SCISPACE
 formerly Typeset

〇 Open access • Journal Article • DOI:10.1007/S11856-009-0035-8
Categoricity, amalgamation, and tameness - Source link \square
John T. Baldwin, Alexei Kolesnikov
Institutions: University of Illinois at Chicago, Towson University
Published on: 05 May 2009 - Israel Journal of Mathematics (The Hebrew University Magnes Press)
Topics: Amalgamation property, Cardinality and Disjoint sets

Related papers:

- Galois-stability for Tame abstract elementary classes
- Categoricity for abstract classes with amalgamation
- Categoricity from one successor cardinal in tame abstract elementary classes
- Categoricity overP for first orderT or categoricity for $\in L \omega 1 \omega$ can stop at \mathfrak{k} while holding for $\mathfrak{\aleph} 0, \ldots, \aleph k-1$
- Classification Theory for Abstract Elementary Classes

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/categoricity-amalgamation-and-tameness5eupeui56o

CATEGORICITY, AMALGAMATION, AND TAMENESS

JOHN T. BALDWIN AND ALEXEI KOLESNIKOV

Abstract

Theorem. For each $2 \leq k<\omega$ there is an $L_{\omega_{1}, \omega}$-sentence ϕ_{k} such that: (1) ϕ_{k} is categorical in μ if $\mu \leq \aleph_{k-2}$; (2) ϕ_{k} is not \aleph_{k-2}-Galois stable; (3) ϕ_{k} is not categorical in any μ with $\mu>\aleph_{k-2}$; (4) ϕ_{k} has the disjoint amalgamation property; (5) For $k>2$, (a) ϕ_{k} is $\left(\aleph_{0}, \aleph_{k-3}\right)$-tame; indeed, syntactic first-order types determine Galois types over models of cardinality at most \aleph_{k-3}; (b) ϕ_{k} is \aleph_{m}-Galois stable for $m \leq k-3$; (c) ϕ_{k} is not $\left(\aleph_{k-3}, \aleph_{k-2}\right)$-tame.

We adapt an example of [9]. The amalgamation, tameness, stability results, and the contrast between syntactic and Galois types are new; the categoricity results refine the earlier work of Hart and Shelah and answer a question posed by Shelah in [17].

Considerable work (e.g. [14, 15, 16, 7, 8, 6, 18, 12, 11]) has explored the extension of Morley's categoricity theorem to infinitary contexts. While the analysis in [14, 15] applies only to $L_{\omega_{1}, \omega}$, it can be generalized and in some ways strengthened in the context of abstract elementary classes.

Various locality properties of syntactic types do not generalize in general to Galois types (defined as orbits under an automorphism group) in an AEC [5]; much of the difficulty of the work stems from this difference. One such locality properties is called tameness. Roughly speaking, \boldsymbol{K} is (μ, κ)-tame if distinct Galois types over models of size κ have distinct restrictions to some submodel of size μ. For classes with arbitrarily large models, that satisfy amalgamation and tameness, strong categoricity transfer theorems have been proved $[7,8,6,13,4,10]$. In particular these results yield categoricity in every uncountable power for a tame AEC in a countable language (with arbitrarily large models satisfying amalgamation and the joint embedding property) that is categorical in any single cardinal above \aleph_{2} ([6]) or even above \aleph_{1} ([13]).

In contrast, Shelah's original work [14, 15] showed (under weak GCH) that categoricity up to \aleph_{ω} of a sentence in $L_{\omega_{1}, \omega}$ implies categoricity in all uncountable cardinalities. Hart and Shelah [9] showed the necessity of the assumption by constructing sentences ϕ_{k} which were categorical up to some \aleph_{n} but not eventually
categorical. These examples were thus a natural location to look for examples of categoricity and failure of tameness.

The example expounded here is patterned on the one in Hart-Shelah, [9]: our analysis of their example led to the discovery of some minor inaccuracies (the greatest categoricity cardinal is \aleph_{k-2} rather than \aleph_{k-1}). Although the properties we assert could be proved with more complication for the original example, we present a simpler example. In Section 1 we describe the example and define the sentences ϕ_{k}. In Section 2 we introduce the notion of a solution and prove lemmas about the amalgamation of solutions. From these we deduce in Section 5 positive results about tameness. In some sense, the key insight of this paper is that the amalgamation property holds in all cardinalities (Section 3) while the amalgamation of solutions is very cardinal dependent. We prove in Section 4 that this example is a model-complete AEC. We show in Section 6 that ϕ_{k} is not Galois stable in \aleph_{k-2} and deduce the non-tameness. From the instability we derive in Section 7 the failure of categoricity in all larger cardinals, thus answering the question posed by Shelah as Problem 6.12 in [17].

Baldwin and Shelah [5] showed under often satisfied conditions (\boldsymbol{K} admits intersections i.e. is closed under arbitrary intersections) amalgamation does not affect tameness. That is, for any tameness spectrum realized by an AEC \boldsymbol{K} which admits intersections, there is another which has the amalgamation property but the same tameness spectrum. But this construction destroys categoricity so those examples do not address the weaker conjecture that the amalgamation property together with categoricity in a finite number of cardinals implies $\left(\aleph_{0}, \infty\right)$-tameness. We refute that conjecture here. Baldwin, Kueker and VanDieren [2] showed that if \boldsymbol{K} is an $\left(\aleph_{0}, \infty\right)$-tame AEC with arbitrarily large models that is Galois-stable in κ it is Galois stable in κ^{+}; our results show the tameness hypothesis was essential.

This paper and [5] provide the first examples of AEC that are not tame. In both papers the examples are built from abelian groups. But while [5] obtains non-tameness from phenomena that are closely related to the Whitehead conjecture and so to non-continuity results in the construction of groups, this paper shows the failure can arise from simpler considerations.

1. The Basic structure

This example is a descendent of the example in [3] of an \aleph_{1}-categorical theory which is not almost strongly minimal. That is, the universe is not in the algebraic closure of a strongly minimal set. Here is a simple way to describe such a model. Let G be a strongly minimal group and let π map X onto G. Add to the language a binary function $t: G \times X \rightarrow X$ for the fixed-point free action of G on $\pi^{-1}(g)$ for each $g \in G$. That is, we represent $\pi^{-1}(g)$ as $\{g a: g \in G\}$ for some a with $\pi(a)=g$. Recall that a strongly minimal group is abelian and so this action of G is strictly 1-transitive. This guarantees that each fiber has the same
cardinality as G and π guarantees the number of fibers is the same as $|G|$. Since there is no interaction among the fibers, categoricity in all uncountable powers is easy to check.

Let $k \geq 2$ be a natural number.
Notation 1.1. The formal language for this example contains unary predicates I, K, G, G^{*}, H, H^{*}; a binary function e_{G} taking $G \times K$ to H; a function π_{G} mapping G^{*} to K, a function π_{H} mapping H^{*} to K, a 4-ary relation t_{G} on $K \times G \times G^{*} \times G^{*}$, a 4-ary relation t_{H} on $K \times H \times H^{*} \times H^{*}$. Certain other projection functions are in the language but not expressly described. These symbols form a vocabulary L^{\prime}; we form the vocabulary L by adding a $(k+1)$-ary relation Q on $\left(G^{*}\right)^{k} \times H^{*}$.

We start by describing the L^{\prime}-structure $M(I)$ constructed from any set I with at least k elements. Typically, the set I will be infinite; but it is useful to have all the finite structures as well. We will see that the L^{\prime}-structure is completely determined by the cardinality of I. So we need to work harder to get failure of categoricity, and this will be the role of the predicate Q.

The structure $M(I)$ is a disjoint union of sets I, K, H, G, G^{*} and H^{*}. Let $K=[I]^{k}$ be the set of k-element subsets of $I . H$ is a single copy of Z_{2}. Let G be the direct sum of K copies of Z_{2}. So G, K, and I have the same cardinality. We include K, G, and Z_{2} as sorts of the structure with the evaluation function e_{G} : for $\gamma \in G$ and $k \in K, e_{G}(\gamma, k)=\gamma(k) \in Z_{2}$. So in $L_{\omega_{1}, \omega}^{\prime}$ we can say that the predicate G denotes exactly the set of elements with finite support of ${ }^{K} Z_{2}$.

Now, we introduce the sets G^{*} and H^{*}. The set G^{*} is the set of affine copies of G indexed by K. First, we have a projection function π_{G} from G^{*} onto K. Thus, for $u \in K$, we can represent an element x of $\pi_{G}^{-1}(u)$ in the form $\left(u, x^{\prime}\right) \in$ G^{*}. Alternatively, we say that $x \in G_{u}^{*}$. We refer to the set $\pi_{G}^{-1}(u)$ as the G^{*} stalk, or fiber over u. Then we encode the affine action by the relation $t_{G} \subset$ $K \times G \times G^{*} \times G^{*}$ which is the graph of a regular transitive action of G on G_{u}^{*}. That is, for all $x=\left(u, x^{\prime}\right), y=\left(u, y^{\prime}\right)$ there is a unique $\gamma \in G$ such that $t_{G}(u, \gamma, x, y)$ holds. (Of course, this can be expressed in $L_{\omega, \omega}^{\prime}$.)

As a set, $H^{*}=K \times Z_{2}$. As before if $\pi_{H}(x)=v$ holds x has the form $\left(v, x^{\prime}\right)$, and we denote by H_{v}^{*} the preimage $\pi_{H}^{-1}(v)$. Finally, for each $v \in K$, $t_{H} \subset K \times Z_{2} \times H^{*} \times H^{*}$ is the graph of a regular transitive action of Z_{2} on the stalk H_{v}^{*}.
$(*)$: We use additive notation for the action of $G(H)$ on the stalks of G^{*} (of H^{*}).
(1) For $\gamma \in G$, denote the action by $y=x+\gamma$ whenever it is clear that x and y come from the same G^{*}-stalk. It is also convenient to denote by $y-x$ the unique element $\gamma \in G$ such that $y=\gamma+x$.
(2) For $\delta \in H$, denote the action by $y=x+\delta$, whenever it is clear that x and y come from the same H^{*}-stalk. Say that $\delta=y-x$.

If I is countably infinite, let ψ_{k}^{1} be the Scott sentence for the countably infinite L^{\prime}-structure $M(I)$ based on I that we have described so far. This much of the structure is clearly categorical (and homogeneous). Indeed, suppose two such models have been built on I and I^{\prime} of the same cardinality. Take any bijection between I and I^{\prime}. To extend the map to G^{*} and H^{*}, fix one element in each partition class (stalk) in each model. The natural correspondence (linking those selected in corresponding classes) extends to an isomorphism. Thus we may work with a canonical L^{\prime}-model; namely with the model that has copies of G (without the group structure) as the stalks G_{u}^{*} and copies of Z_{2} (also without the group structure) as the stalks H_{v}^{*}. The functions t_{G} and t_{H} impose an affine structure on the stalks.

Notation 1.2. The L-structure is imposed by a $(k+1)$-ary relation Q on $\left(G^{*}\right)^{k} \times$ H^{*}, which has a local character. We will use only the following list of properties of Q, which are easily axiomatized in $L_{\omega_{1}, \omega}$:
(1) Q is symmetric, with respect to all permutations, for the k elements from G^{*};
(2) $Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}\right)\right)$ implies that u_{1}, \ldots, u_{k+1} form all the k element subsets of a $k+1$ element subset of I. We call u_{1}, \ldots, u_{k+1} a compatible $(k+1)$-tuple;
(3) using the notation introduced at (${ }^{*}$) Q is related to the actions t_{G} and t_{H} as follows:
(a) for all $\gamma \in G, \delta \in H$

$$
\begin{aligned}
& Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}\right)\right) \\
& \quad \Leftrightarrow \neg Q\left(\left(u_{1}, x_{1}+\gamma\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}\right)\right)
\end{aligned}
$$

if and only if $\gamma\left(u_{k+1}\right)=1$;
(b)

$$
\begin{aligned}
& Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\right.\left.\left(u_{k+1}, x_{k+1}\right)\right) \\
& \Leftrightarrow \neg Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}+\delta\right)\right) \\
& \text { if and only if } \delta=1 .
\end{aligned}
$$

Let ψ_{k}^{2} be the conjunction of sentences expressing (1)-(3) above, and we let $\phi_{k}:=\psi_{k}^{1} \wedge \psi_{k}^{2}$.

It remains to show that such an expansion to $L=L^{\prime} \cup\{Q\}$ exists. We do this by explicitly showing how to define Q on the canonical L^{\prime}-structure. In fact, we describe $2^{|I| \cdot|K|}$ such structures parameterized by functions ℓ.
Fact 1.3. Let $M=M(I)$ be an L^{\prime}-structure described above. Let $K:=[I]^{k}$. Let $\ell: I \times K \rightarrow 2$ be an arbitrary function.

