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Abstract

The zeta function of a hyperelliptic curve C over a finite field factors into a product of L-functions,

one of which is the L-function of C. We categorify this formula using objective linear algebra in the

abstract incidence algebra of the poset of effective 0-cycles of C. As an application, we prove a collection

of combinatorial formulas relating the number of ramified, split and inert points on C to the overall point

count of C.

1 Introduction

Let Fq be a finite field and let C be an algebraic curve over Fq. Its zeta function is defined as the formal
power series

Z(C, t) = exp

[
∞∑

n=1

#C(Fqn)

n
tn

]

where #C(Fqn) denotes the number of Fqn -points of C and exp(t) = 1+
∑∞

n=1
1
n! t

n is the formal exponential
power series. For example, the zeta function of A1 is

Z(A1, t) =
1

1− qt

while the zeta function of P1 is

Z(P1, t) =
1

(1 − t)(1− qt)
.

By the Weil Conjectures, Z(C, t) is a rational function, satisfies a functional equation and its zeroes and
poles satisfy an analogue of the Riemann Hypothesis.

Expanding further on the rationality property, it is well-known, though not at all obvious, that when C
is smooth, projective and geometrically integral of genus g, its zeta function can be written

Z(C, t) =
L(C, t)

(1− t)(1 − qt)
(1)

where L(C, t) is the L-function of C, a degree 2g polynomial with integer coefficients. In other words, Z(C, t)
factors in the ring of formal power series as Z(P1, t)L(C, t). When C is a hyperelliptic curve, we lift formula
(1) to an equivalence of linear functors in the abstract incidence algebra of the decomposition set of 0-cycles
of P1, using techniques in objective linear algebra:

Theorem 1.1 (Theorem 4.2). Let C/Fq be a hyperelliptic curve. In the reduced incidence algebra Ĩ(Zeff
0 (P1)),

there is an equivalence of linear functors

π∗ζC + ζP1 ∗ L(C)− ∼= ζP1 ∗ L(C)+.

1The second author is partially supported by the American Mathematical Society and the Simons Foundation.
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The symbol π∗ is a pushforward map induced by the double cover π : C → P1. The functors L(C)+

and L(C)− in Ĩ(Zeff
0 (C)) are defined in Section 4 in such a way that their images in the numerical incidence

algebra satisfy L(C)+−L(C)− = L(C), where L(C) represents the coefficients of L(C, t), thereby recovering
formula (1). In this way, Theorem 1.1 may be viewed as a categorical version of formula (1) for hyperelliptic
curves. Theorem 1.1 also says that L(C) is a relative zeta function for the cover π, in the terminology of
[AK]. Or to be more precise, it is a “decomposed” relative zeta function and becomes a relative zeta function
after passing to I#(P1); see Remark 4.4. We plan to construct L(C) directly as a single relative zeta function
in a future article, using simplicial G-representations. See Appendix A.4 for an overview of the construction
in the case that C is an elliptic curve.

When E is an elliptic curve (considered to be hyperelliptic in this paper), the L-function of E is of the
form L(E, t) = 1− aqt+ qt2 where aq = q + 1−#E(Fq). Using Theorem 1.1, we deduce the formulas

aq = iq(E)− sq(E) and #Symn C(Fq) =
∑

i+j=n

(qi + . . .+ q + 1)
∑

α∈Symj P1(Fq)

χ(α) (2)

where sq(E) and iq(E) are the number of “split” and “inert” points of the cover E → P1 over Fq and χ is a
certain function on the points of Symj P1, which can be identified with the effective 0-cycles of degree j on
P1.

The point counting zeta function is only one generating function that encodes information about a curve
C/Fq. If C lifts to a curve C̃ in characteristic 0, then the complex points of C̃ have the structure of a

Riemann surface whose Euler characteristic can be encoded by the Macdonald polynomial (1 − t)−χ(C̃). In
fact, many formulas for χ can be encoded with Macdonald polynomials; for example, when π : Y → X is a
branched cover of degree n,

χ(Y ) = nχ(X)− r

where r = r(π) is the ramification number of π. As an analogue of Theorem 1.1, we lift this formula to an
equivalence of linear functors in an objective incidence algebra:

Theorem 1.2 (Theorem 5.3). Let π : Y → X be a branched cover of degree n of finite CW complexes. In
the incidence algebra I(S•(X)) of the simplicial complex S•(X), there is an equivalence of linear functors

π∗Φeven(Y ) ∗ Φodd(X)n ∗ π∗R ∼= π∗Φodd(Y ) ∗ Φn
even.

The paper is organized as follows. In Section 2, we review the basic properties of algebraic curves over
finite fields and their zeta and L-functions. In Section 3, we review the definitions of decomposition sets and
their incidence algebras, following [GKT1] and [AK]. The proof of Theorem 1.1 is given in Section 4. In
Section 4.3 we prove formula (2) relating the numbers of split and inert points of E to aq(E). Finally, we
prove the topological analogue, Theorem 1.2, in Section 5.

The authors would like to thank Changho Han for many helpful discussions at the early stages of this
project. The second author also thanks David Zureick-Brown for several conversations about covers of curves
and Bogdan Krstic for his help describing objective characteristic polynomials.

