isomorphism of functors.

Let ı̃k : D̃k→ D̃ be the embedding DG-functor. Then ı̃k ◦ τk= τ ◦ ik by definition

of τ . This implies an isomorphism of the induction functors LIndı̃k ◦ LIndτk
∼= LIndτ ◦

LIndik which is precisely (b) by definition of Ik and Ĩk. Note also that (c) follows from (b)

by passing to the right adjoint functors.

Further, let us prove (d). First, consider the composition I !
2 ◦ Resτ ◦ Ĩ1. By (c), it

is isomorphic to Resτ2 ◦ Ĩ !
2 ◦ Ĩ1. But Ĩ !

2 ◦ Ĩ1 = 0 by semiorthogonality of D(D̃1) and D(D̃2)

in D(D̃). Thus we conclude that I !
2 ◦ Resτ ◦ Ĩ1 = 0. It follows from the semiorthogonal

decomposition of D(D) that Resτ ◦ Ĩ1 is in the image of I1, hence

Resτ ◦ Ĩ1 = I1 ◦ I !
1 ◦ Resτ ◦ Ĩ1

∼= I1 ◦ Resτ1 ◦ Ĩ !
1 ◦ Ĩ1

∼= I1 ◦ Resτ1 ,

the first is since I1 is fully faithful, the second is by (c), and the third is since Ĩ1 is fully

faithful.

Finally, let us prove (e). For this first note that

I !
2 ◦ Resτ ◦ Ĩ2

∼=Resτ2 ◦ Ĩ !
2 ◦ Ĩ2

∼=Resτ2

by part (c) and full faithfulness of Ĩ2. Therefore, for any N2 ∈D(D̃2) the component of

Resτ ( Ĩ2(N2)) in D(D2) equals Resτ2(N2). Hence its decomposition triangle looks as

I2(Resτ2(N2))→Resτ ( Ĩ2(N2))→ I1(M1)

for some M1 ∈D(D̃1). It remains to show that M1 = 0. For this, we apply the functor I !
1 to

the above triangle. Since I1 is fully faithful, we obtain

I !
1(I2(Resτ2(N2)))→ I !

1(Resτ ( Ĩ2(N2)))→M1.
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Note that I !
1 ◦ I2

∼= Lϕ[−1] by Proposition 4.6, hence the first term is Lϕ(Resτ2(N2))[−1].

On the other hand, I !
1 ◦ Resτ ◦ Ĩ2

∼=Resτ1 ◦ Ĩ !
1 ◦ Ĩ2

∼=Resτ1 ◦ Lϕ̃[−1] (the first is by part (c)

and the second again by Proposition 4.6). So, if the canonical morphism Lϕ ◦ Resτ2→
Resτ1 ◦ Lϕ̃ is an isomorphism, then M1 = 0 and we are done.

�

Remark 4.12. Note that if τ2 = id, then the condition of part (e) follows from (a). So, in

this case the claim of part (e) holds.
�

Now assume that ϕ ∈ (Dop
2 ⊗D1)-dgm is an h-projective bimodule (recall that by

Lemma 4.7 we can replace the gluing bimodule by its h-projective resolution without

changing the quasiequivalence class of the resulting category) and define the bimodule

ϕ̃ ∈ (D̃op
2 ⊗ D̃1)-dgm by

ϕ̃ = D̃2τ2 ⊗D2 ϕ ⊗D1 τ1D̃1. (29)

Note that, by definition of a DG-functor, we have the canonical morphisms of bimodules

τ1 : D1→ τ1D̃1τ1 and τ2 : D2→ τ2D̃2τ2 ,

which are quasiisomorphisms since τ1 and τ2 are quasi-fully faithful. Tensoring with ϕ,

we obtain a morphism

c : ϕ =D2 ⊗D2 ϕ ⊗D1 D1
τ2⊗1⊗τ1−−−−−→ τ2D̃2τ2 ⊗D2 ϕ ⊗D1 τ1D̃1τ1 = τ2 ϕ̃τ1 .

Note that since ϕ is h-projective, this map is a quasiisomorphism, so ϕ̃ is compatible

with ϕ. We call the gluing D̃ = D̃1 ×ϕ̃ D̃2 with ϕ̃ defined by (29) the regluing of D . By

Proposition 4.11, the regluing D̃ is a partial categorical DG-resolution of D . The follow-

ing proposition describes its properties.

Proposition 4.13. Let D̃ = D̃1 ×ϕ̃ D̃2 be the regluing of D =D1 ×ϕ D2. Then, we have

(a) Lϕ̃ ∼= LIndτ1 ◦ Lϕ ◦ Resτ2 , an isomorphism of functors D(D̃2)→D(D̃1);

(b) Resτ ◦ Ĩk
∼= Ik ◦ Resτ1 for k= 1,2, an isomorphism of functors D(D̃k)→

D(D). �

Proof. The first property is straightforward

Lϕ̃(M)=M
L⊗D̃2

ϕ̃ =M
L⊗D̃2

(D̃2τ2

L⊗D2 ϕ
L⊗D1 τ1D̃1)

∼=Mτ2

L⊗D2 ϕ
L⊗D1 τ1D̃1

∼= LIndτ1(Lϕ(Resτ2(M))),
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which is precisely the required formula. For (b) note that the case k= 1 is given

by Proposition 4.11(d), so it remains to consider the case k= 2. For this, we note

that

Resτ1 ◦ Lϕ̃ ∼=Resτ1 ◦ LIndτ1 ◦ Lϕ ◦ Resτ2
∼= Lϕ ◦ Resτ2 ,

so the condition of Proposition 4.11(e) is satisfied. Hence, we have the required isomor-

phism by Proposition 4.11(e). �

The following result is not needed for the rest of the paper, but we add it for

completeness.

Proposition 4.14. In the assumptions of Proposition 4.11 the functor

τ : D1 ×ϕ D2→ D̃1 ×ϕ̃ D̃2

is a quasiequivalence if and only if both τ1 and τ2 are quasiequivalences. �

Proof. Assume that both τ1 and τ2 are quasiequivalences. Since we already know that

τ is quasi-fully faithful, it only suffices to check that it is essentially surjective on the

homotopy categories. So, let (M̃1, M̃2, μ̃) be an object of D̃1 ×ϕ̃ D̃2. Since τ1 and τ2 are

quasiequivalences, there are objects M1 ∈D1 and M2 ∈D2 such that M̃1 is homotopic to

τ1(M1) and M̃2 is homotopic to τ2(M2). The above homotopies induce a homotopy equiv-

alence of ϕ̃(M̃2, M̃1) and ϕ̃(τ2(M2), τ1(M1)). The latter by assumption is quasiisomorphic

to ϕ(M2,M1). Thus, we can find a closed element of zero degree μ ∈ ϕ(M2,M1) such that

c(μ) goes to μ̃ under the homotopy equivalence of the complexes mentioned above. It is

quite easy to check then that τ(M1,M2, μ) is homotopic to (M̃1, M̃2, μ̃), so τ is essentially

surjective on the homotopy categories.

Conversely, assume that τ is a quasiequivalence. We have to check that both

τ1 and τ2 are essentially surjective on homotopy categories. Take any M̃1 ∈ D̃1. Then,

(M̃1,0,0) is an object of D̃1 ×ϕ̃ D̃2. Hence, there is an object (M1,M2, μ) of D1 ×ϕ D2 such

that τ(M1,M2, μ) is homotopic to (M̃1,0,0). By definition of the gluing it follows that

M̃1 is homotopic to τ1(M1). Thus τ1 is essentially surjective on homotopy categories.

Analogously, one considers τ2. �
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5 Partial Categorical Resolution of a Nonreduced Scheme

The goal of this section is to construct a categorical resolution for a nonreduced scheme

for which the corresponding reduced scheme is smooth. Our construction is inspired by

the result of Auslander [2].

5.1 A -modules

Let S be a separated nonreduced scheme of finite type over k. Let r⊂OS be a nilpotent

sheaf of ideals. Choose an integer n such that

rn= 0.

Note that we do not require n to be the minimal integer with this property. In particular,

we can take r= 0 and arbitrary n≥ 1.

Consider a sheaf of noncommutative algebras

A =AS,r,n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

OS r r2 · · · rn−1

OS/r
n−1 OS/r

n−1 r/rn−1 · · · rn−2/rn−1

OS/r
n−2 OS/r

n−2 OS/r
n−2 · · · rn−3/rn−2

...
...

...
. . .

...

OS/r OS/r OS/r · · · OS/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

with the algebra structure induced by the embedding

AS,r,n⊂EndOS(OS ⊕OS/r
n−1 ⊕OS/r

n−2 ⊕ · · · ⊕OS/r). (31)

In other words, Ai j = rmax( j−i,0)/rn+1−i and the multiplication is the map

Ai j ⊗A jk= (rmax( j−i,0)/rn+1−i)⊗ (rmax(k− j,0)/rn+1− j)→ rmax(k−i,0)/rn+1−i =Aik

induced by the multiplication map ra⊗ rb→ rc,which is defined for all c≤ a+ b—we note

that, in our case, this condition is satisfied since

max(k− i,0)≤max( j − i,0)+max(k− j,0).

Also note that

max( j − i,0)+ (n+ 1− j)≥n+ 1− i and max(k− j,0)+ (n+ 1− i)≥n+ 1− i,

so the above map descends to a map of the quotients.
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4580 A. Kuznetsov and V. A. Lunts

We define

εi = 1 ∈Aii =OS/r
n+1−i. (32)

Note that ε1,. . . , εn is a system of orthogonal idempotents with

ε1 + · · · + εn= 1.

The algebra A =AS,r,n will be called the Auslander algebra (A is for Auslander!).

The scheme S will be referred to as the underlying scheme, the ideal r as the defining ideal,

and the integer n as the width of the Auslander algebra.

Remark 5.1. Auslander [2], in the case of a zero-dimensional scheme S, considered the

algebra EndOS(OS ⊕OS/r
n−1 ⊕OS/r

n−2 ⊕ · · · ⊕OS/r) and showed that it has finite global

dimension. One can show (see Section A.6) that a similar statement is true for the alge-

bra A for the scheme S of arbitrary dimension as soon as the reduced scheme Sred is

smooth (note that this holds automatically if S is zero-dimensional). Moreover, we show

in Section A.7 that there is a more general class of generalized Auslander algebras that

have similar properties. Now, we just note that the algebra we consider coincides with

the original Auslander algebra if and only if ra : rb= ra−b for all a> b (here ra : rb is the

ideal consisting of all x∈OS such that xrb⊂ ra). �

In what follows, we always consider right A -modules, unless the opposite is

specified.

An A -module is called quasicoherent (coherent) if it is such as an O-module. We

denote by Qcoh(A ) the category of quasicoherent A -modules on S and by coh(A ) its

subcategory of coherent A -modules.

Remark 5.2. Note that, taking r= 0 and n= 1, we obtain

AS,0,1
∼=OS.

Thus, the category of OS-modules is just a very special case of the category of

A -modules. �

Example 5.3. A simple but rather instructive example is the case of S= Spec k[t]/t2,

r= tk[t]/t2, n= 2. In this case, the category Qcoh(AS) is the category of representations
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of the quiver with relation

•
β

��•
α

��
, βα = 0

and AS,r,2 is just the path algebra of this quiver. On the other hand, if we take the same

S, r, and choose n= 3, we will get a quiver

•
β2

��•
α2

��

β1

��•
α1

��
, β2α2 = α1β1, β1α1 = 0, β1β2 = 0,

and AS,r,3 is the path algebra of this quiver. �

5.2 The category of A -spaces

An A -space is a triple (S, rS,nS), where S is a scheme, r is a nilpotent ideal in OS, and

nS is an integer such that rn= 0. An A -space (S, rS,nS) can be thought of as a ringed space

with the underlying topological space of the scheme S and the sheaf of (noncommutative)

rings AS =AS,r,nS . Sometimes we will denote an A -space (S, rS,nS) simply by (S,AS).

With any A -space we associate the category Qcoh(A ) of quasicoherent sheaves of right

A -modules.

There are several ways how one can define morphisms of A -spaces. Here, we

will use the simplest possible definition. A more general definition will be discussed in

Section A.8.

Assume that (S, rS,nS) and (T, rT ,nT ) is a pair of A -spaces and let f : T→ S be

a morphism of underlying schemes. Assume that the defining ideals rT and rS and the

widths nT and nS are compatible in the following sense:

f−1(rS)⊂ rT and nS ≤nT . (33)

It follows from (33) that f−1(ri
S)⊂ ri

T for all i. Therefore, the morphism of schemes

induces maps

f−1(ri
S/r

j
S)= f−1(ri

S)/ f−1(r
j
S)→ ri

T/r
j
T

for all i and j that are compatible with the multiplication maps. Combining all these

together, we obtain a (nonunital) morphism of sheaves of algebras f−1(AS)→AT which

takes the unit of the first to the idempotent ε1 + · · · + εnS of the second. In particular,

(ε1 + · · · + εnS)AT has a natural structure of an f−1AS-AT -bimodule which is projective

over AT .
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We define the pullback and the pushforward functors with respect to a mor-

phism f by

f∗ : Qcoh(AS)→Qcoh(AT ), M �→ f−1M ⊗ f−1AS
(ε1 + · · · + εnS)AT ,

f∗ : Qcoh(AT )→Qcoh(AS), N �→ ( f∗N)(ε1 + · · · + εnS).