For each compatible $(k+1)$-tuple u_{1}, \ldots, u_{k+1}, such that $u_{1} \cup \cdots \cup u_{k+1}=$ $\{a\} \cup u_{k+1}$ for some $a \in I$ and $u_{k+1} \in K$, define an expansion of M to L by

$$
M \models Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}\right)\right)
$$

if and only if $x_{1}\left(u_{k+1}\right)+\cdots+x_{k}\left(u_{k+1}\right)+x_{k+1}=\ell\left(a, u_{k+1}\right) \bmod 2$. Then M satisfies the properties (1)-(3) of Notation 1.2.

Indeed, it is straightforward to check that the expanded structure M satisfies the properties.

We describe the interaction of G and Q a bit more fully. Using symmetry in the first k components, we obtain the following property that was used by Hart and Shelah to define Q in [9].

Fact 1.4. For all $\gamma_{1}, \ldots, \gamma_{k} \in G$ and all $\delta \in H$ we have

$$
\begin{aligned}
& Q\left(\left(u_{1}, x_{1}\right), \ldots,\left(u_{k}, x_{k}\right),\left(u_{k+1}, x_{k+1}\right)\right) \\
& \quad \Leftrightarrow Q\left(\left(u_{1}, x_{1}+\gamma_{1}\right), \ldots,\left(u_{k}, x_{k}+\gamma_{k}\right),\left(u_{k+1}, x_{k+1}+\delta\right)\right)
\end{aligned}
$$

if and only if $\gamma_{1}\left(u_{k+1}\right)+\cdots+\gamma_{k}\left(u_{k+1}\right)+\delta=0 \bmod 2$.

In order to consider finite L-structures with L^{\prime}-reducts of the form $M(I)$ for some of our inductive proofs, we introduce the following terminology.

Definition 1.5. We call an L-structure N a full structure for ϕ_{k} if $N \upharpoonright L^{\prime}$ is isomorphic to an $M(I)$ for some I and $N \models \psi_{k}^{2}$.

Let χ_{k} be the disjunction of the sentences describing $M(I)$ for each finite set I. Let $\hat{\phi}_{k}$ be $\phi_{k} \vee\left(\psi_{k}^{2} \wedge \chi_{k}\right)$. Then we can write "the L-structure N is a full structure for ϕ_{k} " more shortly as $N \models \hat{\phi}_{k}$.

An L-substructure A of $M \models \phi_{k}$ is called a full substructure if $A \models \hat{\phi}_{k}$.
Remark 1.6. (1) For infinite N, full structure is the same as being a model of ϕ_{k}; $\hat{\phi}_{k}$ includes structures built on a finite I.
(2) The need for the notion of a full substructure can be explained, for example, by the fact that a subset $\left\{a_{0}, a_{1}, a_{2}\right\}$ of $I(M)$ together with a single element $x \in G_{a_{0}, a_{1}}^{*}$ is a substructure, but not a full substructure, of $M \models \phi_{2}$. We want to close such a substructure under almost all the Skolem functions, excluding the ones that add elements of the "spine" I.

In the next section, we show that ϕ_{k} is categorical in $\aleph_{0}, \ldots, \aleph_{k-2}$. So in particular ϕ_{k} is a complete sentence for all k. (See Chapter 7 of [1] for an account of completeness of sentences in $L_{\omega_{1}, \omega}$.)

Now we obtain abstract elementary classes $\left(\boldsymbol{K}_{k}, \prec_{\boldsymbol{K}}\right)$ where \boldsymbol{K}_{k} is the class of models of ϕ_{k} and for $M, N \models \phi_{k}, M \prec_{\boldsymbol{K}} N$ if $M \prec_{L_{\omega_{1}, \omega}} N$. We show in Section 4 that $M \subset N$ implies $M \prec_{L_{\omega_{1}, \omega}} N$ for models of ϕ_{k}.

We freely use various notions from the general theory of AEC, such as Galois type, below. All are defined in [1]. For convenience we repeat the three most used definitions.

Definition 1.7. The AEC K has the disjoint amalgamation property if for any $M_{0} \prec M_{1}, M_{2}$, there is a model $M \models \phi_{k}$ with $M \succ M_{0}$ and embeddings f_{i} : $M_{i} \rightarrow M, i=1,2$ such that $f_{1}\left(M_{1}\right) \cap f_{2}\left(M_{2}\right)=f_{1}\left(M_{0}\right)=f_{2}\left(M_{0}\right)$. If we omit the requirement on the intersection of the images, we have the amalgamation property.

Under assumption of amalgamation (disjointness is not needed) and joint embedding one can construct monster models, i.e., strongly model homogeneous models \mathbb{M} of an appropriate large size. (See [1] for the definitions and the construction.) Joint embedding is clear in our context and we prove amalgamation in Section 3. Using monster models, one can give the following simple definition of a Galois type.
Definition 1.8. Let \boldsymbol{K} be an AEC with amalgamation. Let $M \in \boldsymbol{K}, M \prec{ }_{\boldsymbol{K}} \mathbb{M}$ and $a \in \mathbb{M}$. The Galois type of a over $M(\in \mathbb{M})$ is the orbit of a under the automorphisms of \mathbb{M} which fix M.

The set of all Galois types over M is denoted ga-S(M).

In a class with amalgamation we can check whether two points have the same Galois type by the following criterion: For $M \prec \boldsymbol{K} N_{1} \in \boldsymbol{K}, M \prec \boldsymbol{K} N_{2} \in$ \boldsymbol{K} and $a \in N_{1}-M, b \in N_{2}-M$, the Galois type a over M in N_{1} is the same as the Galois type b over M in N_{2} if there exist strong embeddings f_{1}, f_{2} of N_{1}, N_{2} into some N^{*} which agree on M and with $f_{1}(a)=f_{2}(b)$.

Definition 1.9. We say \boldsymbol{K} is ω-Galois stable if for any countable $M \in \boldsymbol{K}$, $|\mathrm{ga-S}(\mathrm{M})|=\aleph_{0}$.

Definition 1.10. We say \boldsymbol{K} is (χ, μ)-tame iffor any $N \in \boldsymbol{K}$ with $|N|=\mu$, for all $p, q \in$ ga- $\mathrm{S}(\mathrm{N})$, if $p \upharpoonright N_{0}=q \upharpoonright N_{0}$ for every $N_{0} \leq N$ with $\left|N_{0}\right| \leq \chi$, then $p=q$.

2. SOLUTIONS AND CATEGORICITY

As we saw in Fact 1.3, the predicate Q can be defined in somewhat arbitrary way. Showing categoricity of the L-structure amounts to showing that any model M, of an appropriate cardinality, is isomorphic to the model where all the values of ℓ are chosen to be zero; we call such a model a standard model. This motivates the following definition:

Definition 2.1. Fix a model or a full structure M. A solution for M is a selector f that chooses (in a compatible way) one element of the fiber in G^{*} above each element of K and one element of the fiber in H^{*} above each element of K. Formally, f is a pair of functions (g, h), where $g: K(M) \rightarrow G^{*}(M)$ and $h: K(M) \rightarrow H^{*}(M)$ such that $\pi_{G} g$ and $\pi_{H} h$ are the identity and for each compatible $(k+1)$-tuple u_{1}, \ldots, u_{k+1} :

$$
Q\left(g\left(u_{1}\right), \ldots, g\left(u_{k}\right), h\left(u_{k+1}\right)\right)
$$

Notation 2.2. As usual $k=\{0,1, \ldots k-1\}$ and we write $[A]^{k}$ for the set of k-element subsets of A.

We will show momentarily that if M and N have the same cardinality and have solutions f_{M} and f_{N} then $M \cong N$. Thus, in order to establish categoricity of ϕ_{k} in $\aleph_{0}, \ldots, \aleph_{k-2}$, it suffices to find a solution in an arbitrary model of ϕ_{k} of cardinality up to \aleph_{k-2}. Our approach is to build up the solutions in stages, for which we need to describe selectors over subsets of $I(M)$ (or of $K(M)$) rather than all of $I(M)$.

Definition 2.3. We say that (g, h) is a solution for the subset W of $K(M)$ if for each $u \in W$ there are $g(u) \in G_{u}^{*}$ and $h(u) \in H_{u}^{*}$ such that if $u_{1}, \ldots, u_{k}, u_{k+1}$ are a compatible $(k+1)$-tuple from W, then

$$
Q\left(g\left(u_{1}\right), \ldots, g\left(u_{k}\right), h\left(u_{k+1}\right)\right)
$$

If (g, h) is a solution for the set W, where $W=[A]^{k}$ for some $A \subset I(M)$, we say that (g, h) is a solution over A.

Remark 2.4. Let $k \geq 2$, and let M be a model of $\hat{\phi}_{k}$. If $A \subset I(M)$ has k elements, then there is a solution over A. Indeed, $[A]^{k}$ is a singleton, so there are no restrictions coming from the predicate Q.

Definition 2.5. The models of ϕ_{k} have the extension property for solutions over sets of size λ (or over finite sets) if for every $M \models \phi_{k}$, any solution (g, h) over a set A with $|A|=\lambda$ (or A finite), and every $a \in I(M)-A$ there is a solution $\left(g^{\prime}, h^{\prime}\right)$ over the set $A \cup\{a\}$, extending (g, h).

One can treat the element $g(u)$ as the image of the element $(u, 0)$ under the isomorphism between the standard model and M, where 0 represents the constantly zero function in the stalk G_{u}^{*}. Not surprisingly, we have the following:
Lemma 2.6. If M and N are models of ϕ_{k} of the same cardinality and have solutions f_{M} and f_{N} then $M \cong N$.

Moreover, suppose \boldsymbol{K} has solutions and has extension of solutions for models of cardinality less than $|M|$. If g is an isomorphism between full substructures (or submodels) M^{\prime}, N^{\prime} of M and N with $\left|M^{\prime}\right|<|M|$ and $\left|N^{\prime}\right|<|N|$, then the isomorphism \hat{g} between M and N can be chosen to extend g. Finally, if
$f_{M^{\prime}}$ is a solution on M^{\prime} which extends to a solution f_{M} on M, then \hat{g} maps them to a similar extending pair on N^{\prime} and N.

Proof. We prove the 'moreover' clause; the first statement is a special case when g is empty and the 'finally' is included in the proof. Say, g maps M^{\prime} to N^{\prime}. Without loss of generality, $M \upharpoonright L^{\prime}=M(I), N \upharpoonright L^{\prime}=M\left(I^{\prime}\right)$. Let α be a bijection between I and I^{\prime} which extends $g \upharpoonright I$. Extend naturally to a map from $K(M)$ to $K(N)$ and from $G(M)$ to $G(N)$, which extends g on M^{\prime}. By assumption there is a solution $f_{M^{\prime}}$ on M^{\prime}. It is clear that g maps $f_{M^{\prime}}$ to a solution $f_{N^{\prime}}$ on N^{\prime}; by assumption $f_{N^{\prime}}$ extends to a solution on N. (Note that if we do not have to worry about g, we let α be an arbitrary bijection from I to I^{\prime} and let $\alpha\left(f_{M}(u)\right)$ be $f_{N}(\alpha(u))$.) For $x \in G^{*}\left(M-M^{\prime}\right)$ such that $M \models \pi_{G}(x)=u$, there is a unique $a \in G(M)$ with $a=x-f_{M}(u)$ (the operation makes sense because a and $f_{M}(u)$ are in the same stalk).

Let $\alpha(x)$ be the unique $y \in N-N^{\prime}$ such that

$$
N \models t_{G}\left(\alpha(u), \alpha(a), f_{N}(\alpha(u)), y\right)
$$

i.e., $y=\alpha(a)+f_{N}(\alpha(u))$ in the stalk $G_{\alpha(u)}^{*}(N)$.

Do a similar construction for H^{*} and observe that Q is preserved. \qquad
We temporarily specialize to the case $k=2$.
Claim 2.7. The models of $\hat{\phi}_{2}$ have the extension property for solutions over finite sets.

Proof. Let $A:=\left\{a_{0}, \ldots, a_{n-1}\right\}$, let (g, h) be a solution over A, and suppose a is not in A. For each $v=\left\{a, a_{i}\right\}$, let y_{v} be an arbitrary element of H_{v}^{*}. Now extend h to the function h^{\prime} with domain $[A \cup\{a\}]^{2}$ by defining $h^{\prime}(v):=y_{v}$.

It remains to define the function g^{\prime} on each $\left\{a, a_{i}\right\}$, and we do it by induction on i.

For $i=0$, pick an arbitrary starting point ${ }^{1} x \in G_{a, a_{0}}^{*}$. Let $\gamma_{0} \in G$ be such that for $j=1, \ldots, n-1$:

$$
\gamma_{0}\left(a, a_{j}\right)=1 \text { if and only if } M \models \neg Q\left(\left(\left\{a, a_{0}\right\}, x\right), g\left(a_{0}, a_{j}\right), h^{\prime}\left(a, a_{j}\right)\right) .
$$

It is clear that $\gamma \in G(M)$ and that letting $g^{\prime}\left(\left\{a, a_{0}\right\}\right):=\left(\left\{a, a_{0}\right\}, x+\gamma_{0}\right)$, we have a partial solution.

