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CATEGORICITY, AMALGAMATION, AND TAMENESS

JOHN T. BALDWIN AND ALEXEI KOLESNIKOV

ABSTRACT. Theorem. For each 2 ≤ k < ω there is an Lω1,ω-sentence φk

such that:

(1) φk is categorical in µ if µ ≤ ℵk−2;

(2) φk is not ℵk−2-Galois stable;

(3) φk is not categorical in any µ with µ > ℵk−2;

(4) φk has the disjoint amalgamation property;

(5) For k > 2,

(a) φk is (ℵ0,ℵk−3)-tame; indeed, syntactic first-order types deter-

mine Galois types over models of cardinality at most ℵk−3;

(b) φk is ℵm-Galois stable for m ≤ k − 3;

(c) φk is not (ℵk−3,ℵk−2)-tame.

We adapt an example of [9]. The amalgamation, tameness, stability results,

and the contrast between syntactic and Galois types are new; the categoricity

results refine the earlier work of Hart and Shelah and answer a question posed

by Shelah in [17].

Considerable work (e.g. [14, 15, 16, 7, 8, 6, 18, 12, 11]) has explored

the extension of Morley’s categoricity theorem to infinitary contexts. While the

analysis in [14, 15] applies only to Lω1,ω, it can be generalized and in some ways

strengthened in the context of abstract elementary classes.

Various locality properties of syntactic types do not generalize in general

to Galois types (defined as orbits under an automorphism group) in an AEC [5];

much of the difficulty of the work stems from this difference. One such locality

properties is called tameness. Roughly speaking, K is (µ, κ)-tame if distinct Ga-

lois types over models of size κ have distinct restrictions to some submodel of size

µ. For classes with arbitrarily large models, that satisfy amalgamation and tame-

ness, strong categoricity transfer theorems have been proved [7, 8, 6, 13, 4, 10].

In particular these results yield categoricity in every uncountable power for a tame

AEC in a countable language (with arbitrarily large models satisfying amalgama-

tion and the joint embedding property) that is categorical in any single cardinal

above ℵ2 ([6]) or even above ℵ1 ([13]).

In contrast, Shelah’s original work [14, 15] showed (under weak GCH) that

categoricity up to ℵω of a sentence in Lω1,ω implies categoricity in all uncountable

cardinalities. Hart and Shelah [9] showed the necessity of the assumption by con-

structing sentences φk which were categorical up to some ℵn but not eventually
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categorical. These examples were thus a natural location to look for examples of

categoricity and failure of tameness.

The example expounded here is patterned on the one in Hart-Shelah, [9]:

our analysis of their example led to the discovery of some minor inaccuracies (the

greatest categoricity cardinal is ℵk−2 rather than ℵk−1). Although the properties

we assert could be proved with more complication for the original example, we

present a simpler example. In Section 1 we describe the example and define the

sentences φk. In Section 2 we introduce the notion of a solution and prove lemmas

about the amalgamation of solutions. From these we deduce in Section 5 positive

results about tameness. In some sense, the key insight of this paper is that the amal-

gamation property holds in all cardinalities (Section 3) while the amalgamation of

solutions is very cardinal dependent. We prove in Section 4 that this example is a

model-complete AEC. We show in Section 6 that φk is not Galois stable in ℵk−2

and deduce the non-tameness. From the instability we derive in Section 7 the fail-

ure of categoricity in all larger cardinals, thus answering the question posed by

Shelah as Problem 6.12 in [17].

Baldwin and Shelah [5] showed under often satisfied conditions (K admits

intersections i.e. is closed under arbitrary intersections) amalgamation does not af-

fect tameness. That is, for any tameness spectrum realized by an AEC K which

admits intersections, there is another which has the amalgamation property but

the same tameness spectrum. But this construction destroys categoricity so those

examples do not address the weaker conjecture that the amalgamation property to-

gether with categoricity in a finite number of cardinals implies (ℵ0,∞)-tameness.

We refute that conjecture here. Baldwin, Kueker and VanDieren [2] showed that if

K is an (ℵ0,∞)-tame AEC with arbitrarily large models that is Galois-stable in κ
it is Galois stable in κ+; our results show the tameness hypothesis was essential.

This paper and [5] provide the first examples of AEC that are not tame.

In both papers the examples are built from abelian groups. But while [5] obtains

non-tameness from phenomena that are closely related to the Whitehead conjecture

and so to non-continuity results in the construction of groups, this paper shows the

failure can arise from simpler considerations.

1. THE BASIC STRUCTURE

This example is a descendent of the example in [3] of an ℵ1-categorical

theory which is not almost strongly minimal. That is, the universe is not in the

algebraic closure of a strongly minimal set. Here is a simple way to describe such

a model. Let G be a strongly minimal group and let π map X onto G. Add to the

language a binary function t : G × X → X for the fixed-point free action of G
on π−1(g) for each g ∈ G. That is, we represent π−1(g) as {ga : g ∈ G} for

some a with π(a) = g. Recall that a strongly minimal group is abelian and so this

action of G is strictly 1-transitive. This guarantees that each fiber has the same
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cardinality as G and π guarantees the number of fibers is the same as |G|. Since

there is no interaction among the fibers, categoricity in all uncountable powers is

easy to check.

Let k ≥ 2 be a natural number.

Notation 1.1. The formal language for this example contains unary predicates

I,K,G,G∗, H,H∗; a binary function eG taking G × K to H; a function πG

mapping G∗ to K, a function πH mapping H∗ to K, a 4-ary relation tG on

K × G × G∗ × G∗, a 4-ary relation tH on K × H × H∗ × H∗. Certain other

projection functions are in the language but not expressly described. These sym-

bols form a vocabulary L′; we form the vocabulary L by adding a (k + 1)-ary

relation Q on (G∗)k ×H∗.

We start by describing the L′-structure M(I) constructed from any set I
with at least k elements. Typically, the set I will be infinite; but it is useful to

have all the finite structures as well. We will see that the L′-structure is completely

determined by the cardinality of I . So we need to work harder to get failure of

categoricity, and this will be the role of the predicate Q.

The structure M(I) is a disjoint union of sets I,K,H,G,G∗ and H∗. Let

K = [I]k be the set of k-element subsets of I . H is a single copy of Z2. Let G
be the direct sum of K copies of Z2. So G, K, and I have the same cardinality.

We include K, G, and Z2 as sorts of the structure with the evaluation function eG:

for γ ∈ G and k ∈ K, eG(γ, k) = γ(k) ∈ Z2. So in L′
ω1,ω we can say that the

predicate G denotes exactly the set of elements with finite support of KZ2.

Now, we introduce the sets G∗ and H∗. The set G∗ is the set of affine

copies of G indexed by K. First, we have a projection function πG from G∗ onto

K. Thus, for u ∈ K, we can represent an element x of π−1
G (u) in the form (u, x′) ∈

G∗. Alternatively, we say that x ∈ G∗
u. We refer to the set π−1

G (u) as the G∗-

stalk, or fiber over u. Then we encode the affine action by the relation tG ⊂
K×G×G∗×G∗ which is the graph of a regular transitive action ofG onG∗

u. That

is, for all x = (u, x′), y = (u, y′) there is a unique γ ∈ G such that tG(u, γ, x, y)
holds. (Of course, this can be expressed in L′

ω,ω.)

As a set, H∗ = K × Z2. As before if πH(x) = v holds x has the form

(v, x′), and we denote by H∗
v the preimage π−1

H (v). Finally, for each v ∈ K,

tH ⊂ K × Z2 ×H∗ ×H∗ is the graph of a regular transitive action of Z2 on the

stalk H∗
v .

(∗): We use additive notation for the action of G (H) on the stalks of G∗

(of H∗).

(1) For γ ∈ G, denote the action by y = x+ γ whenever it is clear that x and

y come from the same G∗-stalk. It is also convenient to denote by y − x
the unique element γ ∈ G such that y = γ + x.
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(2) For δ ∈ H , denote the action by y = x+ δ, whenever it is clear that x and

y come from the same H∗-stalk. Say that δ = y − x.

If I is countably infinite, let ψ1
k be the Scott sentence for the countably

infinite L′-structure M(I) based on I that we have described so far. This much of

the structure is clearly categorical (and homogeneous). Indeed, suppose two such

models have been built on I and I ′ of the same cardinality. Take any bijection

between I and I ′. To extend the map to G∗ and H∗, fix one element in each

partition class (stalk) in each model. The natural correspondence (linking those

selected in corresponding classes) extends to an isomorphism. Thus we may work

with a canonical L′-model; namely with the model that has copies of G (without

the group structure) as the stalks G∗
u and copies of Z2 (also without the group

structure) as the stalks H∗
v . The functions tG and tH impose an affine structure on

the stalks.