(34)

Lemma 5.4. The functor f∗ is right exact and the functor f∗ is left exact. Moreover, the

functor f∗ is the left adjoint of the functor f∗. �

Proof. The functor f∗ is the composition of the exact functor f−1 and the right exact

functor of tensor product, so it is right exact. Analogously, the functor f∗ is the compo-

sition of the left exact functor f∗ and of the exact functor N �→ N(ε1 + · · · + εnS). Finally,

the adjunction is classical

HomAT ( f∗M, N)=HomAT ( f−1M ⊗ f−1AS (ε1 + · · · + εnS)AT , N)

∼=Hom f−1AS( f−1M,HomAT ((ε1 + · · · + εnS)AT , N))

∼=Hom f−1AS( f−1M, N(ε1 + · · · + εnS))
∼=HomAS(M, f∗N(ε1 + · · · + εnS)).

Here, the first isomorphism is the classical adjunction of Hom and ⊗, the second is

evident, and the third is the classical adjunction of f−1 and f∗. �

Lemma 5.5. Assume that

(U, rU ,nU )
g−→ (T, rT ,nT )

f−→ (S, rS,nS)

are morphisms of A -spaces. Then, there is an isomorphism of functors g∗ ◦ f∗ ∼= ( f ◦ g)∗

from Qcoh(AS) to Qcoh(AU ). �

Proof. Indeed,

g∗( f∗(F ))= g−1( f−1 F ⊗ f−1AS (ε1 + · · · + εnS)AT )⊗g−1AT (ε1 + · · · + εnT )AU

∼= g−1 f−1 F ⊗g−1 f−1AS ((ε1 + · · · + εnS)g
−1AT ⊗g−1AT (ε1 + · · · + εnT )AU )

∼= g−1 f−1 F ⊗g−1 f−1AS (ε1 + · · · + εnS)AU = ( f ◦ g)∗(F )

since (ε1 + · · · + εnS)(ε1 + · · · + εnT )= ε1 + · · · + εnS by (33). �
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5.3 Derived category

Let com(A ) denote the category of (unbounded) complexes of quasicoherent A -modules.

Lemma 5.6.

(1) The category Qcoh(A ) is a Grothendieck category.

(2) The category com(A ) has enough h-injective complexes.

(3) The category com(A ) has enough h-flat complexes. �

Proof. Note that all these assertions hold for the category Qcoh(S) instead of Qcoh(A ).

(1) The category Qcoh(A ) has arbitrary direct sums and filtered direct limits

in Qcoh(A ) are exact. It remains to show that it has a generator. Recall that A is an

OS-algebra. Consider the corresponding extension and restriction of scalars functors

IndS : Qcoh(S)→Qcoh(A ), M �→M⊗OS A ,

ResS : Qcoh(A )→Qcoh(S), N �→NOS .

It is a classical fact that IndS is the left adjoint of ResS.

Let U ∈Qcoh(S) be a generator. We claim that IndS(U ) is a generator of

Qcoh(A ). Indeed, let M0 �M be objects in Qcoh(A ). Then ResS(M0)�ResS(M). Hence

the map Hom(U,ResS(M0))→Hom(U,ResS(M)) is not surjective. But then the map

Hom(IndS(U ),M0)→Hom(IndS(U ),M) is also not surjective. So IndS(U ) is a generator

and hence Qcoh(A ) is a Grothendieck category.

(2) This follows from (1) and [13].

(3) The proof given in [1] for the category Qcoh(S) works also for Qcoh(B) for any

sheaf of OS-algebras B which is quasicoherent as an OS-module. �

We denote by ASch the category of A -spaces with the underlying scheme being

separated of finite type and with morphisms defined in Section 5.2. As we already

observed, each scheme can be thought of as an A -space of width 1 and each mor-

phism of schemes gives a morphism of the corresponding A -spaces. Thus, the category

Sch is a subcategory of ASch. Our goal is to extend the derived category pseudofunctor

D : Schop→ Tria to the category ASch.

As we know by Lemma 5.6, the category com(Qcoh(AS)) has enough h-flat objects.

Hence [com(AS)]/[com◦(AS)]∼= [h-flat(AS)]/[h-flat◦(AS)], where com◦(AS)⊂ com(AS) is the

DG-subcategory of acyclic complexes, h-flat(AS) is the DG-category of h-flat complexes
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of AS-modules, and h-flat◦(AS) is its DG-subcategory of h-flat acyclic complexes. So,

analogously to the case of schemes we can identify the derived category as

D(AS)∼= [h-flat(AS)/h-flat◦(AS)],

the homotopy category of the Drinfeld quotient. It is clear that Db(coh(AS)), the bounded

derived category of coherent AS-modules, is equivalent to the subcategory of D(AS) con-

sisting of complexes with finite number of cohomology sheaves, all of which are coher-

ent. Indeed, by a standard argument (see [3, Expose II, Proposition 2.2.2]) it is enough

to check that a quotient of a coherent AS-module is coherent and that any quasicoher-

ent AS-module is a filtered direct limit of coherent AS-modules. The first is evident and,

for the second, note that if N is an AS-module and ResN = limMλ with Mλ coherent

sheaves on S, then N is the limit of images of Ind(Mλ) and each of those is a coherent

AS-module.

Proposition 5.7. Associating with an A -space (S,AS) its derived category D(AS) is a

pseudofunctor ASchop→ Tria from the category opposite to A -spaces to the 2-category

of triangulated categories, extending the same-named pseudofunctor Schop→ Tria. �

Proof. To define a pseudofunctor ASchop→ Tria, we have to associate with a morphism

f : (T,AT )→ (S,AS) of A -spaces a functor D(AS)→D(AT ). This role will be played by the

derived pullback functor L f∗;which we will define along the same lines as the definition

of the usual derived pullback functor in Section 3.10.

Using an analog of Lemma 3.10, we deduce that the functor f∗ takes h-flat(AS)

to h-flat(AT ) and h-flat◦(AS) to h-flat◦(AT ), and hence, by Proposition 3.7, induces a DG-

functor h-flat(AS)/h-flat◦(AS)→ h-flat(AT )/h-flat◦(AT ) of Drinfeld quotients. Passing to

homotopy categories, we define the derived functor

L f∗ : D(AS)= [h-flat(AS)/h-flat◦(AS)]
f∗−−→ [h-flat(AT )/h-flat◦(AT )]=D(AT ).

The pseudofunctoriality and compatibility with the derived category pseudofunctor on

schemes are evident. �

Let f : (T,AT )→ (S,AS) be a morphism of A -spaces. By construction the derived

pullback functor L f∗ commutes with arbitrary direct sums. Therefore, by Brown Repre-

sentability it has a right adjoint functor Rf∗ : D(AT )→D(AS).

For each 1≤ k≤nS consider a slight generalization of the induction functor

Indk
S : Qcoh(S)→Qcoh(AS), M �→M ⊗OS (ε1 + · · · + εk)AS. Its right adjoint functor Resk

S :
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Qcoh(AS)→Qcoh(S) is given by N �→ResS(N(ε1 + · · · + εk)). Note that it is exact. The

above argument allows one to define the derived induction functor LIndk
S : D(S)→D(AS)

by applying Indk
S to h-flat complexes. On the other hand, the exactness of the restric-

tion functor shows that it descends to the derived category Resk
S : D(AS)→D(S) and the

adjunction is preserved.

Lemma 5.8. If f : (T, rT ,nT )→ (S, rS,nS) is a morphism of A -spaces, then

ResS(Rf∗(F ))∼= Rf∗(ResnS
T (F )).

In particular, if f is proper and of finite type, then Rf∗(Db(coh(AT ))⊂Db(coh(AS)). �

Proof. Both sides are compositions of right adjoint functors, so it is enough to check an

isomorphism of their left adjoint functors L f∗ ◦ LIndS
∼= LIndnS

T ◦ L f∗. Since the induction

of an h-flat complex of OS-modules is evidently h-flat over AS, it is enough to note that

we have an isomorphism for underived functors. The latter is clear as

f∗(IndS(M))= f∗(M ⊗OS AS)= f−1(M ⊗OS AS)⊗ f−1AS (ε1 + · · · + εnS)AT

∼= f−1M ⊗ f−1OS f−1AS ⊗ f−1AS (ε1 + · · · + εnS)AT

∼= f−1M ⊗ f−1OS (ε1 + · · · + εnS)AT

∼= f−1M ⊗ f−1OS OT ⊗OT (ε1 + · · · + εnS)AT = IndnS
T ( f∗M).

The second statement is clear since M ∈D(AT ) being bounded and coherent implies

Resk
T (M) is such for any k, and vice versa, if ResS(M) ∈D(S) is bounded and coherent,

then so is M. �

5.4 Semiorthogonal decomposition

Let S0 and S′ be the subschemes of S corresponding to the ideals r and rn−1, respectively.

For both the underlying topological space is S but the sheaves of rings are

OS0 :=OS/r, and OS′ =OS/r
n−1.

Consider the two-sided sheaf of ideals I in A generated by the idempotent

1− ε1 = ε2 + · · · + εn.
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Lemma 5.9. We have

I :=A (1− ε1)A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r r r2 · · · rn−1

OS/r
n−1 OS/r

n−1 r/rn−1 · · · rn−2/rn−1

OS/r
n−2 OS/r

n−2 OS/r
n−2 · · · rn−3/rn−2

...
...

...
. . .

...

OS/r OS/r OS/r · · · OS/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (35)

In particular, A /I ∼=OS/r∼=OS0 . �

Proof. The proof is straightforward. �

By Lemma 5.9, the sheaf OS0 has a natural structure of an algebra over AS. Thus,

we have the restriction of scalars functor

i : Qcoh(S0)→Qcoh(A ), M �→M. (36)

On the other hand, consider the algebra

A ′ =AS′,r,n−1 =⊕i, j≥2Ai j = (1− ε1)A (1− ε1) (37)

(which is just the same type algebra constructed from the scheme S′), and note that the

following (n− 1)× n matrix:

(1− ε1)A =

⎛
⎜⎜⎜⎜⎜⎝

OS/r
n−1 OS/r

n−1 r/rn−1 · · · rn−2/rn−1

OS/r
n−2 OS/r

n−2 OS/r
n−2 · · · rn−3/rn−2

...
...

...
. . .

...

OS/r OS/r OS/r · · · OS/r

⎞
⎟⎟⎟⎟⎟⎠

(38)

is an A ′-A -bimodule, so we can also define a functor

e : Qcoh(A ′)→Qcoh(A ), M �→M ⊗A ′ (1− ε1)A . (39)

Remark 5.10. It is useful to note that the functor e takes projective A ′-modules to pro-

jective A -modules. This follows immediately from the fact that (1− ε1)A is projective

as an A -module. �
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Lemma 5.11. The functor i has a left adjoint functor i∗ : Qcoh(A )→Qcoh(S0)

i∗(M)=M ⊗A OS0 , (40)

and the functor e has a right adjoint functor e! : Qcoh(A )→Qcoh(A ′) :

e!(N)= N(1− ε1). (41)

�

Proof. The left adjoint to the restriction of scalars is the extension of scalars functor,

which is precisely the functor i∗. On the other hand, it is clear that

HomA (e(M), N)=HomA (M ⊗A ′ (1− ε1)A , N)∼=HomA ′(M,HomA ((1− ε1)A , N)),

hence the right adjoint of e is given by N �→HomA ((1− ε1)A , N)= N(1− ε1), which

gives (41). �

Remark 5.12. In fact, all these functors are just pullbacks and pushforward for gener-

alized morphisms of A -spaces; see Example A.25. �

It is clear from (36), (39), and (41) that the functors i, e, and e! are exact. We

extend them termwise to the categories of complexes, and to the derived categories. On

the other hand, the functor i∗ is only right exact. We extend it termwise to the category

of h-flat complexes of quasicoherent A -modules and thus obtain its left derived functor

L i∗ : D(A )→D(S0),

L i∗(M)=M
L⊗A OS0 . (42)

Proposition 5.13. The functor L i∗ : D(A )→D(S0) defined by (42) is left adjoint to the

functor i : D(S0)→D(A ), and the functor e! : D(A )→D(A ′) is right adjoint to e : D(A ′)→
D(A ). Moreover, we have

L i∗ ◦ i∼= idD(S0), e! ◦ i= 0, L i∗ ◦ e= 0, e! ◦ e∼= idD(A ′). (43)

In particular, the functors i and e are fully faithful. �

Proof. The adjunctions of the functors on the derived level follow from those on the

abelian level. So, let us verify equations (43). The first composition is the functor

M �→M
L⊗OS0

(OS0

L⊗A OS0),
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so we have to compute the derived tensor product OS0

L⊗A OS0 . For this, we use the defin-

ing exact sequence
0→I →A →OS0→ 0 (44)

and note that

I =A (1− ε1)A ∼=A (1− ε1)
L⊗A ′ (1− ε1)A . (45)

Indeed, it is clear from (38) that (1− ε1)A is isomorphic to A ′ε2 ⊕A ′ as an A ′-module

(if we remove the first column from (38), we get A ′; the first column itself just repeats

the first column of A ′, so the corresponding A ′-module is the projective module corre-

sponding to the first idempotent of A ′ which is the second idempotent of A ), hence it is

projective and the RHS above is isomorphic to

A (1− ε1)
L⊗A ′ (A ′ε2 ⊕A ′)∼=A (1− ε1)ε2 ⊕A (1− ε1)=A ε2 ⊕A (1− ε1),

which clearly coincides with I . Now it follows that

I
L⊗A OS0

∼=A (1− ε1)
L⊗A ′ (1− ε1)A

L⊗A OS0
∼=A (1− ε1)

L⊗A ′ (1− ε1)OS0 = 0

since 1− ε1 acts trivially on OS0 . Now tensoring (44) with OS0 , we conclude that

OS0

L⊗A OS0
∼=A

L⊗A OS0
∼=OS0 .