[^0]Suppose that $g^{\prime}\left(\left\{a, a_{j}\right\}\right), j<i$, have been defined. Pick an arbitrary starting point $x \in G_{a, a_{i}}^{*}$. Let $\gamma_{i} \in G(M)$ be such that for $j \in\{0, \ldots, n-1\} \backslash\{i\}$ $\gamma_{i}\left(a, a_{j}\right)=1$ if and only if $M \models \neg Q\left(\left(\left\{a, a_{i}\right\}, x\right), g\left(a_{i}, a_{j}\right), h^{\prime}\left(a, a_{j}\right)\right)$.
Also let $\gamma_{i}^{\prime} \in G(M)$ be such that for $j<i$
$\gamma_{i}^{\prime}\left(a_{i}, a_{j}\right)=1$ if and only if $M \models \neg Q\left(\left(\left\{a, a_{j}\right\}, x\right), g^{\prime}\left(a, a_{j}\right), h\left(a_{i}, a_{j}\right)\right)$.
Now letting $g^{\prime}\left(\left\{a, a_{i}\right\}\right):=\left(\left\{a, a_{i}\right\}, x+\gamma_{i}+\gamma_{i}^{\prime}\right)$ yields a well-defined solution on $A \cup\{a\}$.
Corollary 2.8. The sentence ϕ_{2} is \aleph_{0}-categorical, and hence is a complete sentence.

Proof. Let M be a countable model. Enumerate $I(M)$ as $\left\{a_{i} \mid i<\omega\right\}$. As we pointed out in Remark 2.4, a solution exists over the set $\left\{a_{0}, a_{1}\right\}$ (any elements in the stalks $G_{a_{0}, a_{1}}^{*}$ and $H_{a_{0}, a_{1}}^{*}$ work). By the extension property for solutions over finite sets we get a solution defined over the entire $I(M)$. Hence ϕ_{2} is countably categorical by Lemma 2.6.

We see that extension for solutions over finite sets translates into existence of solutions over countable sets. This is part of a general phenomenon that we describe below. We return to the general case $k \geq 2$.

Definition 2.9. Let M with $M \upharpoonright L^{\prime}=M(I)$ be a model of $\hat{\phi}_{k}$. Let A be a subset of $I(M)$ of size λ, and consider an arbitrary n-element set $\left\{b_{0}, \ldots, b_{n-1}\right\} \subset I$. Suppose that, for each $(n-1)$-element subset w of $n=\{0, \ldots, n-1\}$, we have a solution $\left(g_{w}, h_{w}\right)$ over $A \cup\left\{b_{l} \mid l \in w\right\}$ such that the solutions are compatible (i.e., $\left(\bigcup_{w} g_{w}, \bigcup_{w} h_{w}\right)$ is a function).

We say that M has n-amalgamation for solutions over sets of size λ if for every such set A, there is a solution (g, h) over $A \cup\left\{b_{0}, \ldots, b_{n-1}\right\}$ that simultaneously extends all the given solutions $\left\{\left(g_{w}, h_{w}\right) \mid w \in[n]^{n-1}\right\}$.

For $n=0$ the given system of solutions is empty, thus 0 -amalgamation over sets of size λ is existence for solutions over sets of size λ. For $n=1$, the initial system of solutions degenerates to just $\left(g_{\emptyset}, h_{\emptyset}\right)$, a solution on A; so the 1amalgamation property corresponds to the extension property for solutions. Generally, the number n in the statement of n-amalgamation property for solutions refers to the "dimension" of the system of solutions that we are able to amalgamate.

Remark 2.10. Immediately from the definition we see that n-amalgamation for solutions of certain size implies m-amalgamation for solutions of the same size for any $m<n$. Indeed, we can obtain m-amalgamation by putting $n-m$ elements of the set $\left\{b_{0}, \ldots, b_{n-1}\right\}$ inside A.

Using Remark 2.4, we see that 2-amalgamation for solutions of size λ implies extension, and existence, of solutions of the same size.

Lemma 2.11. The models $\hat{\phi}_{k}$ have the ($k-1$)-amalgamation property for solutions over finite sets.

Proof. Enumerate $A=\left\{a_{0}, \ldots, a_{r-1}\right\}$. We are given that $\left(\bigcup_{w} g_{w}, \bigcup_{w} h_{w}\right)$ is a function (where the union is over all $w \in[k-1]^{k-2}$). Moreover, it is a solution over $W=\bigcup_{w} \operatorname{dom}\left(g_{w}\right)$, $\left(\operatorname{dom} g_{w}=\left[A \cup\left\{b_{i}: i \in w\right\}\right]^{k}\right)$, since if $u_{1}, \ldots u_{k+1}$ is a compatible $(k+1)$-tuple of k-tuples from W, then each u_{i} is in $\operatorname{dom}\left(g_{w}\right)=$ $\operatorname{dom}\left(h_{w}\right)$ for at least one $w \in[k-1]^{k-2}$. Denote the function $\bigcup_{w} g_{w}$ by g_{-1}.

It is clear that in order to extend to a solution on $A \cup\left\{b_{0}, \ldots, b_{k-2}\right\}$, we only need to define the values (g, h) on the stalks $\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}$ for all $i<r$. For each $i<r$, let $h\left(a_{i}, b_{0}, \ldots, b_{k-2}\right)$ be an arbitrary element of $H_{a_{i}, b_{0}, \ldots, b_{k-2}}^{*}$. We need to check that $\left(g_{-1}, h\right)$ is still a solution.

Remark 2.12. Hart and Shelah assert that categoricity holds up to \aleph_{k-1}; we show in Theorem 7.1 that this statement is incorrect. The Hart-Shelah argument breaks down at this very point. Their formulation of the analog of Lemma 2.11 asserts essentially the k, not $k-1$, amalgamation property for solutions over finite sets. However, they did not make the compatibility requirement in Definition 2.9; and did not check that the function obtained after defining h is a partial solution. In fact, in their setting without the compatibility condition it need not be a solution, and there may not be a way of defining h to make $\left(g_{-1}, h\right)$ a solution. We present an example of the failure of 2-amalgamation for solutions over finite sets for models of ϕ_{2} at the end of this proof.

As we will see in Lemma 2.14, $(k-1)$-amalgamation for solutions over finite sets translates into existence of solutions, and hence categoricity, in \aleph_{k-2}. This is the reason for subscript of the categoricity cardinal being off by one in [9].

It is clear that $\left(g_{-1}, h\right)$ is a function with values in the appropriate stalks. To check that it is a solution, we need to make sure that we have not introduced new values that violate the predicate Q. This is easy: for each $a_{i} \in A$, any compatible $k+1$ tuple containing the k element set $\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}$ has to contain a k element set of the form $\left\{a_{j}, b_{0}, \ldots, b_{k-2}\right\}$ for some $j \neq i$. Since the value g_{-1} at $\left\{a_{j}, b_{0}, \ldots, b_{k-2}\right\}$ is not defined, there are simply no new compatible $k+1$ tuples to worry about.

Finally, we need to define g on the stalks of the form $\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}$. We do it by induction on $i<n$, building an increasing chain of functions g_{i}, $i<n$, with g_{0} extending g_{-1}. Let $\left\{w_{s} \mid s<k-1\right\}$ be an enumeration of all the $k-2$ element subsets of $k-1$; let $\boldsymbol{b}_{w_{s}}$ denote the sequence $\left\{b_{i} \mid i \in w_{s}\right\}$ and let $\boldsymbol{c}_{s, j}=\left\langle a_{0}, a_{j}, \boldsymbol{b}_{w_{s}}\right\rangle$.

For $i=0$, pick an arbitrary starting point $x \in G_{a_{0}, b_{0}, \ldots, b_{k-2}}^{*}$. Let $\gamma_{0} \in G$ be such that for $j=1, \ldots, n-1$

$$
\begin{aligned}
& \quad \gamma_{0}\left(a_{j}, b_{0}, \ldots, b_{k-2}\right)=1 \text { if and only if } \\
& M \models \neg Q\left(\left(\left\{a_{0}, b_{0}, \ldots, b_{k-2}\right\}, x\right), g_{-1}\left(\boldsymbol{c}_{0, j}\right), \ldots, g_{-1}\left(\boldsymbol{c}_{k-1, j}\right), h\left(a_{j}, b_{0}, \ldots, b_{k-2}\right)\right) .
\end{aligned}
$$

Now we can extend the function g_{-1} to the function g_{0} by letting $g_{0}\left(a_{0}, b_{0}, \ldots, b_{k-2}\right):=\left(\left\{a_{0}, b_{0}, \ldots, b_{k-2}\right\}, x+\gamma_{0}\right)$. It is clear that $\left(g_{0}, h\right)$ is a solution from its definition.

For arbitrary i, suppose that the solution $\left(g_{i-1}, h\right)$ has been defined so that

$$
\operatorname{dom}\left(g_{i-1}\right)=\operatorname{dom}\left(g_{-1}\right) \cup\left[\left\{a_{0}, \ldots, a_{i-1}, b_{0}, \ldots, b_{k-2}\right\}\right]^{k}
$$

We need to extend g_{i-1} to a function g_{i}, with domain $\operatorname{dom}\left(g_{-1}\right) \cup$ $\left[\left\{a_{0}, \ldots, a_{i}, b_{0}, \ldots, b_{k-2}\right\}\right]^{k}$, by defining $g_{i}\left(a_{i}, b_{0} \ldots, b_{k-2}\right)$. The strategy will be the same as before: we pick an arbitrary starting point and work to resolve all possible conflicts with the predicate Q.

Let $\boldsymbol{d}_{s, j}$ denote $\left\langle a_{i}, a_{j}, \boldsymbol{b}_{w_{s}}\right\rangle . \quad$ Pick an arbitrary starting point $x \in$ $G_{a_{i}, b_{0}, \ldots, b_{k-2}}^{*}$. Let $\gamma_{i} \in G$ be such that for $j \in\{0, \ldots, n-1\} \backslash\{i\}$

$$
\gamma_{i}\left(a_{j}, b_{0}, \ldots, b_{k-2}\right)=1 \text { if and only if } M \models
$$

$$
\neg Q\left(\left(\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}, x\right), g_{-1}\left(\boldsymbol{d}_{0, j}\right), \ldots, g_{-1}\left(\boldsymbol{d}_{k-1, j}\right), h\left(a_{j}, b_{0}, \ldots, b_{k-2}\right)\right)
$$

and $\gamma_{i}(u)=0$ if $u \in \operatorname{dom}\left(g_{-1}\right) \cup\left[\left\{a_{0}, \ldots, a_{i}, b_{0}, \ldots, b_{k-2}\right\}\right]^{k}$ is not of this form.
For each ($k-2$)-element set w of $k-1$, let $\gamma_{i}^{w} \in G$ be such that for $j<i$ $\gamma_{i}^{w}\left(a_{i}, a_{j}, \boldsymbol{b}_{w}\right)=1$ if and only if $M \models$ $\neg Q\left(\left(\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}, x\right), g_{i-1}\left(a_{j}, b_{0}, \ldots, b_{k-2}\right), . ., g_{-1}\left(\boldsymbol{d}_{s, j}\right), . ., h\left(a_{i}, a_{j}, b_{w}\right)\right)$, and $\gamma_{i}^{w}(u)=0$ if $u \in \operatorname{dom}\left(g_{-1}\right) \cup\left[\left\{a_{0}, \ldots, a_{i}, b_{0}, \ldots, b_{k-2}\right\}\right]^{k}$ is not of this form, where $\boldsymbol{d}_{s, j}$ ranges over all sequences $\left\langle a_{i}, a_{j}, \boldsymbol{b}_{w_{s}}\right\rangle$ with w_{s} a $(k-2)$-element subset of $k-1$ except $w_{s}=w$. The role of γ_{i}^{w} is to avoid the conflict with the values already defined by g_{i-1}. Notice that we have finitely many conditions to meet, so γ_{i} as well as γ_{i}^{w} are all finite support functions in G.

Now we let

$$
g_{i}\left(a_{i}, b_{0}, \ldots, b_{k-2}\right):=\left(\left\{a_{i}, b_{0}, \ldots, b_{k-2}\right\}, x+\gamma_{i}+\sum_{w \in[k-1]^{k-2}} \gamma_{i}^{w}\right) .
$$

From the definition, $\left(g_{i}, h\right)$ is a solution.

We now give an examples explicitly showing that, for models of ϕ_{2}, the solutions over finite sets do not have 2 -amalgamation.

Example 2.13. Let M be the standard countable model of ϕ_{2} (i.e., a model where the values $\ell(a, u)$ are all zero). Take four points $a, b, c, d \in I$. Define functions $\left(g_{1}, h_{1}\right)$ on $[\{a, b, c\}]^{2}$ and $\left(g_{2}, h_{2}\right)$ on $[\{a, b, d\}]^{2}$ such that
(1) for $u \in \operatorname{dom}\left(h_{i}\right), i=1,2$, the values $h_{i}(u)$ are zeros in the stalks H_{u}^{*};
(2) for $u \in \operatorname{dom}\left(g_{i}\right), i=1,2$, the values $g_{i}(u)$ are zero functions in the stalks G_{u}^{*} except
(3) $g_{2}(b d)$ is the function in $G_{b, d}^{*}$ with the support containing exactly one element $\{c, d\} \in K$. That is, $g_{2}(b d)(u)=1$ if and only if $u=\{c, d\}$.

