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Categorical time production:
Evidence for discrete timing in motor control

CHARLES E. COLLYER
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and
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Subjects performed a repetitive manual tapping task, attempting to match a given rate of auditory
stimulus pulses, first with the pulses audible (synchronization) and then with the pulses turned off
(continuation). In different sessions, the interstimulus interval (lSI) was selected from the range 175
to 825 msec in steps of25 msec, with different lSI values presented in a random order. Across this
range orISI conditions, interresponse intervals (IRIs) exhibited alternating positive bias (too slow)
and negative bias (too fast). We interpret this pattern of bias in terms of a discrete, or categorical,
timing mechanism in motor timing. Categorical time production can be viewed as extending our
conception of the timekeeper in Wing's (Wing' & Kristofferson, 1973a, 1973b) two-process model
of motor timing and may be related to the system of multiple clocks proposed by Kristofferson
(1980) to explain a categorical pattern of variability measures in duration discrimination.

Should we conceive of psychological time as a smooth

flow or as a succession of discrete moments? Introspection

seems to favor smoothness. William James (1890/1950,

p. 237) described consciousness as "sensibly continuous, "

meaning that the flow of time as we experience it is not

noticeably punctuated by regular markers of its passage.

In discussing the perception of time itself, James empha

sized its subdivision by external events rather than inter

nal rhythms. In motor behavior, as well as in perception,

timing seems to be continuously adjustable, within broad

limits. For example, when we speed up or slow down in

pedaling a bicycle, or adjust to different musical tempos

in dancing or playing an instrument, it seems about equally

easy to meet timing demands over a range of rates. Intro

spection thus suggests that psychological time is continu

ous rather than discrete. Ifwe have internal clocks help

ing us to perform these and other acts of timing, they tick

unobtrusively and seem capable of many rate gradations.

However, subjective experience may not be the best in

dicator of the mechanisms responsible for timing. Even

if, because ofsome neurophysiological necessity, timing

is grounded in the periodic marking off of discrete mo

ments, the perceptual and motor needs of organisms might

be better served by a close approximation to "sensibly

continuous" time than by noticeably quantized time. A
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suggestive comparison can be made with the subjective

smoothness of visual scanning, despite the discreteness

of saccadic eye movements (Matin, 1974).

Discrete Versus Continuous Timing
In this study, we entertained the hypothesis of an under

lying discreteness of timing in the control of repetitive

manual tapping movements. We used a well-known task

in which the subjects first tap in synchrony with periodic

auditory pulses (the synchronization phase of a trial) and

then continue tapping at the same rate but without the au

ditory pulses (the continuation phase of a trial). Figure 1

shows the basic features of such a trial and indicates the

meaning of two terms we shall use in describing the ex

periment: the interstimulus interval (lSI) and the inter

response interval (IRI).

This type of tapping task has been used by many re

searchers (e.g., Bartlett & Bartlett, 1959; Dunlap, 1910;

Franek, RadiI, Indra, & Lansky, 1987; Hary & Moore,

1985, 1987; Nagasaki & Nagasaki, 1982; Peters, 1989;

Stevens, 1886; Wing, 1980; Wing, Church, & Gentner,

1989; Woodrow, 1932) to investigate various aspects of

motor timing. Tapping in synchrony with a pacer stimu

lus demands the coordination of exogenous with en

dogenous timing, whereas tapping in continuation must

rely on endogenous timing. Thus, we would expect con

tinuation data to give the clearest picture of an endogenous

timing mechanism.

Continuation
Figure 2 shows how continuous and discrete timing

processes might be reflected in the IRIs of the continua

tion phase.
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Figure 1. Synchronization and continuation phases 01 one trial. Each pbase consisted 01 50 taps.

lSI is the interstimulus Interval 01 auditory pacer sounds; IRI is the Interresponse Interval 01 taps.

FIgure 2. Functions reIatinIlnlerrespoDlie Interval (IRI) and Inter

stimulus Interval (lSI) (left) and confJlllOlldlnl p8ttenII 0Ib1a8 (rIpt)

under three cooceptJons 01motor t1mIDg. Top: ContinUOUlly acQust
able, unbiased t1mIDg. Middle: Cateaorical t1mIDg with inflexible
oscillators. Bottom: Categorical t1mIDg with partial entrainment or
mixture 01 oscillators.

In contrast, the middle two panels of Figure 2 represent

motor timing that is discrete and inflexible. Tapping is

only possible at the two IRIs labeled Cl and C2. These

two intervals might reflect either the available rates of

an internal clock or the possible output rates of the motor

system. As a general term, we will refer to them as criti

cal intervals. Under some theories, critical intervals could

be related, one being double the other, for example. The

function relating IRI and lSI under this extreme degree

of discreteness is a step function, as shown in the middle

left panel. The middle-right panel shows the expected pat-
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In each panel on the left side of Figure 2, the abscissa

is lSI, defined by the time in milliseconds (msec) between

onsets of successive auditory pulses during the synchroni

zation phase of a trial. lSI sets the interval that the sub

ject's tapping is intended to match during the continua

tion phase. The ordinate represents the actual rate of

tapping during continuation, expressed as IRI in msec.