Notation 1.2. The L-structure is imposed by a (k+ 1)-ary relation Q on (G∗)k ×
H∗, which has a local character. We will use only the following list of properties

of Q, which are easily axiomatized in Lω1,ω:

(1) Q is symmetric, with respect to all permutations, for the k elements from

G∗;

(2) Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1)) implies that u1, . . . , uk+1 form

all the k element subsets of a k + 1 element subset of I . We call

u1, . . . , uk+1 a compatible (k + 1)-tuple;

(3) using the notation introduced at (*) Q is related to the actions tG and tH
as follows:

(a) for all γ ∈ G, δ ∈ H

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1 + γ), . . . , (uk, xk), (uk+1, xk+1))

if and only if γ(uk+1) = 1;

(b)

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ ¬Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1 + δ))

if and only if δ = 1.

Let ψ2
k be the conjunction of sentences expressing (1)–(3) above, and we

let φk := ψ1
k ∧ ψ2

k.

It remains to show that such an expansion to L = L′ ∪ {Q} exists. We do

this by explicitly showing how to define Q on the canonical L′-structure. In fact,

we describe 2|I|·|K| such structures parameterized by functions ℓ.

Fact 1.3. Let M = M(I) be an L′-structure described above. Let K := [I]k. Let

ℓ : I ×K → 2 be an arbitrary function.
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For each compatible (k+1)-tuple u1, . . . , uk+1, such that u1∪· · ·∪uk+1 =
{a} ∪ uk+1 for some a ∈ I and uk+1 ∈ K, define an expansion of M to L by

M |= Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

if and only if x1(uk+1) + · · · + xk(uk+1) + xk+1 = ℓ(a, uk+1) mod 2. Then M
satisfies the properties (1)–(3) of Notation 1.2.

Indeed, it is straightforward to check that the expanded structure M satis-

fies the properties.

We describe the interaction of G and Q a bit more fully. Using symmetry

in the first k components, we obtain the following property that was used by Hart

and Shelah to define Q in [9].

Fact 1.4. For all γ1, . . . , γk ∈ G and all δ ∈ H we have

Q((u1, x1), . . . , (uk, xk), (uk+1, xk+1))

⇔ Q((u1, x1 + γ1), . . . , (uk, xk + γk), (uk+1, xk+1 + δ))

if and only if γ1(uk+1) + · · · + γk(uk+1) + δ = 0 mod 2.

In order to consider finite L-structures with L′-reducts of the form M(I)
for some of our inductive proofs, we introduce the following terminology.

Definition 1.5. We call an L-structure N a full structure for φk if N ↾ L′ is

isomorphic to an M(I) for some I and N |= ψ2
k.

Let χk be the disjunction of the sentences describing M(I) for each finite

set I . Let φ̂k be φk ∨ (ψ2
k ∧ χk). Then we can write “the L-structure N is a full

structure for φk” more shortly as N |= φ̂k.

An L-substructure A of M |= φk is called a full substructure if A |= φ̂k.

Remark 1.6. (1) For infinite N , full structure is the same as being a model of φk;

φ̂k includes structures built on a finite I .

(2) The need for the notion of a full substructure can be explained, for ex-

ample, by the fact that a subset {a0, a1, a2} of I(M) together with a single element

x ∈ G∗
a0,a1

is a substructure, but not a full substructure, of M |= φ2. We want to

close such a substructure under almost all the Skolem functions, excluding the ones

that add elements of the “spine” I .

In the next section, we show that φk is categorical in ℵ0, . . . ,ℵk−2. So in

particular φk is a complete sentence for all k. (See Chapter 7 of [1] for an account

of completeness of sentences in Lω1,ω.)
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Now we obtain abstract elementary classes (Kk,≺K) where Kk is the

class of models of φk and for M,N |= φk, M ≺K N if M ≺Lω1,ω N . We show

in Section 4 that M ⊂ N implies M ≺Lω1,ω N for models of φk.

We freely use various notions from the general theory of AEC, such as

Galois type, below. All are defined in [1]. For convenience we repeat the three

most used definitions.

Definition 1.7. The AEC K has the disjoint amalgamation property if for any

M0 ≺ M1,M2, there is a model M |= φk with M ≻ M0 and embeddings fi :
Mi → M , i = 1, 2 such that f1(M1) ∩ f2(M2) = f1(M0) = f2(M0). If we

omit the requirement on the intersection of the images, we have the amalgamation

property.

Under assumption of amalgamation (disjointness is not needed) and joint

embedding one can construct monster models, i.e., strongly model homogeneous

models M of an appropriate large size. (See [1] for the definitions and the con-

struction.) Joint embedding is clear in our context and we prove amalgamation in

Section 3. Using monster models, one can give the following simple definition of

a Galois type.

Definition 1.8. Let K be an AEC with amalgamation. Let M ∈ K, M ≺K M

and a ∈ M. The Galois type of a over M (∈ M) is the orbit of a under the

automorphisms of M which fix M .

The set of all Galois types over M is denoted ga-S(M).

In a class with amalgamation we can check whether two points have the

same Galois type by the following criterion: For M ≺K N1 ∈ K, M ≺K N2 ∈
K and a ∈ N1 −M , b ∈ N2 −M , the Galois type a over M in N1 is the same as

the Galois type b over M in N2 if there exist strong embeddings f1, f2 of N1, N2

into some N∗ which agree on M and with f1(a) = f2(b).

Definition 1.9. We say K is ω-Galois stable if for any countable M ∈ K,

|ga-S(M)| = ℵ0.

Definition 1.10. We say K is (χ, µ)-tame if for any N ∈ K with |N | = µ, for all

p, q ∈ ga-S(N), if p ↾ N0 = q ↾ N0 for every N0 ≤ N with |N0| ≤ χ, then p = q.

2. SOLUTIONS AND CATEGORICITY

As we saw in Fact 1.3, the predicate Q can be defined in somewhat arbi-

trary way. Showing categoricity of the L-structure amounts to showing that any

model M , of an appropriate cardinality, is isomorphic to the model where all the

values of ℓ are chosen to be zero; we call such a model a standard model. This

motivates the following definition:
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Definition 2.1. Fix a model or a full structure M . A solution for M is a selec-

tor f that chooses (in a compatible way) one element of the fiber in G∗ above

each element of K and one element of the fiber in H∗ above each element of

K. Formally, f is a pair of functions (g, h), where g : K(M) → G∗(M) and

h : K(M) → H∗(M) such that πGg and πHh are the identity and for each com-

patible (k + 1)-tuple u1, . . . , uk+1:

Q(g(u1), . . . , g(uk), h(uk+1)).

Notation 2.2. As usual k = {0, 1, . . . k − 1} and we write [A]k for the set of

k-element subsets of A.

We will show momentarily that if M and N have the same cardinality and

have solutions fM and fN then M ∼= N . Thus, in order to establish categoricity

of φk in ℵ0, . . . ,ℵk−2, it suffices to find a solution in an arbitrary model of φk of

cardinality up to ℵk−2. Our approach is to build up the solutions in stages, for

which we need to describe selectors over subsets of I(M) (or of K(M)) rather

than all of I(M).

Definition 2.3. We say that (g, h) is a solution for the subset W of K(M) if for

each u ∈ W there are g(u) ∈ G∗
u and h(u) ∈ H∗

u such that if u1, . . . , uk, uk+1

are a compatible (k + 1)-tuple from W , then

Q(g(u1), . . . , g(uk), h(uk+1)).

If (g, h) is a solution for the setW , whereW = [A]k for someA ⊂ I(M),
we say that (g, h) is a solution over A.

Remark 2.4. Let k ≥ 2, and let M be a model of φ̂k. If A ⊂ I(M) has k
elements, then there is a solution over A. Indeed, [A]k is a singleton, so there are

no restrictions coming from the predicate Q.

Definition 2.5. The models of φk have the extension property for solutions over

sets of size λ (or over finite sets) if for every M |= φk, any solution (g, h) over

a set A with |A| = λ (or A finite), and every a ∈ I(M) − A there is a solution

(g′, h′) over the set A ∪ {a}, extending (g, h).

One can treat the element g(u) as the image of the element (u, 0) under the

isomorphism between the standard model andM , where 0 represents the constantly

zero function in the stalk G∗
u. Not surprisingly, we have the following:

Lemma 2.6. If M and N are models of φk of the same cardinality and have solu-

tions fM and fN then M ∼= N .

Moreover, suppose K has solutions and has extension of solutions for

models of cardinality less than |M |. If g is an isomorphism between full sub-

structures (or submodels) M ′, N ′ of M and N with |M ′| < |M | and |N ′| < |N |,
then the isomorphism ĝ between M and N can be chosen to extend g. Finally, if
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fM ′ is a solution on M ′ which extends to a solution fM on M , then ĝ maps them

to a similar extending pair on N ′ and N .

Proof. We prove the ‘moreover’ clause; the first statement is a special case when g
is empty and the ‘finally’ is included in the proof. Say, g maps M ′ to N ′. Without

loss of generality,M ↾ L′ = M(I),N ↾ L′ = M(I ′). Let α be a bijection between

I and I ′ which extends g ↾ I . Extend naturally to a map from K(M) to K(N) and

from G(M) to G(N), which extends g on M ′. By assumption there is a solution

fM ′ on M ′. It is clear that g maps fM ′ to a solution fN ′ on N ′; by assumption

fN ′ extends to a solution on N . (Note that if we do not have to worry about g, we

let α be an arbitrary bijection from I to I ′ and let α(fM (u)) be fN (α(u)).) For

x ∈ G∗(M −M ′) such that M |= πG(x) = u, there is a unique a ∈ G(M) with

a = x − fM (u) (the operation makes sense because a and fM (u) are in the same

stalk).