In particular, both $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are solutions on their domains and they agree on $\{a, b\}$.

However,

$$
M \models Q\left(g_{1}(a c), g_{2}(a d), \delta\right) \wedge \neg Q\left(g_{1}(b c), g_{2}(b d), \delta\right),
$$

for any $\delta \in H_{c, d}^{*}$. Thus, the h-part of the solution cannot be defined on $H_{c, d}^{*}$. This shows that, using the notation of the above proof, the function $\left(g_{-1}, h\right)$ need not be a solution when we amalgamate two solutions over finite sets for $k=2$.

There are several reasonable ways to try to vary the definition of solution to obtain 2-amalgamation of finite solutions for ϕ_{2}. Ultimately, none of them work because models of ϕ_{2} fail to have extension property for countable solutions; this is used in Section 6 to construct many Galois types over a countable model.

Lemma 2.14. Let $M \models \phi_{k}$ for some $k \geq 2$ and let $n \leq k-2$. If M has $(n+1)$-amalgamation for solutions over sets of size less than $\lambda \geq \aleph_{0}$, then M has n-amalgamation for solutions over sets of size λ.

Proof. Let $A=\left\{a_{i} \mid i<\lambda\right\}$ be a subset of $I(M)$, let $\left\{b_{0}, \ldots, b_{n-1}\right\}$ be distinct points in $I(M) \backslash A$ and let

$$
\left\{\left(g_{w}, h_{w}\right) \mid w \in[n]^{n-1}, \operatorname{dom}\left(g_{w}\right)=\operatorname{dom}\left(h_{w}\right)=\left[A \cup\left\{b_{l} \mid l \in w\right\}\right]^{k}\right\}
$$

be a system of compatible solutions. We need to simultaneously extend the system of solutions.

By induction on $i<\lambda$, we are building an increasing continuous chain of solutions $\left(g^{i}, h^{i}\right)$ such that
(1) $\operatorname{dom}\left(g^{i}\right)=\operatorname{dom}\left(h^{i}\right)=\left[\left\{a_{j} \mid j<i\right\} \cup\left\{b_{0}, \ldots, b_{n-1}\right\}\right]^{k}$, and
(2) $\left(g^{i+1}, h^{i+1}\right)$ extends simultaneously $\left(g^{i}, h^{i}\right)$ as well as for all $w \in[n]^{n-1}$,

$$
\left(g_{w}, h_{w}\right) \upharpoonright\left[\left\{a_{j} \mid j<i+1\right\} \cup\left\{b_{l} \mid l \in w\right\}\right]^{k} .
$$

To define $\left(g^{0}, h^{0}\right)$, consider for $w \in[n]^{n-1}$ the system of solutions $\left(g_{w}, h_{w}\right) \upharpoonright\left[\left\{b_{l} \mid l \in w\right\}\right]^{k}$. Since $(n+1)$-amalgamation for solutions implies
n-amalgamation for solutions over a fixed set and we have $(n+1)$-amalgamation for solutions over the empty set, we get a simultaneous extension $\left(g^{0}, h^{0}\right)$.

At limit stages, we take unions, and at the successor step we simultaneously extend $\left(g^{i}, h^{i}\right)$ and $\left(g_{w}, h_{w}\right) \upharpoonright\left[\left\{a_{j} \mid j<i+1\right\} \cup\left\{b_{l} \mid l \in w\right\}\right]^{k}$, for all $w \in[n]^{n-1}$. Clearly, all the restrictions of $\left(g_{w}, h_{w}\right)$ are pairwise compatible, and for each $w \in[n]^{n-1}$ the intersection $\operatorname{dom}\left(g^{i}, h^{i}\right) \cap \operatorname{dom}\left(g_{w}, h_{w}\right)$ is equal to $\left[\left\{a_{j} \mid j<i\right\} \cup\left\{b_{l} \mid l \in w\right\}\right]^{k}$, where their definitions coincide. So by $(n+1)$ amalgamation property for solutions of size less than λ there is the required common extension $\left(g^{i+1}, h^{i+1}\right)$. Finally, $\bigcup_{i<\lambda}\left(g^{i}, h^{i}\right)$ is the needed solution.

Corollary 2.15. Every model of $\hat{\phi}_{k}$ of cardinality at most \aleph_{k-2} admits a solution. Thus, the sentence ϕ_{k} is categorical in $\aleph_{0}, \ldots, \aleph_{k-2}$.

Proof. Let $M \models \phi_{k}$. By Lemma 2.11, M has $(k-1)$-amalgamation for solutions over finite sets. So M has $(k-2)$-amalgamation for solutions over countable sets, $(k-3)$-amalgamation for solutions over sets of size \aleph_{1}, and so on until we reach 0 -amalgamation for solutions over sets of size \aleph_{k-2} (provided M is large enough). Since for $m<n$ and any λ, the n-amalgamation property for solutions over sets of cardinality λ implies m-amalgamation solutions over sets of cardinality λ, we have 0 -amalgamation, that is, existence of solutions for sets of size up to and including \aleph_{k-2}.

Now Lemma 2.6 gives categoricity in $\aleph_{0}, \ldots, \aleph_{k-2}$.
Corollary 2.16. For all $k \geq 2$, the sentence ϕ_{k} is $L_{\omega_{1}, \omega}$-complete.

The following further corollary will be useful in applications.
Corollary 2.17. Let $M \models \hat{\phi}_{k}$ for some $k \geq 2$ and $n \leq k-2$. Suppose M has 2-amalgamation for solutions over sets of cardinality $\lambda \geq \aleph_{0}$ (or over finite sets). If $A_{0} \subset A_{1}, A_{2} \subset M$ have cardinality λ (or are finite) and $\left(g^{1}, h^{1}\right),\left(g^{2}, h^{2}\right)$ are solutions of A_{1}, A_{2} respectively that agree on A, there is a solution (g, h) on $A_{1} \cup A_{2}$ extending both of them.

Proof. It suffices to show that a one point extension can be amalgamated with an extension of cardinality λ. For this, enumerate $A_{1}-A_{0}$ as $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ and say $A_{2}-A_{0}$ is $\{b\}$. Now successively apply 2 -amalgamation of solutions to amalgamate $\left(g^{2}, h^{2}\right) \upharpoonright A_{0} \cup\{b\}$ with $\left(g^{1}, h^{1}\right) \upharpoonright A_{0} \cup\left\{a_{0}\right\}$ over A_{0}, with $\left(g^{1}, h^{1}\right) \upharpoonright A_{0} \cup\left\{a_{0}, a_{1}\right\}$ over $A_{0} \cup\left\{a_{0}\right\}$, etc.

3. DISJOINT AMALGAMATION FOR MODELS OF $\hat{\phi}_{k}$

In contrast to the previous section, where we studied amalgamation properties of solutions, this section is about (the usual) amalgamation property for the class of models of $\hat{\phi}_{k}$. The amalgamation property is a significant assumption for
the behavior and even the precise definition of Galois types, so it is important to establish that the class of models of our ϕ_{k} has it. We claim that the class has the disjoint amalgamation property in every cardinality. Note that the argument also establishes the joint embedding property.

Theorem 3.1. Fix $k \geq 2$. The class of models of $\hat{\phi}_{k}$ has the disjoint amalgamation property.

Proof. Let $M_{i}=M_{i}\left(I_{i}\right), i=0,1,2$, where of course $I_{0} \subset I_{1}, I_{2} ; K_{0}, K_{1}, K_{2}$ are the associated sets of k-tuples. We may assume that $I_{1} \cap I_{2}=I_{0}$. Otherwise take a copy I_{2}^{\prime} of $I_{2} \backslash I_{0}$ disjoint from I_{1}, and build a structure M_{2}^{\prime} isomorphic to M_{2} on $I_{0} \cup I_{2}^{\prime}$.

We are building a model $M \models \hat{\phi}_{k}$ on the set $I_{1} \cup I_{2}$ making sure that it is a model of $\hat{\phi}_{k}$ and that it embeds M_{1} and M_{2}, where the embeddings agree over M_{0}. We start by building the L^{\prime}-structure on $I_{1} \cup I_{2}$. So let $I=I(M):=I_{1} \cup I_{2}$; the set $K=[I]^{k}$ can be thought of as $K_{1} \cup K_{2} \cup \partial K$, where ∂K consists of the new k-tuples.

Let G be the direct sum of K copies of Z_{2}, notice that it embeds $G\left(M_{1}\right)$ and $G\left(M_{2}\right)$ in the natural way over $G\left(M_{0}\right)$. We will assume that the embeddings are identity embeddings.

Let G^{*} be the set of K many affine copies of G, with the action by G and projection to K defined in the natural way. Let H^{*} be the set of K many affine copies of Z_{2}, again with the action by Z_{2} and the projection onto K naturally defined.

For $i=1,2$, we now describe the embeddings f_{i} of $G^{*}\left(M_{i}\right)$ and $H^{*}\left(M_{i}\right)$ into G^{*} and H^{*}. Later, we will define the predicate Q on M in such a way that f_{i} become embeddings of L-structures.

For each $u \in K_{0}$, choose arbitrarily an element $x_{u} \in G_{u}^{*}\left(M_{0}\right)$. Now for each $x^{\prime} \in G_{u}^{*}\left(M_{1}\right)$, let γ be the unique element in $G\left(M_{1}\right)$ with $x^{\prime}=x_{u}+\gamma$. Let $f_{1}\left(x^{\prime}\right):=(u, \gamma)$. Similarly, for each $x^{\prime} \in G_{u}^{*}\left(M_{2}\right)$, let $\delta \in G\left(M_{2}\right)$ be the element with $x^{\prime}=x_{u}+\delta$. Define $f_{2}\left(x^{\prime}\right):=(u, \delta)$. Note that the functions agree over $G_{u}^{*}\left(M_{0}\right)$: if $x^{\prime} \in G_{u}^{*}\left(M_{0}\right)$, then the element $\gamma=x^{\prime}-x_{u}$ is in $G\left(M_{0}\right)$. In particular, $f_{1}\left(x_{u}\right)=f_{2}\left(x_{u}\right)=0$, the constantly zero function.

For each $u \in K_{i} \backslash K_{0}, i=1,2$, choose an arbitrary $x_{u} \in G_{u}^{*}\left(M_{i}\right)$, and for each $x^{\prime} \in G_{u}^{*}\left(M_{i}\right)$ define $f_{i}\left(x^{\prime}\right):=\left(u, x^{\prime}-x_{u}\right)$. This defines the embeddings $f_{i}: G^{*}\left(M_{i}\right) \rightarrow G^{*}(M)$.

Embedding $H^{*}\left(M_{i}\right)$ into $H^{*}(M)$ is even easier: for each $v \in K_{1}$, pick an arbitrary $y_{v} \in H_{v}^{*}\left(M_{1}\right)$, and let $f_{1}\left(y_{v}\right):=(v, 0), f_{1}\left(y_{v}+1\right):=(v, 1)$. For each $v \in K_{2}$, if $v \in K_{1}$, define f_{2} to agree with f_{1}. Otherwise choose an arbitrary $y_{v} \in H_{v}^{*}\left(M_{2}\right)$, and let $f_{2}\left(y_{v}\right):=(v, 0), f_{2}\left(y_{v}+1\right):=(v, 1)$.

This completes the construction of the disjoint amalgam for L^{\prime}-structures. Now we define Q on the structure M so that $f_{i}, i=1,2$ become L-embeddings. The expansion is described in terms of the function ℓ that we discussed in Fact 1.3.

Let u_{1}, \ldots, u_{k}, v be a compatible $(k+1)$-tuple of elements of $K ; u_{1} \cup$ $\cdots \cup u_{k} \cup v=\{a\} \cup v$ for some $a \in I$.

Case 1. $u_{1}, \ldots, u_{k}, v \in K_{1}$ (or all in K_{2}). This is the most restrictive case. Each of the stalks $G_{u_{i}}^{*}\left(M_{1}\right)$ contains an element $x_{u_{i}}$ defined at the previous stage; and the stalk H_{v}^{*} has the element $y_{v} \in M_{1}$. Define

$$
\ell(a, v):=0 \text { if } M_{1} \models Q\left(\left(u_{1}, x_{u_{1}}\right), \ldots,\left(u_{k}, x_{u_{k}}\right),\left(v, y_{v}\right)\right),
$$

and $\ell(a, v):=1$ otherwise.
Case 2. At least one of the u_{1}, \ldots, u_{k}, v is in ∂K. Then the predicate Q has not been defined on these $k+1$ stalks, and we have the freedom to define it in any way. So choose $\ell(a, v):=0$ for all such compatible ($k+1$)-tuples.