(In our analyses, we used median IRI for each tapping

trial and the mean of medians over trials.) Each panel on

the right side of Figure 2 converts IRI to a bias measure,

defined as the difference between IRI and lSI.

We use the term bias to refer to systematic inaccuracy

of time production in the tapping task. Three types of bias

are defined as follows:

Raw Bias = IRI - lSI.

Raw bias measures the departure of time production from

the intended value defined by lSI.

Linear Bias = Pred(lRI) - lSI,

where Pred(IRI) is the predicted value of IRI from sim

ple linear regression, with lSI as the predictor. Linear bias

measures the departure at a particular lSI of the regres

sion line from the identity function. The set of linear bias

values for a set of data can be derived from the regres

sion slope and intercept.

Residual Bias = IRI - Pred(lRI).

Residual bias measures the departure of time production

from the value predicted by simple linear regression. We

will see that the question ofcontinuous versus categorical

timing is related to whether the relationship between resid

ual bias and lSI is random or exhibits meaningful structure.

These definitions imply that linear bias and residual bias

constitute a partitioning of raw bias:

Raw Bias = Linear Bias + Residual Bias.

In Figure 2, linear bias was assumed to be zero at all values

ofISI; hence, raw bias can be equated with residual bias.

The two panels at the top of Figure 2 represent con

tinuously adjustable tapping. IRI is a linear function of

lSI, and, in the absence of linear bias, it is the identity

function. Any residual bias is expected to be randomly

dispersed around zero at all values of lSI. More gener

ally, at each value of lSI, we would expect the residual

bias to be randomly dispersed around the value of IRI pre

dicted by linear regression.
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tern of raw and residual bias for this case, which, as in

the case illustrated in the top two panels, excludes linear

bias. Notice thatrapping.ia relatively slow (positive bias)

at ISIs shorter than the critical intervals and relatively fast

(negative bias) at ISIs longer than these intervals. We will

refer to such an ordered pattern of bias as an oscillator

signature. In the more general case in which linear bias

is present, the oscillator signature would alternate around

the overall regression line.

The bottom panels of Figure 2 represent an intermedi

ate case. Performance can be viewed as the output of a

mechanism that is basically discrete but flexible enough

to approximate continuous timing. (For example, mech

anisms involving partial adjustability of local clocks,

and/or a mixture of the influences of several clocks, are

possible.) The observed IRI would be a weighted aver

age of the lSI, linear bias, the local bias determined by

the underlying oscillatory mechanism, and any random

components of performance. The function relating bias

and lSI could have a complicated form, depending on the

local influence of these factors and on whether or not crit

ical intervals such as C 1 and C2 have overlapping ranges

of influence. In Figure 2, we have suggested a function

form consisting of alternating subranges of relatively slow

and relatively fast tapping, which may be understood as

a generalization of the discrete oscillator signature.

The import of Figure 2 is that categorical timing should

be reflected in nonlinearities of the IRI and bias functions,

particularly in higher order nonlinearities. The advantage

of looking at residual bias is that, with linear dependence

on lSI and linear bias removed, one focuses on the ques

tion of whether the data exhibit further nonlinear depen

dence on lSI (supporting a categorical account) or in

dependence (supporting a continuity account).

Synchronization
IRIs in synchronization should be highly accurate, on

the average, because the presence of the exogenous pacer

stimuli provides a basis for correction of the tapping rate.

Therefore, we would not expect to see much linear bias in

synchronization and would expect any oscillatory residual

bias to be less than in continuation. The stimulus-response

interval (rather than IRI) would probably be the appropri

ate measure for testing theories of synchronization (e.g.,

Hary & Moore, 1985, 1987). However, in the present

paper, we will focus on the analysis ofIRI in continuation.

Variability
In many types of timing performance, longer time in

tervals are associated with increased variability. Workers

in both time perception (e.g., Church, Getty, & Lerner,

1976) and time production (e.g., Wing, 1980; Wing,

Church, & Gentner, 1989) have asked whether the stan

dard deviation or the variance of psychological time is

linearly related to real time. Scalar models propose that

the standard deviation increases linearly with time (Gibbon,

1977, 1991). Thus, a way of testing for the scalar property

in tapping data would be to regress the standard deviation

of IRI against lSI. On the other hand, some models predict

that the variance, rather than the standard deviation, in

creases linearly with time-for example, if a long inter

val is composed of shorter component intervals (Creel

man, 1962).