This shows that the composition L i∗ ◦ i is isomorphic to the identity.

All the other compositions are evident. Indeed, e!(i(M))=M(1− ε1)= 0 for any

object M ∈D(S0) since, as we already observed, 1− ε1 acts on all OS0 -modules trivially.

Analogously,

L i∗(e(M))=M
L⊗A ′ (1− ε1)A

L⊗A OS0
∼=M

L⊗A ′ (1− ε1)OS0 = 0

and the reason is the same. Finally, by (37),

e!(e(M))=M
L⊗A ′ (1− ε1)A (1− ε1)=M

L⊗A ′ A ′ ∼=M

so the composition e! ◦ e is the identity. �

Now, we can prove that the category D(A ) has a semiorthogonal decomposition.
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Proposition 5.14. There are semiorthogonal decompositions

D(A )= 〈i(D(S0)),e(D(A ′))〉, Db(coh(A ))= 〈i(Db(coh(S0))),e(Db(coh(A ′)))〉. �

Proof. First consider the category D(A ). We already know that the functors i and e are

fully faithful and have the left and the right adjoint, respectively. Moreover,

HomD(A )(e(M′), i(M0))∼=HomD(A ′)(M
′,e!(i(M0)))= 0

by (43), hence the subcategories are semiorthogonal. It remains to check that each object

M ∈D(A ) fits into a triangle with the other vertices in i(D(S0)) and e(D(A ′)). For this, we

tensor the sequence (44) with M to get a distinguished triangle

M
L⊗A I →M→M

L⊗A OS0 .

Note that the last term is nothing but i(L i∗(M)), so it remains to note that

e(e!(M))∼= (M L⊗A A (1− ε1))
L⊗A ′ (1− ε1)A ∼=M

L⊗A I

(the first isomorphism is by definitions of e and e! (see (39) and (41)), and the second

follows from (45)). So, we see that the above triangle can be rewritten as

e(e!(M))→M→ i(L i∗(M)), (46)

which proves the first decomposition.

For the second semiorthogonal decomposition note that we clearly have

i(Db(coh(S0)))⊂Db(coh(A )). Further, since (1− ε1)A is a projective A ′-module (see the

proof of Proposition 5.13), we deduce that e(Db(coh(A ′)))⊂Db(coh(A )). So, it remains to

check inclusions for the adjoint functors.

The inclusion e!(Db(coh(A )))⊂Db(coh(A ′)) follows immediately from (41). To

prove the inclusion for L i∗, consider the triangle (46) with M ∈Db(coh(A )). Then, from

the above it follows that its first vertex is also in Db(coh(A )), hence the same is true for

the last vertex. It remains to note that i(L i∗(M)) ∈Db(coh(A )) implies L i∗(M) ∈Db(coh(S0))

since the functor i is evidently conservative. �
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Iterating the above argument we deduce the following corollary.

Corollary 5.15. There are semiorthogonal decompositions

D(AS,r,n)= 〈D(S0),D(S0), . . . ,D(S0)︸ ︷︷ ︸
n components

〉,

Db(coh(AS,r,n))= 〈Db(coh(S0)),Db(coh(S0)), . . . ,Db(coh(S0))︸ ︷︷ ︸
n components

〉.
�

Example 5.16. Let S= Spec k[t]/t2, r= tk[t]/t2, n= 2. Then S0 = Spec k, so the semiorthog-

onal decomposition is just an exceptional pair (E1, E2) generating the category. The cor-

responding exceptional objects are

E1 = (k ��0��
) and E2 = (k

0

��k
1

��
),

the simple module of the first vertex and the projective module of the second vertex,

respectively. The easiest way to check that the pair is exceptional is by using the projec-

tive resolution 0→ P2→ P1→ E1→ 0. �

5.5 Perfect and compact A -modules

We will say that a complex of A -modules is perfect if it is locally quasiisomorphic to

a finite complex of projective A -modules. All perfect complexes form a triangulated

subcategory of Db(coh(A )) which we denote by Dperf(A ).

Proposition 5.17. If S0 is smooth, then Db(coh(A ))=Dperf(A ). �

Proof. As we already observed, the embedding Dperf(A )⊂Db(coh(A )) is automatic. For

the opposite we use induction on n. For n= 1, the fact is well known. Now assume that

n> 1. Take any M ∈Db(coh(A )) and consider the triangle (46). In the proof of Proposi-

tion 5.14, we checked that e!(M) ∈Db(coh(A ′)) and L i∗(M) ∈Db(coh(S0)). Hence, by induc-

tion hypothesis both are perfect. On one hand, as it was observed in Remark 5.10 the

functor e takes projective A ′-modules to projective A -modules, hence e(e!(M)) is per-

fect. On the other hand, it follows that L i∗(M) is locally quasiisomorphic to a finite com-

plex of free OS0 -modules. So, it remains to check that i(OS0) is perfect.
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For this, we note that OS0
∼= L i∗(A ), hence the triangle (46) for M=A reads as

e(e!(A ))→A → i(OS0).

Its first vertex is perfect by the above argument and its second vertex is evidently per-

fect. Hence, the third vertex is perfect and we are done. �

It is also clear that every perfect complex of A -modules is a compact object of

D(A ) (the argument of Neeman [22, Example 1.13] can be easily adjusted to our situa-

tion). Therefore, the category D(A ) is compactly generated. Moreover, if S0 is smooth,

then one can also check that all compact objects are perfect.

Proposition 5.18. If S0 is smooth, then D(A )c =Dperf(A ). �

Proof. We will use induction on n. If n= 1, then D(A )=D(S)=D(S0) and the statement

follows from (5).

Assume n> 1. Let M be an arbitrary compact object in D(A ). By Lemma 2.10(2),

we know that L i∗(M) ∈D(S0)
c since the functor i commutes with arbitrary direct sums.

It follows that L i∗(M) ∈Db(coh(S0)), hence i(L i∗(M)) ∈Db(coh(A )). Thus, by Proposi-

tion 5.17,

i(L i∗(M)) ∈Dperf(A ).

In particular, i(L i∗(M)) is compact. Using triangle (46), we then conclude that e(e!(M))

is compact as well. Further, Lemma 2.10(1) shows that e!(M) ∈D(A ′)c since e is

fully faithful and commutes with direct sums, and hence by induction assump-

tion, e!(M) ∈D(A ′)perf. Again, it follows that e(e!(M)) ∈Db(coh(A )), and hence by

Proposition 5.17,

e(e!(M)) ∈Dperf(A ).

Looking again at triangle (46) we conclude that M is perfect. �

5.6 DG-enhancement

We have an analog of Theorem 3.11.
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Theorem 5.19. There is a pseudofunctor D : ASchop→ sDG extending the pseudofunctor

of Theorem 3.11, such that the diagram

ASchop
D

��

D ����
��

��
��

�
sDG

D����
��

��
��

Tria

is commutative. �

Proof. The proof is analogous to that of Theorem 3.11. We define

D(AS)⊂ h-flat-perf(A )/h-flat◦(A )

to be a small DG-subcategory such that [D(AS)]∼=Dperf(AS) and such that, for any mor-

phism of A -spaces f : (T,AT )→ (S,AS), we have f∗(D(AS))⊂D(AT ). This gives a DG-

functor f∗ : D(AS)→D(AT ). The commutativity of the diagram is proved by the argu-

ments of Theorem 3.11 and compatibility with the pseudofunctor on schemes is by

construction. �

The following observation is very important.

Theorem 5.20. If the scheme S0 is smooth, then the category D(A ) is a smooth DG-

category. If additionally S0 is proper, then the category D(A ) is proper. �

Proof. We use induction in n. The case n= 1 is evident as D(A )∼=D(S) in this case

and S= S0 is smooth. So we assume n> 1. By Proposition 4.10 and Proposition 4.14, the

semiorthogonal decomposition of Proposition 5.14 implies that the DG-category D(A )

is quasiequivalent to the gluing

D(A )∼=D(S0)×ϕ D(A ′)

for appropriate bimodule ϕ. Moreover, the categories D(S0) and D(A ′) are smooth (the

first by smoothness of S0 and the second by the induction hypothesis), and so, by Propo-

sition 4.9, we only have to check that the gluing bimodule ϕ is perfect.
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Note that the functor i : D(S0)→D(A ) commutes with direct sums, and hence

has a right adjoint functor i! : D(A )→D(S0). By Proposition 3.6, to check that ϕ is per-

fect it suffices to check that the functor Lϕ : D(A ′)→D(S0) preserves compactness. By

Proposition 4.6, this functor is isomorphic to the gluing functor i! ◦ e : D(A ′)→D(S0) of

the semiorthogonal decomposition. So, we need to check that the composition i! ◦ e pre-

serves compactness.

Since the functor i is fully faithful and commutes with direct sums, by

Lemma 2.10(1) this is equivalent to checking that the functor i ◦ i! ◦ e : D(A ′)→D(A ) pre-

serves compactness. Note that e preserves compactness by Lemma 2.10(2), since its right

adjoint e! commutes with direct sums. Hence it suffices to check that i ◦ i! : D(A )→D(A )

preserves compactness. Since an object in D(A ) is compact if and only if it is bounded

and coherent (by Propositions 5.17 and 5.18), and since the latter by definition is equiv-

alent to boundedness and coherence of its image under ResS, it is enough to check that,

for any compact N ∈D(A )c, one has ResS(i(i
!
(N))) ∈Db(coh(S)).

Note that ResS ◦ i ◦ i! is right adjoint to the functor i ◦ L i∗ ◦ LIndS : D(S)→D(A ),

which is given by M �→ (M
L⊗OS A )

L⊗A OS0
∼=M

L⊗OS OS0 . It follows immediately that the

functor ResS ◦ i ◦ i! is isomorphic to

ResS(i(i
!
(N)))=RH omA (OS0 , N).

It remains to note that, by Proposition 5.17, the sheaf OS0 considered as a right A -

module has a finite resolution by locally projective A -modules of finite rank, which

means that RHomA (OS0 , N) is bounded and coherent. And this is precisely what we

had to check. �

5.7 The resolution

Let us consider one very special morphism of A -spaces, namely the morphism of A -

spaces

(S, r,n)
ρS−→ (S,0,1)

induced by the identity morphism idS : S→ S of the scheme S. In the target we just take

the same underlying reducible scheme S as in the source, while the defining ideal is

taken to be 0 and the width is taken to be 1. Note that AS,0,1 =OS as was observed in

Remark 5.2. Consider the corresponding pullback functor ρ∗S : Qcoh(S)→Qcoh(AS) and

the corresponding pushforward functor ρS∗ : Qcoh(AS)→Qcoh(S). By definition (34), we
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have

ρ∗S(M)=M ⊗OS (ε1A ), ρS∗(N)= Nε1. (47)

Lemma 5.21. The functor ρ∗S is the left adjoint of ρS∗ and ρS∗ ◦ ρ∗S ∼= id. �

Proof. The adjunction is the particular case of Lemma 5.4. The composition of functors

is also easy to compute

ρS∗(ρ∗S(M))= (M ⊗OS (ε1A ))ε1 =M ⊗OS (ε1A ε1)=M ⊗OS OS =M,

so ρS∗ ◦ ρ∗S = id. �

Example 5.22. Let S= Spec k[t]/t2. Then ρ∗S(M)= (M �� M/tM
t

��
). Alternatively, it can

be written as ρ∗S(M)=M ⊗k[t]/t2 P1, where P1 = (k[t]/t2 ��k
t

��
) is the projective module of

the first vertex of the quiver. �

In the same way as general pullback functors do, the functor ρ∗S extends to a

DG-functor ρ∗S : D(S)→D(AS) as well as to a triangulated functor on derived categories

Lρ∗S : D(S)→D(AS). The functor ρS∗ is exact by (47) and so automatically descends to

a functor on derived categories ρS∗ : D(AS)→D(S). The adjunction between ρ∗S and ρS∗
induces an adjunction between Lρ∗S and ρS∗ and isomorphism of Lemma 5.21 gives an

isomorphism

ρS∗ ◦ Lρ∗S ∼= idD(S). (48)

The following result now easily follows.