Now define Q on M from the function ℓ as in Fact 1.3.
It is straightforward to check that f_{1} and f_{2} become L-embeddings into the L-structure M that we have built.

It would be interesting to investigate the higher-dimensional amalgamation properties in the family of classes given by ϕ_{k} for $k \geq 2$. This would require a good understanding of independence in these structures, and goes beyond the scope of this paper.

4. Model completeness

In this section we show that the class of models of ϕ_{k} is model-complete in an almost classical sense. Namely, we show that if $M, N \models \phi_{k}$ and $M \subset N$, then $M \prec_{L_{\omega_{1}, \omega}} N$. An essential step in the proof involves showing that for each finite set $A \subset M$, there is a complete, modulo ϕ_{k}, existential formula isolating the $L_{\omega_{1}, \omega}$-type of A.

The notion of completeness for a sentence of $L_{\omega_{1}, \omega}$ is rather more subtle than in the first order case, (there is no obvious canonical choice of a "complete theory in $L_{\omega_{1}, \omega} "$ attached to a structure M). The definitions and an explanation appear in Chapter 7 of [1].

Full substructures of models of ϕ_{k} will play an important role. Let us make the notion of a full substructure more explicit.

Fact 4.1. Let $k \geq 2$ and $M \models \phi_{k}$. If a subset A of the universe of M is the universe of a full substructure of M in the sense of Definition 1.5, then
(1) A is an L-substructure of M;
(2) $G(A)$ is the set of all finite support functions in $G(M)$ whose support is contained in $K(A)$;
(3) for all $u \in K(A)$ and for some $x \in G_{u}^{*}(M)$, we have $G_{u}^{*}(A)=\{x+\gamma \mid$ $\gamma \in G(A)\} ;$ and
(4) for all $v \in K(A)$ and for some $y \in H_{u}^{*}(M)$, we have $H_{v}^{*}(A)=\{y+\delta \mid$ $\left.\delta \in \mathbb{Z}_{2}\right\}$.

Lemma 4.2. For any set $A \subset M \models \hat{\phi}_{k}$, there is a minimal full substructure M_{A} containing A. Moreover, if A is a finite set, then M_{A} is also finite.

Proof. The full structure M_{A} is constructed as follows. First add to A all the elements of $G(M)$ of the form $\gamma=x-y$, where $x, y \in G_{u}^{*}(M) \cap A$, and take the closure of the resulting set under all the projections to obtain a set X. Let $I_{A}:=X \cap I(M), K_{A}:=\left[I_{A}\right]^{k}$. Then add elements to G, G^{*}, and H^{*} to satisfy the conditions (2)-(4) in Remark 4.1. Namely, form the set X^{\prime} by adding the needed functions to $G(X)$; for any $u \in K_{A}$ such that $G_{u}^{*}(M) \cap X$ is empty, add a single element from the fiber $G_{u}^{*}(M)$, and for any $v \in K_{A}$ add, if necessary, both elements in the fiber $H_{v}^{*}(M)$. Finally, close X^{\prime} under the action by the group $G\left(X^{\prime}\right)$.

Note that there may be many minimal full substructures over A contained in M. The goal of the following few claims is to show that a minimal full substructure of M containing A is unique up to isomorphism over A, justifying our notation M_{A}. A key point is that if N and M are models of ϕ_{k} and A is imbedded in both M and N, the structure M_{A} need not be isomorphic to N_{A} over A.

Claim 4.3. If M_{A}, M_{A}^{\prime} are minimal full substructures of M containing $A \subset M$, then the following sets are equal:
$I\left(M_{A}\right)=I\left(M_{A}^{\prime}\right), K\left(M_{A}\right)=K\left(M_{A}^{\prime}\right), G\left(M_{A}\right)=G\left(M_{A}^{\prime}\right), H^{*}\left(M_{A}\right)=H^{*}\left(M_{A}^{\prime}\right)$.
In addition, for each $u \in K(M)$, if $G_{u}^{*}(M) \cap A \neq \emptyset$, then $G_{u}^{*}\left(M_{A}\right)=G_{u}^{*}\left(M_{A}^{\prime}\right)$.

Proof. It is clear that the set I_{A} constructed in the previous lemma is the minimal one that works. So in fact we have $I\left(M_{A}\right)=I\left(N_{A}\right)=I_{A}$. The equalities $K\left(M_{A}\right)=K\left(N_{A}\right)$ and $G\left(M_{A}\right)=G\left(N_{A}\right)$ follow from the equality of I 's.

By the definition of a full structure, both $H^{*}\left(M_{A}\right)$ and $H^{*}\left(N_{A}\right)$ must contain a double cover of $K\left(M_{A}\right)=K\left(N_{A}\right)$. There is a unique such double cover inside M, so $H^{*}\left(M_{A}\right)=H^{*}\left(N_{A}\right)$ follows.

Finally, by the definition of a full structure, if $x \in G_{u}^{*}(M) \cap A$, then $G_{u}^{*}\left(M_{A}\right)$ (and $\left.G_{u}^{*}\left(N_{A}\right)\right)$ must be the orbit of x under the action by $G\left(M_{A}\right)$ (and $G\left(N_{A}\right)$). Since the groups are the same, the orbits are in fact equal.

Thus, the only possible non-uniqueness occurs in G^{*}-stalks that are not "populated" by elements from A. Indeed, in that case we have a complete freedom to choose a starting point in the stalk.

Lemma 4.4. If $M \models \phi_{k}, A \subset M$ is a set of cardinality at most \aleph_{k-2}, and M_{A}, M_{A}^{\prime} are minimal full substructures of M containing A, then M_{A}, M_{A}^{\prime} are isomorphic over A.

Proof. We claim that it is enough to show that there are solutions (g, h) on M_{A} and $\left(g^{\prime}, h^{\prime}\right)$ on M_{A}^{\prime} such that $h=h^{\prime}$ everywhere and $g(u)=g^{\prime}(u)$ for all u such that $G_{u}^{*} \cap A \neq \emptyset$. Indeed, then the map which is the identity on $I\left(M_{A}\right), K\left(M_{A}\right)$, $G\left(M_{A}\right), H^{*}\left(M_{A}\right)$ and all the stalks $G_{u}^{*}\left(M_{A}\right)$ such that $G_{u}^{*} \cap A \neq \emptyset$; and, for the remaining G^{*}-stalks, sends $g(u)+\gamma$ to $g^{\prime}(u)+\gamma$, for all $\gamma \in G\left(M_{A}\right)$, is the desired isomorphism.

Now we show that such solutions can be constructed. Start by defining h and h^{\prime} arbitrarily, but to be the same. For the g-part, follow the existence of solutions construction, picking the same element $x \in A$ as the starting point when dealing with the stalk $G_{u}^{*} \cap A \neq \emptyset$. If $G_{u}^{*} \cap A=\emptyset$, choose one starting point in each stalk and extend the isomorphism to the whole stalk using the action by G.
Claim 4.5. Let $M \models \phi_{k}$, and let M_{0} be a finite full substructure of M. Let $\psi_{M_{0}}$ be the quantifier-free first order formula describing the quantifier-free diagram of M_{0}. Then $\psi_{M_{0}}$ is a complete $L_{\omega_{1}, \omega}$-formula modulo ϕ_{k}.

Proof. It suffices to note that $\phi_{k} \wedge \psi_{M_{0}}\left[c_{0}, \ldots, c_{l-1}\right]$ is a complete $L_{\omega_{1}, \omega}$ sentence. Indeed, the realizations of c_{0}, \ldots, c_{l-1} form a full finite structure, which must have a solution for any k. We also know that for any $k \geq 2$ the models of ϕ_{k} have the extension property for solutions over finite subsets of I.

Thus, by Lemma 2.6, $\phi_{k} \wedge \psi_{M_{0}}\left[c_{0}, \ldots, c_{l-1}\right]$ is ω-categorical and hence complete.

Claim 4.6. Let $M \models \phi_{k}, n \geq k$, and let $I_{0}=\left\{a_{i} \mid i<n\right\}$ be a subset of $I(M)$. Let

$$
\psi_{I_{0}}:=\bigwedge_{i<n} I\left(x_{i}\right) \wedge \bigwedge_{i \neq j} x_{i} \neq x_{j}
$$

Then $\psi_{I_{0}}$ is a complete $L_{\omega_{1}, \omega}$-formula modulo ϕ_{k}.

Proof. Let M_{0} be a minimal full substructure of M containing I_{0}. Let $\psi_{M_{0}}$ be the complete formula from the previous claim, let x_{0}, \ldots, x_{n-1} be the list of variables that correspond to the elements of I_{0}, and let y_{0}, \ldots, y_{m-1} be the remaining variables of $\psi_{M_{0}}$.

Since minimal full substructures over finite subsets of I are unique up to isomorphism (by the existence of solutions over finite subsets of I),

$$
\phi_{k} \models \psi_{I_{0}} \rightarrow \exists y_{0} \ldots y_{m-1} \psi_{M_{0}}
$$

By Claim 4.5, $\exists y_{0} \ldots y_{m-1} \psi_{M_{0}}$ is a complete formula modulo ϕ_{k}. This completes the proof.

The $L_{\omega_{1}, \omega}$-type of an arbitrary subset A of M is also isolated. In contrast with subsets of $I(M)$ or finite full structures the formula isolating the type is not quantifier-free, but existential.

Claim 4.7. Let $M \models \phi_{k}$, and let A be a finite subset of M. Then there is a complete, modulo ϕ_{k}, existential formula ψ_{A} that isolates the type of A.

Proof. As in the previous claim, we take M_{A} a minimal full substructure of M containing A, and the formula $\psi_{A}:=\exists y_{0} \ldots y_{m-1} \psi_{M_{A}}$, where we quantify over the elements in $M_{A}-A$. This formula is as needed.

Corollary 4.8. Suppose $M \subset N$, where $M, N \models \phi_{k}$. Then $M \prec_{L_{\omega_{1}, \omega}} N$.

Proof. Take $\boldsymbol{a} \in M$. Let $A:=\boldsymbol{a}$, and let M_{A}, N_{A} be minimal full substructures of M and N over A in M and N respectively. It is enough to show that $N \models \exists y_{0} \ldots y_{m-1} \psi_{N_{A}}[\boldsymbol{a}]$ implies $M \models \exists y_{0} \ldots y_{m-1} \psi_{N_{A}}[\boldsymbol{a}]$. Since existential formulas are upwards persistent, we have $N \models \exists y_{0} \ldots y_{m-1} \psi_{M_{A}}[\boldsymbol{a}]$, and since $\psi_{M_{A}}$ and $\psi_{N_{A}}$ are complete modulo ϕ_{k}, by Claim 4.5 we have

$$
\phi_{k} \models \exists y_{0} \ldots y_{m-1} \psi_{N_{A}}(\mathbf{x}) \leftrightarrow \exists y_{0} \ldots y_{m-1} \psi_{M_{A}}(\mathbf{x})
$$

Thus, since $M \models \phi_{k}$, we get $M \models \exists y_{0} \ldots y_{m-1} \psi_{N_{A}}[\boldsymbol{a}]$.
Corollary 4.9. Let $M \models \phi_{k}$. For any $N \supset M$, all $b \in I(N)-I(M)$ satisfy the same syntactic type over M.

Proof. Let $M \subset N \models \phi_{k}$ and let $b \in I(N)-I(M)$. For any full finite substructure $A \subset M$, by Claim 4.7 there is a formula $\psi_{A b}$ that generates the type of $A b$. If we replace the constant for b by a variable x to get $\psi_{A b}(x)$ the type,

$$
\left\{\psi_{A b}(x) \mid A \subset_{f i n} M\right\}
$$

generates $\operatorname{tp}(b / M)$. It remains to note that, by the extension of solutions over finite substructures, the formulas $\psi_{A b}(x)$ depend only on A.

The significance of Corollary 4.9 will be clear in Section 6, where we show that the unique syntactic type of a spine element over a model of ϕ_{k} of size \aleph_{k-2} splits into $2^{\aleph_{k-2}}$ distinct Galois types over that model.

5. TAMENESS

Here we study the tameness properties for models of ϕ_{k}. We know that ϕ_{k} is categorical up to \aleph_{k-2}; so without loss of generality we may deal with the standard models of ϕ_{k} in powers $\aleph_{0}, \ldots, \aleph_{k-2}$.

In Section 6 we establish that ϕ_{2} has $2^{\aleph_{0}}$ Galois types over a countable model; and that ϕ_{3} is not $\left(\aleph_{0}, \aleph_{1}\right)$-tame.

We claim that the class of models of ϕ_{k} is $\left(\aleph_{0}, \aleph_{k-3}\right)$-tame. So the first index where some tameness appears is $k=4$. In fact, the result is stronger than tameness: the Galois type of an element over a model of size up to \aleph_{k-3} is determined by its existential type (this is interesting for $k \geq 3$).

Theorem 5.1. Let $k \geq 3$. Then the class of models of ϕ_{k} is $\left(\aleph_{0}, \aleph_{k-3}\right)$-tame. Moreover, the Galois types of finite tuples over a model of size up to \aleph_{k-3} are determined by the syntactic types over that model.