After allowing for an overall increase in variability with

lSI, the variability of the IRIs might also show alternat

ing increases and decreases across neighboring ISIs. For

example, subjects could fmd it easy to maintain a rate of

tapping when the lSI is close to one of their critical inter

vals but require frequent corrections of timing drift when

trying to match more remote rates. If so, we would ex

pect low variability of IRIs in lSI conditions correspond

ing to critical intervals and higher variability in other con

ditions. On the other hand, the critical intervals may be

those for which timing is most tolerant of variability, so

that lSI conditions corresponding to critical intervals

would yield higher rather than lower variability in IRI.

Color vision provides an analogy in which wavelengths

are discriminated better (exhibit lower performance vari

ability) near category boundaries than in the middle of

color categories. Sharper discrimination at category

boundaries also characterizes other types of categorical

perception (Hamad, 1987).

Central Timing or Motor-System Constraints?
There are at least two possible interpretations of the crit

ical intervals Cl and C2 in Figure 2. One possibility is

that Cl and C2 represent the natural periods of a central

pattern generator (Glass & Mackey, 1988) or other neu

ral timekeeping mechanism; the other possibility is that

such intervals emerge from biomechanical constraints and

are unrelated to timekeeping functions. Thus, finding a

nonlinear function relating IRI to lSI would not, in itself,

indicate discreteness of central timing. However, if it

could be shown that such a function was invariant across

different biomechanical conditions, the case for a timing

interpretation would be strengthened. Two biomechanical

conditions that have been shown to be different enough

to produce other motor timing effects (Wing, 1977; Rosen

baum, Slotta, Vaughan, & Plamondon, 1991) were com

pared in a recent study of preferred rates of tapping

(Collyer, Broadbent, & Church, 1990). The results of this

study, summarized below, suggest that these conditions

are reasonable candidates for demonstrating invariance

of an oscillator signature across conditions differing in

the physical details of response execution.

Collyer et al. (1990) studied subjectively preferred rates

of manual tapping under two biomechanically different

conditions. In one condition, subjects tapped by moving

their index finger, with the wrist restrained by a brace;

in the other condition, subjects tapped by moving their

wrist, with the fingers restrained by a bandage. Preferred

rates of tapping were very similar in the finger and wrist

conditions, although individual subjects differed consider

ably from one another. Because the finger and wrist con

ditions did not differ, we concluded that the dynamics of

the motor system, at the level of these effectors, do not



strongly determine preferred rate. Instead, either of these

effectors may be used to implement a rate that is appar

ently determined by some other part of the system. The
origin of preferred rates could be at a higher level of the

motor system, imposing constraints on both wrist and

finger, or it could be in a central timing process.

The preferred-rate study indicated that the biomechan

ical manipulation did not change the rates that were "com

fortable" for subjects to produce. However, this result

leaves open the question of how biomechanical constraints

affect time production when the subject's task is to match

an externally specified rate. Therefore, the present study
also included a comparison of finger and wrist tapping

for some of the subjects.

METHOD

Subjects
Five subjects participated in the experiment. All were predomi

nantly right-handed. Two subjects (A.S. and J.W.) were graduate

students in the Brown University Department of Psychology who

were unfamiliar with the hypotheses under investigation. The other

subjects (C.C., H.B., and R.C.) were the authors.

Apparatus

The experiment was controlled by an ffiM AT computer. Stimuli

and responses were timed by a MetraByte CTM05 I/O board. Au

ditory stimuli (50-msec, I-kHz tones) were generated by a MED

Associatessignal generator (ANL-916). The subjects heard the tones

over headphones (Realistic Nova 40). Tapping responses were made

on a fixed metallic contact plate (a U.S. penny). The subject's fore

arm rested on a sheet of foil through which a weak current was

passed; touching the contact plate closed a circuit, signaling a tap

to the computer. A software debouncing routine filtered the record

of responses by requiring a minimum of 75 msec between succes

sive taps. Thiscriterion successfully discriminated between the short

intervals (usually 5-15 msec) occasionally produced when finger

contact was intermittently broken at the beginning or end of a tap

and the longer intervals (usually greater than 100 msec, even at

fast rates of tapping) produced between deliberate taps.

Design and Procedure
A trial consisted of 50 synchronization taps and 50 continuation

taps. During the synchronization phase ofa trial, a train of5D-msec

auditory tones (pacer sounds) was heard over the headphones, and

the subject's task was to tap in synchrony with these sounds. After

50 synchronization taps, the computer terminated the pacer sounds

and went on to record the 50 continuation taps. The subject's task

was to maintain a rate of tapping equal to the rate of the pacer sounds
throughout both the synchronization and continuation phases of the

trial. The end of a trial was signaled by a distinctive sound (two

short tones).

A block of five consecutive trials was completed at each lSI. A

session consisted of from three to six blocks. Generally, one ses

sion was done each day, for several days, until a replication of the

27 ISis from 175 to 825 msec (in steps of25 msec) had been com

pleted. Each replication was carried out under either the wrist (W)

or finger (F) condition, as described below. The lSI block sequence

was random, and different for each subject and condition.