2 Hyperelliptic Curves

For a smooth, projective, geometrically integral variety X over k = Fq, let |X | denote the set of closed points
of X . Then the zeta function of X has the following product formula:

Z(X, t) =
∏

x∈|X|

1

1− tdeg(x)

where deg(x) = [k(x) : k] is the degree of x. We denote by Z0(X) the group of 0-cycles on X , i.e. the free
abelian group generated by |X |. A 0-cycle is effective if it is of the form α =

∑
x∈|X| axx for ax ≥ 0. The

effective 0-cycles on X form a submonoid of Z0(X), denoted Zeff
0 (X). The zeta function of X can also be

written as a generating function for the effective 0-cycles on X :

Z(X, t) =
∑

α∈Zeff

0
(X)

tdeg(α)
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where deg : Z0(X) → Z is the degree map sending α =
∑

x axx to deg(α) =
∑

x axdeg(x).
Let C be a hyperelliptic curve of genus g ≥ 1, i.e. a smooth, projective algebraic curve given by an

equation of the form
C : y2 + h(x)y = f(x)

for f, h ∈ k[x] with f monic, deg(f) = 2g+1 and deg(h) ≤ g. (If chark 6= 2, we can take h = 0.) Restricting
the projection P2 → P1 to C determines a smooth map π : C → P1 which is a degree 2 cover ramified at
2g + 2 points.

Remark 2.1. Although it is not standard everywhere, in this paper we include elliptic curves in the class
of hyperelliptic curves.

Fix a point x ∈ |P1| and a point y ∈ π−1(x) on C. Let e(y | x) denote the ramification index of π at
y and let f(y | x) denote the inertia degree, defined as [k(y) : k(x)] where k(x) (resp. k(y)) is the field of
definition of x (resp. y). Then x has one of the following splitting types:

• ramified if e(y | x) > 1 for any y ∈ π−1(x);

• split if e(y | x) = f(y | x) = 1 for all y ∈ π−1(x);

• inert if π−1(x) consists of a single closed point y.

In this situation, the Riemann–Hurwitz formula reads

2− 2g = 4−
∑

y∈|C|

(e(y | x)− 1).

Compare this to the formulas in Section 5.

Proposition 2.2. Let π : C → P1 be a hyperelliptic curve over Fq. Then Z(C, t) factors as

Z(C, t) =
∏

x∈|P1|

Zx(C, t)

where

Zx(C, t) =





1

1− t
, if x is ramified

1

(1− t)2
, if x is split

1

1− t2
, if x is inert.

Proof. The factorization of Z(C, t) as a product over the closed points of C is well known:

Z(C, t) =
∏

y∈|C|

1

1− tdeg(y)
.

For each x ∈ |P1|, write
Zx(C, t) =

∏

y∈π−1(x)

1

1− tdeg(y)
.

Then the description of Zx(C, t) follows from the definitions of ramified, split and inert points. This will
also follow from the objective description of Z(C, t) as the pushforward π∗ζC (see Section 4.3).

When π : C → P1 is a hyperelliptic curve and x ∈ |P1| is a split point, we label the two points in π−1(x)
by {y, ȳ}. The formulas proven in Section 4 will not depend on this labeling, although their proofs will. As
we will mention later, this choice can be viewed as a section of π over the split locus.
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3 Incidence Algebras and Objective Linear Algebra

In this section, we define an incidence algebra of 0-cycles on a variety and give a brief overview of decompo-
sition sets, objective linear algebra and incidence algebras, following [GKT1, Kob, AK].

3.1 The Incidence Algebra of 0-Cycles

Our goal is to construct the incidence algebra of effective 0-cycles for a curve C/Fq. In fact, the construction
is valid for any variety X over any field. Let Zeff

0 (X) be the set of effective 0-cycles on X . This has the
structure of a locally finite poset where α ≤ β if and only if α =

∑
x axx, β =

∑
x bxx and ax ≤ bx for all

x ∈ |X |. For α, β ∈ Zeff
0 (X), the interval [α, β] is defined as

[α, β] = {γ ∈ Zeff
0 (X) | α ≤ γ ≤ β}.

Fix a field of coefficients k (usually k = C or Qℓ for ℓ ∤ q). The incidence coalgebra of 0-cycles of X ,
hereafter the incidence coalgebra of X , is the free k-vector space on the set of intervals in Zeff

0 (X):

C(X) := C(Zeff
0 (X)) =

⊕

I∈Int(Zeff

0
(X))

kI

with comultiplication and counit

∆ : C(X) −→ C(X)⊗k C(X), [α, β] 7−→
∑

γ∈[α,β]

[α, γ]⊗ [γ, β]

and δ : C(X) −→ k, [α, β] 7−→ δαβ =

{
1, α = β

0, α 6= β.

The incidence algebra of 0-cycles of X , hereafter the incidence algebra of X , is the dual of C(X),

I(X) := I(Zeff
0 (X)) = Homk(C(X), k),

which is an algebra under convolution,

∗ : I(X)⊗k I(X) −→ I(X), f ⊗ g 7−→


f ∗ g : [α, β] 7→

∑

γ∈[α,β]

f(α, γ)g(γ, β)




with unit δ. Here, f(α, β) := f([α, β]).
The zeta function of Zeff

0 (X) is the element ζ ∈ I(X) defined by ζ(α, β) = 1 for every α ≤ β. The zeta

function ζ lives in a subalgebra of I(X) called the reduced incidence algebra Ĩ(X) := Ĩ(Zeff
0 (X)), defined as

the subalgebra of functions f that are constant on isomorphism classes of intervals in Zeff
0 (X). Here, two

intervals [α, β], [α′, β′] ∈ Int(Zeff
0 (X)) are isomorphic if they are isomorphic as subposets of Zeff

0 (X).

Example 3.1. While the reduced subalgebra is defined for any locally finite poset, for Zeff
0 (X) in particular it

has a simpler description (compare to [AK, Exs. 3.4 - 3.5]). Note that every interval in Zeff
0 (X) is isomorphic

to [0, α] for some α ≥ 0. To simplify notation, if f ∈ Ĩ(X), write f(α) := f(0, α). Then Ĩ(X) is isomorphic
to a power series ring:

Ĩ(X)
∼−−→

∏

x∈|X|

k[[tx]], f 7−→
∏

x∈|X|

∞∑

n=0

f(nx)tnx .