Theorem 5.23. If the scheme S0 is smooth, then

(1) the functor ρ∗S : D(S)→D(AS) is a categorical DG-resolution;

(2) the functor Lρ∗S : D(S)→D(AS) is a categorical resolution.

In particular, the functor ρS∗ takes Db(coh(AS)) to Db(coh(S)). Finally, if S0 is proper, then

so is the category D(AS). �

Proof. The category D(AS) is smooth by Theorem 5.20. Moreover, by (48) the functor

Lρ∗S is fully faithful, hence ρ∗S is quasi-fully faithful. So, part (1) follows.
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By Proposition 3.13 to deduce part (2) we only have to check that the functor ρS∗
takes [D(AS)]=D(AS)

perf to Db(coh(S)). By Proposition 5.17, D(AS)
perf =Db(coh(AS)) and

by Lemma 5.8 we have ρS∗(Db(coh(AS))⊂Db(coh(S)), which completes the proof.

Finally, the properness of D(AS) is also proved in Theorem 5.20. �

We will also need one more observation. Assume that f : (T, rT ,nT )→ (S, rS,nS)

is a morphism of A -spaces. Then, we have a commutative diagram

(T, rT ,nT )

f

��

ρT

�� (T,0,1)

f

��

(S, rS,nS)

ρS

�� (S,0,1)

of morphisms of A -spaces which includes the resolution morphisms ρS and ρT .

Lemma 5.24. There is an isomorphism of DG-functors f∗ρ∗S ∼= ρ∗T f∗ : D(S)→D(AT ). �

Proof. The proof follows from Lemma 5.5. �

6 A Categorical Resolution of a Scheme

Let Y be a separated scheme of finite type over k. Let f : X→Y be a blowup of a smooth

subvariety Z ⊂Y. We consider an appropriate thickening S of Z in Y and construct a par-

tial categorical DG-resolution of D(Y) by gluing D(A ) (the DG-resolution of the scheme

S constructed in Section 5) with D(X). Then, we use an inductive procedure to combine

such partial resolutions into a categorical DG-resolution of D(Y).

6.1 Nonrational locus

For a morphism f : X→Y of schemes and a subscheme S⊂Y we denote by f−1(S) the

scheme-theoretic preimage of S. By definition f−1(S) is the subscheme of X defined by

the ideal f−1 IS ·OX, where IS ⊂OY is the ideal of S.

If f : X→Y is a proper morphism of (possibly nonreduced and reducible)

schemes, we say that f is birational if, for any irreducible component Y′ ⊂Y, the scheme-

theoretic preimage X′ := f−1(Y′) is irreducible and the restriction of f , X′red→Y′red is

birational.
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Definition 6.1. Let f : X→Y be a proper birational morphism. A subscheme S⊂Y is

called a nonrational locus of Y with respect to f if the canonical morphism

IS→ Rf∗(I f−1(S))

is an isomorphism. �

Remark 6.2. It is easy to see that if Y is integral and f : X→Y is a resolution of sin-

gularities, then the empty subscheme is a nonrational locus for f : X→Y if and only

if Y has rational singularities. Thus, if S is a nonrational locus for f : X→Y and X is

smooth, then Y \ S has rational singularities. This justifies the name. �

The following lemma shows that a nonrational locus exists in a pretty large

generality.

Lemma 6.3. Assume f : X→Y is a blowup of a sheaf of ideals I on Y. Then, for n� 0

the subscheme of Y corresponding to the ideal I n is a nonrational locus with respect

to f . �

Proof. Recall that X is the projective spectrum of the sheaf of graded algebras ⊕∞k=0 I k

on Y. Further, it is clear that the graded sheaf of modules corresponding to the sheaf

f−1 I n ·OX is ⊕∞k=0 I k+n, which is nothing but the line bundle OX/Y(n). On the other hand,

for n� 0 we have Rf∗OX/Y(n)= I n; see, for example, [12, Ex. II.5.9]. �

Consider the Cartesian square

X

f

��

T
j

��

p

��

Y S
i

��

(49)

where S is a subscheme of Y, T = f−1(S) is its scheme-theoretic preimage, i and j are the

closed embeddings, and p is the restriction of f to T .

Lemma 6.4. If S is a nonrational locus for the morphism f and T = f−1(S) is its scheme-

theoretic preimage, then there is a distinguished triangle in D(Y)

OY→ Rf∗OX ⊕ i∗OS→ Rf∗ j∗OT . (50)
�

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Categorical Resolutions of Irrational Singularities 4597

Proof. We have a commutative diagram

i∗OS[−1]

��

��

��

IS
�� OY

��

��

i∗OS

��

Rf∗ j∗OT [−1] �� Rf∗ IT �� Rf∗OX �� Rf∗ j∗OT

with rows being distinguished triangles. It follows that the dotted arrow is zero. Extend-

ing the commutative square marked with � to the diagram of the octahedron axiom

i∗OS[−1]

�

�� IS

��

�� OY

��

i∗OS[−1]
0

�� Rf∗OX ��

��

Rf∗OX ⊕ i∗OS

��

Rf∗ j∗OT Rf∗ j∗OT

we see the required triangle (50) as its right column. �

6.2 The naive gluing

Let f : X→Y be a blowup with smooth center Z ⊂Y. Let I = IZ and let S be a nonrational

locus for f such that IS = I n (such n exists by Lemma 6.3). Let T be the scheme-theoretic

preimage of S and consider the diagram (49). This diagram allows one to define a glu-

ing of D(S) with D(X) by using D(T) to construct the gluing DG-bimodule. To be more

precise, we define a DG-bimodule ϕ0 ∈D(X)op ⊗D(S)-dgm by

ϕ0(G X,GS)=HomD(T)(p
∗GS, j∗GT ) (51)

with the bimodule structure given by DG-functors j∗ and p∗, and consider the gluing

D0 :=D(S)×ϕ0 D(X).

The key observation is that D0 provides a partial categorical DG-resolution of D(Y) as

soon as S is a nonrational locus for f . Thus, adding the category of a nonrational locus

to the category of the blowup allows one to cure nonrationality of the singularity.

Indeed, let us construct a DG-functor from D(Y) to D0. Let

t= f ◦ j = i ◦ p : T→Y
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and note that, for any F ∈D(Y), we have

ϕ0( f∗F, i∗F )=HomD(T)(p
∗i∗F, j∗ f∗F )=HomD(T)(t

∗F, t∗F ).

This allows one to define

μF := 1t∗F ∈HomD(T)(t
∗F, t∗F )= ϕ0( f∗F, i∗F ). (52)

By construction μF is closed of degree zero, so (i∗F, f∗F, μF ) is a well-defined object of

the gluing D0. Moreover, it is clear that

π0(F ) := (i∗F, f∗F, μF ) (53)

is a well-defined DG-functor π0 : D(Y)→D0. We denote by π∗0 its extension to derived

categories:

π∗0 = LIndπ0 : D(Y)→D(D0).

Proposition 6.5. The functor π∗0 : D(Y)→D(D0) is fully faithful. �

Proof. By Proposition 3.9, it suffices to check that π0 is quasi-fully faithful. According

to Remark 4.1, we have a distinguished triangle

HomD0(π0(F ), π0(G))−−−→
HomD(S)(i∗F, i∗G)

⊕
HomD(X)( f∗F, f∗G)

−μG−−−→
μF

ϕ0( f∗G, i∗F ).

Since the DG-bimodule structure on ϕ0 is given by the pullback functors p∗ and j∗,

respectively, and since the elements μF and μG are given by the units, we can rewrite

this triangle as

HomD0(π0(F ), π0(G))−−−→
HomD(S)(i∗F, i∗G)

⊕
HomD(X)( f∗F, f∗G)

−p∗−−−→
j∗

HomD(T)(t
∗F, t∗G).

Note that the composition of the first arrow of this triangle with the action of the

DG-functor π0 : HomD(Y)(F,G)→HomD0(π0(F ), π0(G)) is given by DG-functors i∗ and f∗,

and so, to prove that π0 is quasi-fully faithful, it is enough to check that the following
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triangle:

HomD(Y)(F,G)
i∗−−→
f∗

HomD(S)(i∗F, i∗G)

⊕
HomD(X)( f∗F, f∗G)

−p∗−−−→
j∗

HomD(T)(t
∗F, t∗G) (54)

is distinguished.

For this, we identify the vertices of the triangle in terms of Y. Indeed, these

vertices compute Ext groups in the derived categories Ext•D(Y)(F,G), Ext•D(S)(Li∗F, Li∗G),

Ext•D(X)(L f∗F, L f∗G), and Ext•D(T)(Lt∗F, Lt∗G)∼=Ext•D(T)(L j∗L f∗F, L j∗L f∗G), respectively.

Using the pullback–pushforward adjunctions and the projection formula, we rewrite

Ext•D(S)(Li∗F, Li∗G)∼=Ext•D(Y)(F, i∗Li∗G)∼=Ext•D(Y)(F,G
L⊗ i∗OS)

for the first summand of the second vertex,

Ext•D(X)(L f∗F, L f∗G)∼=Ext•D(Y)(F, Rf∗L f∗G)∼=Ext•D(Y)(F,G
L⊗ Rf∗OX),

for the second summand of the second vertex, and

Ext•D(T)(L j∗L f∗F, L j∗L f∗G)∼=Ext•D(Y)(F, Rf∗ j∗L j∗L f∗G)∼=Ext•D(Y)(F,G
L⊗ Rf∗ j∗OT )

for the third vertex. It is clear that the morphism from the first vertex of (54) to the

summands of the second correspond under above isomorphisms to the maps obtained

by tensoring morphisms OY→ i∗OS and OY→ Rf∗OX with G and applying Ext•D(Y)(F,−).
Analogously, the morphisms from the summands of the second vertex to the third are

obtained by the tensoring morphisms i∗OS→ i∗Rp∗OT = Rf∗ j∗OT and Rf∗OX→ Rf∗ j∗OT

with G and applying Ext•D(Y)(F,−). Therefore the whole triangle (54) is obtained by ten-

soring with G the triangle

OY→ i∗OS ⊕ Rf∗OX→ Rf∗ j∗OT

and applying Ext•D(Y)(F,−). The above triangle is distinguished by Lemma 6.4, which

implies that the triangle (54) is distinguished as well. �

Note that, by Brown representability, the functor π∗0 has a right adjoint which

we denote by
π0∗ =Resπ0 : D(D0)→D(Y).

Recall that the derived category D(D0) of the gluing D0 has a semiorthogonal decompo-

sition D(D0)= 〈D(S),D(X)〉; see Section 4.3. In particular, we have embedding functors
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I1 : D(S)→D(D0) and I2 : D(X)→D(D0) commuting with arbitrary direct sums. We will

implicitly identify the categories D(S) and D(X) with their images in D(D0).

Proposition 6.6. The functor π0∗ restricted to D(S)⊂D(D0) is isomorphic to the push-

forward i∗ : D(S)→D(Y). The functor π0∗ restricted to D(X)⊂D(D0) is isomorphic to

the composition Rf∗(−
L⊗ IT ) : D(X)→D(Y). In particular, π0∗ takes both Db(coh(S)) and

Db(coh(X)) to Db(coh(Y)). �

Proof. The functor π0∗ =Resπ0 commutes with arbitrary direct sums by Proposition 3.9.

The same is true for the embedding functors D(S)→D(D0) and D(X)→D(D0). Hence, the

restrictions of the functor π0∗ onto D(S) and D(X) commute with arbitrary direct sums.

By [27, Theorem 7.2.], it is enough to prove the claim only for objects of subcategories

[D(S)]⊂D(S) and [D(X)]⊂D(X), respectively.

So, take arbitrary F ∈D(Y) and GS ∈D(S). Since π0∗ is the right adjoint

of π∗0 which coincides with π0 on D(Y), we have HomD(Y)(F, π0∗(GS,0,0))∼=
HomD(D0)(π0 F, (GS,0,0)), which is just the cohomology of the complex

HomD0(π0(F ), (GS,0,0))=HomD0((i
∗F, f∗F, μF ), (GS,0,0))=HomD(S)(i

∗F,GS),

which is nothing but HomD(S)(Li∗F,GS)∼=HomD(Y)(F, i∗GS), which proves the first claim.