The subjects were tested individually while seated at a table and

wearing headphones. Tapping was done with the right hand. In both
wrist and finger conditions, the forearm rested on a foil-covered

surface about 35-40 cm from the contact plate. In the wrist condi

tion, finger movements were restrained by an Ace bandage wrapped

around thehand, with the index finger extended and theother fingers
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folded. The hand was then relatively rigid but able to move freely

at the wrist. In the finger condition, wrist movements were restrained

by an orthopedic wrist brace (Scott Specialties Inc., No. 4039),

which left the index finger free to move.

Subjects C.C. and H.B. each completed a replication of the finger

condition (denoted by Old[F]) by using an early version of the ex

perimental software that provided some but not all of the measures

available with the final version. As a result of using the later soft

ware, the ordering of conditions for each subject was as follows:

C.C.-W, F; H.B.-F, W; R.C.-F, W; A.S.-F only; J.W.-F only.

Each trial yielded a distribution of 49 continuation IRIs, from which

the median IRI was computed. The mean of the five trial medians

at each lSI was the measure of IRI subjected to analysis. However,

in two data sets(denoted by C.C.-Old[F] and H.B.-Old[F]) obtained
with the earlier version of the experimental software, the mean of

the 245 continuation IRIs at each lSI was used.

We chose to use the median to measure central tendency because

it is unaffected by occasional outliers. When outliers occurred, they

consisted of IRIs that were about double the typical value, and could

be attributed to missed taps. In the data presented here, the median

was very close to the mean for all trials without such outliers, in

dicating symmetry of the underlying IRI distributions. We adopted

the semi-interquartile range as our measure of variability in prefer

ence to the standard deviation, again because it is less sensitive to

outliers. (For symmetrical distributions, the semi-interquartile range

is proportional to the standard deviation, and its square is propor

tional to variance.)

RESULTS AND DISCUSSION

Simple regression was used to fit the IRI versus lSI

function for each data set. Table 1 gives the slope, inter
cept, and proportion of variance accounted for (r1

) for

each fitted line. Even the data set giving the poorest linear

fit, that of subject R.C. in the finger condition (R.C.-F),
conformed closely to a linear function, with ,.1 = .996.

It is clear that at this level of description, performance

is well described by a simple linear model.
There were small departures from an identity relation

ship (i.e., slope of 1 and intercept of 0) between IRI and

lSI, as indicated in Table 1. Such departures define the

linear bias of a data set and are consistent with continuity

of timing. Residual bias was defined as the difference be-

Table 1
Regression Coeflicients for IRI as a Fundion of lSI

Intercept
Data Set Slope (in msec) r'

C.C.-F O.96t 8.9 .998
C.C.-W O.96t 5.6 .997
C.C.-Old(F)t 0.97t 10.7 .998
H.B.-F 1.02* -10.7 .997
H.B.-W 1.05t -20.8t .996

H.B.-Old(F)t 1.00 2.8 .997
R.C.-F 0.99 7.1 .996
R.C.-W 1.01 -2.5 .997
A.S.-F 1.05t -13.2t .997
J.W.-F 0.98 -4.2 .997

Note-The tests reported here were for the null hypotheses slope =
1.0 and intercept = 0; all slopes were significantly different from

zero. *p < .05. tp < .01. tFor the data sets C.C.-Old(F) and
H.B.-Old(F), mean IRI was used as the criterion variable rather than
the mean of the five trial medians.
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Table 2
Regression Coefficients for the Semi-Interquartile Range of IRI

and Its Square as Functions of lSI

SIQR SIQR'

Data Set Slope* Intercept r' Slope* Intercept r'

C.C.-F .016 3.7* .831 .373 -31.9 .816

C.C.-W .020 2.6* .868 .501 -71.5* .819
C.C.-Old(F)t .025 5.2* .894 .880 -92.1 .889
H.B.-F .013 6.1* .764 .341 9.7 .744
H.B.-W .009 7.8* .374 .229 50.3 .346
H.B.-Old(F)t .016 10.7* .464 .630 68.9 .406
R.C.-F .020 2.0 .846 .557 -105.2* .786
R.C.-W .022 0.3 .850 .599 -137.6* .608

A.S.-F .038 2.2 .789 1.835 -374.3* .709
J.W.-F .026 2.6 .854 .861 -149.2* .809

Note-SIQR' in this analysiswas the mean of the five-trialvalues of SIQR', not the square
of the mean SIQR. • Significantly different from zero (p < .01). All slopes were sig
nificant. tFor the data sets C.C.-Old(F) and H.B.-OId(F), the standard deviation and
variance were used as the two criterion measures, rather than SIQR and its square.
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small departures from lSI are not random. Raw bias

differs significantly from zero more often than would be

expected by chance because of two features of the data:

First, raw bias tends overall to decrease as lSI increases

(i.e., there is linear bias); second, raw bias also exhibits

local increases and decreases not captured by an overall

Figure 3. Top: Mean interresponse interval (IRI) as a function
of interstimulus interval (lSI) in data set C.C. -0Id(F). Bottom: Pat
tern of raw bias in data set C.C.-OId(F). Eachdata point reprelJeDts
the dill'erence between mean IRI (N == US taps, collected over five
trials) and lSI. The GaIlllSian 99%conftdence band, centered on zero
bias, is also shown. We use the term OIdlIIItor"""""re for the al
ternating pattern of bias Illustrated bere.

tween observed IRI and the predicted IRI generated by

the fits of Table I. The overall pattern of variability of

IRI suggested that residual bias be transformed to per

cent; a rationale for this transformation follows.