Notice that under the map
∏

x∈|X| k[[tx]] → k[[t]] induced by tx 7→ tdeg(x), ζ ∈ Ĩ(X) is sent to the zeta

function Z(X, t):

ζ =
∏

x∈|X|

∞∑

n=0

tnx 7−→
∏

x∈|X|

∞∑

n=0

tn deg(x) =
∏

x∈|X|

1

1− tdeg(x)
= Z(X, t).

This mapping
∏

x∈|X| k[[tx]] → k[[t]], which constructs a generating function for every f ∈ Ĩ(X), is a special

case of a pushforward between incidence algebras (see Section 3.3 as well as the description in [AK, Sec. 3.3]).

We will see that formula (1) is a statement about the pushforward of ζ ∈ Ĩ(C) along a map C → P1.



3.2 Objective Linear Algebra 5

3.2 Objective Linear Algebra

We next categorify the incidence algebra of 0-cycles using objective linear algebra and decomposition sets.
This formalism is part of the general theory of decomposition spaces developed in [GKT1, GKT2, GKT3,
GKT4, GKT5] and explained in more detail in [Kob, AK]. See Appendix A for a more general dictionary
that extends beyond the category Set.

Informally, objective linear algebra is “linear algebra with sets”. In lieu of a full description of the theory,
which already appears in [GKT4, Kob, AK], here is a dictionary of some linear algebra terms and their
objective counterparts.

Linear Objective

field of scalars k the category Set

scalar addition + coproduct
∐

scalar multiplication product ×
a basis B a set B

a vector v in the basis B a set map v : X → B
the vector space with basis B the slice category Set/B

vector addition v + w coproduct v ∐ w : X
∐

Y → B

scalar multiplication av A× (v : X → B) := (A×X
id×v−−−→ A×B

projB−−−−→ B)

a matrix M a span

B C

M
v w

the linear map with matrix M the linear functor w!v
∗ : Set/B → Set/C

matrix multiplication span composition
tensor product V ⊗W symmetric tensor Set/B ⊗ Set/C := Set/B×C

dual space V ∗ = Hom(V, k) functor space (Set/B)
∗ := Fun(Set/B , Set)

To recover the objects in the left column of the table, one can often apply the cardinality functor to
objects in the right column. For example, if v : X → B is an objective vector with finite fibres, then the
collection of its fibre cardinalities defines a vector

∑
b∈B |v−1(b)|b in the k-vector space spanned by B.

3.3 The Objective Incidence Algebra

To distinguish the objective incidence algebra defined in this section from the k-vector space constructed in
Section 3.1, we will denote the earlier construction by I#(X), following the notation in [AK]. Likewise, we

will denote the reduced subalgebra of I#(X) by Ĩ#(X).
Abstract incidence algebras are defined at the objective level for any locally finite decomposition set

in [GKT1]. For such a decomposition set S, the incidence algebra I(S) is an associative, unital monoid
object in the objective linear algebra category LIN. We give the construction here for the decomposition set
S = Zeff

0 (X), where X is a k-variety.
First, let I1 = I1(X) = Int(Zeff

0 (X)) denote the set of intervals in Zeff
0 (X). Equivalently, I1 is the set

of 1-simplices in the simplicial structure on Zeff
0 (X). Also, let I0 denote the set of 0-simplices in Zeff

0 (X)
(these are just the effective 0-cycles themselves) and let I2 denote the set of 2-simplices, which is isomorphic
to I1 × I1.

The incidence coalgebra of S, which we will also refer to as the incidence coalgebra of X , is the objective
vector space C(X) := C(Zeff

0 (X)) = Set/I1 equipped with a comultiplication linear functor ∆ : C(X) →
C(X)⊗ C(X) corresponding to the span

∆ =




I1 I1 × I1

I2
d1 (d2, d0)
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where d0, d1 and d2 are the face maps I2 → I1. C(X) also comes equipped with a counit δ : C(X) → Set

represented by the span

δ =




I1 ∗

I0
s0




where s0 is the 0th degeneracy map. Dualizing C(X) (in the objective sense) gives us the incidence algebra
I(X) := C(X)∗ = Fun(Set/I1 , Set), equipped with unit δ and multiplication given by convolution. Explicitly,

convolution is a linear functor ∗ : I(X)⊗ I(X) → I(X) which sends f ⊗ g ∈ I(X)⊗ I(X) to f ∗ g : Set/I1
∆−→

Set/I1 ⊗ Set/I1
f⊗g−−−→ Set⊗ Set

∼−→ Set, corresponding to the span

f ∗ g =


 I1 I1 × I1 ∗

I2 I1 × I1

P

d1
(d2, d0)

f × g




.

The zeta functor of X is the linear functor ζ = ζX represented by

ζ =




I1(X) ∗

I1(X)
id


 .

Following [AK, Ex. 3.5], we define an objective notion of pushforward functor between incidence algebras.
The general definition is in loc. cit., but here is the definition for incidence algebras of 0-cycles. Let π : Y → X
be a morphism of k-varieties. Pushforward of 0-cycles defines a simplicial map Zeff

0 (Y ) → Zeff
0 (X), also

denoted by π. This in turn induces a linear functor π∗ : I(Y ) → I(X): if f ∈ I(Y ) with span

f =




I1(Y ) ∗

M
v




then π∗f is the linear functor with span

π∗f =




I1(X) ∗

M
π1 ◦ v


 .

For example, when f = ζ, we get a linear functor

π∗ζ =




I1(X) ∗

I1(Y )
π1


 .