Let α(x) be the unique y ∈ N −N ′ such that

N |= tG(α(u), α(a), fN (α(u)), y)

i.e., y = α(a) + fN (α(u)) in the stalk G∗
α(u)(N).

Do a similar construction for H∗ and observe that Q is preserved. �2.6

We temporarily specialize to the case k = 2.

Claim 2.7. The models of φ̂2 have the extension property for solutions over finite

sets.

Proof. Let A := {a0, . . . , an−1}, let (g, h) be a solution over A, and suppose a is

not in A. For each v = {a, ai}, let yv be an arbitrary element of H∗
v . Now extend

h to the function h′ with domain [A ∪ {a}]2 by defining h′(v) := yv.

It remains to define the function g′ on each {a, ai}, and we do it by induc-

tion on i.

For i = 0, pick an arbitrary starting point1 x ∈ G∗
a,a0

. Let γ0 ∈ G be such

that for j = 1, . . . , n− 1:

γ0(a, aj) = 1 if and only if M |= ¬Q(({a, a0}, x), g(a0, aj), h
′(a, aj)).

It is clear that γ ∈ G(M) and that letting g′({a, a0}) := ({a, a0}, x+γ0), we have

a partial solution.

1For an argument in Section 4, we will need to choose this point more carefully; we will use the

term “starting point” then.
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Suppose that g′({a, aj}), j < i, have been defined. Pick an arbitrary

starting point x ∈ G∗
a,ai

. Let γi ∈ G(M) be such that for j ∈ {0, . . . , n− 1} \ {i}

γi(a, aj) = 1 if and only if M |= ¬Q(({a, ai}, x), g(ai, aj), h
′(a, aj)).

Also let γ′i ∈ G(M) be such that for j < i

γ′i(ai, aj) = 1 if and only if M |= ¬Q(({a, aj}, x), g
′(a, aj), h(ai, aj)).

Now letting g′({a, ai}) := ({a, ai}, x+ γi + γ′i) yields a well-defined solution on

A ∪ {a}. �

Corollary 2.8. The sentence φ2 is ℵ0-categorical, and hence is a complete sen-

tence.

Proof. Let M be a countable model. Enumerate I(M) as {ai | i < ω}. As we

pointed out in Remark 2.4, a solution exists over the set {a0, a1} (any elements in

the stalks G∗
a0,a1

and H∗
a0,a1

work). By the extension property for solutions over

finite sets we get a solution defined over the entire I(M). Hence φ2 is countably

categorical by Lemma 2.6. �

We see that extension for solutions over finite sets translates into existence

of solutions over countable sets. This is part of a general phenomenon that we

describe below. We return to the general case k ≥ 2.

Definition 2.9. Let M with M ↾ L′ = M(I) be a model of φ̂k. Let A be a subset

of I(M) of size λ, and consider an arbitrary n-element set {b0, . . . , bn−1} ⊂ I .

Suppose that, for each (n − 1)-element subset w of n = {0, . . . , n − 1}, we have

a solution (gw, hw) over A ∪ {bl | l ∈ w} such that the solutions are compatible

(i.e., (
⋃

w gw,
⋃

w hw) is a function).

We say that M has n-amalgamation for solutions over sets of size λ if for

every such set A, there is a solution (g, h) over A ∪ {b0, . . . , bn−1} that simulta-

neously extends all the given solutions {(gw, hw) | w ∈ [n]n−1}.

For n = 0 the given system of solutions is empty, thus 0-amalgamation

over sets of size λ is existence for solutions over sets of size λ. For n = 1, the

initial system of solutions degenerates to just (g∅, h∅), a solution on A; so the 1-

amalgamation property corresponds to the extension property for solutions. Gener-

ally, the number n in the statement of n-amalgamation property for solutions refers

to the “dimension” of the system of solutions that we are able to amalgamate.

Remark 2.10. Immediately from the definition we see that n-amalgamation for

solutions of certain size implies m-amalgamation for solutions of the same size for

any m < n. Indeed, we can obtain m-amalgamation by putting n−m elements of

the set {b0, . . . , bn−1} inside A.

Using Remark 2.4, we see that 2-amalgamation for solutions of size λ
implies extension, and existence, of solutions of the same size.
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Lemma 2.11. The models φ̂k have the (k−1)-amalgamation property for solutions

over finite sets.

Proof. Enumerate A = {a0, . . . , ar−1}. We are given that (
⋃

w gw,
⋃

w hw) is a

function (where the union is over all w ∈ [k − 1]k−2). Moreover, it is a solution

over W =
⋃

w dom(gw), (dom gw = [A ∪ {bi : i ∈ w}]k), since if u1, . . . uk+1

is a compatible (k + 1)-tuple of k-tuples from W , then each ui is in dom(gw) =
dom(hw) for at least one w ∈ [k − 1]k−2. Denote the function

⋃

w gw by g−1.

It is clear that in order to extend to a solution on A ∪ {b0, . . . , bk−2}, we

only need to define the values (g, h) on the stalks {ai, b0, . . . , bk−2} for all i < r.

For each i < r, let h(ai, b0, . . . , bk−2) be an arbitrary element of H∗
ai,b0,...,bk−2

. We

need to check that (g−1, h) is still a solution.

Remark 2.12. Hart and Shelah assert that categoricity holds up to ℵk−1; we show

in Theorem 7.1 that this statement is incorrect. The Hart–Shelah argument breaks

down at this very point. Their formulation of the analog of Lemma 2.11 asserts

essentially the k, not k − 1, amalgamation property for solutions over finite sets.

However, they did not make the compatibility requirement in Definition 2.9; and

did not check that the function obtained after defining h is a partial solution. In

fact, in their setting without the compatibility condition it need not be a solution,

and there may not be a way of defining h to make (g−1, h) a solution. We present an

example of the failure of 2-amalgamation for solutions over finite sets for models

of φ2 at the end of this proof.

As we will see in Lemma 2.14, (k − 1)-amalgamation for solutions over

finite sets translates into existence of solutions, and hence categoricity, in ℵk−2.

This is the reason for subscript of the categoricity cardinal being off by one in [9].

It is clear that (g−1, h) is a function with values in the appropriate stalks.

To check that it is a solution, we need to make sure that we have not introduced new

values that violate the predicate Q. This is easy: for each ai ∈ A, any compatible

k + 1 tuple containing the k element set {ai, b0, . . . , bk−2} has to contain a k
element set of the form {aj , b0, . . . , bk−2} for some j 6= i. Since the value g−1 at

{aj , b0, . . . , bk−2} is not defined, there are simply no new compatible k + 1 tuples

to worry about.

Finally, we need to define g on the stalks of the form {ai, b0, . . . , bk−2}.

We do it by induction on i < n, building an increasing chain of functions gi,

i < n, with g0 extending g−1. Let {ws | s < k − 1} be an enumeration of all the

k − 2 element subsets of k − 1; let bws denote the sequence {bi | i ∈ ws} and let

cs,j = 〈a0, aj , bws〉.
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For i = 0, pick an arbitrary starting point x ∈ G∗
a0,b0,...,bk−2

. Let γ0 ∈ G

be such that for j = 1, . . . , n− 1

γ0(aj , b0, . . . , bk−2) = 1 if and only if

M |= ¬Q(({a0, b0, . . . , bk−2}, x), g−1(c0,j), . . . , g−1(ck−1,j), h(aj , b0, . . . , bk−2)).

Now we can extend the function g−1 to the function g0 by letting

g0(a0, b0, . . . , bk−2) := ({a0, b0, . . . , bk−2}, x + γ0). It is clear that (g0, h) is a

solution from its definition.

For arbitrary i, suppose that the solution (gi−1, h) has been defined so that

dom(gi−1) = dom(g−1) ∪ [{a0, . . . , ai−1, b0, . . . , bk−2}]
k.

We need to extend gi−1 to a function gi, with domain dom(g−1) ∪
[{a0, . . . , ai, b0, . . . , bk−2}]

k, by defining gi(ai, b0 . . . , bk−2). The strategy will be

the same as before: we pick an arbitrary starting point and work to resolve all

possible conflicts with the predicate Q.

Let ds,j denote 〈ai, aj , bws〉. Pick an arbitrary starting point x ∈
G∗

ai,b0,...,bk−2
. Let γi ∈ G be such that for j ∈ {0, . . . , n− 1} \ {i}

γi(aj , b0, . . . , bk−2) = 1 if and only if M |=

¬Q(({ai, b0, . . . , bk−2}, x), g−1(d0,j), . . . , g−1(dk−1,j), h(aj , b0, . . . , bk−2))

and γi(u) = 0 if u ∈ dom(g−1)∪[{a0, . . . , ai, b0, . . . , bk−2}]
k is not of this form.