Now let G X ∈D(X). Then HomD(Y)(F, π0∗(0,G X,0))∼=HomD(D0)(π0 F, (0,G X,0)),

which is just the cohomology of the complex HomD0(π0(F ), (0,G X,0)), which by

Remark 4.1 fits into a distinguished triangle

HomD0(π0(F ), (0,G X,0))−→HomD(X)( f∗F,G X)
μF−−→ ϕ0(G X, i

∗F ).

Further, the argument goes along the lines of that of Proposition 6.5. First, we rewrite

the triangle as

HomD0(π0(F ), (0,G X,0))−→HomD(X)( f∗F,G X)
j∗−→HomD(T)( j∗ f∗F, j∗G X). (55)

Further, we identify the second vertex with Ext•D(X)(L f∗F,G X)∼=Ext•D(Y)(F, Rf∗G X), the

third vertex with

Ext•D(T)(L j∗L f∗F, L j∗G X)∼=Ext•D(Y)(F, Rf∗ j∗L j∗G X)∼=Ext•D(Y)(F, Rf∗(G X
L⊗ j∗OT )),

and the map between them with the map obtained by tensoring morphism OX→ j∗OT

with G X and applying Ext•D(Y)(F, Rf∗(−)). Looking at the triangle

IT→OX→ j∗OT ,
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we see that the first term of (55) is quasiisomorphic to Ext•D(Y)(F, Rf∗(G X
L⊗ IT )), which

proves the second claim of the Proposition.

For the last claim note that the functors i∗ and Rf∗ preserve boundedness and

coherence since the morphisms i and f are proper, and the same is true for the functor

− L⊗ IT because IT
∼=OX/Y(n) is a line bundle. �

We know by Proposition 6.5 that D0 is a partial categorical DG-resolution of

D(Y). It is not a resolution yet since both components D(S) and D(X) of D0 are not

smooth in general. Of course we can resolve D(S) by appropriate Auslander algebra AS

as discussed in Section 5 and we can apply the induction to resolve D(X) by appropriate

smooth DG-category D ′. Then, we can apply the regluing procedure to obtain a (partial)

resolution of D(Y) by D(AS)×ϕ̃0 D ′, and to check that it is smooth, we will have to check

that the induced bimodule ϕ̃0 is perfect. It turns out, however, that this is not the case.

The reason for this is that the pullback functor Lρ∗S : D(S)→D(AS) does not preserve

boundedness (for details one can see the proof of Theorem 6.12). So, to get rid of this

problem, we replace the naive gluing D0 =D(S)×ϕ0 D(X) with the gluing of D(AS) and

D(X), which is not the regluing of D0 (see Remark 6.10).

6.3 The gluing which works

Again, let f : X→Y be a blowup with smooth center Z ⊂Y, I = IZ , and let S be a nonra-

tional locus for f such that IS = I n.

Consider also the ideal J = f−1 I ·OX. Then, by definition of the blowup this is

an invertible sheaf of ideals, J =OX/Y(1), and IT =J n, where T = f−1(S). We also put

rT =J /J n and nT =nS =n. Then the morphism p : T→ S gives a morphism (T, rT ,n)→
(S, rS,n) of A -spaces, which we denote by p̄. So, we have a commutative diagram

X

f

��

T
j

��

p

��

(T,AT )

ρT

��

p̄

��

Y S
i

�� (S,AS)

ρS

��

(56)

of A -spaces. Now, we replace D(S) by D(AS) and D(T) by D(AT ) in the construction of

the previous section and show that the corresponding gluing works.
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Explicitly, we define the gluing DG-bimodule ϕ ∈D(X)op ⊗D(AS)-dgm as

ϕ(G X,GS) :=HomD(AT )( p̄
∗GS, ρ

∗
T j∗G X) (57)

for all GS ∈D(AS), G X ∈D(X). Consider DG-functor τ1 := ρS : D(S)→D(AS) defined in

Section 5.7 and the identity DG-functor τ2 := id : D(X)→D(X).

Lemma 6.7. The bimodules ϕ0 ∈D(X)op ⊗D(S)-dgm and ϕ ∈D(X)op ⊗D(AS)-dgm are

compatible in the sense of Section 4.6. �

Proof. Indeed,

ϕ(G X, ρ
∗
SGS)=HomD(AT )( p̄

∗ρ∗SGS, ρ
∗
T j∗G X)∼=HomD(AT )(ρ

∗
T p∗GS, ρ

∗
T j∗G X)

∼=HomD(T)(p
∗GS, j∗G X)= ϕ0(G X,GS),

the first is the definition of ϕ, the second is the commutativity of the right square of (56),

the third is quasi full-faithfulness of ρ∗T , and the fourth is the definition of ϕ0. �

Consider the gluing DG-category

D =D(AS)×ϕ D(X). (58)

By Proposition 4.11, we have a quasi-fully faithful DG-functor τ : D0→D which takes

(GS,G X, μ) to (ρ∗S(GS),G X, c(μ)), where c is the quasiisomorphism of Lemma 6.7. Com-

posing it with the DG-functor π0 : D(Y)→D0, we obtain a DG-functor

π = τ ◦ π0 : D(Y)→D, π(F )= (ρ∗Si∗F, f∗F, c(μF )).

Theorem 6.8. Let f : X→Y be the blowing up of an ideal I and S be the subscheme

of Y defined by a power of the ideal I which is a nonrational locus for f . Then, the

DG-functor π : D(Y)→D =D(AS)×ϕ D(X) is a partial categorical DG-resolution of sin-

gularities. Moreover, the functor π∗ =Resπ : D(D)→D(Y) takes both Db(coh(AS)) and

Db(coh(X)) to Db(coh(Y)). �

Proof. The DG-functor π is a composition of the DG-functor π0 which is quasi-fully

faithful by Proposition 6.5 and of the DG-functor τ : D0→D which is quasi-fully faith-

ful by Proposition 4.11. Hence, π is quasi-fully faithful, and so it is a partial categorical

DG-resolution. Further, the functor Resπ is isomorphic to the composition Resπ0 ◦ Resτ .
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By Proposition 4.11(d), the functor Resτ on the component D(AS) equals ρS∗, hence

takes Db(coh(AS)) to Db(coh(S)) by Theorem 5.23. Similarly, by Proposition 4.11(e) (see

also Remark 4.12) the functor Resτ on the component D(X) is the identity. By Proposi-

tion 6.6, the functor Resπ0 takes both Db(coh(S)) and Db(coh(X)) to Db(coh(Y)), so the

claim follows. �

The following property of the gluing bimodule ϕ is crucial.

Lemma 6.9. The functor Lϕ : D(X)→D(AS) takes Db(coh(X)) to Db(coh(AS)). �

Proof. By definition (13), the functor Lϕ is the functor of derived tensor product over

D(X) with ϕ. On the other hand, by (57) we have ϕ = ρ∗T j∗D(AT ) p̄∗ , the restriction of the

diagonal bimodule over D(AT ). Hence

Lϕ(M)=M
L⊗D(X) ϕ =M

L⊗D(X) ρ∗T j∗D(AT ) p̄∗ =Res p̄∗(LIndρ∗T j∗(M)).

The derived induction functor LIndρ∗T j∗ is isomorphic to the composition of the derived

pullback functors Lρ∗T L j∗ by Theorem 5.19. The restriction functor Res p̄∗ is right adjoint

to the derived induction functor LInd p̄∗ , which by the same theorem is isomorphic to

L p̄∗. Hence Res p̄∗ ∼= Rp̄∗. Thus,

Lϕ ∼= Rp̄∗ ◦ Lρ∗T ◦ L j∗ : D(X)→D(AS).

The composition of functors Lρ∗T ◦ L j∗ is given by F �→ F
L⊗OX AT . Note that all ideals

J k⊂OX are invertible, hence all the components J k/J l of the sheaf of algebras AT are

perfect OX-modules. Therefore, the functor Lρ∗T ◦ L j∗ preserves both boundedness and

coherence of sheaves. On the other hand, the functor Rp̄∗ preserves boundedness and

coherence by Lemma 5.8. The lemma follows. �

Remark 6.10. Now, it is already clear that the gluing D is not the regluing of D0. Indeed,

if it were so, then we would have an isomorphism Lϕ ∼= Lρ∗S ◦ Lϕ0. But it is easy to find

an object M ∈Db(coh(X)) such that Lϕ0(M) is not perfect and its pullback under Lρ∗S is

unbounded. �

6.4 The inductive construction of a categorical DG-resolution

Now, finally we are ready to prove the main result of the paper, Theorem 1.4.
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We start with a separated scheme Y of finite type over a field k of characteristic

0 [5, Theorem 1.1]. By [4, Theorem 1.6], there exists a chain

Ym
�� Ym−1 �� · · · �� Y1

�� Y0 Y

Zm−1

��

		

Z1

��

		

Z0

��

		

(59)

of blowups with smooth centers Zi such that (Ym)red is smooth. Indeed, the following

lemma shows that the usual resolution of the reduced part of Y by a chain of smooth

blowups does the job.

Lemma 6.11. Let Y be a possibly nonreduced scheme and Z ⊂Yred be a smooth sub-

scheme of its reduced part. Then (BLZ Y)red =BLZ (Yred), the reduced part of the blowup

equals the blowup of the reduced part. �

Proof. The claim is local with respect to Y, so we can assume that Y= Spec R is affine.

Let I ⊂ R be the ideal of Z and let r⊂ R be the nilpotent radical of R. By assumption r⊂ I .

By definition of a blowup we have BLZ Y= Proj (⊕I k). On the other hand, the ideal of Z

on Yred = Spec (R/r) is I/r, hence BLZ (Yred)= Proj (⊕I k/(I k ∩ r)). The natural epimorphism

of graded algebras

⊕I k−→⊕I k/(I k ∩ r)

shows that the blowup BLZ (Yred) is a closed reduced subscheme of BLZ (Y). Its ideal is

given by ⊕(I k ∩ r), hence is nilpotent. But a reduced subscheme with nilpotent ideal is

nothing but the reduced part of the scheme, hence the claim. �

As we already know by Theorem 6.8 one can construct a partial categorical DG-

resolution of D(Y) by appropriate gluing of D(Y1) with D(AS), where S is an appro-

priate thickening of Z0. Moreover, the component D(AS) of this gluing is smooth by

Theorem 5.23 and one can also check that the gluing bimodule is perfect. So, all nons-

moothness of the gluing comes from nonsmoothness of the scheme Y1. Thus, to obtain

a resolution, we only have to replace (by using the regluing procedure) the component

D(Y1) by its categorical resolution. This shows that one can use induction to construct

the resolution. In fact, it turns out that technically it is much more convenient to include

in the induction hypotheses some properties of the resolution as well. So, we state the

following theorem.
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Theorem 6.12. There is a small pretriangulated DG-category D glued from several

copies of D(Ym) and several copies of D(Zi) for 0≤ i ≤m− 1, and a DG-functor π :

D(Y)→D such that

(1) D is a categorical DG-resolution of D(Y);

(2) the functor π∗ =Resπ : D(D)→D(Y) takes [D ]=D(D)c to Db(coh(Y));

(3) if Y is proper, then so is D . �

Proof. We fix a chain of blowups (59) and use induction on m. If m= 0, then the scheme

Yred is smooth, so D =D(AY) with π = ρY provide a categorical DG-resolution of D(Y) by

Theorem 5.23 and, moreover, the properties (2) and (3) are satisfied.

Assume that m> 0. In this case, we let X =Y1, Z = Z0 and denote the blowup map

by f : X→Y. Since f is a blowup of a subscheme Z ⊂Y, by Lemma 6.3 an appropriate

infinitesimal neighborhood S of Z (i.e., the subscheme given by the ideal I n
Z for some

n, where IZ ⊂OY is the ideal of Z ) is a nonrational locus for f . Therefore, Theorem 6.8

applies and we have a partial categorical DG-resolution which we denote here by

π1 : D(Y)→D(AS)×ϕ D(X)

with bimodule ϕ defined by (57). Since the scheme X =Y1 can be resolved by m− 1

smooth blowups, the induction applies; hence we have a categorical DG-resolution

τ2 : D(X)→D2.

Taking τ1 = id : D(AS)→D(AS) and applying the regluing procedure (see Section 4.6), we

obtain a partial categorical DG-resolution

τ : D(AS)×ϕ D(X)→D(AS)×ϕ̃ D2 (60)

for appropriate bimodule ϕ̃. By Lemma 3.12, the composition

π = τ ◦ π1 : D(Y)→D :=D(AS)×ϕ̃ D2

is a partial categorical DG-resolution, so the only thing to check for part (1) is that the

category D is smooth.