Finally, we discuss the objective version of the reduced incidence subalgebra of I(X), following [GKT5,

Sec. 1.5.3]. By [AK, Sec. 3.2], a decomposition set S admits a numerical reduced incidence algebra Ĩ#(S)

as a subalgebra of its numerical incidence algebra when S is the decalage of another decomposition set S̃,
in particular when Sr = S̃r+1 for all r ≥ 0. In this situation, it makes sense to view I(S̃) as the objective
reduced incidence algebra of S. The following example exhibits this subalgebra for the decomposition set of
effective 0-cycles.
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Example 3.2. When S = (Zeff
0 (X),≤) for a k-variety X , S = Dec⊥(S̃) where S̃ is the monoid of iso-

morphism classes of effective 0-cycles under pointwise addition. By [GKT5, Lem. 2.1.2], this identification
determines an injective linear functor

I(S̃) −→ I(S).

The essential image of this functor may be regarded as the reduced incidence algebra of X . Passing to the
numerical incidence algebras of S̃ and S gives a k-linear map I#(S̃) → I#(S) which is an isomorphism onto

the numerical reduced incidence algebra Ĩ#(S). The zeta functor ζ lies in the reduced incidence algebra

and its image in Ĩ#(S) corresponds to the arithmetic function ζ : α 7→ 1 with generating function Z(X, t).

Equivalently, if t : X → SpecFq is the structure map, then Z(X) := t∗ζX is the linear functor in Ĩ(SpecFq)
whose decategorification is precisely Z(X, t).

4 Proof of the Main Theorem

For a hyperelliptic curve π : C → P1 over a finite field k = Fq, let S = (Zeff
0 (P1),≤) and T = (Zeff

0 (C),≤)

and let π∗ : I(C) → I(P1) be the pushforward on incidence algebras induced by π. Write Ĩ(P1) (resp. Ĩ(C))
for the reduced incidence algebras described in Example 3.2. We will also abuse notation and write π∗ :
Ĩ(C) → Ĩ(P1) for the pushforward map induced by π on S̃, though it is distinct from the restriction of π∗

to Ĩ(C).

4.1 Local Theorem

For this section, fix a closed point x ∈ |P1| and let Sx = {ax} be the submonoid of effective divisors supported
at x in Zeff

0 (P1). Let Tx = {α : π∗α ∈ Sx} be the submonoid of Zeff
0 (C) consisting of divisors lying over

divisors in Sx. Also let ζP1,x and ζC,x be the zeta functions in I(Sx) and I(Tx), respectively.

Theorem 4.1 (Local Version of Theorem 1.1). For each closed point x ∈ |P1|, in the incidence algebra
I(Sx), there is an equivalence of linear functors

π∗ζC,x + ζP1,x ∗ Lx(C)− ∼= ζP1,x ∗ Lx(C)+. (3)

Proof. The terms in formula (3) are defined as follows. First, π∗ζC,x, Lx(C)+ and Lx(C)− are represented
by the spans

π∗ζC,x =




Sx,1 ∗

Tx,1
π1


 , Lx(C)+ =




Sx,1 ∗

S+
x,1

j+x


 , L(C)− =




Sx,1 ∗

S−
x,1

j−x




where S+
x,1, S

−
x,1, j

+
x and j−x are each defined below. Then the convolutions in formula (3) are given by the

span convolutions

ζP1,x ∗ Lx(C)+ =


 Sx,1 Sx,1 × Sx,1 ∗

Sx,2 Sx,1 × S+
x,1

B+

α+

d1
(d2, d0)

id× j+x
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and

ζP1,x ∗ Lx(C)− =


 Sx,1 Sx,1 × Sx,1 ∗

Sx,2 Sx,1 × S−
x,1

B−

α−

d1
(d2, d0)

id× j−x




.

From here, the proof divides into cases based on the splitting type of the point x (see Proposition 2.2).
First assume x is one of the 4 branch points of the covering π : C → P1 and let y be its unique preimage.

In this case we take j+x : S+
x,1 →֒ Sx,1 to be the inclusion of the subset {0x}. Also let S−

x,1 = ∅. Then formula
(3) becomes

π∗ζC,x
∼= ζP1,x ∗ Lx(C)+

which is verified by constructing an equivalence of spans

Sx,1

B+

Tx,1

∗

d1 ◦ α+

π1

ϕ

Note that B+ can be described explicitly:

B+ = {σ ∈ Sx,2 | d0σ = 0x}.

Define ϕ in the above diagram by

ϕ(ay) =
2kx 0

2kx

σ

Since every 2-simplex in B+ has this form, ϕ is invertible (send such a σ back to 2y ∈ Tx,1). The diagram
commutes by construction, proving formula (3) in the ramified case.

Next, suppose x splits in the covering π, with fibre π−1(x) = {y, ȳ}. As in the ramified case, we take
S−
x,1 = ∅, but set S+

x,1 = Sx,1 so that B+ = Sx,2 and d1 ◦ α = d1. To compare the linear functors π∗ζC,x

and ζP1,x ∗ Lx(C)+, we once again construct a map ϕ : Tx,1 → B+ that makes the appropriate diagram
commute. Define ϕ by

ϕ(ay + bȳ) =
ax bx

(a+ b)x

σ

Every σ ∈ B+ = Sx,2 has this form, so sending σ with d2σ = ax and d0σ = bx to ay + bȳ ∈ Tx,1 gives an
inverse to ϕ. In addition,

d1 ◦ ϕ(ay + bȳ) = d1




ax bx

(a+ b)x

σ


 = ax+ bx = π1(ay + bȳ)

so the diagram commutes, proving formula (3) in the split case.
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Finally, suppose x is inert. Here, we take S+
x,1 and S−

x,1 to be the even and odd degree divisors in Sx,1,

S+
x,1 = {2kx | k ≥ 0} and S−

x,1 = {(2k + 1)x | k ≥ 0},

together with their natural inclusions j± : S±
x,1 →֒ Sx,1. Then the equivalence π∗ζC,x + ζP1,x ∗ Lx(C)− ∼=

Lx(C)+ is verified by constructing an isomorphism ϕ in the diagram

Sx,1

B+

Tx,1 ∐B−

∗

d1 ◦ α+

π1 ⊔ d1

ϕ

This time, B+ and B− have the following descriptions:

B+ = {σ ∈ Sx,2 | d0σ = 2kx, k ≥ 0} and B− = {σ ∈ Sx,2 | d2σ = (2k + 1)x, k ≥ 0}.