For each (k− 2)-element set w of k− 1, let γw
i ∈ G be such that for j < i

γw
i (ai, aj , bw) = 1 if and only if M |=

¬Q(({ai, b0, . . . , bk−2}, x), gi−1(aj , b0, . . . , bk−2), .., g−1(ds,j), .., h(ai, aj , bw)),

and γw
i (u) = 0 if u ∈ dom(g−1)∪[{a0, . . . , ai, b0, . . . , bk−2}]

k is not of this form,

where ds,j ranges over all sequences 〈ai, aj , bws〉 with ws a (k−2)-element subset

of k − 1 except ws = w. The role of γw
i is to avoid the conflict with the values

already defined by gi−1. Notice that we have finitely many conditions to meet, so

γi as well as γw
i are all finite support functions in G.

Now we let

gi(ai, b0, . . . , bk−2) :=
(

{ai, b0, . . . , bk−2}, x+ γi +
∑

w∈[k−1]k−2

γw
i

)

.

From the definition, (gi, h) is a solution. �

We now give an examples explicitly showing that, for models of φ2, the

solutions over finite sets do not have 2-amalgamation.
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Example 2.13. Let M be the standard countable model of φ2 (i.e., a model where

the values ℓ(a, u) are all zero). Take four points a, b, c, d ∈ I . Define functions

(g1, h1) on [{a, b, c}]2 and (g2, h2) on [{a, b, d}]2 such that

(1) for u ∈ dom(hi), i = 1, 2, the values hi(u) are zeros in the stalks H∗
u;

(2) for u ∈ dom(gi), i = 1, 2, the values gi(u) are zero functions in the stalks

G∗
u except

(3) g2(bd) is the function in G∗
b,d with the support containing exactly one ele-

ment {c, d} ∈ K. That is, g2(bd)(u) = 1 if and only if u = {c, d}.

In particular, both (g1, h1) and (g2, h2) are solutions on their domains and they

agree on {a, b}.

However,

M |= Q(g1(ac), g2(ad), δ) ∧ ¬Q(g1(bc), g2(bd), δ),

for any δ ∈ H∗
c,d. Thus, the h-part of the solution cannot be defined on H∗

c,d. This

shows that, using the notation of the above proof, the function (g−1, h) need not be

a solution when we amalgamate two solutions over finite sets for k = 2.

There are several reasonable ways to try to vary the definition of solution

to obtain 2-amalgamation of finite solutions for φ2. Ultimately, none of them work

because models of φ2 fail to have extension property for countable solutions; this

is used in Section 6 to construct many Galois types over a countable model.

Lemma 2.14. Let M |= φk for some k ≥ 2 and let n ≤ k − 2. If M has

(n+1)-amalgamation for solutions over sets of size less than λ ≥ ℵ0, then M has

n-amalgamation for solutions over sets of size λ.

Proof. Let A = {ai | i < λ} be a subset of I(M), let {b0, . . . , bn−1} be distinct

points in I(M) \A and let

{(gw, hw) | w ∈ [n]n−1,dom(gw) = dom(hw) = [A ∪ {bl | l ∈ w}]k}

be a system of compatible solutions. We need to simultaneously extend the system

of solutions.

By induction on i < λ, we are building an increasing continuous chain of

solutions (gi, hi) such that

(1) dom(gi) = dom(hi) = [{aj | j < i} ∪ {b0, . . . , bn−1}]
k, and

(2) (gi+1, hi+1) extends simultaneously (gi, hi) as well as for all w ∈ [n]n−1,

(gw, hw) ↾ [{aj | j < i+ 1} ∪ {bl | l ∈ w}]k.

To define (g0, h0), consider for w ∈ [n]n−1 the system of solutions

(gw, hw) ↾ [{bl | l ∈ w}]k. Since (n + 1)-amalgamation for solutions implies
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n-amalgamation for solutions over a fixed set and we have (n+ 1)-amalgamation

for solutions over the empty set, we get a simultaneous extension (g0, h0).

At limit stages, we take unions, and at the successor step we simultane-

ously extend (gi, hi) and (gw, hw) ↾ [{aj | j < i + 1} ∪ {bl | l ∈ w}]k, for

all w ∈ [n]n−1. Clearly, all the restrictions of (gw, hw) are pairwise compatible,

and for each w ∈ [n]n−1 the intersection dom(gi, hi) ∩ dom(gw, hw) is equal to

[{aj | j < i} ∪ {bl | l ∈ w}]k, where their definitions coincide. So by (n + 1)-
amalgamation property for solutions of size less than λ there is the required com-

mon extension (gi+1, hi+1). Finally,
⋃

i<λ(gi, hi) is the needed solution. �

Corollary 2.15. Every model of φ̂k of cardinality at most ℵk−2 admits a solution.

Thus, the sentence φk is categorical in ℵ0, . . . , ℵk−2.

Proof. Let M |= φk. By Lemma 2.11, M has (k − 1)-amalgamation for solutions

over finite sets. So M has (k− 2)-amalgamation for solutions over countable sets,

(k − 3)-amalgamation for solutions over sets of size ℵ1, and so on until we reach

0-amalgamation for solutions over sets of size ℵk−2 (provided M is large enough).

Since form < n and any λ, the n-amalgamation property for solutions over sets of

cardinality λ impliesm-amalgamation solutions over sets of cardinality λ, we have

0-amalgamation, that is, existence of solutions for sets of size up to and including

ℵk−2.

Now Lemma 2.6 gives categoricity in ℵ0, . . . , ℵk−2. �

Corollary 2.16. For all k ≥ 2, the sentence φk is Lω1,ω-complete.

The following further corollary will be useful in applications.

Corollary 2.17. Let M |= φ̂k for some k ≥ 2 and n ≤ k − 2. Suppose M
has 2-amalgamation for solutions over sets of cardinality λ ≥ ℵ0 (or over finite

sets). If A0 ⊂ A1, A2 ⊂M have cardinality λ (or are finite) and (g1, h1), (g2, h2)
are solutions of A1, A2 respectively that agree on A, there is a solution (g, h) on

A1 ∪A2 extending both of them.

Proof. It suffices to show that a one point extension can be amalgamated with

an extension of cardinality λ. For this, enumerate A1 − A0 as {a0, a1, a2, . . .}
and say A2 − A0 is {b}. Now successively apply 2-amalgamation of solutions

to amalgamate (g2, h2) ↾ A0 ∪ {b} with (g1, h1) ↾ A0 ∪ {a0} over A0, with

(g1, h1) ↾ A0 ∪ {a0, a1} over A0 ∪ {a0}, etc. �

3. DISJOINT AMALGAMATION FOR MODELS OF φ̂k

In contrast to the previous section, where we studied amalgamation prop-

erties of solutions, this section is about (the usual) amalgamation property for the

class of models of φ̂k. The amalgamation property is a significant assumption for
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the behavior and even the precise definition of Galois types, so it is important to

establish that the class of models of our φk has it. We claim that the class has the

disjoint amalgamation property in every cardinality. Note that the argument also

establishes the joint embedding property.

Theorem 3.1. Fix k ≥ 2. The class of models of φ̂k has the disjoint amalgamation

property.

Proof. Let Mi = Mi(Ii), i = 0, 1, 2, where of course I0 ⊂ I1, I2; K0,K1,K2 are

the associated sets of k-tuples. We may assume that I1 ∩ I2 = I0. Otherwise take

a copy I ′2 of I2 \ I0 disjoint from I1, and build a structure M ′
2 isomorphic to M2

on I0 ∪ I
′
2.

We are building a model M |= φ̂k on the set I1 ∪ I2 making sure that it is

a model of φ̂k and that it embeds M1 and M2, where the embeddings agree over

M0. We start by building the L′-structure on I1 ∪ I2. So let I = I(M) := I1 ∪ I2;

the set K = [I]k can be thought of as K1 ∪K2 ∪ ∂K, where ∂K consists of the

new k-tuples.

Let G be the direct sum of K copies of Z2, notice that it embeds G(M1)
and G(M2) in the natural way over G(M0). We will assume that the embeddings

are identity embeddings.

Let G∗ be the set of K many affine copies of G, with the action by G and

projection to K defined in the natural way. Let H∗ be the set of K many affine

copies of Z2, again with the action by Z2 and the projection onto K naturally

defined.

For i = 1, 2, we now describe the embeddings fi of G∗(Mi) and H∗(Mi)
into G∗ and H∗. Later, we will define the predicate Q on M in such a way that fi

become embeddings of L-structures.

For each u ∈ K0, choose arbitrarily an element xu ∈ G∗
u(M0). Now for

each x′ ∈ G∗
u(M1), let γ be the unique element in G(M1) with x′ = xu + γ.

Let f1(x
′) := (u, γ). Similarly, for each x′ ∈ G∗

u(M2), let δ ∈ G(M2) be the

element with x′ = xu + δ. Define f2(x
′) := (u, δ). Note that the functions agree

over G∗
u(M0): if x′ ∈ G∗

u(M0), then the element γ = x′ − xu is in G(M0). In

particular, f1(xu) = f2(xu) = 0, the constantly zero function.