In general, the semi-interquartile range (SIQR) of IRI

was linearly related to lSI, as indicated by the statistically

significant slope values of Table 2. (For the two older data

sets, the standard deviation, which can be assumed propor

tional to SIQR, was used.) The square of SIQR also in

creased with lSI, but the linear relationship was less strong

for all subjects and conditions. Table 2 thus confirms that

tapping data exhibit the scalar property, which is a ubiq

uitous feature of timing performance in perceptual and

cognitive tasks (Gibbon, Church, & Meek, 1984). Given

the scalar property, it is appropriate to use percentages

to express bias in an equivalent way across different rates

of tapping. Percent residual bias (PRB) was defined as

follows:

IRI - Pred(IRl)
PRB = Pred(lRl) x 100.

That is, residual bias was expressed as a percentage of

the IRI predicted from regression.

An Example of the Pattern of Raw Biases
The top panel of Figure 3 shows mean IRI as a func

tion of lSI for the data set C. C. -Old(F). The overall

linearity of this function is apparent both from the regres

sion t 2 value 01 .998 (see Table 1) and from visual in

spection of the graph. The bottom panel of Figure 3 shows

the pattern of raw biases obtained by subtracting lSI from

each mean IRI. The band around zero bias represents a

99% confidence interval at each lSI for the null hypothe

sis that IRI equals lSI, based on an assumption of nor

mality. (Mean and median IRIs were very similar across

trials at each lSI, implying approximate symmetry of the

trial IRI distributions. With N = 245 continuation IRIs

per lSI, the width of the 99% confidence interval is ap

proximately one-third of the standard deviation ofIRI [i.e.,

±2.58(SD)/v'245 = .33(SD)]. Figure 3 indicates that

although IRI is close to being a linear function of lSI, its
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Table 3
Summary of Nonlinear Trends in Percent Residual Bias

linear trend (i.e., there is nonlinear structure in the

residual biases, an oscillator signature).

A Note on Transformations
The raw bias values shown in Figure 3 are more often

negative than positive and are more variable at large ISIs.

Transforming the data to residual bias tended to equate

the incidence of positive and negative bias values. Fur

ther transforming to PRB provided a correction for the

scalar property and so tended to equate the ranges of

values found at different ISIs. Since subsequent figures

use PRB, the bias functions will look somewhat more

symmetrical than the one in Figure 3.

Patterns of Percent Residual Bias (pRB)
A one-way analysis of variance was performed on the

135 values of PRB (27 lSI conditions x 5 trials per con

dition) of each data set to determine if the conditions

differed on this measure. For aU 10 data sets, conditions

differed significantly: F(26,108) ranged from 3.6 to 24.6,

P < .001, and the corresponding multiple r values ranged

from .68 to .93. Under continuity of timing, one would

expect no differences among the conditions after the

removal of linear structure; however, differences seem

to be the rule. Trend analyses were carried out on each

data set, with varied results. Quadratic, cubic, and quar

tic trends were found in different combinations, as shown

in Table 3. The trends thus did not provide one standard

pattern of differences in PRB across lSI conditions. What,

then, was the nature of these differences?

Figure 4 shows PRB as a function of lSI for the 3 sub

jects who provided more than one replication of the full

set of ISIs. All 3 of these subjects performed in the wrist

and finger conditions. Figure 4 also includes data from

the C.C.-Old(F) and H.B.-Old(F) replications.

Three features of these functions are notable. First, each

subject showed alternation of positive and negative

residual bias across ISIs, which is the pattern we have

termed an oscillator signature (see Figure 2 and the ac

companying discussion). Second, the pattern ofeach sub

ject's results was reliable, as indicated by the pattern of

intercorrelations given in Table 4. Replications of the

finger condition by C.C. and H.B. gave very similar pat

terns within subjects. More importantly, the wrist and

finger conditions gave very similar patterns for each of

the 3 subjects. This similarity suggests that a subject's

characteristic oscillator signature does not result from the

biomechanical properties of particular joints or limbs.

Successive replications within subjects were separated by

several weeks in all cases, and different random orders

of lSI conditions were used in each replication. Thus,

neither similar times of testing nor orders of conditions

can account for the similarity of the oscillator signatures.