We define ϕ on Tx,1 by

ϕ(ay) =
0x 2kx

2kx

σ

and on B− by

ϕ




kx (2ℓ+ 1)x

(k + 2ℓ+ 1)x

σ


 =

(k + 1)x 2ℓx

(k + 2ℓ+ 1)x

τ

It is routine to check ϕ is a bijection (cf. [AK, Thm. 4.2]), which proves formula (3) in all cases.

Passing to the numerical incidence algebra I#(Sx) and pushing forward to I#(SpecFq) ∼= k[[t]] (as in
Example 3.1) recovers the formula

Zx(C, t) = Zx(P
1, t)(Lx(C, t)

+ − Lx(C, t)
−) = Zx(P

1, t)Lx(C, t)

where Lx(C, t) is the local factor of the classical L-function of C, namely:

Lx(C, t) =
1

1− χ(Fx)tdeg(x)

where χ is the quadratic character associated to the extension Fq(E)/Fq(t) and F is the Frobenius at x.

4.2 Global Theorem

Next, we prove the global formula of Theorem 1.1. Keep the notation S = Zeff
0 (P1) and T = Zeff

0 (C).

Theorem 4.2 (Theorem 1.1). In the reduced incidence algebra Ĩ(S) = Ĩ(Zeff
0 (P1)), there is an equivalence

of linear functors
π∗ζC + ζP1 ∗ L(C)− ∼= ζP1 ∗ L(C)+.

Proof. As before, the terms in the formula are linear functors represented by the following spans:

π∗ζC =




S1 ∗

T1
π1
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as well as

ζP1 ∗ L(C)+ =


 S1 S1 × S1 ∗

S2 S1 × S+
1

B+

α+

d1
(d2, d0)

id× j+




and ζP1 ∗ L(C)− =


 S1 S1 × S1 ∗

S2 S1 × S−
1

B−

α−

d1
(d2, d0)

id× j−




where S±
1 and j± are defined below. We must then construct an isomorphism ϕ : T1 ∐ B− ∼−→ B+ making

the following diagram commute:

S1

B+

T1 ∐B−

∗

d1 ◦ α+

π1

ϕ

The proof is similar to that of [AK, Thm. 4.5]. For an effective 0-cycle α ∈ S, write α =
∑

x∈|P1| axx.

Define S+
1 and S−

1 as the following subsets of S1:

S+
1 =

{
α ∈ S1 | ax = 0 for ramified x,

∑

x inert

ax is even

}

S−
1 =

{
α ∈ S1 | ax = 0 for ramified and split x,

∑

x inert

ax is odd

}
.

Their natural inclusions j+ : S+
1 →֒ S1 and j− : S−

1 →֒ S1 define L(C)+ and L(C)− and the span composi-
tions above.

We now define ϕ : T1 ∐ B− ∼−→ B+. Recall that the map π∗ : Zeff
0 (C) → Zeff

0 (P1) is given by π∗(y) =
[k(y) : k(π(y))]π(y) and extended linearly. For ϕ =

∑
y∈|C| byy ∈ T1, put ϕ(β) = τ ∈ S2 with faces

d2τ =
∑

y∈supp(β)
ramified

byπ∗(y) +
∑

y∈supp(β)
split

byπ∗(y)

d0τ =
∑

ȳ∈supp(β)
split

bȳπ∗(ȳ) +
∑

y∈supp(η)
inert

byπ∗(y)

d1τ = π∗β =
∑

y∈|P1|

byπ∗(y).
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Then since d0τ is supported away from the ramification locus of π and [k(y) : k(x)] = 2 for inert y 7→ x,
we see that τ ∈ B+. On the other hand, for σ ∈ B− with d2σ = α, d0σ = β and d1σ = γ = α + β, define
ϕ(σ) = τ with faces

d2τ =
∑

x ramified

axx+
∑

x split

axx+
∑

x inert

(ax + 1)x

d0τ =
∑

x∈supp(β)
inert

(bx − 1)x and d1τ = γ = α+ β.

Then as above, d0τ is supported away from the ramified points in P1 and β = d0σ ∈ S−
1 implies bx − 1 is

even, so τ ∈ B+.
To show ϕ is an isomorphism, we construct an inverse ϕ−1 : B+ → T1 ∐ B− as follows. If τ ∈ B+ has

d2τ = α, d0 = β and d1τ = γ = α+ β, with α supported away from all inert points in P1, send it to

ϕ−1(τ) =
∑

x ramified

cxy +
∑

x split

(axy + bxȳ) +
∑

x inert
bx even

bx
2
y +

∑

x inert
bx odd

bxy ∈ T1.

If α is supported on any inert points, send τ to β−1(τ) = σ ∈ B− with faces

d2σ =
∑

x ramified

axx+
∑

x split

axx+
∑

x∈supp(α)
inert

(ax − 1)x

d0σ =
∑

x ramified

bxx+
∑

x split

bxx+
∑

x inert

(bx + 1)x

d1σ = d1τ = γ.

By construction, ϕ is a bijection and it satisfies d1 ◦ ϕ = π ∐ d1, completing the proof.