Proof. We concentrate on the second statement, the first follows easily.
Fix $k \geq 3$ and suppose that $M \models \phi_{k}$ is of size $\lambda \leq \aleph_{k-3}$. Let $\boldsymbol{a} \in M^{a}$, $\boldsymbol{b} \in M^{b}$ be finite tuples that have the same existential type over M, where $M \prec$ M^{a}, M^{b}.

Let M_{0}^{a}, M_{0}^{b} be (finite) minimal full structures containing \boldsymbol{a} and \boldsymbol{b} respectively. Let $M_{0}:=M_{0}^{a} \cap M$. We may assume, adding elements of M to \boldsymbol{a} and \boldsymbol{b} if necessary, that $M_{0} \neq \emptyset$. It is easy to check that M_{0} is a full finite substructure of M and that $M_{0}=M_{0}^{b} \cap M$.

Since $\boldsymbol{a}, \boldsymbol{b}$ satisfy the same existential type over M_{0}, there is an isomorphism $f_{0}: M_{0}^{a} \rightarrow M_{0}^{b}$ fixing M_{0} and sending \boldsymbol{a} to \boldsymbol{b}.

Let $\left\langle g_{0}, h_{0}\right\rangle$ be a solution for M_{0}, and let $\left\langle g_{0}^{a}, h_{0}^{a}\right\rangle$ be a solution extending $\left\langle g_{0}, h_{0}\right\rangle$ to the full substructure M_{0}^{a}. Let $\left\langle g_{0}^{b}, h_{0}^{b}\right\rangle$ be the induced solution on M_{0}^{b} :

$$
\left\langle g_{0}^{b}, h_{0}^{b}\right\rangle=\left\langle g_{0}^{a}, h_{0}^{a}\right\rangle^{f_{0}}:=\left\langle f_{0} \circ g_{0}^{a} \circ f_{0}^{-1}, f_{0} \circ h_{0}^{a} \circ f_{0}^{-1}\right\rangle
$$

It is easy to check that the induced solution on M_{0}^{b} extends the solution $\left\langle g_{0}, h_{0}\right\rangle$ on M.

Let $\left\{M_{i} \mid i<\lambda\right\}$ be an increasing continuous chain of full substructures of M that starts with the full substructure M_{0} constructed above, with $\left|M_{i}\right| \leq|i|+\aleph_{0}$, and $\bigcup_{i<\lambda} M_{i}=M$. Let $\left\{M_{i}^{a} \mid i<\lambda\right\}$ and $\left\{M_{i}^{b} \mid i<\lambda\right\}$ be increasing continuous chains of full substructures starting with M_{0}^{a} and M_{0}^{b} constructed above. We define $M_{i+1}^{a}\left(\right.$ and $\left.M_{i+1}^{b}\right)$ to be the disjoint amalgam of M_{i}^{a} (respectively, M_{i}^{b}) and M_{i+1} over M_{i}.

Using the extension property for solutions, we get a chain $\left\{\left\langle g_{i}, h_{i}\right\rangle \mid i<\right.$ $\lambda\}$ of solutions for the models M_{i}, with $\left\langle g_{i}, h_{i}\right\rangle \subset\left\langle g_{j}, h_{j}\right\rangle$ for $i<j$. Using 2amalgamation for solutions (which holds for $\mu \leq \aleph_{k-4}$) and Corollary 2.17, we get increasing chains of solutions $\left\langle g_{i}^{a}, h_{i}^{a}\right\rangle$ and $\left\langle g_{i}^{b}, h_{i}^{b}\right\rangle, i<\lambda^{+}$, where $\left\langle g_{i+1}^{a}, h_{i+1}^{a}\right\rangle$ has domain M_{i+1}^{a} and is gotten by extension of solutions from the 2-amalgam of solutions $\left\langle g_{i}^{a}, h_{i}^{a}\right\rangle$ and $\left\langle g_{i+1}, h_{i+1}\right\rangle$ that has domain $M_{i}^{a} \cup M_{i+1}$. Further by repeated application of the strong form of Lemma 2.6 we get an increasing sequence
isomorphisms f_{i} from M_{i}^{a} onto M_{i}^{b} which fix M_{i} and map \boldsymbol{a} to \boldsymbol{b} and preserve the solutions. The union $\bigcup_{i<\lambda} f_{i}$ is the needed isomorphism between $\bigcup_{i<\lambda} M_{i}^{a}$ and $\bigcup_{i<\lambda} M_{i}^{b}$ that fixes M and sends \boldsymbol{a} to \boldsymbol{b}.

An alternative notion of ω-stability might count the number of syntactic types over a countable model. By Theorem 5.1 the ω-stability of ϕ_{k} for $k \geq 3$ does not depend on which definition of ω-stable is used. This theorem does not address ω-syntactic stability of ϕ_{2}; we show it is not ω-Galois stable in Theorem 6.1. A separate argument to show ϕ_{2} is not ω-syntactically stable is in preparation. See [11] for related results.

Our earlier argument for tameness used the notion of superhomegenity. Although no longer needed for the main argument, we include the following results since superhomogeneity is an intriguing property in its own right. For now, let $k \geq 3$. We claim that the model of ϕ_{k} with power \aleph_{k-3} is superhomogeneous in the following sense (note M_{0} may have cardinality \aleph_{k-3}.)

Definition 5.2. The structure M is superhomogeneous iffor any $M_{0} \prec_{\boldsymbol{K}} M \in \boldsymbol{K}$ and $\boldsymbol{a}, \boldsymbol{b} \in M$ which realize the same Galois type over M_{0}, there is an automorphism of M which takes \boldsymbol{a} to \boldsymbol{b} and fixes M_{0}.

It is important that $\boldsymbol{a}, \boldsymbol{b}$ are finite tuples here. The lemma below fails otherwise. Forgetting the finiteness condition is also possible; the price to pay is the additional demand that M is weakly full over M_{0}.

Lemma 5.3. Let M be the model of ϕ_{k} with power $\leq \aleph_{k-3}$. Then M is superhomogeneous.

Proof. In fact, we show that if M has extension of solutions over subsets of smaller cardinality then M is superhomogeneous; the precise statement then follows from the proof of Corollary 2.15. Let $\boldsymbol{a}, \boldsymbol{b} \in M=M(I)$ have the same Galois type over M_{0}. By Theorem 5.1 there is an isomorphism f between M_{0}^{a} and M_{0}^{b} mapping \boldsymbol{a} to b.

Let $\left\langle g_{0}, h_{0}\right\rangle$ be a solution for M_{0}, and let $\left\langle g_{1}, h_{1}\right\rangle$ be a solution extending $\left\langle g_{0}, h_{0}\right\rangle$ to the model M_{0}^{a}. Then

$$
\left\langle g_{1}, h_{1}\right\rangle^{f}:=\left\langle f \circ g_{1} \circ f^{-1}, f \circ h_{1} \circ f^{-1}\right\rangle
$$

is a solution for M_{0}^{b} that extends $\left\langle g_{0}, h_{0}\right\rangle$.
From our hypotheses, $\left|I(M)-I\left(M_{0}^{a}\right)\right|=\left|I(M)-I\left(M_{0}^{b}\right)\right|$. So we can extend the solutions $\left\langle g_{1}, h_{1}\right\rangle$ and $\left\langle g_{1}, h_{1}\right\rangle^{f}$, in the same number of steps, to full solutions over M. This gives the desired automorphism of M.

6. Instability and Non-TAMENESS

In this section we show that ϕ_{k} is not Galois stable in \aleph_{k-2}. We warm up by treating the case: $k=2$, showing there are continuum Galois types over a countable model of ϕ_{2}. The proof reduces equality of types p_{σ}, p_{τ} to the equivalence relation of eventual equality between σ and τ. The argument for larger k involves a family of equivalence relations instead of just one.

More precisely, we show that for M the standard model of cardinality \aleph_{k-2}, the unique syntactic type over M of a new element in the spine splits into $2^{\aleph_{k-2}}$ Galois types.

Since for any u, the stalk G_{u} is affine $\left(L^{\prime}\right)$-isomorphic to the finite support functions from K to Z_{2}, without loss of generality we may assume each stalk has this form. We are working with models of cardinality $\leq \aleph_{k-2}$ so they admit solutions; thus, if we establish L^{\prime}-isomorphisms they extend to L-isomorphisms. For any G^{*}-stalk G_{u}, the 0 in $(u, 0)$ denotes the identically 0 -function in that stalk. But for a stalk in H^{*}, the 0 in $(u, 0)$ denotes the constant 0 .

Claim 6.1. Let M be the standard countable model of ϕ_{2}. There are $2^{\aleph_{0}}$ Galois types over M.

Proof. Let E_{0} be the equivalence relation of eventual equality on ${ }^{\omega} 2$; there are of course $2^{\aleph_{0}}$ equivalence classes.

Let $I(M)=\left\{a_{0}, \ldots, a_{i}, \ldots\right\}$. Pick a function $s \in{ }^{\omega} 2$, and define a model $M_{s} \succ M$ as follows. The L^{\prime}-structure is determined by the set $I\left(M_{s}\right)=$ $I(M) \cup\left\{b_{s}\right\}$. For the new compatible triples of the form $\left\{a_{0}, a_{i}\right\},\left\{a_{0}, b_{s}\right\},\left\{a_{i}, b_{s}\right\}$, define

$$
M_{s} \models Q\left(\left(\left\{a_{0}, a_{i}\right\}, 0\right),\left(\left\{a_{0}, b_{s}\right\}, 0\right),\left(\left\{a_{i}, b_{s}\right\}, 0\right)\right)
$$

if and only if $s(i)=0$. The values of Q for any u_{1}, u_{2}, u_{3} among the remaining new compatible triples is defined as:

$$
M_{s} \models Q\left(\left(u_{0}, 0\right),\left(u_{1}, 0\right),\left(u_{2}, 0\right)\right) .
$$

Note that 0 in the first two components of the predicate Q refer to the constantly zero functions in the appropriate G^{*}-stalks, and in the third component, 0 is a member of Z_{2}. A compact way of defining the predicate Q is:

$$
\begin{equation*}
M_{s}=Q\left(\left(\left\{a_{0}, a_{i}\right\}, 0\right),\left(\left\{a_{0}, b_{s}\right\}, 0\right),\left(\left\{a_{i}, b_{s}\right\}, s(i)\right)\right) \tag{*}
\end{equation*}
$$

Note that by Notation 1.2, the definition of Q is determined on all of M.
Now we show that the E_{0}-class of s can be recovered from the structure of M_{s} over M. Take two models M_{s} and M_{t} and suppose that the Galois types $\operatorname{ga-tp}\left(b_{s} / M\right)$ and ga- $\operatorname{tp}\left(b_{t} / M\right)$ are equal. Then there is an extension N of the
model M_{t} and an embedding $f: M_{s} \rightarrow N$ that sends b_{s} to b_{t}. We work to show that in this case s and t are E_{0}-equivalent.

First, let us look at the stalks $G_{a_{1}, a_{i}}^{*}, G_{a_{1}, b_{t}}^{*}, H_{a_{i}, b_{f}}^{*}$ for $i>1$. Since f fixes M, the constantly zero function $0 \in G_{a_{1}, a_{i}}^{*}$ is fixed by f. Let $x \in G_{a_{1}, b_{t}}^{*}$ be the image of $0 \in G_{a_{1}, b_{s}}^{*}$ under f. Then we have

$$
M_{t} \models Q\left(\left(\left\{a_{1}, a_{i}\right\}, 0\right),\left(\left\{a_{1}, b_{t}\right\}, x\right),\left(\left\{a_{i}, b_{t}\right\}, f(0)\right)\right) .
$$

Since x is a finite support function, and we have defined

$$
M_{t} \models Q\left(\left(\left\{a_{1}, a_{i}\right\}, 0\right),\left(\left\{a_{1}, b_{t}\right\}, 0\right),\left(\left\{a_{i}, b_{t}\right\}, 0\right)\right),
$$

for co-finitely many $i>1$ we must have $f(0)=0$ in the stalks $H_{a_{i}, b_{t}}^{*}$. In other words, f preserves all but finitely many zeros in $H_{a_{i}, b_{t}}^{*}$. In particular, by (*) for any $s: \omega \rightarrow 2$ the functions s and $f(s)$ are E_{0}-equivalent.