For each u ∈ Ki \ K0, i = 1, 2, choose an arbitrary xu ∈ G∗
u(Mi), and

for each x′ ∈ G∗
u(Mi) define fi(x

′) := (u, x′ − xu). This defines the embeddings

fi : G∗(Mi) → G∗(M).

Embedding H∗(Mi) into H∗(M) is even easier: for each v ∈ K1, pick

an arbitrary yv ∈ H∗
v (M1), and let f1(yv) := (v, 0), f1(yv + 1) := (v, 1). For

each v ∈ K2, if v ∈ K1, define f2 to agree with f1. Otherwise choose an arbitrary

yv ∈ H∗
v (M2), and let f2(yv) := (v, 0), f2(yv + 1) := (v, 1).
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This completes the construction of the disjoint amalgam for L′-structures.

Now we define Q on the structure M so that fi, i = 1, 2 become L-embeddings.

The expansion is described in terms of the function ℓ that we discussed in Fact 1.3.

Let u1, . . . , uk, v be a compatible (k + 1)-tuple of elements of K; u1 ∪
· · · ∪ uk ∪ v = {a} ∪ v for some a ∈ I .

Case 1. u1, . . . , uk, v ∈ K1 (or all inK2). This is the most restrictive case.

Each of the stalks G∗
ui

(M1) contains an element xui
defined at the previous stage;

and the stalk H∗
v has the element yv ∈M1. Define

ℓ(a, v) := 0 if M1 |= Q((u1, xu1
), . . . , (uk, xuk

), (v, yv)),

and ℓ(a, v) := 1 otherwise.

Case 2. At least one of the u1, . . . , uk, v is in ∂K. Then the predicate Q
has not been defined on these k + 1 stalks, and we have the freedom to define it in

any way. So choose ℓ(a, v) := 0 for all such compatible (k + 1)-tuples.

Now define Q on M from the function ℓ as in Fact 1.3.

It is straightforward to check that f1 and f2 become L-embeddings into

the L-structure M that we have built. �

It would be interesting to investigate the higher-dimensional amalgamation

properties in the family of classes given by φk for k ≥ 2. This would require a good

understanding of independence in these structures, and goes beyond the scope of

this paper.

4. MODEL COMPLETENESS

In this section we show that the class of models of φk is model-complete

in an almost classical sense. Namely, we show that if M,N |= φk and M ⊂ N ,

then M ≺Lω1,ω N . An essential step in the proof involves showing that for each

finite set A ⊂M , there is a complete, modulo φk, existential formula isolating the

Lω1,ω-type of A.

The notion of completeness for a sentence of Lω1,ω is rather more subtle

than in the first order case, (there is no obvious canonical choice of a “complete

theory in Lω1,ω” attached to a structure M ). The definitions and an explanation

appear in Chapter 7 of [1].

Full substructures of models of φk will play an important role. Let us make

the notion of a full substructure more explicit.

Fact 4.1. Let k ≥ 2 and M |= φk. If a subset A of the universe of M is the

universe of a full substructure of M in the sense of Definition 1.5, then
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(1) A is an L-substructure of M ;

(2) G(A) is the set of all finite support functions in G(M) whose support is

contained in K(A);
(3) for all u ∈ K(A) and for some x ∈ G∗

u(M), we have G∗
u(A) = {x + γ |

γ ∈ G(A)}; and

(4) for all v ∈ K(A) and for some y ∈ H∗
u(M), we have H∗

v (A) = {y + δ |
δ ∈ Z2}.

Lemma 4.2. For any set A ⊂ M |= φ̂k, there is a minimal full substructure MA

containing A. Moreover, if A is a finite set, then MA is also finite.

Proof. The full structure MA is constructed as follows. First add to A all the

elements of G(M) of the form γ = x − y, where x, y ∈ G∗
u(M) ∩ A, and take

the closure of the resulting set under all the projections to obtain a set X . Let

IA := X ∩ I(M), KA := [IA]k. Then add elements to G, G∗, and H∗ to satisfy

the conditions (2)–(4) in Remark 4.1. Namely, form the set X ′ by adding the

needed functions to G(X); for any u ∈ KA such that G∗
u(M) ∩ X is empty, add

a single element from the fiber G∗
u(M), and for any v ∈ KA add, if necessary,

both elements in the fiber H∗
v (M). Finally, close X ′ under the action by the group

G(X ′). �

Note that there may be many minimal full substructures over A contained

in M . The goal of the following few claims is to show that a minimal full sub-

structure of M containing A is unique up to isomorphism over A, justifying our

notation MA. A key point is that if N and M are models of φk and A is imbedded

in both M and N , the structure MA need not be isomorphic to NA over A.

Claim 4.3. If MA, M ′
A are minimal full substructures of M containing A ⊂ M ,

then the following sets are equal:

I(MA) = I(M ′
A), K(MA) = K(M ′

A), G(MA) = G(M ′
A), H∗(MA) = H∗(M ′

A).

In addition, for each u ∈ K(M), if G∗
u(M) ∩A 6= ∅, then G∗

u(MA) = G∗
u(M ′

A).

Proof. It is clear that the set IA constructed in the previous lemma is the mini-

mal one that works. So in fact we have I(MA) = I(NA) = IA. The equalities

K(MA) = K(NA) and G(MA) = G(NA) follow from the equality of I’s.

By the definition of a full structure, both H∗(MA) and H∗(NA) must con-

tain a double cover of K(MA) = K(NA). There is a unique such double cover

inside M , so H∗(MA) = H∗(NA) follows.

Finally, by the definition of a full structure, if x ∈ G∗
u(M) ∩ A, then

G∗
u(MA) (and G∗

u(NA)) must be the orbit of x under the action by G(MA) (and

G(NA)). Since the groups are the same, the orbits are in fact equal. �
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Thus, the only possible non-uniqueness occurs in G∗-stalks that are not

“populated” by elements from A. Indeed, in that case we have a complete freedom

to choose a starting point in the stalk.

Lemma 4.4. IfM |= φk,A ⊂M is a set of cardinality at most ℵk−2, andMA,M ′
A

are minimal full substructures of M containing A, then MA, M ′
A are isomorphic

over A.

Proof. We claim that it is enough to show that there are solutions (g, h) on MA

and (g′, h′) on M ′
A such that h = h′ everywhere and g(u) = g′(u) for all u such

that G∗
u ∩ A 6= ∅. Indeed, then the map which is the identity on I(MA), K(MA),

G(MA), H∗(MA) and all the stalks G∗
u(MA) such that G∗

u ∩ A 6= ∅; and, for the

remainingG∗-stalks, sends g(u)+γ to g′(u)+γ, for all γ ∈ G(MA), is the desired

isomorphism.

Now we show that such solutions can be constructed. Start by defining

h and h′ arbitrarily, but to be the same. For the g-part, follow the existence of

solutions construction, picking the same element x ∈ A as the starting point when

dealing with the stalkG∗
u∩A 6= ∅. IfG∗

u∩A = ∅, choose one starting point in each

stalk and extend the isomorphism to the whole stalk using the action by G. �

Claim 4.5. Let M |= φk, and let M0 be a finite full substructure of M . Let ψM0

be the quantifier-free first order formula describing the quantifier-free diagram of

M0. Then ψM0
is a complete Lω1,ω-formula modulo φk.

Proof. It suffices to note that φk ∧ψM0
[c0, . . . , cl−1] is a complete Lω1,ω sentence.

Indeed, the realizations of c0, . . . , cl−1 form a full finite structure, which must have

a solution for any k. We also know that for any k ≥ 2 the models of φk have the

extension property for solutions over finite subsets of I .

Thus, by Lemma 2.6, φk ∧ ψM0
[c0, . . . , cl−1] is ω-categorical and hence

complete. �

Claim 4.6. Let M |= φk, n ≥ k, and let I0 = {ai | i < n} be a subset of I(M).
Let

ψI0 :=
∧

i<n

I(xi) ∧
∧

i6=j

xi 6= xj .

Then ψI0 is a complete Lω1,ω-formula modulo φk.

Proof. Let M0 be a minimal full substructure of M containing I0. Let ψM0
be

the complete formula from the previous claim, let x0, . . . , xn−1 be the list of vari-

ables that correspond to the elements of I0, and let y0, . . . , ym−1 be the remaining

variables of ψM0
.

Since minimal full substructures over finite subsets of I are unique up to

isomorphism (by the existence of solutions over finite subsets of I),

φk |= ψI0 → ∃y0 . . . ym−1ψM0
.
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By Claim 4.5, ∃y0 . . . ym−1ψM0
is a complete formula modulo φk. This completes

the proof. �

The Lω1,ω-type of an arbitrary subset A of M is also isolated. In contrast

with subsets of I(M) or finite full structures the formula isolating the type is not

quantifier-free, but existential.

Claim 4.7. Let M |= φk, and let A be a finite subset of M . Then there is a

complete, modulo φk, existential formula ψA that isolates the type of A.

Proof. As in the previous claim, we take MA a minimal full substructure of M
containing A, and the formula ψA := ∃y0 . . . ym−1ψMA

, where we quantify over

the elements in MA −A. This formula is as needed. �

Corollary 4.8. Suppose M ⊂ N , where M,N |= φk. Then M ≺Lω1,ω N .