Remark 4.3. Recall that for each split point x ∈ |P1|, we are choosing a labeling π−1(x) = {y, ȳ} in order
to write down the formulas in the above proof. This implies that the isomorphism ϕ is not canonical: it
depends on a choice of section of π over the split locus.

Remark 4.4. Taking the cardinality of the formula in Theorem 4.2 recovers formula (1), so Theorem 4.2
can be considered a categorification of that formula for the zeta function of a hyperelliptic curve. Explicitly,
cardinality is a map from the reduced objective incidence algebra Ĩ(P1) to the reduced numerical incidence

algebra Ĩ#(P
1):

| · | : Ĩ(P1) −→ Ĩ#(P
1)

f =




S1 ∗

M
v


 7−→

(
|f | : α 7→ |v−1(α)|

)
.

Applying | · | to the formula π∗ζC + ζP1 ∗ L(C)− ∼= ζP1 ∗ L(C)+ produces a formula which, upon further
applying the “generating function map”

Ĩ#(P1) −→ k[[t]], f 7−→
∏

x∈|P1|

∞∑

n=0

f(nx)tn deg(x)

from Example 3.1, recovers formula (1).

Remark 4.5. As in [AK], it is possible to formulate a version of Theorem 4.2 in the “full” incidence algebra
of the poset Zeff

0 (P1), rather than treating it as a monoid. This corresponds to first taking the decalage of the
monoid structure, then applying the same techniques as above. We have elected to omit further discussion
of this formula since it doesn’t appear to have practical applications. Nevertheless, it provides new relations
not just among effective 0-cycles in a cover (and therefore points), but also intervals of effective 0-cycles (and
therefore families of points).
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Remark 4.6. The proof of Theorem 4.2 generalizes easily to arbitrary double covers of algebraic curves
C → D over Fq, giving interesting formulas for their zeta functions in k[[t]]:

Z(C, t) = Z(D, t)L(C/D, t)

for an appropriate “relative L-function” L(C/D, t).

4.3 Application to Point Counting

Let E be an elliptic curve over Fq with L-polynomial L(E, t) = 1−aq(E)t+qt2 where aq(E) = q+1−#E(Fq).
On one hand, formula (1) says that

Z(E, t) = Z(P1, t)L(E, t).

On the other hand, Theorems 4.1 and 4.2, through Remark 4.4, show that L(E, t) = L(E, t)+ − L(E, t)−

can be written as
L(E, t) =

∏

x∈|P1|

(1− χ(x)tdeg(x))−1

where χ is the following quadratic character:

χ(x) =





0, x is ramified

1, x is split

−1, x is inert

which can be extended multiplicatively to all effective 0-cycles.
Let’s spell this out explicitly. The tn coefficient of L(E, t)+ is the cardinality of the fibre of j+ : S+

1 → S1

over the set S1(n) of 0-cycles of degree n in S1:

S1

S1(n) S+
1

S1(n)
+

j+

Then #S1(n)
+ is equal to the number of effective 0-cycles α =

∑
x axx on P1 of degree n with ax = 0 for

ramified x and the sum of the ax even for inert x. On the other hand, #S1(n)
− (defined similarly) is 0 if n

is even and is equal to the number of α of degree n supported only on inert points if n is odd. Putting these
together,

#S1(n)
+ −#S1(n)

− =
∑

deg(α)=n

χ(α).

This allows us to reinterpret the L-polynomial in terms of the character χ, as claimed. Write

∏

x∈|P1|

(1 − χ(x)tdeg(x))−1 =

∞∑

n=0

f(n)tn where f(n) =
∑

deg(α)=n

χ(α).

As an element of the numerical incidence algebra I#(Z
eff
0 (P1)), f is the sequence

f(0) = 1, f(1) = −aq(E), f(2) = q and f(n) = 0 for n > 2.

For n = 1, this implies the first part of formula (2):

aq(E) = −
∑

x∈P1(Fq)

χ(x) = #{inert x ∈ P1(Fq)} −#{split x ∈ P1(Fq)} =: iq(E)− sq(E) (4)
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while for n = 2, we obtain

q =
∑

deg(α)=2

χ(α).

Formula (1) then implies

#Sym2 E(Fq) = (q2 + q + 1)− (q + 1)aq +
∑

deg(α)=2

χ(α). (5)

A similar proof shows the rest of formula (2):

#Symn E(Fq) =
∑

i+j=n

(qi + . . .+ q + 1)
∑

deg(α)=j

χ(α). (6)

These are the recursions which generate all point counts #E(Fqr ) from knowledge of just #E(Fq). (To
go from the sequence #Symn E(Fq) to the sequence #E(Fqn), take ghost components, or equivalently, apply
the logarithmic derivative to Z(E, t).) Our proof demonstrates that they come directly from an objective
L-function and, more importantly, that this L-function enumerates points (weighted by χ) on the projective
line.

Example 4.7. Consider the elliptic curve E/F5 [LMFDB, Abelian Variety 1.5.d] with Weierstrass equation

E : y2 = x3 + x+ 1.

It is known that #E(F5) = 9 (see below), giving L(E, t) = 1 + 3t+ 5t2. Projecting to P1, there are 3 more
split points than inert points. Since x3 + x + 1 is irreducible over F5, ∞ is the only ramified point on P1.
Split points contribute 2 rational points on E, so there must be exactly 4 split points and 1 inert point
downstairs. Here’s a table of the closed points of E with images in P1(F5).

ramified points split points inert points
∞ (0, 1) (1, α)

(0, 4) (1,−α)
(2, 1)
(2, 4)
(3, 1)
(3, 4)
(4, 2)
(4, 3)

The 8 split points cover the 4 split points on P1 identified above. The inert points (1,±α) cover the inert
point 1 ∈ P1(F5), with α a square root of 3 in F25. Moreover, formula (5) quickly allows us to compute that
#E(F25) = 27. We can further deduce then that in P1(F25), there are 12 split points, lifting to 24 of the 27
points in E(F25), and 13 inert points. Similarly, #E(F125) = 108 and the 126 points in P1(F125) consist of
4 ramified points, 31 split points and 91 inert points.