We focus now on the stalks of the form $G_{a_{0}, a_{i}}^{*}, G_{a_{0}, b_{t}}^{*}, H_{a_{i}, b_{t}}^{*}, i \geq 1$. Again, since f fixes M, the constantly zero function $0 \in G_{a_{0}, a_{i}}^{*}$ is fixed by f. Letting $y \in G_{a_{0}, b_{t}}^{*}$ be the image of $0 \in G_{a_{0}, b_{s}}^{*}$ under f, we get

$$
M_{t} \models Q\left(\left(\left\{a_{0}, a_{i}\right\}, 0\right),\left(\left\{a_{0}, b_{t}\right\}, y\right),\left(\left\{a_{i}, b_{t}\right\}, f[s(i)]\right)\right) .
$$

Since y is a finite support function, there is a natural number n such that $y\left(a_{i}, b_{t}\right)=$ 0 for all $i>n$. Since we have defined

$$
M_{t} \models Q\left(\left(\left\{a_{0}, a_{i}\right\}, 0\right),\left(\left\{a_{0}, b_{t}\right\}, 0\right),\left(\left\{a_{i}, b_{t}\right\}, t(i)\right)\right),
$$

we get $t(i)=f(s(i))$ for all $i>n$, or $f(s)$ and t are E_{0}-equivalent. Combining this with the previous paragraph, we get that s is E_{0}-equivalent to t, as desired.

Now we turn to the proof that many Galois types exist for a general k. We will reduce equality on Galois types indexed by elements of ${ }^{\omega_{k}} 2$ to the equivalence relation of eventual equality on ${ }^{\omega_{k}} 2$. This requires some more technical notions.

Remark 6.2. In fact, for any $\mu \geq \aleph_{k}$ the relation of equality on Galois types indexed by elements of ${ }^{\mu} 2$ reduces to the equivalence relation E_{μ} on ${ }^{\mu} 2$, where $E_{\mu}(s, t)$ if and only if $|\{s(i)=t(i) \mid i<\mu\}|=\mu$.

We do our analysis on \aleph_{k} as that is the most important application; but the argument can be used on any $\mu \geq \aleph_{k}$.

Definition 6.3. Fix a natural number n. Let E_{n} be the equivalence relation of eventual equality on the set of sequences ${ }^{\omega_{n}} 2$.

Let $P_{n}:=\omega \times \cdots \times \omega_{n}$. Define the family of equivalence relations F_{n} on the sets of sequences ${ }^{P_{n}} 2$ by induction. Let $F_{0}:=E_{0}$. Having defined the relation F_{n-1} on ${ }^{P_{n-1}} 2$, define F_{n} as follows. Two sequences $s, t \in{ }^{P_{n}} 2$ are F_{n}-equivalent if and only if there is a set $B_{n} \in \omega_{n}$ such that
(1) the complement of B_{n} has cardinality less than \aleph_{n};
(2) for all $i^{*} \in B_{n}$ the sequences $s\left(i_{0}, \ldots, i_{n-1}, i^{*}\right)$ and $t\left(i_{0}, \ldots, i_{n-1}, i^{*}\right)$ are F_{n-1}-equivalent.

Claim 6.4. The equivalence relation E_{n} is reducible to F_{n}. In particular, F_{n} has $2^{\aleph_{n}}$ equivalence classes.

Proof. Given a sequence $s \in{ }^{\omega_{n}} 2$, define $\bar{s} \in{ }^{P_{n}}$ by

$$
\bar{s}:\left(i_{0}, \ldots, i_{n}\right) \in P_{n} \mapsto s\left(i_{n}\right)
$$

Clearly, $E_{n}(s, t)$ if and only if $F_{n}(\bar{s}, \bar{t})$.

We will identify a sequence $s \in^{\omega_{n}} 2$ with its image \bar{s} in ${ }^{P_{n}} 2$.
Proposition 6.5. Let M be the standard model of ϕ_{k+2} of size \aleph_{k}. There are $2^{\aleph_{k}}$ Galois types over M.

Proof. Without loss of generality, we may assume that

$$
I=I(M)=\left\{a_{0}, a_{1}\right\} \cup I_{0} \cup \cdots \cup I_{k}
$$

where I_{l} is a well-ordered set of order-type $\omega_{l}, l=0, \ldots, k$. We denote the elements of I_{l} by a_{i}^{l}, for $i<\omega_{l}, l<k$.

The Galois types over the model M will be coded essentially by E_{k}, but we will need the finer relation F_{k} to describe the situation. Pick a function $s \in{ }^{\omega_{k}} 2$, and define a model $M_{s} \succ M$ as follows. The L^{\prime}-structure is determined by the set $I\left(M_{s}\right)=I(M) \cup\left\{b_{s}\right\}$. The L-structure on M_{s} is given as in the original definition of Q in Section 1 from the function ℓ, where:

$$
\ell\left(a_{0},\left\{a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}\right)=s\left(i_{k}\right) \text { for all }\left(i_{0}, \ldots, i_{k}\right) \in P_{k}
$$

and the rest of the values of ℓ are all zero. In particular,

$$
\ell\left(a_{1},\left\{a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}\right)=0 \text { for all }\left(i_{0}, \ldots, i_{k}\right) \in P_{k}
$$

Let us note explicitly the most relevant relations. For $\left(i_{0}, \ldots, i_{k}\right) \in P_{k}$, we introduce some special notation for $k+2$ element subsets of $\left\{a_{0}, a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}$. Let

$$
v_{i_{0} \ldots i_{k}, s}:=\left\{a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}
$$

List the remaining $k+2$ element subsets of $\left\{a_{0}, a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}$ as $u_{i_{0} \ldots i_{k}}$ (the subset not containing b_{s}), and $u_{i_{0} . . \hat{i}_{j} . . i_{k}, s}$ for $j \leq k$ (omitting $a_{i_{j}}^{j}$).

Similarly, let $w_{i_{0} \ldots i_{k}}, w_{i_{0} . . \hat{i}_{j} . i_{k}, s}$ list the $k+2$ element subsets of $\left\{a_{1}, a_{i_{0}}^{0}, \ldots, a_{i_{k}}^{k}, b_{s}\right\}$ that do not contain respectively b_{s} and $a_{i_{j}}^{j}$ for $j \leq k$. Then we have

$$
M_{s} \models Q\left(\left(u_{i_{0} \ldots i_{k}}, 0\right),\left(u_{\hat{i}_{0}, i_{1} \ldots i_{k}, s}, 0\right), \ldots,\left(u_{i_{0} \ldots i_{k-1}, \hat{i}_{k}, s}, 0\right),\left(v_{i_{0} \ldots i_{k}, s}, s(j)\right)\right)
$$

and

$$
M_{s} \models Q\left(\left(w_{i_{0} \ldots i_{k}}, 0\right),\left(w_{\hat{i}_{0}, i_{1} \ldots i_{k}, s}, 0\right), \ldots,\left(w_{i_{0} \ldots i_{k-1}, \hat{i}_{k}, s}, 0\right),\left(v_{i_{0} \ldots i_{k}, s}, 0\right)\right) .
$$

Now we show that the F_{k}-class of s can be recovered from the structure of M_{s} over M. Take two models M_{s} and M_{t} and suppose that the Galois types ga-tp $\left(b_{s} / M\right)$ and ga- $\operatorname{tp}\left(b_{t} / M\right)$ are equal. Then there is an extension N of the model M_{t} and an embedding $f: M_{s} \rightarrow N$ that sends b_{s} to b_{t}. We work to show that in this case s and t are F_{k}-equivalent and hence E_{k}-equivalent.

First, let us look at the stalks $G_{w_{i_{0}, . \hat{i}_{j} . . i_{k}, t}}^{*}, j \leq k$ and $H_{v_{i_{0} \ldots i_{k}}, t}^{*}$ in M_{t}. Since f fixes M, the constantly zero function $0 \in G_{w_{i_{0} \ldots i_{k}}}^{*}$ is fixed by f.

For $j \leq k$ and $i_{j}<\omega_{j}$ let $x_{i_{0} . . \hat{i}_{j} . . i_{k}} \in G_{w_{i_{0} . . \hat{i}_{j} . . i_{k}, t}}^{*}$ be the image of $0 \in$ $G_{w_{i_{0}, . \hat{i}_{j}, i_{k}, s}}^{*}$ under f. Let $y_{i_{0} \ldots i_{k}} \in H_{v_{i_{0} \ldots i_{k}, t}}^{*}$ be the image of $0 \in H_{v_{i_{0} \ldots i_{k}, s}}^{*}$. We will analyze the value of $y_{i_{0} \ldots i_{k}}$ in two ways. We write \boldsymbol{i} for $\left\langle i_{0} \ldots i_{k}\right\rangle$ and \boldsymbol{i}^{-}for the first k-elements: $\left\langle i_{0} \ldots i_{k-1}\right\rangle$.

Since f is an embedding we have:

$$
M_{t} \models Q\left(\left(w_{\boldsymbol{i}}, 0\right),\left(w_{\hat{i}_{0}, i_{1} \ldots i_{k}, t}, x_{\hat{i}_{0}, i_{2} \ldots i_{k}}\right), \ldots,\left(w_{\boldsymbol{i}^{-}, t}, x_{\boldsymbol{i}^{-}}\right),\left(v_{\boldsymbol{i}, t}, y_{\boldsymbol{i}}\right)\right) .(* *)
$$

For each $\left(i_{0}, \ldots, i_{k}\right) \in P_{k}$, let $\bar{f}\left(i_{0}, \ldots, i_{k}\right):=y_{i_{0} \ldots i_{k}}$. Since each $y_{i_{0} \ldots i_{k}}$ is either 0 or $1, \bar{f}$ is a function in ${ }^{P_{k}}$. Since f is an isomorphism, the image of any $\delta \in H_{i_{0} \ldots i_{k}, s}^{*}$ is the element $\delta+y_{i_{0} \ldots i_{k}} \bmod 2$ in the stalk $H_{i_{0} \ldots i_{k}, t}^{*}$. The following claim thus implies $F_{k}(s, t)$, which in turn implies $E_{k}(s, t)$, as required.

Claim 6.6. The function \bar{f} is F_{k}-equivalent to the constantly zero function on P_{k}.
Proof. Since each $x_{i_{0} . . \hat{i}_{j} . . i_{k}}$ is a finite support function, there is a subset $B_{k} \subset \omega_{k}$ such that the complement of B_{k} has cardinality smaller than \aleph_{k} and for each $i_{k} \in$ B_{k}, for all $i_{0}, \ldots, i_{k-1} \in P_{k-1}$ none of the functions $x_{i_{0} \ldots i_{k-1}}$ contain i_{k} in any of the subsets in their support.

Fix an arbitrary $i_{k}^{*} \in B_{k}$. There are ω_{k-2} many functions of the form $x_{i_{0} \ldots i_{k-2}, i_{k}^{*}}$, each with a finite support. Therefore, there is a subset $B_{k-1, i_{k}^{i}}$ of ω_{k-1} such that its complement has cardinality smaller than \aleph_{k-1} and for each $i_{k-1} \in B_{k-1, i_{k}^{*}}$ for all i_{0}, \ldots, i_{k-2} none of the functions $x_{i_{0} \ldots i_{k-2}, i_{k}^{*}}$ contain i_{k-1} in any of the subsets in their support.

Iterating, we build a family of sets $B_{r, i_{r+1}^{*}, \ldots, i_{k}^{*}}, r \leq k$, such that for each $i_{r} \in B_{r, i_{r+1}^{*}, \ldots, i_{k}^{*}}$ and for all $i_{0}, \ldots, i_{r-1} \in P_{r-1}$, none of the functions $x_{i_{0} . . i_{r-1}, i_{r+1}^{*} . i_{k}^{*}}$ contain i_{r} in any of the subsets in their support and so that $B_{r, i_{r+1}^{*}, \ldots, i_{k}^{*}}$ has complement of size less than \aleph_{r}. Take $i_{k}^{*} \in B_{k}, i_{k-1}^{*} \in B_{k-1, i_{k}^{*}}$,
$\ldots, i_{0}^{*} \in B_{0, i_{1}^{*}, ., i_{k}^{i}}$. If we can show that $y_{i_{0}^{*} \ldots i_{k}^{*}}=0$ for each such $i_{0}^{*} \ldots i_{k}^{*}$, we show \bar{f} is F_{n}-equivalent to the constantly zero function on P_{k} and finish. We write \boldsymbol{i}_{*} for $\left\langle i_{0}^{*} \ldots i_{k}^{*}\right\rangle$ and \boldsymbol{i}_{*}^{-}for the first k-elements: $\left\langle i_{0}^{*} \ldots i_{k-1}^{*}\right\rangle$. By definition,

$$
M_{t} \models Q\left(\left(w_{\boldsymbol{i}_{*}}, 0\right),\left(w_{\hat{i}_{0}^{*}, i_{1}^{*} \ldots i_{k}^{*}, t}, 0\right), \ldots,\left(w_{\boldsymbol{i}_{*}^{-}, t}, 0\right),\left(v_{\boldsymbol{i}_{*}^{-}, t}, 0\right)\right) .
$$

We also have $x_{i_{0}^{*} \ldots i_{k-1}^{*}, \hat{i}_{k}}\left[i_{0}^{*} \ldots i_{k}^{*}, t\right]=0, \ldots, x_{\hat{i}_{0}, i_{1}^{*} \ldots i_{k}^{*}}\left[i_{0}^{*} \ldots i_{k}^{*}, t\right]=0$, since for all $0 \leq r \leq k$ the support of the function $x_{i_{0}^{*} . i i_{r}^{*} . i i_{k}^{*}}$ does not include any $k+1$ tuple containing i_{r}^{*}.