Third, there were differences in the patterns of bias be

tween subjects. Although aU3 subjects produced residual

bias functions that look roughly W-shaped when plotted

as in Figure 4, the individual Ws did not have exactly the

same shape or location. Table 4 shows that Subjects H.B.

and R.C. had similar signatures, whereas that of Sub

ject C.C. differed from both. These similarities and differ

ences can also be seen in Figure 4. No interpretations of

the between-subject comparisons will be attempted here.

One common feature of the oscillator signatures ob

tained from continuation data is positive residual bias at

short ISIs. It might be hypothesized that subjects cannot

tap faster than some limiting rate and that this positive

bias therefore reflects an inability to execute motor

responses quickly enough. However, the absence of bias

in synchronization data at these rates argues against a rigid

limit. Since subjects can tap accurately at short ISIs when

a pacer stimulus is present, the ISIs themselves must be

greater than the limiting rate. Another concern is that a

local nonlinearity at short ISIs might be the only real non

linearity present. We would then expect no trends higher

thanquadratic in PRB functions; however, cubic and quar

tic trends were found in 3 subjects' data, and visual in

spection of the other 2 subjects' functions suggests small,

but similar, higher order trends.

The demonstration of oscillator signatures supports the

hypothesis of an underlying discreteness in timing. It ap

pears that oscillator signatures are stable over time and

across biomechanically different conditions and may have

somewhat different shapes for different subjects.

We next discuss an approach to measuring the shape

of a subject's characteristic oscillator signature. This ap

proach provides both an unambiguous way of locating

zero crossings of the function and a summary compari

son of continuation signatures with the corresponding data

from synchronization tapping.
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Note-Trends were tested by successively adding higher order compo

nents to the fitted model. A trend was tested when it was the highest

order component. For example, significance of a quadratic trend means

that the quadratic component of variation was significant in the fitted

model PRB '" f(lSI, ISI2); similarly, significance of a quartic trend

means that the quartic trend was significant in the fitted model PRB '"

f(lSI, ISI2, ISI3, ISI4). *p < .05. tp < .01.

Filtered PRB Functions
One way to more clearly visualize the oscillator pat

tern of an individual subject is to apply a statistical filter

to the PRB function. Tukey (1977) has provided methods

for smoothing sequences of values to reveal nonlinear pat-
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Figure 4. Percent residual bias (pRB) as a function of interstimulus interval (lSI)

for each replication by Subjects C.C., H.B., and R.C. Two earlier replications by Sub
jects C.C. and H.B. (denoted Old[F]) are included. The similarity of a subject's repli
cations establishes the reliability of Individual oscillator signatures. The simllarlty of
the finger and wrist conditions indicates that this level of biomechanical manipulation
does not disturb a subject's oscillator signature.

C.C.-F

Table 4
Intercorrelations of Percent Residual Bias Functions of Subjects C.C., H.B., and R.C.

C.C.- H.B.-
C.C.-W Old(F) H.B.-F H.B.-W Old(F) R.C.-F

C.C.-W
C.C.-Old(F)

H.B.-F
H.B.-W

H.B.-Old(F)

R.C.-F

R.C.-W

.752t

.439t

.190

.087
-.054

.300
-.078

.321·

.238 -.053

.292 .021 .757t

.162 -.040 .736t .806t

.221 .073 .614t .322· .51Ot

.168 -.179 .541t .261 .507t .519t

.p < .05. tp < .Ot.
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Figure 5. Synchronization and continuation: Averaged percent residual bias functions of 5 subjects, after smoothing by Tukey's
(1977) 3R procedure. Oscillator signatures are apparent in continuation but are generally absent in synchronization. Tukey's proce

dure provides a way of clarifying the form of a series without assuming a specific function form.

terns, which do not require assuming a specific function

form. This approach seemed particularly useful as a way

to extract the basic form of a subject's oscillator signature.

For each subject, PRB values from all available replica

tions ofthe experiment (three each for C.C. and H.B., two

for R.C., and one each for 2 additional subjects, A.S.

and l.W.) were averaged. Each subject's average function

was then smoothed by using Tukey's (1977, pp. 210-223)

3R procedure (i.e., repeatedly taking running medians of

3 until the function exhibits no further change). Tukey's

procedure for smoothing the ends of the function was also

applied. Figure 5 shows the filtered functions, which we

take as approximations to each subject's characteristic os

cillator signature. In each panel, closed circles show syn

chronization data, and open circles show continuation

data. In each case, the continuation function is the more

oscillatory one; the synchronization function is flatter.

The filtered bias functions of Figure 5 provide a way

of measuring critical time intervals such as the C 1 and

C2 intervals of Figure 2. When such a function is scanned

from left to right, critical intervals correspond to negative

going zero crossings ofthe oscillator signature. A negative

going zero crossing can be viewed as a critical point that

divides a region of positive residual bias (to its left) from

a region of negative bias (to its right). A positive-going

zero crossing can be viewed as a point at which there is

cancellation of the opposing biases associated with the crit

ical points on either side. The lSI values ofboth directions

of zero crossing for each subject are given in Table 5.