For this, we note that D2 is smooth by part (1) of the induction hypothesis and

D(AS) is smooth by Theorem 5.23. So, by Proposition 4.9 it remains to check that the

bimodule ϕ̃ is perfect. For this, we use Proposition 3.6. Since D2 is smooth, it suffices
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4606 A. Kuznetsov and V. A. Lunts

to check that the functor Lϕ̃ : D(D2)→D(AS) induced by the bimodule ϕ̃ takes [D2] to

D(AS)
c, which by Propositions 5.18 and 5.17 is Db(coh(AS)). For this, we note that, by

Proposition 4.13, this functor is isomorphic to the composition

D(D2)
Resτ2−−−−→D(X)

Lϕ−−→D(AS).

The functor Resτ2 takes [D2] to Db(coh(X)) by part (2) of the induction hypothesis and the

functor Lϕ takes Db(coh(X)) to Db(coh(AS)) by Lemma 6.9. Thus, we have proved part (1).

Further, we have to check that the pushforward functor Resπ : D(D)→D(Y) takes

[D ] to Db(coh(Y)). Since each object of [D ] sits in a triangle with the other vertices in

D(AS) and [D2], it suffices to check the statement for those. Let F ∈ [D(AS)]. By Proposi-

tion 4.13(b), we have Resτ (F )=Resτ1(F )= F since τ1 = id, hence

Resπ (F )=Resπ1(Resτ (F ))=Resπ1(F ) ∈Db(coh(Y))

by Proposition 6.6. On the other hand, let F ∈ [D2]. Then, again by Proposition 4.13(b),

we have Resτ (F )=Resτ2(F ) and this is in Db(coh(X)) by the induction hypothesis. Then

Resπ (F )=Resπ1(Resτ2(F )) is in Db(coh(Y)) again by Proposition 6.6. This completes

part (2).

Finally, we have to check that D is proper as soon as Y is. For this, we note

that the first center Z0 and the first blowup X =Y1 are both proper. Hence, by induction

hypothesis the resolution D2 of D(X) is proper. On the other hand, the category D(AS)

is proper by Theorem 5.23. So, as we have already seen that the gluing bimodule ϕ̃ is

perfect, Proposition 4.9 applies and we conclude that D is proper. �

Now, we are ready to prove Theorem 1.4. Indeed, we take T =D(D) and apply

Theorem 6.12 together with Proposition 3.13. The semiorthogonal decompositions of T

and T c are given by (iterations of) Corollary 4.5 and Proposition 4.6:

D(D)= 〈D(Z0), . . . ,D(Z0)︸ ︷︷ ︸
n0 times

, . . . ,D(Zm−1), . . . ,D(Zm−1)︸ ︷︷ ︸
nm−1 times

,D((Ym)red), . . . ,D((Ym)red)︸ ︷︷ ︸
nm times

〉,

D(D)c = 〈Db(coh(Z0)), . . . ,Db(coh(Z0))︸ ︷︷ ︸
n0 times

, . . . ,

Db(coh(Zm−1)), . . . ,Db(coh(Zm−1))︸ ︷︷ ︸
nm−1 times

,
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Db(coh((Ym)red)), . . . ,Db(coh((Ym)red))︸ ︷︷ ︸
nm times

, 〉. (61)

Here, ni for 0≤ i ≤m− 1 denotes the power of the ideal IZi which gives ISi , the ideal of

the nonrational locus at step i, and nm stands for the nilpotence degree of the nilradical

of the scheme Ym.

6.5 Properties of the resolution

In this section, we discuss some properties of the categorical resolution constructed

above.

For each open subset U ⊂Y we consider the DG-resolution of U obtained by a

base change from the diagram (59). To be more precise, we define U0 =U and Uk+1 to

be the blowup of Uk with center ZU
k :=Uk ∩ Zk. Moreover, for each step we choose as

a nonrational locus for this blowup the subscheme SU
k :=Uk ∩ Sk. We denote by DU the

obtained categorical DG-resolution of D(U ).

Proposition 6.13. The association U �→DU defines a presheaf of DG-categories on Y. �

Proof. The proof is evident. �

Remark 6.14. One can check that DU is quasiequivalent to the Drinfeld quotient of

D by the subcategory generated by all objects in the components D(Zk) of D which

are cohomologically supported on Zk \ ZU
k as well as by all objects in D(Ym) which are

cohomologically supported on Ym \Um. �

Note that, for U sufficiently small (contained in the complement of the union

of images of all Zk in Y), we have DU
∼=D(U ). Thus, the constructed resolution is

“birational”.

Proposition 6.15. Let g : Y→Y be an automorphism that preserves the resolution (59).

Then there is a autoequivalence g∗ : D→D which preserves the semiorthogonal decom-

positions (61) of D(D) and D(D)c and on each component of these decompositions is com-

patible with the pullback functor induced by the restriction of g onto the corresponding

scheme Zi or Ym. Moreover, the quasiautoequivalence g∗ extends to a quasiautoequiva-

lence of the presheaf DU . �
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Proof. The proof is straightforward. Here it is important to use the functorial version

of the the resolution of singularities, see [5, Theorem 1.1] �
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Appendix 1. More on Gluings

In this Appendix, we show that the operation of gluing described in Section 4 is compat-

ible with tensor products of DG-categories, and provide a description of quasifunctors

to and from the gluing. We use freely the notation from Section 4.

A.1 The gluing and tensor products

First, we observe that the opposite DG-category of the gluing is itself obtained by a

gluing. For this, note that

(D
op
2 ⊗D1)-dgm= ((Dop

1 )op ⊗ (D2)
op)-dgm,

thus any bimodule ϕ ∈ (Dop
2 ⊗D1)-dgm can be also used for the gluing of D

op
2 with D

op
1 .

Lemma A.1. One has a DG-equivalence (D1 ×ϕ D2)
op ∼=D

op
2 ×ϕ D

op
1 . �

Proof. The objects and the Hom-complexes are the same by definition. �

Let C be a small DG-category. Consider the bimodule

ϕ̄ := C ⊗k ϕ ∈ (Cop ⊗ C ⊗D
op
2 ⊗D1)-dgm= ((C ⊗D2)

op ⊗ (C ⊗D1))-dgm.

We can use it to form the gluing (C ⊗D1)×ϕ̄ (C ⊗D2).

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Categorical Resolutions of Irrational Singularities 4609

Proposition A.2. There is an equivalence of categories

D(C ⊗ (D1 ×ϕ D2))∼=D((C ⊗D1)×ϕ̄ (C ⊗D2)).

�

Proof. Consider a DG-functor Δ : C ⊗ (D1 ×ϕ D2)→ (C ⊗D1)×ϕ̄ (C ⊗D2) defined by

C ⊗ (M1,M2, μ) �→ (C ⊗ M1,C ⊗ M2,1C ⊗ μ).

Note that

Hom(C⊗D1)×ϕ̄ (C⊗D2)((C ⊗ M1,C ⊗ M2,1C ⊗ μ), (D ⊗ N1, D ⊗ N2,1D ⊗ ν))

=HomC⊗D1(C ⊗ M1, D ⊗ N1)⊕HomC⊗D2(C ⊗ M2, D ⊗ N2)⊕ ϕ̄(D ⊗ N2,C ⊗ M1)

=HomC(C , D)⊗ (HomD1(M1, N1)⊕HomD2(M2, N2)⊕ ϕ(N2,M1))

=HomC⊗(D1×ϕD2)(C ⊗ (M1,M2, μ), D ⊗ (N1, N2, ν)),

which means that the functor Δ is fully faithful.

By Proposition 3.9, the DG-functor Δ extends to a fully faithful triangulated

functor LIndΔ : D(C ⊗ (D1 ×ϕ D2))→D((C ⊗D1)×ϕ̄ (C ⊗D2)) which has a right adjoint.

Thus, it remains to check that the orthogonal in D((C ⊗D1)×ϕ̄ (C ⊗D2)) to the image of

LIndΔ is zero. For this, it suffices to check that any representable ((C ⊗D1)×ϕ̄ (C ⊗D2))-

module is contained in the triangulated category generated by the image of LIndΔ.

To check this, take any object (C1 ⊗ M1,C2 ⊗ M2, μ̄) ∈ (C ⊗D1)×ϕ̄ (C ⊗D2). The

canonical triangle (27) then shows that

(C1 ⊗ M1,C2 ⊗ M2, μ̄)∼=Cone((C1 ⊗ M1,0,0)[−1]
μ̄−→ (0,C2 ⊗ M2,0)).

Since both (C1 ⊗ M1,0,0)=Δ(C1 ⊗ (M1,0,0)) and (0,C2 ⊗ M2,0)=Δ(C2 ⊗ (0,M2,0)) are

in the image of the functor LIndΔ, the result follows. �

Remark A.3. In fact, the above argument shows also that the pretriangulated envelope

of the DG-category C ⊗ (D1 ×ϕ D2) is quasiequivalent to the pretriangulated envelope of

(C ⊗D1)×ϕ̄ (C ⊗D2). �

Corollary A.4. We have a semiorthogonal decomposition

D(C ⊗ (D1 ×ϕ D2))= 〈D(C ⊗D1),D(C ⊗D2)〉

with the gluing functor equal to − L⊗D2 ϕ : D(C ⊗D2)→D(C ⊗D1). �
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Proof. The semiorthogonal decomposition follows from the combination of Proposi-

tion A.2 and Proposition 4.6. By Proposition 4.6, the gluing functor is isomorphic to

− L⊗C⊗D2 ϕ̄. But since ϕ̄ = C ⊗k ϕ, this is isomorphic to − L⊗D2 ϕ. �

Combining this Corollary with Proposition 4.10, one easily deduces the following

corollary.

Corollary A.5. Assume that D is a small pretriangulated DG-category with a

semiorthogonal decomposition [D ]= 〈T1,T2〉. Then, for any small DG-category C there

are semiorthogonal decompositions

D(C ⊗D)= 〈D(C ⊗D1),D(C ⊗D2)〉, Perf(C ⊗D)= 〈Perf(C ⊗D1),Perf(C ⊗D2)〉,

where D1 and D2 are, respectively, the enhancements of T1 and T2 induced by D , and

Perf stands for the homotopy category of perfect DG-modules. �

A.2 Quasifunctors to and from the gluing

One can describe the category of quasifunctors to and from the gluing.

Definition A.6. A DG-bimodule ϕ ∈ (Dop
1 ⊗D2)-dgm is right quasirepresentable (also

called a quasifunctor) if, for any X1 ∈D1, the right D2-module ϕ(X1,−) is quasiisomor-

phic to a representable DG-module. �

Proposition A.7.

(i) To give a quasifunctor α : C→D1 ×ϕ D2 is equivalent to giving a quasifunctor

α1 : C→D1, a quasifunctor α2 : C→D2, and a morphism from α1 to ϕ ◦ α2 in

the derived category D(Cop ⊗D1).

(ii) If C is pretriangulated and ϕ is a quasifunctor, then to give a quasifunctor

β : D1 ×ϕ D2→ C is equivalent to giving a quasifunctor β1 : D1→ C, a quasi-

functor β2 : D2→ C, and a morphism from β2 to β1 ◦ ϕ in the derived category

D(Dop
2 ⊗ C). �

Proof. (i) We apply Proposition A.2 with Cop instead of C. By Lemma 2.5, to give an

object α ∈D(Cop ⊗D) is equivalent to giving its components α1 = I ∗1α ∈D(Cop ⊗D1) and

α2 = I !
2α ∈D(Cop ⊗D2) and a morphism α1→ α2

L⊗D2 ϕ = ϕ ◦ α2. Thus, we only have to
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check that α is a quasifunctor if and only if both its components α1 ∈D(Cop ⊗D1) and

α2 ∈D(Cop ⊗D2) are. Substituting C into distinguished triangle

I2α2→ α→ I1α1,

we obtain a distinguished triangle

(I2α2)(C ,−)→ α(C ,−)→ (I1α1)(C ,−).

Note also that

(Ikαk)(C ,−)= (αk
L⊗Dk ikD)(C ,−)= αk(C ,−)

L⊗Dk D(ik(−),−)∼= Ik(αk(C ,−)).

Thus, αk(C ,−) ∈D(Dk)⊂D(D) are just the components of α(C ,−) with respect to the

semiorthogonal decomposition D(D)= 〈D(D1),D(D2)〉.
Now assume that α is a quasifunctor, so α(C ,−)∼=Y(M1,M2,μ). By the above argu-

ment αk(C ,−) ∈D(Dk) are just the components of Y(M1,M2,μ) in D(Dk). The latter are evi-

dently given by YMk. Hence α1 and α2 are quasifunctors.

Conversely, if both α1 and α2 are quasifunctors and Ik(αk(C ,−))∼= Ik(Y
Mk)∼=Yik(Mk),

we deduce that α(C ,−) fits into the triangle

Yi2(M2)→ α(C ,−)→Yi1(M1)

in D(D)= 〈D(D1),D(D2)〉. Thus, α(C ,−) is quasiisomorphic to the cone of a morphism

from YM1 [−1] to YM2 . The space of such morphisms is nothing but the zero cohomology

of the complex ϕ(M2,M1), and if we take the morphism corresponding to some closed

element μ ∈ ϕ(M2,M1) of degree zero, we will obtain precisely Y(M1,M2,μ). Thus, we have

α(C ,−)∼=Y(M1,M2,μ) for appropriate μ, hence α is a quasifunctor.