Thus we have

$$
M_{t} \models Q\left(\left(w_{\boldsymbol{i}_{*}}, 0\right),\left(w_{\hat{i}_{0}, i_{1}^{*} \ldots i_{k}^{*}, t}, x_{\hat{i}_{0}, i_{1}^{*} \ldots i_{k}^{*}}\right), \ldots,\left(w_{\boldsymbol{i}_{*}^{-}, t}, x_{\boldsymbol{i}_{*}^{-}}\right),\left(v_{\boldsymbol{i}_{*}, t}, 0\right)\right) .
$$

Comparing this display with ${ }^{(* *)}$, which holds for all $i_{0} \ldots i_{k}$, we conclude that $y_{i_{0}^{*} \ldots i_{k}^{*}}=0$.

Continuing the notation of the last lemma, we focus on a specific conclustion.

Corollary 6.7. Let M be the standard model of ϕ_{k+2} of size \aleph_{k}. If $\neg E_{k}(s, t)$, the Galois types $\left(b_{s} / M ; M_{s}\right)$ and $\left(b_{t} / M ; M_{t}\right)$ are distinct. That is, b_{s} and b_{t} are in distinct orbits.

We can now conclude, working with ϕ_{k} rather ϕ_{k+2} :
Proposition 6.8. The class of models of ϕ_{k} is not $\left(\aleph_{k-3}, \aleph_{k-2}\right)$-tame.
Proof. Let s, t be sequences in ${ }^{\omega_{k-2}} 2$ with $\neg E_{k-2}(s, t)$. By Corollary 6.7, the Galois types of b_{s}, b_{t} over the standard model M of size \aleph_{k-2} are different. But, by Corollary 5.1, the Galois type of b_{s} is the same as the Galois type of b_{t} over any submodel $N \prec M,\|N\| \leq \aleph_{k-3}$, as b_{s} and b_{t} have the same syntactic type over N.

This analysis shows the exact point that tameness fails. Grossberg pointed out that after establishing amalgamation in Section 3, non-tameness at some (μ, κ) could have been deduced from eventual failure of categoricity of the example and the known upward categoricity results [6, 13]. However, one could not actually compute the value of κ without the same technical work we used to show tameness directly. In addition, failure of categoricity itself is established using the Galois types constructed in Proposition 6.5.

By analyzing the proof of Proposition 6.5, one sees the following.
Corollary 6.9. Let $\chi_{0}, \ldots \chi_{k}$ be a strictly increasing sequence of infinite cardinals. Then there is a model of ϕ_{k+2} of cardinality χ_{k} over which there are $2^{\chi_{k}}$ Galois types. In particular, ϕ_{k+2} is unstable in every cardinal greater than \aleph_{k}.

7. NuMber of models

We showed in Section 6 that ϕ_{k} is not Galois-stable in \aleph_{k-2} and above. We have shown that the models of ϕ_{k} have disjoint amalgamation and it easy to see that ϕ_{k} has arbitrarily large models. For any Abstract Elementary class satisfying these conditions, categoricity in λ implies Galois stability in μ for $\operatorname{LS}(\boldsymbol{K}) \leq \mu<\lambda$ $[16,1]$. Thus we can deduce from Corollary 2.15 and Corollary 6.9:

Theorem 7.1. (1) Let $k \geq 3$; ϕ_{k} is \aleph_{m}-Galois stable for $m \leq k-3$.
(2) Let $k \geq 2$; ϕ_{k} is not \aleph_{k-1}-categorical.

We will apply the instability directly to refine this result by showing that if $\mu \geq \aleph_{k-2}$ and λ is the least cardinal with $\lambda^{\mu}<2^{\lambda}$, then ϕ_{k} has 2^{λ} nonisomorphic models of cardinality λ. Under the weak generalized continuum hypothesis $\left(2^{\mu}<2^{\mu^{+}}\right)$, we get that ϕ_{k} has maximal number of models in every cardinal beginning with \aleph_{k-1}. Without WGCH , we obtain that ϕ_{k} is not categorical everywhere above and including \aleph_{k-1}, with the maximal number of models in arbitrarily large cardinalities.

Remark 7.2. Our ϕ_{k} is not the same one as in Hart-Shelah. We have simplified the construction by using only one level. However, our models are definable in theirs. So the assertion [9] that the Hart-Shelah ϕ is \aleph_{k-1}-categorical is incorrect; the correct statement is for \aleph_{k-2}-categoricity. We discussed the source of the miscalculation in Section 2.

We start with a link between many Galois types in our example and failure of categoricity.

Lemma 7.3. Let $k \geq 2$. Let $M \models \phi_{k}$ be of size μ, and suppose that there is a set $X=\left\{b_{s} \mid s<2^{\mu}\right\}$ such that the Galois types $\left(b_{s} / M\right)$ are pairwise distinct; let $M_{s}=M\left(I \cup\left\{b_{s}\right\}\right)$. Let λ be the least cardinal with $\lambda^{\mu}<2^{\lambda}$. Then ϕ_{k} has 2^{λ} non-isomorphic models of size λ.

Proof. We start by noting that there are 2^{λ} subsets of size λ of the set X. For a subset S of the set X of size λ, let M_{S} be a model of size λ with the spine $I(M) \cup\left\{b_{s} \mid s \in S\right\}$. Namely, M_{S} is a minimal disjoint amalgam of the models $M_{s}, s \in S$.

It is now easy to see that the models $M_{S}, M_{S^{\prime}}$ are not isomorphic over M for $S \neq S^{\prime}$: any isomorphism preserves the Galois type of all the elements b_{s} over M; so $M_{S}, M_{S^{\prime}}$ realize distinct sets of Galois types over M. Thus, we get 2^{λ} models over M. It remains to note that since $\lambda^{\mu}<2^{\lambda}$, we must have 2^{λ} non-isomorphic L-structures.

In conjunction with Proposition 6.5 we get

Corollary 7.4. Let $k \geq 2, \mu \geq \aleph_{k-2}$, and let λ be the least cardinal with $\lambda^{\mu}<2^{\lambda}$. Then ϕ_{k} has 2^{λ} non-isomorphic models of cardinality λ.

While we know from Theorem 7.1 that categoricity fails everywhere above \aleph_{k-2}, using the following lemma we can avoid the heavy machinery quoted in that theorem and prove directly that categoricity fails everywhere above $2^{\aleph_{k-2}}$.

Claim 7.5. Suppose that ϕ_{k} is categorical in λ. Then ϕ_{k} is categorical in every $\mu<\lambda$.

Proof. We know that every model of size λ has a solution by categoricity. We also have that every model of size μ can be extended to a model of size λ.

So the proof boils down to showing the following: if M, with $\|M\|=\mu$, is a submodel of N, with $\|N\|=\lambda$, and N has a solution, then M has a solution. Let (\bar{g}, \bar{h}) be a solution for N. It is tempting to take the restriction of \bar{g} and \bar{h} to the model M, but $\bar{g}(u)$ does not have to be in M for $u \in K(M)$. Indeed, it may happen that $g(u)=(u, x)$, where the support of the function x is not contained in $K(M)$. Let us denote by $g(u) \upharpoonright K(M)$ the pair $\left(u, x^{\prime}\right) \in G^{*}(M)$, where $x^{\prime}(v)=x(v)$ for all $v \in K(M)$ and $x^{\prime}(v)=0$ otherwise.

Now we make the natural definition: let $h:=\bar{h} \upharpoonright K(M)$; and for $u \in$ $K(M)$ let $g(u):=\bar{g}(u) \upharpoonright K(M)$. It is easy to check that (g, h) is a solution for M.

Let λ be the least cardinal with $\lambda^{\aleph_{k-2}}<2^{\lambda}$, then $\lambda \leq 2^{\aleph_{k-2}}$. By Corollary $7.4 \phi_{k}$ is not categorical in λ and so by Claim $7.5, \phi_{k}$ is not categorical in any $\kappa \geq \lambda$. So without reliance on the Ehrenfeucht-Mostowski machinery necessary to prove Theorem 7.1, we see ϕ_{k} is not categorical in any κ with $\kappa \geq 2^{\aleph_{k-2}}$.

We close by formally stating our most complete results on the spectra of ϕ_{k}.

Corollary 7.6. Let $k \geq 2$. The sentence ϕ_{k} is categorical in $\aleph_{0}, \ldots, \aleph_{k-2}$, is not categorical in every cardinality greater than or equal to \aleph_{k-1}, and has 2^{λ} models in some λ with $\aleph_{k-2}<\lambda \leq 2^{\aleph_{k-2}}$. Moreover, for any $\mu \geq \aleph_{k-1}$ there is $\lambda>\mu$ such that ϕ_{k} has 2^{λ} models of cardinality λ.

If in addition $2^{\mu}<2^{\mu^{+}}(W G C H)$ for all $\mu \geq \aleph_{k-2}$, then ϕ_{k} has $2^{\mu^{+}}$ isomorphism classes in every $\mu^{+} \geq \aleph_{k-2}$.

Proof. We have already established the claims in the first paragraph.
To prove the second, suppose $2^{\mu}<2^{\mu^{+}}$for all $\mu \geq \aleph_{k-2}$. Let μ be greater than or equal \aleph_{k-2}. For all $\lambda \leq \mu$ we have $\lambda^{\mu}=2^{\mu} \geq 2^{\lambda}$. So μ^{+}is the least
candidate for λ with $\lambda^{\mu}<2^{\lambda}$. By our assumption, we have

$$
\left(\mu^{+}\right)^{\mu}=2^{\mu}<2^{\mu^{+}}
$$

By Corollary 7.4 we get the maximal number of non-isomorphic models in μ^{+}, and by Claim $7.5 \phi_{k}$ is not categorical everywhere above \aleph_{k-1}.

REFERENCES

[1] John T. Baldwin. Categoricity. www.math.uic.edu/ ${ }^{\sim}$ jbaldwin.
[2] J.T. Baldwin, D.W. Kueker, and M. VanDieren. Upward stability transfer theorem for tame abstract elementary classes. Notre Dame Journal of Formal Logic, 47:291-298, 2006.
[3] J.T. Baldwin and A.H. Lachlan. On strongly minimal sets. Journal of Symbolic Logic, 36:7996, 1971.
[4] J.T. Baldwin and O. Lessmann. Upward categoricity of very tame abstract elementary classes with amalgamation. Annals of Pure and Applied Logic, 143:29-42, 2006.
[5] J.T. Baldwin and S. Shelah. Examples of non-locality. submitted; on web page.
[6] R. Grossberg and M. VanDieren. Categoricity from one successor cardinal in tame abstract elementary classes. The Journal of Mathematical Logic, 6:181-201, 2006.
[7] R. Grossberg and M. VanDieren. Galois stability for tame abstract elementary classes. Journal of Mathematical Logic, 6:1-24, 2006.
[8] R. Grossberg and M. VanDieren. Shelah's categoricity conjecture from a successor for tame abstract elementary classes. The Journal of Symbolic Logic, 71:553-568, 2006.
[9] Bradd Hart and Saharon Shelah. Categoricity over P for first order T or categoricity for $\phi \in$ $1_{\omega_{1} \omega}$ can stop at \aleph_{k} while holding for $\aleph_{0}, \cdots, \aleph_{k-1}$. Israel Journal of Mathematics, 70:219235, 1990.
[10] T. Hyttinen. Uncountably categorical local tame abstract elementary classes with disjoint amalgamation. preprint.
[11] T. Hyttinen and M. Kesälä. Categoricity transfer in finitary abstract elementary classes. 200?
[12] T. Hyttinen and M. Kesälä. Independence in finitary abstract elementary classes. Ann. Pure Appl. Logic, 143(1-3):103-138, 2006.
[13] Olivier Lessmann. Upward categoricity from a successor cardinal for an abstract elementary class with amalgamation. Journal of Symbolic Logic, 70:639-661, 2005.
[14] S. Shelah. Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_{1} \omega}$ part A. Israel Journal of Mathematics, 46:3:212-240, 1983. paper 87a.
[15] S. Shelah. Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_{1} \omega}$ part B. Israel Journal of Mathematics, 46;3:241-271, 1983. paper 87b.
[16] S. Shelah. Categoricity for abstract classes with amalgamation. Annals of Pure and Applied Logic, 98:261-294, 1999. paper 394. Consult Shelah for post-publication revisions.
[17] S. Shelah. On what I do not understand (and have something to say), model theory. Mathematica Japonica, 51:329-377, 2000.
[18] B.I. Zilber. A categoricity theorem for quasiminimal excellent classes. In Logic and its Applications, Contemporary Mathematics, pages 297-306. AMS, 2005.

John T. Baldwin, Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, U.S.A.

Alexei Kolesnikov, Department of Mathematics, Towson University, Towson, Maryland, U.S.A.

[^0]: ${ }^{1}$ For an argument in Section 4, we will need to choose this point more carefully; we will use the term "starting point" then.