Proof. Take a ∈ M . Let A := a, and let MA, NA be minimal full substruc-

tures of M and N over A in M and N respectively. It is enough to show that

N |= ∃y0 . . . ym−1ψNA
[a] implies M |= ∃y0 . . . ym−1ψNA

[a]. Since existential

formulas are upwards persistent, we have N |= ∃y0 . . . ym−1ψMA
[a], and since

ψMA
and ψNA

are complete modulo φk, by Claim 4.5 we have

φk |= ∃y0 . . . ym−1ψNA
(x) ↔ ∃y0 . . . ym−1ψMA

(x).

Thus, since M |= φk, we get M |= ∃y0 . . . ym−1ψNA
[a]. �

Corollary 4.9. Let M |= φk. For any N ⊃ M , all b ∈ I(N) − I(M) satisfy the

same syntactic type over M .

Proof. LetM ⊂ N |= φk and let b ∈ I(N)−I(M). For any full finite substructure

A ⊂ M , by Claim 4.7 there is a formula ψAb that generates the type of Ab. If we

replace the constant for b by a variable x to get ψAb(x) the type,

{ψAb(x) | A ⊂fin M}

generates tp(b/M). It remains to note that, by the extension of solutions over finite

substructures, the formulas ψAb(x) depend only on A. �

The significance of Corollary 4.9 will be clear in Section 6, where we show

that the unique syntactic type of a spine element over a model of φk of size ℵk−2

splits into 2ℵk−2 distinct Galois types over that model.

5. TAMENESS

Here we study the tameness properties for models of φk. We know that

φk is categorical up to ℵk−2; so without loss of generality we may deal with the

standard models of φk in powers ℵ0, . . . , ℵk−2.
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In Section 6 we establish that φ2 has 2ℵ0 Galois types over a countable

model; and that φ3 is not (ℵ0,ℵ1)-tame.

We claim that the class of models of φk is (ℵ0,ℵk−3)-tame. So the first

index where some tameness appears is k = 4. In fact, the result is stronger than

tameness: the Galois type of an element over a model of size up to ℵk−3 is deter-

mined by its existential type (this is interesting for k ≥ 3).

Theorem 5.1. Let k ≥ 3. Then the class of models of φk is (ℵ0,ℵk−3)-tame.

Moreover, the Galois types of finite tuples over a model of size up to ℵk−3 are

determined by the syntactic types over that model.

Proof. We concentrate on the second statement, the first follows easily.

Fix k ≥ 3 and suppose that M |= φk is of size λ ≤ ℵk−3. Let a ∈ Ma,

b ∈ M b be finite tuples that have the same existential type over M , where M ≺
Ma,M b.

Let Ma
0 , M b

0 be (finite) minimal full structures containing a and b respec-

tively. Let M0 := Ma
0 ∩M . We may assume, adding elements of M to a and b if

necessary, that M0 6= ∅. It is easy to check that M0 is a full finite substructure of

M and that M0 = M b
0 ∩M .

Since a, b satisfy the same existential type over M0, there is an isomor-

phism f0 : Ma
0 →M b

0 fixing M0 and sending a to b.

Let 〈g0, h0〉 be a solution for M0, and let 〈ga
0 , h

a
0〉 be a solution extending

〈g0, h0〉 to the full substructure Ma
0 . Let 〈gb

0, h
b
0〉 be the induced solution on M b

0 :

〈gb
0, h

b
0〉 = 〈ga

0 , h
a
0〉

f0 := 〈f0 ◦ g
a
0 ◦ f−1

0 , f0 ◦ h
a
0 ◦ f

−1
0 〉.

It is easy to check that the induced solution on M b
0 extends the solution 〈g0, h0〉 on

M .

Let {Mi | i < λ} be an increasing continuous chain of full substructures of

M that starts with the full substructureM0 constructed above, with |Mi| ≤ |i|+ℵ0,

and
⋃

i<λMi = M . Let {Ma
i | i < λ} and {M b

i | i < λ} be increasing continuous

chains of full substructures starting withMa
0 andM b

0 constructed above. We define

Ma
i+1 (and M b

i+1) to be the disjoint amalgam of Ma
i (respectively, M b

i ) and Mi+1

over Mi.

Using the extension property for solutions, we get a chain {〈gi, hi〉 | i <
λ} of solutions for the models Mi, with 〈gi, hi〉 ⊂ 〈gj , hj〉 for i < j. Using 2-

amalgamation for solutions (which holds for µ ≤ ℵk−4) and Corollary 2.17, we

get increasing chains of solutions 〈ga
i , h

a
i 〉 and 〈gb

i , h
b
i〉, i < λ+, where 〈ga

i+1, h
a
i+1〉

has domain Ma
i+1 and is gotten by extension of solutions from the 2-amalgam of

solutions 〈ga
i , h

a
i 〉 and 〈gi+1, hi+1〉 that has domain Ma

i ∪Mi+1. Further by re-

peated application of the strong form of Lemma 2.6 we get an increasing sequence
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isomorphisms fi from Ma
i onto M b

i which fix Mi and map a to b and preserve the

solutions. The union
⋃

i<λ fi is the needed isomorphism between
⋃

i<λM
a
i and

⋃

i<λM
b
i that fixes M and sends a to b. �

An alternative notion of ω-stability might count the number of syntactic

types over a countable model. By Theorem 5.1 the ω-stability of φk for k ≥ 3 does

not depend on which definition of ω-stable is used. This theorem does not address

ω-syntactic stability of φ2; we show it is not ω-Galois stable in Theorem 6.1. A

separate argument to show φ2 is not ω-syntactically stable is in preparation. See

[11] for related results.

Our earlier argument for tameness used the notion of superhomegenity.

Although no longer needed for the main argument, we include the following results

since superhomogeneity is an intriguing property in its own right. For now, let

k ≥ 3. We claim that the model of φk with power ℵk−3 is superhomogeneous in

the following sense (note M0 may have cardinality ℵk−3.)

Definition 5.2. The structureM is superhomogeneous if for anyM0 ≺K M ∈ K

and a, b ∈ M which realize the same Galois type over M0, there is an automor-

phism of M which takes a to b and fixes M0.

It is important that a, b are finite tuples here. The lemma below fails

otherwise. Forgetting the finiteness condition is also possible; the price to pay is

the additional demand that M is weakly full over M0.

Lemma 5.3. Let M be the model of φk with power ≤ ℵk−3. Then M is superho-

mogeneous.

Proof. In fact, we show that ifM has extension of solutions over subsets of smaller

cardinality then M is superhomogeneous; the precise statement then follows from

the proof of Corollary 2.15. Let a, b ∈M = M(I) have the same Galois type over

M0. By Theorem 5.1 there is an isomorphism f between Ma
0 and M b

0 mapping a

to b.

Let 〈g0, h0〉 be a solution for M0, and let 〈g1, h1〉 be a solution extending

〈g0, h0〉 to the model Ma
0 . Then

〈g1, h1〉
f := 〈f ◦ g1 ◦ f

−1, f ◦ h1 ◦ f
−1〉

is a solution for M b
0 that extends 〈g0, h0〉.

From our hypotheses, |I(M) − I(Ma
0 )| = |I(M) − I(M b

0)|. So we can

extend the solutions 〈g1, h1〉 and 〈g1, h1〉
f , in the same number of steps, to full

solutions over M . This gives the desired automorphism of M . �
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6. INSTABILITY AND NON-TAMENESS

In this section we show that φk is not Galois stable in ℵk−2. We warm

up by treating the case: k = 2, showing there are continuum Galois types over a

countable model of φ2. The proof reduces equality of types pσ, pτ to the equiv-

alence relation of eventual equality between σ and τ . The argument for larger k
involves a family of equivalence relations instead of just one.

More precisely, we show that for M the standard model of cardinality

ℵk−2, the unique syntactic type over M of a new element in the spine splits into

2ℵk−2 Galois types.

Since for any u, the stalk Gu is affine (L′)-isomorphic to the finite support

functions from K to Z2, without loss of generality we may assume each stalk

has this form. We are working with models of cardinality ≤ ℵk−2 so they admit

solutions; thus, if we establish L′-isomorphisms they extend to L-isomorphisms.

For any G∗-stalk Gu, the 0 in (u, 0) denotes the identically 0-function in that stalk.

But for a stalk in H∗, the 0 in (u, 0) denotes the constant 0.

Claim 6.1. Let M be the standard countable model of φ2. There are 2ℵ0 Galois

types over M .

Proof. Let E0 be the equivalence relation of eventual equality on ω2; there are of

course 2ℵ0 equivalence classes.

Let I(M) = {a0, . . . , ai, . . . }. Pick a function s ∈ ω2, and define a

model Ms ≻ M as follows. The L′-structure is determined by the set I(Ms) =
I(M)∪{bs}. For the new compatible triples of the form {a0, ai}, {a0, bs}, {ai, bs},

define

Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, 0))

if and only if s(i) = 0. The values of Q for any u1, u2, u3 among the remaining

new compatible triples is defined as:

Ms |= Q((u0, 0), (u1, 0), (u2, 0)).