(ii) Analogously, we apply Proposition A.2 with Dop =D
op
2 ×ϕ D

op
1 instead of D .

Note that the order of DG-categories D1 and D2 in the gluing is interchanged. By this

reason the embedding and the projection functors of the associated semiorthogonal

decompositions indexed by 1 (such as i1, I1, I ∗1 and so on) are related to the category

D2 and those indexed by 2 to the category D1.

According to Lemma 2.5, to give an object β ∈D(Dop ⊗ C) is equivalent to giv-

ing its components β2 = I ∗1β ∈D(Dop
2 ⊗ C) and β1 = I !

2β ∈D(Dop
1 ⊗ C) and a morphism

β2→ ϕ
L⊗D1 β1 = β1 ◦ ϕ. Thus, we only have to check that β is a quasifunctor if and only if

both its components β2 ∈D(Dop
2 ⊗ C) and β1 ∈D(Dop

1 ⊗ C) are.
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4612 A. Kuznetsov and V. A. Lunts

So, assume that β is a quasifunctor. Then β1(M1,−)= (I !
2β)(M1,−)=

β((M1,0,0),−) is quasirepresentable, so β1 is a quasifunctor. The case of β2 is

slightly more complicated. We have to check that β2(M2,−)= (I ∗1β)(M2,−) is quasirep-

resentable. Since C is pretriangulated, using triangle (26) we see that it suffices

to check quasirepresentability of DG-modules βi1(M2,−)= β((0,M2,0),−) and of

(ϕ
L⊗D1 βi2)(M2,−)= ϕ(M2,−)

L⊗D1 βi2 . The first holds since β is a quasifunctor. For the

second, note that since ϕ is a quasifunctor, we know that ϕ(M2,−)∼=YN1 for some

N1 ∈D1. Therefore,

ϕ(M2,−)
L⊗D1 βi2

∼=YN1 ⊗D1 βi2 = (βi2)(N1,−)= β((N1,0,0),−).

This latter DG-module is quasirepresentable since β is a quasifunctor. Combining all

this, we conclude that β2 is also a quasifunctor.

Conversely, assume that β1 and β2 are quasifunctors. Then

(I1β2)((M1,M2, μ),−)= (Di1

L⊗D2 β2)((M1,M2, μ),−).

Note that

(Di1)((M1,M2, μ), N2)=HomD((0, N2,0), (M1,M2, μ))=HomD2(N2,M2)=YM2(N2).

Thus, the above tensor product equals YM2
L⊗D2 β2 = β2(M2,−). Since β2 is a quasifunctor,

this C-DG-module is quasirepresentable.

Analogously,

(I2β1)((M1,M2, μ),−)= (Di2

L⊗D1 β1)((M1,M2, μ),−)

and we have

(Di2)((M1,M2, μ), N1)=HomD((N1,0,0), (M1,M2, μ))=HomD1(N1,M1)⊕ ϕ(M2, N1)[−1]

with the differential coinciding with that of Cone(YM1
μ−→ ϕ(M2,−))[−1] evaluated on N1.

Therefore, the above tensor product is quasiisomorphic to

Cone(YM1
L⊗D1 β1

μ−→ ϕ(M2,−)
L⊗D1 β1)[−1].

The first term here is quasiisomorphic to β1(M1,−), and so is quasirepresentable. On the

other hand, since ϕ is a quasifunctor, ϕ(M2,−)∼=YN1 for some N1 ∈D1, hence the second
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term is quasiisomorphic to YN1 ⊗D1 β1 = β1(N1,−), so it is also quasirepresentable. Since

C is pretriangulated, the above cone is also quasirepresentable.

Thus, we have checked that both (I1β2)((M1,M2, μ),−) and (I2β1)((M1,M2, μ),−)
are quasirepresentable C-modules, hence so is β((M1,M2, μ),−) as C is

pretriangulated. �

Appendix 2. More on Auslander Algebras

A.3 Quiver sheaves

In this section, we give an alternative description of the category of A -modules and

translate most of the constructions of Section 5 to this language.

Definition A.8. A quasicoherent quiver sheaf on (S, r,n) is

(1) a collection M1, . . . ,Mn of quasicoherent sheaves on S,

(2) a collection of morphisms α : Mi→Mi+1,

(3) a collection of morphisms β : Mi ⊗OS r→Mi−1,

such that

(1) the diagram

Mn⊗OS r

β



����������

a

��

Mn−1 ⊗OS r

α

��

β

������������

a

��

· · ·
α

��

β

������������
M2 ⊗OS r

α

��

β



�����������

a

��

M1 ⊗OS r

α

��

β

����
��

��
��

��

a

��
Mn Mn−1

α

�� · · ·
α

�� M2

α

�� M1

α

�� 0��

(where a : Mi ⊗OS r→Mi is the action of r on Mi) is commutative;

(2) for all i and k there is a map βk : Mi ⊗OS rk→Mi−k such that the diagram

Mi ⊗OS r⊗k

β

��

��

Mi−1 ⊗OS r⊗k−1

β

�� · · ·
β

�� Mi−k+1 ⊗OS r

β

�� Mi−k

Mi ⊗OS rk

βk

�� Mi−k
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commutes, where the vertical arrow is the map Mi ⊗OS r⊗k→Mi ⊗OS rk given

by the multiplication in r.

A morphism of quiver sheaves from M̄ to N̄ is a collection of morphisms of quasi-

coherent sheaves fi : Mi→ Ni commuting with α and β. �

Lemma A.9. The category of quiver sheaves is equivalent to the category Qcoh(A ) of

quasicoherent A -modules. �

Proof. Let M̄= (Mn, . . . ,M1) be a quiver sheaf. Then, we consider a quasicoherent sheaf

M :=Mn⊕ Mn−1 ⊕ · · · ⊕ M1 on S and define a structure of a right A -module on it as fol-

lows. For each i, j we consider the map

Mn+1−i ⊗Ai j =Mn+1−i ⊗ (rmax( j−i,0)/rn+1−i)→Mn+1− j,

which is given by the map β j−i if j ≥ i and by the map αi− j if j < i. Note that by part (2) of

Definition A.8 the ideal rn+1−i acts trivially on Mn+1−i, so the above map is well defined.

Conversely, assume that M is a quasicoherent A -module. Using idempotents εi

we define Mi =Mεn+1−i. This gives a decomposition M=Mn⊕ Mn−1 ⊕ · · · ⊕ M1. Now, we

equip M̄= (Mn,Mn−1, . . . ,M1) with a structure of a quiver sheaf by defining the map

α : Mn−i→Mn+1−i as a map given by the element αi = 1 ∈OS/r
n−i =Ai+1,i, and the map

β : Mn+1−i ⊗ r→Mn−i as a map induced by the action of Ai,i+1 = r/rn+1−i.

It is a straightforward exercise left to the reader to check that these are mutually

inverse equivalences. �

It is easy to write down the functors of the semiorthogonal decomposition in

terms of quiver sheaves. An easy verification shows that

i(M0)=
(

M0

β

�� 0
α

��

β

�� · · ·
α

��

β

�� 0
α

�� )
,

i∗
(

Mn

β

�� Mn−1

α

��

β

�� · · ·
α

��

β

�� M1

α

�� )=Coker(α : Mn−1→Mn),

e
(

Mn−1

β

�� · · ·
α

��

β

�� M1

α

�� )= (
Mn−1

a

�� Mn−1

1
��

β

�� · · ·
α

��

β

�� M1

α

�� )
,

e!
(

Mn

β

�� Mn−1

α

��

β

�� · · ·
α

��

β

�� M1

α

�� )= (
Mn−1

β

�� · · ·
α

��

β

�� M1

α

�� )
.
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It is also easy to write down the resolution functors

ρ∗S(M)=
(

M
β

�� M ⊗OS r

α

��

β

�� · · ·
α

��

β

�� M ⊗OS rn−1
α

�� )
,

ρS∗
(

Mn

β

�� Mn−1

α

��

β

�� · · ·
α

��

β

�� M1

α

�� )=Mn,

where, in the first line morphisms α are induced by the injections ri→ ri−1, and mor-

phisms β are induced by the multiplication ri ⊗OS r→ ri+1.

A.4 Bounded coherent sheaves on a nonreduced scheme

In this section, we show that the functor ρS∗ : Db(coh(A ))→Db(coh(S)) is a localization

of triangulated categories. First note that the statement is evident on the level of big

categories.

Lemma A.10. The category D(S) is a localization of the category D(A ). �

Proof. Since the functor Lρ∗S : D(S)→D(A ) is fully faithful and has a right adjoint, we

have a semiorthogonal decomposition

D(AS)= 〈KerρS∗,D(S)〉.

In particular, D(S) is equivalent to the localization of D(A ) by KerρS∗. �

The only problem with extending this result to bounded coherent categories is

that the functor Lρ∗S does not preserve boundedness. By definition (47), it is given by a

tensor product with a nonperfect OS-module, hence Lρ∗S(M) is unbounded from below.

So, for example, if we want to show that, for any M ∈Db(coh(S)), there is M ∈Db(coh(A ))

such that M∼= ρS∗(M), we cannot just take M= Lρ∗S(M). On the other hand, we can take

M to be a suitable truncation of Lρ∗S(M) with respect to the standard t-structure.

Lemma A.11. The functor ρS∗ : Db(coh(A ))→Db(coh(S)) is t-exact with respect to the

standard t-structures. In other words,

ρS∗ ◦ τ≤k= τ≤k ◦ ρS∗, ρS∗ ◦ τ≥k= τ≥k ◦ ρS∗, (A.1)
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4616 A. Kuznetsov and V. A. Lunts

where τ≤k and τ≥k are the truncation functors of the standard t-structures on Db(coh(A ))

and Db(coh(S)). �

Proof. Recall that ρS∗(M)=Mε1, the direct summand corresponding to the idempotent

ε1 of A . So it is evidently t-exact. �

We start with the following preparatory result.

Proposition A.12. Any morphism in Db(coh(S)) can be lifted to Db(coh(A )). In other

words, for any morphism f : M→ N in Db(coh(S)) there are objects M,N ∈Db(coh(A ))

and a morphism f̄ :M→N such that ρS∗(M)∼=M, ρS∗(N )∼= N and the diagram

ρS∗(M)

∼=
��

ρS∗( f̄)
��

M

f

��

ρS∗(N )
∼=

�� N

commutes. �

Proof. First, let us show that, for any M ∈Db(coh(S)), there is an object M ∈Db(coh(A ))

such that ρS∗M∼=M. Indeed, by (A.1),

τ≥kM= τ≥kρS∗Lρ∗SM= ρS∗(τ≥kLρ∗SM).

Now, choose k such that τ≥kM∼=M (this is possible since M has bounded cohomology)

and note that τ≥kLρ∗SM ∈Db(coh(A )).

The same argument applies to morphisms. Again, take k such that τ≥kM=M and

τ≥kN = N and consider the morphism τ≥kLρ∗SM
τ≥kLρ∗S f−−−−→ τ≥kLρ∗SN. Since the truncation is

functorial and comes with a morphism of functors id→ τ≥k, the result follows. �

Corollary A.13. The category Db(coh(S)) is the quotient of Db(coh(A )) by KerρS∗. �

Proof. By definition of the quotient category the functor ρS∗ factors through a functor

Db(coh(A ))/KerρS∗ −−−→Db(coh(S)), (A.2)

and we have to check that this functor is an equivalence. Note that it is essentially

surjective on objects by Proposition A.12. Let us check that it is fully faithful.
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First, let us check that the functor is surjective on morphisms. Take arbitrary

objects M= ρS∗M, N = ρS∗N and consider a morphism f : ρS∗M→ ρS∗N . Our goal is to

construct a morphism M→N which goes to f under ρS∗. Note that, by Proposition A.12,

there is a morphism f̄ :M′ →N ′ in Db(coh(A )) such that diagram

ρS∗(M′)
∼=

��

ρS∗( f̄)
��

M

f

��

ρS∗(N ′)
∼=

�� N

commutes. By adjunction it gives a morphism Lρ∗SρS∗M′ →M. On the other hand, we

have an adjunction morphism Lρ∗SρS∗M′ →M′. Since both M and M′ have finite number

of cohomology sheaves, there exists k such that both maps factor through τ≥kLρ∗SρS∗M′.

Moreover, the argument of Proposition A.12 shows that k may be chosen in such a way

that after application of ρS∗ both maps will be isomorphisms. Thus, their cones are in

KerρS∗, hence both maps are isomorphisms in the quotient category. Therefore, M′ and

M are isomorphic in the quotient category, hence the morphism f̄ gives a morphism

from M to N which maps into f by ρS∗. Thus, (A.2) is surjective on morphisms.