Variability of IRI

Regression was also used to examine the variability of

00, as measured by the mean of the five trial semi

interquartile ranges (SIQR) at each lSI. This measure,

Table 5
Location (in msec) of Zero Crossings of Filtered

Residual Bias Functions

First Second

Subject Negative Positive Negative Positive

C.C. 287.5 487.5 662.5 787.5
H.B. 312.5 362.5 412.5 712.5
R.C. 262.5 387.5 462.5 737.5
A.S.* 212.5 462.5 537.5 712.5
I.W. 175t 362.5 487.5 787.5

Mean 250 413 513 748
SD 56 58 95 38

*Subject A.S. had a third negative crossing at 788 msec. tin the raw

data, there was a positive bias at 175 msec for all 5 subjects, changing

to negative bias at differing larger ISIs. The filtering algorithm removed

the original bias value of +12.4% at 175 msec for Subject I.W., since

it was a single extreme value. Thus, assignment of first zero crossing

at 175 msec for I.W. was deemed a reasonable estimate.
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which is proportional to the standard deviation for nor

mally distributed data (SIQR = .67 x SD), was approx

imately a linear... function...of lSI, and so exhibited the

familiar scalar property found with many types of timing

and time-perception data (e.g., Gibbon et al., 1984). We

referred earlier to this linearity in explaining why the per

centage transformation was appropriate. Table 2 gives the

parameters of the linear fits for each set of data.
Table 2 also gives the regression parameters for the

square of semi-interquartile range, which under normal

ity is proportional to variance (SIQRl = .45 x variance),

as a function ofISI. The goodness-of-fit measure r? indi

cates that SIQR gives better linearity. Furthermore, the

intercepts of linear fits to the SIQR1 values are often nega

tive; SIQR1 cannot have negative values because it is a

squared measure, so at small ISis it must violate a simple

linear model. In sum, the variability measures that bear

linear relations to lSI are SIQR and standard deviation,

not SIQR1 and variance.

Residual variability was defmed as the difference be

tween the semi-interquartile range and the linear predic

tions based on the fits of Table 2. We sought to deter
mine if there was a relationship between the oscillator

signatures of the PRB data and the corresponding values

of residual variability. Two relationships were thought to

be possible. Under the first, which we term the identifi

cation pattern, residual variability would exhibit a local

minimum near each of the negative-going zero crossings

(critical intervals) given in Table 2. The rationale for the

identification pattern is that if the critical intervals are

"preferred" times, then they may be represented in the

timing system with relatively low variance. Under the sec
ond possible relationship, which we term the discrimina

tion pattern, residual variability would exhibit a local

minimum near the positive-going zero crossings (category

boundaries). The rationale for the discrimination pattern

is that if the critical intervals are in the middle of tem

poral "categories," then differential timing control may

be better near a category boundary than in the middle of
the category.

Residual bias was cross-correlated with residual vari

ability over 15 lags centered on O. (Zero lag corresponds

to a traditional correlation of the two measures. A lag of

-1 would shift one series relative to the other such that,

for example, the residual bias at lSI = 500 msec would

be paired with the residual variability at lSI = 475 msec.

Recall that lSI was manipulated in steps of25 msec.) The
logic of the cross-correlation analysis was as follows: If

residual variability, like residual bias, alternately increases

and decreases over lSI, then a certain phase relationship
will hold between the two series. A shift ofone sequence

of values relative to the other will bring them closest to

congruence with each other and so maximize their cross

correlation. In the identification pattern, high variability

is associated with negative-going zero crossings of the os

cillator signature, so the shift predicted to maximize the

cross-eorrelation will be a leftward shift of the variability

sequence relative to the bias sequence. Conversely, the dis-

crimination pattern predicts that a rightward shift will have

this effect. However, the cross-correlation patterns were

not consistent, either within subjects or between subjects.
Of the eight more recent replications, five had no statisti

cally significant correlations (p > .05) between the two

series at any lag. The three replications with at least one

significant correlation had them located at different lags.

None of the cross-correlation analyses revealed the dis

crimination pattern; two conformed to the identification

pattern. However, neither the identification nor the dis

crimination pattern can be said to have received strong

confirmation from these data, and we cannot reject the

simpler hypothesis of independence between residual bias
and residual variability.

Summary of Results
This experiment demonstrated small but reliable non

linearities in the production of time intervals by manual
tapping. The nonlinearities were of the sort predicted

under a categorical conception of motor timing; we have

applied the term oscillator signature to these effects. There

are individual differences in the form of the oscillator sig

nature. However, an individual subject's signature seems

to be invariant over at least two biomechanically differ

ent types of responding: fmger flexion and wrist flexion.

The oscillator signature is a characteristic ofcontinuation,
in which the subject maintains a tapping rate from mem

ory, but not synchronization, in which a pacer stimulus

is available to guide corrections of timing.

GENERAL DISCUSSION

Two levels of description are needed to give an account

of the timing performance observed in this experiment.