Note that 0 in the first two components of the predicate Q refer to the

constantly zero functions in the appropriate G∗-stalks, and in the third component,

0 is a member of Z2. A compact way of defining the predicate Q is:

(∗) Ms |= Q(({a0, ai}, 0), ({a0, bs}, 0), ({ai, bs}, s(i))).

Note that by Notation 1.2, the definition of Q is determined on all of M .

Now we show that the E0-class of s can be recovered from the structure

of Ms over M . Take two models Ms and Mt and suppose that the Galois types

ga-tp(bs/M) and ga-tp(bt/M) are equal. Then there is an extension N of the
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model Mt and an embedding f : Ms → N that sends bs to bt. We work to show

that in this case s and t are E0-equivalent.

First, let us look at the stalks G∗
a1,ai

, G∗
a1,bt

, H∗
ai,bt

for i > 1. Since f fixes

M , the constantly zero function 0 ∈ G∗
a1,ai

is fixed by f . Let x ∈ G∗
a1,bt

be the

image of 0 ∈ G∗
a1,bs

under f . Then we have

Mt |= Q(({a1, ai}, 0), ({a1, bt}, x), ({ai, bt}, f(0))).

Since x is a finite support function, and we have defined

Mt |= Q(({a1, ai}, 0), ({a1, bt}, 0), ({ai, bt}, 0)),

for co-finitely many i > 1 we must have f(0) = 0 in the stalks H∗
ai,bt

. In other

words, f preserves all but finitely many zeros in H∗
ai,bt

. In particular, by (∗) for

any s : ω → 2 the functions s and f(s) are E0-equivalent.

We focus now on the stalks of the form G∗
a0,ai

, G∗
a0,bt

, H∗
ai,bt

, i ≥ 1.

Again, since f fixes M , the constantly zero function 0 ∈ G∗
a0,ai

is fixed by f .

Letting y ∈ G∗
a0,bt

be the image of 0 ∈ G∗
a0,bs

under f , we get

Mt |= Q(({a0, ai}, 0), ({a0, bt}, y), ({ai, bt}, f [s(i)])).

Since y is a finite support function, there is a natural number n such that y(ai, bt) =
0 for all i > n. Since we have defined

Mt |= Q(({a0, ai}, 0), ({a0, bt}, 0), ({ai, bt}, t(i))),

we get t(i) = f(s(i)) for all i > n, or f(s) and t are E0-equivalent. Combining

this with the previous paragraph, we get that s is E0-equivalent to t, as desired.

�

Now we turn to the proof that many Galois types exist for a general k. We

will reduce equality on Galois types indexed by elements of ωk2 to the equivalence

relation of eventual equality on ωk2. This requires some more technical notions.

Remark 6.2. In fact, for any µ ≥ ℵk the relation of equality on Galois types

indexed by elements of µ2 reduces to the equivalence relation Eµ on µ2, where

Eµ(s, t) if and only if |{s(i) = t(i) | i < µ}| = µ.

We do our analysis on ℵk as that is the most important application; but the

argument can be used on any µ ≥ ℵk.

Definition 6.3. Fix a natural number n. Let En be the equivalence relation of

eventual equality on the set of sequences ωn2.

Let Pn := ω × · · · × ωn. Define the family of equivalence relations Fn on

the sets of sequences Pn2 by induction. Let F0 := E0. Having defined the relation

Fn−1 on Pn−12, define Fn as follows. Two sequences s, t ∈ Pn2 are Fn-equivalent

if and only if there is a set Bn ∈ ωn such that
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(1) the complement of Bn has cardinality less than ℵn;

(2) for all i∗ ∈ Bn the sequences s(i0, . . . , in−1, i
∗) and t(i0, . . . , in−1, i

∗)
are Fn−1-equivalent.

Claim 6.4. The equivalence relation En is reducible to Fn. In particular, Fn has

2ℵn equivalence classes.

Proof. Given a sequence s ∈ ωn2, define s ∈ Pn by

s : (i0, . . . , in) ∈ Pn 7→ s(in).

Clearly, En(s, t) if and only if Fn(s, t). �

We will identify a sequence s ∈ ωn2 with its image s in Pn2.

Proposition 6.5. Let M be the standard model of φk+2 of size ℵk. There are 2ℵk

Galois types over M .

Proof. Without loss of generality, we may assume that

I = I(M) = {a0, a1} ∪ I0 ∪ · · · ∪ Ik,

where Il is a well-ordered set of order-type ωl, l = 0, . . . , k. We denote the ele-

ments of Il by al
i, for i < ωl, l < k.

The Galois types over the model M will be coded essentially by Ek, but

we will need the finer relation Fk to describe the situation. Pick a function s ∈ ωk2,

and define a model Ms ≻M as follows. The L′-structure is determined by the set

I(Ms) = I(M)∪{bs}. The L-structure onMs is given as in the original definition

of Q in Section 1 from the function ℓ, where:

ℓ(a0, {a
0
i0
, . . . , ak

ik
, bs}) = s(ik) for all (i0, . . . , ik) ∈ Pk,

and the rest of the values of ℓ are all zero. In particular,

ℓ(a1, {a
0
i0
, . . . , ak

ik
, bs}) = 0 for all (i0, . . . , ik) ∈ Pk.

Let us note explicitly the most relevant relations. For (i0, . . . , ik) ∈ Pk, we

introduce some special notation for k+2 element subsets of {a0, a
0
i0
, . . . , ak

ik
, bs}.

Let

vi0...ik,s := {a0
i0
, . . . , ak

ik
, bs}.

List the remaining k + 2 element subsets of {a0, a
0
i0
, . . . , ak

ik
, bs} as ui0...ik (the

subset not containing bs), and ui0..̂ij ..ik,s for j ≤ k (omitting aj
ij

).

Similarly, let wi0...ik , wi0..̂ij ..ik,s list the k + 2 element subsets of

{a1, a
0
i0
, . . . , ak

ik
, bs} that do not contain respectively bs and aj

ij
for j ≤ k. Then

we have

Ms |= Q((ui0...ik , 0), (uî0,i1...ik,s, 0), . . . , (ui0...ik−1 ,̂ik,s, 0), (vi0...ik,s, s(j)))
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and

Ms |= Q((wi0...ik , 0), (wî0,i1...ik,s, 0), . . . , (wi0...ik−1 ,̂ik,s, 0), (vi0...ik,s, 0)).

Now we show that the Fk-class of s can be recovered from the structure

of Ms over M . Take two models Ms and Mt and suppose that the Galois types

ga-tp(bs/M) and ga-tp(bt/M) are equal. Then there is an extension N of the

model Mt and an embedding f : Ms → N that sends bs to bt. We work to show

that in this case s and t are Fk-equivalent and hence Ek-equivalent.

First, let us look at the stalks G∗
w

i0..̂ij ..ik,t
, j ≤ k and H∗

vi0...ik,t
in Mt.

Since f fixes M , the constantly zero function 0 ∈ G∗
wi0...ik

is fixed by f .

For j ≤ k and ij < ωj let xi0..̂ij ..ik
∈ G∗

w
i0..̂ij ..ik,t

be the image of 0 ∈

G∗
w

i0..̂ij ..ik,s
under f . Let yi0...ik ∈ H∗

vi0...ik,t
be the image of 0 ∈ H∗

vi0...ik,s
. We

will analyze the value of yi0...ik in two ways. We write i for 〈i0 . . . ik〉 and i
− for

the first k-elements: 〈i0 . . . ik−1〉.

Since f is an embedding we have:

Mt |= Q((wi, 0), (wî0,i1...ik,t, xî0,ii...ik
), . . . , (w

i
−

,t
, x

i
−), (vi,t

, yi)). (∗∗)

For each (i0, . . . , ik) ∈ Pk, let f(i0, . . . , ik) := yi0...ik . Since each yi0...ik

is either 0 or 1, f is a function in Pk2. Since f is an isomorphism, the image of any

δ ∈ H∗
i0...ik,s is the element δ + yi0...ik mod 2 in the stalk H∗

i0...ik,t. The following

claim thus implies Fk(s, t), which in turn implies Ek(s, t), as required. �

Claim 6.6. The function f is Fk-equivalent to the constantly zero function on Pk.

Proof. Since each xi0..̂ij ..ik
is a finite support function, there is a subset Bk ⊂ ωk

such that the complement of Bk has cardinality smaller than ℵk and for each ik ∈
Bk, for all i0, . . . , ik−1 ∈ Pk−1 none of the functions xi0...ik−1

contain ik in any of

the subsets in their support.

Fix an arbitrary i∗k ∈ Bk. There are ωk−2 many functions of the form

xi0...ik−2,i∗
k
, each with a finite support. Therefore, there is a subset Bk−1,i∗

k
of

ωk−1 such that its complement has cardinality smaller than ℵk−1 and for each

ik−1 ∈ Bk−1,i∗
k

for all i0, . . . , ik−2 none of the functions xi0...ik−2,i∗
k

contain ik−1

in any of the subsets in their support.