Now consider a morphism f̄ :M→N and assume that ρS∗ f̄ : ρS∗M→ ρS∗N is

zero. By adjunction the composition Lρ∗SρS∗M−→M f̄−→N is zero. But since both M and N
are bounded, it follows that there is k such that the composition τ≥kLρ∗SρS∗M−→M f̄−→N
is zero and ρS∗(τ≥kLρ∗SρS∗M)∼= ρS∗M. Therefore, the cone of the map τ≥kLρ∗SρS∗M−→M
is in KerρS∗, hence the first map is an isomorphism in the quotient category, and hence

f̄ in the quotient category is zero. Thus, (A.2) is injective on morphisms and we are

done. �

A.5 The opposite Auslander algebra

Besides the usual Auslander algebra one can consider its opposite A op. It turns out that

most of the properties established for the Auslander algebra hold for the opposite as

well. As an illustration we sketch a construction of the semiorthogonal decomposition

analogous to that of Section 5.4.

First, we have a functor iop : D(S0)→D(A op) defined by the same formula (36) as

the functor i, as well as its (derived) left adjoint

L i∗op : D(A op)→D(S0), M �→OS0

L⊗A M.
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4618 A. Kuznetsov and V. A. Lunts

We also have an adjoint pair of functors

Leop : D(A ′op
)→D(A op), M �→A (1− ε1)

L⊗A ′ M,

e!
op : D(A op)→D(A ′op

), N �→HomA (A (1− ε1), N)= (1− ε1)N

(so the only difference is that the functor eop is not exact and we have to take its derived

functor). These functors still enjoy the analogs of relations (43), and tensoring (44) by

arbitrary M ∈D(A op), we obtain an analog of triangle (46). Thus, there is a semiorthog-

onal decomposition

D(A op)= 〈iop(D(S0)), Leop(D(A ′
op
))〉. (A.3)

By iteration, we deduce an n-component semiorthogonal decomposition

D(A op)= 〈D(S0), . . . ,D(S0)〉.

A.6 Homological dimension

Recall that the projective dimension pdimA(M) of a right module M over an algebra A is the

minimal length of its projective resolution. Furthermore, the global dimension gldim A of

A is the supremum of the projective dimensions of right A-modules.

Proposition A.14. Assume that S is a regular local scheme of dimension d. Then

gldim AS,r,n≤nd+ 2(n− 1), gldim A
op
S,r,n≤nd+ 2(n− 1). �

Proof. We are going to prove the claim by induction on n. The case n= 1 is evident—

in this case A =OS0 is a regular local ring, so its global dimension equals its Krull

dimension, which agrees with the statement of the proposition.

Now assume the claim is known for n− 1. Note that, by (35) and (30), as a left

A -module we have I ∼=A ε2 ⊕A (1− ε1); in particular, it is projective, so

pdimA opI = 0. (A.4)

On the other hand, (1− ε1)A is projective as a right A -module, hence the functor e(−)=
− L⊗A ′ (1− ε1)A does not increase the projective dimension of a right A ′-module. This
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means that

pdimA I ≤ gldim A ′. (A.5)

Using (44), (A.4), and (A.5), we conclude that

pdimA opOS0 ≤ 1, pdimA OS0 ≤ gldim A ′ + 1. (A.6)

Now let M be a right A -module and consider the canonical triangle

e(e!(M))→M→ i(L i∗(M)).

Note also that we have

i(L i∗(M))=M
L⊗A OS0 .

It follows from the first part of (A.6) that L i∗(M) has cohomology only in degrees 0

and −1, hence it has a free over OS0 resolution of length d+ 1. On the other hand, by

the second part of (A.6) i(OS0) has a projective resolution of length gldim A ′ + 1. Thus,

i(L i∗(M)) has a projective resolution of length gldim A ′ + d+ 2. On the other hand, since

e! is exact, e!(M) is an A ′-module, hence pdimA ′(e!(M))≤ gldim A ′, and since the func-

tor e does not increase the projective dimension, the module e(e!(M)) has a projective

resolution of length gldim A ′. Combining these two observations, we conclude that

gldim A ≤ gldim A ′ + d+ 2. So, the induction hypothesis gldim A ′ ≤ (n− 1)d+ 2(n− 2)

implies that we have gldim A ≤nd+ 2(n− 1).

Analogously, let M be a left A -module and consider the canonical triangle

Leop(e!
op(M))→M→ iop(L i∗op(M)).

Now, by the second part of (A.6) we know that L i∗op(M) has cohomology only in

degrees from 0 to −(gldim A ′op + 1), hence it has a free over OS0 resolution of length

gldim A ′op + d+ 1. On the other hand, by the first part of (A.6), iop(OS0) has a pro-

jective resolution of length 1. Thus, iop(L i∗op(M)) has a projective resolution of length

gldim A ′op + d+ 2. On the other hand, since e!
op is exact, e!

op(M) is an A ′-module, hence

pdimA ′op(e!(M))≤ gldim A ′op. Since A (1− ε1) is a projective left A -module, the func-

tor Leop takes projective resolutions to projective resolutions of the same length, so

eop(e!
op(M)) has a projective resolution of length gldim A ′op. Combining these two obser-

vations, we again conclude that gldim A op ≤ gldim A ′op + d+ 2. Using the induction

hypothesis in the same way as above, we deduce the claim. �

 at U
niversity of Prince E

dw
ard Island on A

ugust 27, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


4620 A. Kuznetsov and V. A. Lunts

A.7 Generalized Auslander spaces

In this section, we indicate how the algebra A can be generalized.

Let S be a scheme. Choose a collection of ideals ai j ⊂OS, where 1≤ i ≤n and

2≤ j ≤n+ 1, and the following incidence conditions are satisfied:

a12 ⊃ a13 ⊃ · · · ⊃ a1n ⊃ a1,n+1

∩ ∩ ∩
a23 ⊃ · · · ⊃ a2n ⊃ a2,n+1

∩ ∩
. . .

...
...

∩ ∩
an−1,n ⊃ an−1,n+1

∩
an,n+1

(A.7)

Assume also

ai j · a jk⊂ aik (A.8)

for all 1≤ i < j < k≤n+ 1. We define a generalized Auslander algebra as A =⊕n
i, j=1Ai j with

Ai j =
⎧⎨
⎩

ai j/ai,n+1 if i < j,

OS/ai,n+1 if i ≥ j.

In other words,

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

OS a12/a1,n+1 a13/a1,n+1 · · · a1,n/a1,n+1

OS/a2,n+1 OS/a2,n+1 a23/a2,n+1 · · · a2,n/a2,n+1

OS/a3,n+1 OS/a3,n+1 OS/a3,n+1 · · · a3,n/a3,n+1

...
...

...
. . .

...

OS/an,n+1 OS/an,n+1 OS/an,n+1 · · · OS/an,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.9)

The multiplication is induced by the natural embedding

A ⊂End(OS/a1,n+1 ⊕OS/a2,n+1 ⊕OS/a3,n+1 ⊕ · · · ⊕OS/an,n+1). (A.10)
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Example A.15. Let r⊂OS be an ideal such that rn= 0. Then

ai j = rn+1−i : rn+1− j

gives A =End(OS ⊕OS/r⊕OS/r
2 ⊕ · · · ⊕OS/r

n−1), the original Auslander algebra. �

Example A.16. Let r⊂OS be an ideal such that rn= 0. Then

ai j = r j−i

gives the algebra (30), the special Auslander algebra. �

It turns out that the generalized Auslander algebras enjoy the same properties

as the special Auslander algebras considered in Section 5. For example, the argument of

Proposition 5.14 and Corollary 5.15 proves the following proposition.

Proposition A.17. There are semiorthogonal decompositions

D(A )= 〈D(S1),D(S2), . . . ,D(Sn)〉,

Db(coh(A ))= 〈Db(coh(S1)),D
b(coh(S2)), . . . ,D

b(coh(Sn))〉.

where Si is the subscheme of S corresponding to the ideal ai,i+1, so that

OSi =OS/ai,i+1. �

Remark A.18. Note that the components of the decomposition do not depend on the

ideals ai, j with j − i > 1. However, one can check that these ideals govern the gluing

functors of the decomposition. �

For the special Auslander algebra we have ai,i+1 = r for all i, hence S1 = · · · = Sn=
S0, so all the components of the semiorthogonal decomposition coincide. On the other

hand, for the original Auslander algebra we have ai,i+1 = rn+1−i : rn−i, so the components

may be different.

Example A.19. Consider S= Spec k[x, y]/(x2, xy). Take r= (x) and n= 2. Then we have

a1,2 =Ann(r)= (x, y), a1,3 = 0, a2,3 = r, so S1 = Spec k, S2 = Spec k[y]. In particular, the orig-

inal Auslander algebra gives a semiorthogonal decomposition with components D(k)

and D(k[y]), while the special Auslander algebra gives a decomposition with both com-

ponents equal to D(k[y]). �
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Proposition A.20. In the assumptions of Proposition A.17, assume that the subschemes

S1, . . . , Sn⊂ S are local regular schemes of dimensions d1, . . . ,dn. Then

gldim A ≤d1 + · · · + dn+ 2(n− 1), gldim A op ≤d1 + · · · + dn+ 2(n− 1). �

Proposition A.21. In the assumptions of Proposition A.17, if all the subschemes

S1, . . . , Sn of S are smooth, then

D(A )c =Dperf(A )=Db(coh(A )). �

Again, one can prove these propositions by the same arguments as the corre-

sponding statements in Sections 5 and A.6.

Moreover, one can define a DG-category D(A ) in the same way as it is done in

Section 5, construct a DG-functor ρS : D(S)→D(A ). Again, the same arguments prove

the following theorem.

Theorem A.22. In the assumptions of Proposition A.17, if all the subschemes S1, . . . , Sn

of S are smooth, then the functor ρS is a DG-resolution of singularities and the derived

functor Lρ∗S : D(S)→D(A ) is a categorical resolution. �

A.8 Generalized morphisms of A -spaces

In this section, we describe the notion of generalized morphisms of A -spaces. Let (S, a)

be a generalized Auslander space as defined in Section A.7.

Definition A.23. A generalized morphism of A -spaces from (T, aT ,nT ) to (S, aS,nS) con-

sists of a continuous map f : T→ S of the underlying topological spaces and a sheaf P
of f−1AS-AT -bimodules which is projective over AT . �

If f= ( f,P) is a morphism of A -spaces, we can define the functors

f∗ : Qcoh(AS)→Qcoh(AT ), M �→ f−1M ⊗ f−1AS P,

f∗ : Qcoh(AT )→Qcoh(AS), N �→ f∗HomAT (P, N).

One can easily prove the following lemma.

Lemma A.24. The functor f∗ is right exact and the functor f∗ is left exact. Moreover, the

functor f∗ is the left adjoint of the functor f∗. �
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Assume that f : T→ S is a morphism of schemes compatible with ideals aT
ij and

aS
ij, that is,

f−1(aS
ij)⊂ aT

ij

for all 1≤ i < j ≤nS + 1 and nS ≤nT . Then, the morphism f induces a morphism f−1AS→
AT compatible with the addition and multiplication laws and taking the unit of AS to

the idempotent ε1 + · · · + εnS of AT . Thus,

P f := (ε1 + · · · + εnS)AT

is a f−1(AS)−AT -bimodule which is projective over AT . So, the pair f := ( f,P f ) defines

a generalized morphism of A -spaces, which we will refer to as the morphism of A -

spaces induced by the morphism f of schemes. It is easy to see that the induced pullback

and pushforward functors on categories of A -modules coincide with those defined in

Section 5.

Example A.25. Let S1 ⊂ S be the subscheme corresponding to the ideal a1,2 ⊂OS. Then,

we have a generalized morphism from (S1,0,1) to (S, aS,nS) given by the embedding

of schemes i : S1→ S and the bimodule P1 =OS1 . Then, the corresponding pullback and

pushforward functors coincide with the functors i∗ and i investigated in Section 5.

On the other hand, let S′ ⊂ S be the subscheme corresponding to the ideal

a2,n+1 ⊂OS and let A ′ be the generalized Auslander algebra corresponding to the sys-

tem of ideals in OS′ =OS/a2,n+1 obtained from (A.7) by removing the first line. Note that

the schemes S and S′ have the same underlying topological spaces. Let e : S′ → S be the

identity morphism of those (note that it does not extend to a morphism of schemes).

Further, P ′ = (1− ε1)A is a A ′-A -bimodule which is projective over A , hence e= (e,P ′)
is a morphism of A -spaces. Then the pullback functor e∗ is isomorphic to the func-

tor e, while the pushforward functor e∗ is isomorphic to e!, defined in (39) and (41),

respectively.

It is also easy to see that the induction and the restriction functors considered

in Lemma 5.6 are also the pullback and the pushforward for appropriate generalized

morphisms of A -spaces. �
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