Example 4.8. Up to isogeny, the elliptic curve E in Example 4.7 has a unique quadratic twist over F5

[LMFDB, Abelian Variety 1.5.ad],
E′ : y2 = x3 + 4x+ 2

with #E′(F5) = 3 and L(E′, t) = 1 − 3t + 5t2. This time, there are 3 more inert points than split points,
from which we can deduce that on P1, there is a single ramification point at ∞, 4 inert points and 1 split
point. Here’s the corresponding table of points for E′:

ramified points split points inert points
∞ (3, 1) (0, β)

(3, 4) (0,−β)
(1, β)
(1,−β)
(2, α)
(2,−α)
(4, β)
(4,−β)

https://www.lmfdb.org/Variety/Abelian/Fq/1/5/d
https://www.lmfdb.org/Variety/Abelian/Fq/1/5/ad
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Here, α is the same as above and β is a square root of 2 in F25. Using formula (5), we quickly deduce that
#E′(F25) = 27, which is as expected since E′ ∼= E over F25.

An interesting consequence of our interpretation of aq(E) is that E is supersingular over Fq if and only
if the Fq-points of E project to an equal number of split and inert points in P1. Here is an example of such
a curve.

Example 4.9. Consider the following supersingular elliptic curve over F7 [LMFDB, Abelian Variety 1.7.a]:

E : y2 = x3 + 5x.

Then #E(F7) = 8 and L(E, t) = 1 + 7t2, so formula (4) says there are an equal number of split and inert
points on P1. With 4 ramified points downstairs, this forces 2 split points and 2 inert points:

ramified points split points inert points

∞ (2, 2)
(
1,
√
6
)

(0, 0) (2, 5)
(
1,−

√
6
)

(3, 0) (6, 1)
(
5,
√
3
)

(4, 0) (6, 6)
(
5,−

√
3
)

Also, formula (5) gives us #E(F49) = 64.

Example 4.10. Consider the same elliptic curve E : y2 = x3 + 5x over F37, where it is no longer super-
singular [LMFDB, Abelian Variety 1.37.am]. This time, #E(F37) = 26 and L(E, t) = 1 − 12t + 37t2, so
formula (4) implies there are 12 more inert points than split points on P1. With 2 ramified points down-
stairs, there must be 12 split points and therefore 24 inert points. (The split points have x-coordinates
4, 8, 9, 12, 15, 17, 20, 22, 25, 28, 29 and 33.) Formula (5) also confirms that #E(F1369) = 1300.

In this section, we showed how Theorem 4.2 gives an objective interpretation of the coefficients of the
L-polynomial L(E, t). Famously, these coefficients also have a cohomological origin, namely L(E, t) =
det(1 − Ft | H1(E)) where H1(E,Qℓ) is the 1st ℓ-adic cohomology group of E and F is the Frobenius
operator. In Appendix A.4, we explain how these cohomological coefficients can be interpreted objectively
as well, though not in the category of sets as was done in Theorem 4.2.

5 Topological Covers

As suggested in [AK], we can use objective linear algebra to categorify a well-known formula describing how
the Euler characteristic changes in a branched cover of Riemann surfaces. This is a topological analogue to
Theorem 4.2.

Before describing branched double covers, suppose π : Y → X is an unbranched cover of degree n ≥ 2.
Then the Euler characteristics of X and Y satisfy the following relation:

χ(Y ) = nχ(X). (7)

Let’s lift this formula to an objective formula in an incidence algebra.
Let S•(X) (resp. S•(Y )) be the simplicial complex associated to X (resp. Y ) and let S(π) : S•(Y ) →

S•(X) be the simplicial map induced by π. By definition, S•(X) and S•(Y ) are decomposition sets. Denote
the zeta functor in S•(X) by ζX .

For X = ∗, the objective incidence algebra I(S•(∗)) is isomorphic to Set/∗ = Set; its numerical inci-
dence algebra I#(S•(∗)) is isomorphic to the ring of power series k[[t]]; and the zeta functor ζ∗ ∈ I(S•(∗))
decategorifies to (1, 1, 1, . . .) in I#(S•(∗)), corresponding to (1− t)−1 ∈ k[[t]]. Notice that in this case,

|ζ∗| = (1− t)−χ(∗).

In dimension 0, a degree n cover Y → ∗ is just a set of n points Y = {y1, . . . , yn}, so formula (7) in this case
is the decategorification of

ζY ∼= ζ∗ ∗ · · · ∗ ζ∗︸ ︷︷ ︸
n

.

https://www.lmfdb.org/Variety/Abelian/Fq/1/7/a
https://www.lmfdb.org/Variety/Abelian/Fq/1/37/am
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This works because points have no nondegenerate simplices of higher dimension.
Unfortunately, this only applies to 0-simplices. The Möbius function is better suited to computing Euler

characteristic objectively. For any X , the zeta functor in I(S•(X)) is

ζX =




S1(X) ∗

S1(X)
id


 .

Define ζ
(k)
X ∈ I(S•(X)) by

ζ
(k)
X =




S1(X) ∗

Sk(X)◦

dk1




where Sk(X)◦ ⊆ Sk(X) is the subset of nondegenerate k-simplices. (This is not to be confused with the

k-fold convolution ζkX .) Following [GKT2], we also put ζ
(0)
X = δX , the unit of convolution in I(S•(X)), and

define

Φeven =
∞∑

k=0

ζ
(2k)
X and Φodd =

∞∑

k=0

ζ
(2k+1)
X .