Iterating, we build a family of sets Br,i∗r+1
,...,i∗

k
, r ≤ k, such that for

each ir ∈ Br,i∗r+1
,...,i∗

k
and for all i0, . . . , ir−1 ∈ Pr−1, none of the func-

tions xi0..ir−1,i∗r+1
..i∗

k
contain ir in any of the subsets in their support and so that

Br,i∗r+1
,...,i∗

k
has complement of size less than ℵr. Take i∗k ∈ Bk, i∗k−1 ∈ Bk−1,i∗

k
,
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. . . , i∗0 ∈ B0,i∗
1
,..,i∗

k
. If we can show that yi∗

0
...i∗

k
= 0 for each such i∗0 . . . i

∗
k, we show

f is Fn-equivalent to the constantly zero function on Pk and finish. We write i∗ for

〈i∗0 . . . i
∗
k〉 and i

−
∗ for the first k-elements: 〈i∗0 . . . i

∗
k−1〉. By definition,

Mt |= Q((wi∗
, 0), (wî∗

0
,i∗

1
...i∗

k
,t, 0), . . . , (w

i
−

∗
,t
, 0), (v

i
−

∗
,t
, 0)).

We also have xi∗
0
...i∗

k−1
,̂ik

[i∗0 . . . i
∗
k, t] = 0, . . . , xî0,i∗

1
...i∗

k
[i∗0 . . . i

∗
k, t] = 0, since for

all 0 ≤ r ≤ k the support of the function xi∗
0
..î∗r ..i∗

k
does not include any k+1 tuple

containing i∗r .

Thus we have

Mt |= Q((wi∗
, 0), (wî0,i∗

1
...i∗

k
,t, xî0,i∗

1
...i∗

k
), . . . , (w

i
−

∗
,t
, x

i
−

∗

), (vi∗,t
, 0)).

Comparing this display with (**), which holds for all i0 . . . ik, we conclude that

yi∗
0
...i∗

k
= 0. �

Continuing the notation of the last lemma, we focus on a specific conclus-

tion.

Corollary 6.7. Let M be the standard model of φk+2 of size ℵk. If ¬Ek(s, t), the

Galois types (bs/M ;Ms) and (bt/M ;Mt) are distinct. That is, bs and bt are in

distinct orbits.

We can now conclude, working with φk rather φk+2:

Proposition 6.8. The class of models of φk is not (ℵk−3,ℵk−2)-tame.

Proof. Let s, t be sequences in ωk−22 with ¬Ek−2(s, t). By Corollary 6.7, the

Galois types of bs, bt over the standard model M of size ℵk−2 are different. But,

by Corollary 5.1, the Galois type of bs is the same as the Galois type of bt over

any submodel N ≺ M , ‖N‖ ≤ ℵk−3, as bs and bt have the same syntactic type

over N . �

This analysis shows the exact point that tameness fails. Grossberg pointed

out that after establishing amalgamation in Section 3, non-tameness at some (µ, κ)
could have been deduced from eventual failure of categoricity of the example and

the known upward categoricity results [6, 13]. However, one could not actually

compute the value of κ without the same technical work we used to show tameness

directly. In addition, failure of categoricity itself is established using the Galois

types constructed in Proposition 6.5.

By analyzing the proof of Proposition 6.5, one sees the following.

Corollary 6.9. Let χ0, . . . χk be a strictly increasing sequence of infinite cardinals.

Then there is a model of φk+2 of cardinality χk over which there are 2χk Galois

types. In particular, φk+2 is unstable in every cardinal greater than ℵk.
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7. NUMBER OF MODELS

We showed in Section 6 that φk is not Galois-stable in ℵk−2 and above. We

have shown that the models of φk have disjoint amalgamation and it easy to see that

φk has arbitrarily large models. For any Abstract Elementary class satisfying these

conditions, categoricity in λ implies Galois stability in µ for LS(K) ≤ µ < λ
[16, 1]. Thus we can deduce from Corollary 2.15 and Corollary 6.9:

Theorem 7.1. (1) Let k ≥ 3; φk is ℵm-Galois stable for m ≤ k − 3.

(2) Let k ≥ 2; φk is not ℵk−1-categorical.

We will apply the instability directly to refine this result by showing that

if µ ≥ ℵk−2 and λ is the least cardinal with λµ < 2λ, then φk has 2λ non-

isomorphic models of cardinality λ. Under the weak generalized continuum hy-

pothesis (2µ < 2µ+

), we get that φk has maximal number of models in every

cardinal beginning with ℵk−1. Without WGCH, we obtain that φk is not categori-

cal everywhere above and including ℵk−1, with the maximal number of models in

arbitrarily large cardinalities.

Remark 7.2. Our φk is not the same one as in Hart-Shelah. We have simplified

the construction by using only one level. However, our models are definable in

theirs. So the assertion [9] that the Hart-Shelah φ is ℵk−1-categorical is incor-

rect; the correct statement is for ℵk−2-categoricity. We discussed the source of the

miscalculation in Section 2.

We start with a link between many Galois types in our example and failure

of categoricity.

Lemma 7.3. Let k ≥ 2. Let M |= φk be of size µ, and suppose that there is a set

X = {bs | s < 2µ} such that the Galois types (bs/M) are pairwise distinct; let

Ms = M(I ∪ {bs}). Let λ be the least cardinal with λµ < 2λ. Then φk has 2λ

non-isomorphic models of size λ.

Proof. We start by noting that there are 2λ subsets of size λ of the set X . For

a subset S of the set X of size λ, let MS be a model of size λ with the spine

I(M) ∪ {bs | s ∈ S}. Namely, MS is a minimal disjoint amalgam of the models

Ms, s ∈ S.

It is now easy to see that the models MS , MS′ are not isomorphic over

M for S 6= S′: any isomorphism preserves the Galois type of all the elements

bs over M ; so MS , MS′ realize distinct sets of Galois types over M . Thus, we

get 2λ models over M . It remains to note that since λµ < 2λ, we must have 2λ

non-isomorphic L-structures. �

In conjunction with Proposition 6.5 we get
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Corollary 7.4. Let k ≥ 2, µ ≥ ℵk−2, and let λ be the least cardinal with λµ < 2λ.

Then φk has 2λ non-isomorphic models of cardinality λ.

While we know from Theorem 7.1 that categoricity fails everywhere above

ℵk−2, using the following lemma we can avoid the heavy machinery quoted in that

theorem and prove directly that categoricity fails everywhere above 2ℵk−2 .

Claim 7.5. Suppose that φk is categorical in λ. Then φk is categorical in every

µ < λ.

Proof. We know that every model of size λ has a solution by categoricity. We also

have that every model of size µ can be extended to a model of size λ.

So the proof boils down to showing the following: if M , with ‖M‖ = µ,

is a submodel of N , with ‖N‖ = λ, and N has a solution, then M has a solution.

Let (g, h) be a solution for N . It is tempting to take the restriction of g and h to the

modelM , but g(u) does not have to be inM for u ∈ K(M). Indeed, it may happen

that g(u) = (u, x), where the support of the function x is not contained in K(M).
Let us denote by g(u) ↾ K(M) the pair (u, x′) ∈ G∗(M), where x′(v) = x(v) for

all v ∈ K(M) and x′(v) = 0 otherwise.

Now we make the natural definition: let h := h ↾ K(M); and for u ∈
K(M) let g(u) := g(u) ↾ K(M). It is easy to check that (g, h) is a solution for

M . �

Let λ be the least cardinal with λℵk−2 < 2λ, then λ ≤ 2ℵk−2 . By Corol-

lary 7.4 φk is not categorical in λ and so by Claim 7.5, φk is not categorical in any

κ ≥ λ. So without reliance on the Ehrenfeucht-Mostowski machinery necessary to

prove Theorem 7.1, we see φk is not categorical in any κ with κ ≥ 2ℵk−2 .

We close by formally stating our most complete results on the spectra

of φk.

Corollary 7.6. Let k ≥ 2. The sentence φk is categorical in ℵ0, . . . ,ℵk−2, is not

categorical in every cardinality greater than or equal to ℵk−1, and has 2λ models

in some λ with ℵk−2 < λ ≤ 2ℵk−2 . Moreover, for any µ ≥ ℵk−1 there is λ > µ
such that φk has 2λ models of cardinality λ.

If in addition 2µ < 2µ+

(WGCH) for all µ ≥ ℵk−2, then φk has 2µ+

isomorphism classes in every µ+ ≥ ℵk−2.

Proof. We have already established the claims in the first paragraph.

To prove the second, suppose 2µ < 2µ+

for all µ ≥ ℵk−2. Let µ be greater

than or equal ℵk−2. For all λ ≤ µ we have λµ = 2µ ≥ 2λ. So µ+ is the least
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candidate for λ with λµ < 2λ. By our assumption, we have

(µ+)µ = 2µ < 2µ+

.

By Corollary 7.4 we get the maximal number of non-isomorphic models in µ+,

and by Claim 7.5 φk is not categorical everywhere above ℵk−1. �
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