At a relatively gross level, we found that the subjects'
tapping rate approximately matched the stimulus rate of

each lSI condition. Thus, the identity function, or a line

differing from it only slightly, provided a good overall

description of each set of data. If the residuals around

these functions had consisted of unsystematic variation,

we would at this point opt for a continuous conception
of timing. However, residual bias was systematically

related to lSI-and in the way predicted by a categorical

conception of timing.

The evidence for categorical time production came from

residual bias data from the continuation part of our ex

perimental trials. We expected that continuation would
provide the best opportunity to see the effects of an en

dogenous timing mechanism, whereas synchronization

performance must reflect a combination of endogenous
and exogenous timing factors, with the exogenous tend

ing to cancel endogenous categorical effects, as well as

unsystematic sources of bias.
We derive the following picture of the timing system:

There appear to be oscillatory processes, with stable and
measurable rates, whose influence on time-interval pro

duction can be seen in the patterns of residual bias that

we have examined here. The motor system, and perhaps



also some perceptual processes, may use these oscillators

as temporal references. We think that, at present, this view

is better supported than an alternative one based on bio

mechanics, because oscillator signatures obtained with

finger and with wrist flexion were equivalent. The traces

of the oscillators are small; residual bias, even at its most

extreme, seems to be only about 4% of the produced in

terval. However, this small value, together with the ap

parent existence of multiple oscillators with different in

trinsic rates, means that the timing system as a whole can

come very close to the performance of a continuously ad

justable oscillator. One possibility is that a neural mecha

nism provides discrete oscillatory reference values that

are subject to considerable, but still somewhat constrained,

entrainment. Another possibility is that the oscillatory

rates are relatively fixed and that the contribution of each

to performance depends on its proximity to lSI. Finally,

the question of whether motor timing is the main func

tion of these hypothetical oscillatory processes or is an

emergent property cannot be answered here. The present

experiment cannot rule out the possibility that oscillator

signatures are caused by interference with an otherwise

continuously adjustable timing mechanism from other os

cillatory processes. The view that categorical time produc

tion is based on a categorical timing mechanism is poten

tially related to other theoretical proposals, of which we

will mention two.

Relationship to a Two-Process Model of Timing
Wing and Kristofferson (1973a, 1973b) proposed a two

process model of the timing of repetitive acts such as tap

ping. The two processes are a timekeeper (or a clock) and

a motor system capable of generating discrete responses.

This model provides a good account of a variety of data

collected by Wing and others. In particular, the model can

be used to analyze the variability of IRIs into components

associated with the timekeeper and the motor system. Es

sentially the same model was proposed independently by

Pittendrigh and Daan (1976) to separate variability in a

circadian clock from variability in the time to begin cir

cadian activity once the correct clock time is reached.

Wing (1973) found that timekeeper variance increased

with lSI over the domain 220 to 490 msec, whereas motor

variance remained constant.

Our finding regarding oscillator signatures can be seen

as revealing a property of the timekeeper in Wing's model.

IfWing's timekeeper is the output of an entrained oscil

lator, it is subject to positive bias at some rates and nega

tive bias at others. The residual bias patterns we have

described here could be interpreted as a description of the

limits of entrainment of the oscillators underlying Wing's

timekeeper.

Relationship to Duration-Discrimination Findings
Kristofferson (1980, 1984), interpreting an extensive

series of experiments on duration discrimination, proposed

temporal categories or steps to account for the interactive

effects of base duration and practice on the variability of
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judgments. Kristofferson's categories follow a doubling

rule such that (after extensive practice) his quantal vari

ability measure q roughly doubled from 12 to 25 to 50

to 100 as base duration correspondingly doubled at 200,

400, and 800 msec. Between the doubling points, q was

relatively insensitive to base duration. (The measure q in

Kristofferson's theory is the unit of psychological time

and thus determines temporal resolution in a duration

discrimination task.)

Kristofferson's depiction of duration discrimination

across different base durations roughly parallels our own

depiction of time production across different ISIs. Both

are two-level descriptions of performance, allowing for

approximate continuity overall, but with a fine-grain anal

ysis providing evidence for underlying discreteness. The

parallel is suggestive, although not yet complete. It will

be important in future work to ask whether both time

production and time perception reveal the same oscillators.

Is Timing Smooth or Discrete?
The answer to this question depends on the level of

description and analysis. At present, psychological time

seems to possess aspects of both smoothness and discrete

ness. The subjective smoothness of time is certainly not

contradicted by the present findings, and, in fact, is im

pressively corroborated by the striking linearity of the

functions relating IRI to lSI. However, the small system

atic inaccuracies around these linear functions, which form

the patterns we have called oscillator signatures, provide

evidence for an underlying discreteness in motor timing.

We therefore suggest that, although well-disguised, the

fundamental property of the mechanism for this type of

motor timing is a set of discrete intrinsic time intervals

that serve as temporal reference values.
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