These functors satisfy an objective form of Möbius inversion [GKT2, Thm. 3.8]:

ζX ∗ Φeven
∼= δ + ζX ∗ Φodd.

In the numerical incidence algebra I#(S•(X)), this formula descends to

δ = ζX ∗ (Φeven − Φodd) = ζX ∗ µX

where µX is the numerical Möbius function for S•(X).
Define spaces Eeven(X), Eodd(X) ∈ Top by

Eeven(X) =
∐

s∈S1(X)

Φeven(s) and Eodd(X) =
∐

s∈S1(X)

Φodd(s).

Here, F (s) denotes the fibre Ms = p−1(s) for any linear functor F represented by a span

F =




S1(X) ∗

M
p


 .

Already, this categorifies the Euler product:

Proposition 5.1. If X is a finite CW complex, then χ(X) = |Eeven(X)| − |Eodd(X)|.
The objects Eeven(X) and Eodd(X) can be viewed as linear functors in I(S•(X)):

Φeven(X) =




S1(X) Eeven(X)

∗ 
 and Φodd(X) =




S1(X) Eodd(X)

∗ 
 .

In this way, the construction can be interpreted as an “objective Macdonald polynomial”: pushing forward
Φeven(X) and Φodd(X) along the terminal map t : X → ∗ produces linear functors t∗Φeven(X), t∗Φodd(X) ∈
I(S•(∗)) and, as discussed above, their decategorifications in I#(S•(∗)) ∼= k[[t]] are

|t∗Φeven(X)| = (1− t)−|Eeven(X)| and |t∗Φodd(X)| = (1 − t)−|Eodd(X)|

so that
|t∗Φeven(X)|
|t∗Φodd(X)| = (1 − t)−|Eeven(X)|+|Eodd(X)| = (1− t)−χ(X).
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Theorem 5.2. For a degree n cover π : Y → X of finite CW complexes, there is an equivalence of linear
functors

π∗Φeven(Y ) ∗ Φodd(X)n ∼= π∗Φodd(Y ) ∗Φeven(X)n

in the objective incidence algebra I(S•(X)). Here, (−)n denotes the n-fold convolution.

Proof. Each nondegenerate k-cell in X lifts to exactly n nondegenerate k-cells in Y . This gives us bijections
Eeven(Y )

∼−→ ∐n
i=1 Eeven(X) and Eodd(Y )

∼−→ ∐n
i=1 Eodd(X) which assemble into the stated formula.

Pushing forward to the incidence algebra of a point and taking cardinalities recovers Formula (7) via
generating functions:

(1− t)−χ(Y ) =
|t∗Φeven(Y )|
|t∗Φodd(Y )| =

( |t∗Φeven(X)|
|t∗Φodd(X)|

)n

= (1− t)−nχ(X).

Next, suppose π : Y → X is a branched cover. Call the irreducible components of the branch locus
X1, . . . , Xr ⊂ Xbr and for each component Zi ⊆ π−1(Xi), let e(Yi) be the ramification index of Xi. Setting
e(Z) = 1 for any irreducible component Z ⊆ Y, Z 6⊆ π−1(X1 ∪ · · · ∪Xr), we have

∑

Z⊆π−1(X′)

e(Z) = n

for any irreducible component X ′ ⊆ X . The analogue of Formula (7) for branched covers is

χ(Y ) = nχ(X)−
∑

Z⊆Y

(e(Z)− 1). (8)

Theorem 5.3 (Theorem 1.2). For a connected, degree n branched cover π : Y → X, there is a linear functor
R ∈ I(S•(Y )) and an equivalence

π∗Φeven(Y ) ∗ Φodd(X)n ∗ π∗R ∼= π∗Φodd(Y ) ∗ Φeven(X)n

in I(S•(X)).

Proof. For simplicity, we give the proof in the case when π : Y → X is a branched cover of surfaces.
Let Xbr = {x1, . . . , xr} be the branch locus of π and for each xi, write π−1(xi) = {yi1, . . . , yiki

} for each
1 ≤ i ≤ r. Each nondegenerate k-cell σ ∈ Sk(X) lifts to n nondegenerate k-cells in Sk(Y ) except when when

k = 0 and σ = xi for some 1 ≤ i ≤ r. In this case, there are n − ki =
∑ki

j=1(e(yij) − 1) points “missing”
from the count. Said another way, there is a bijection

n∐

i=1

Eeven(X)
∼−→ Eeven(Y ) ∐ {zi1, . . . , zi,n−ki

}ri=1

where zi1, . . . , zi,n−ki
are these “missing points” in π−1(xi). Setting R = {zi1, . . . , zi,n−ki

}ri=1, we obtain the
stated formula.

Remark 5.4. Let G be the group of deck transformations of π : Y → X . Then it should be possible to lift
formula (8) to an equivalence of linear functors of G-representations, eliminating the need to separate Φeven

and Φodd in the above formulation.

Question 5.5. Is it also possible to prove χ(X × Y ) = χ(X)χ(Y ) this way? And more generally χ(E) =
χ(B)χ(F ) for a fibration F → E → B?
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6 Future Directions

Higher Degree Extensions. As explained in Section 1, anytime there is a map C → P1 (or more generally
a map between curves) the zeta function of C factors into a product of L-functions over P1 (resp. the base
curve). We can categorify zeta functions of hyperelliptic curves essentially because the coefficients of their
L-functions can be recovered as cardinalities of sets of 0-cycles. Equivalently, the “character” χ is quadratic;
compare to [AK]. In the degree ≥ 3 situation, L(C)+ and L(C)− will need to be replaced with a more
general categorical L-functor (see Appendix A).

L-Functions. In modern number theory and arithmetic geometry, results for zeta functions are often sub-
sumed by more general statements for L-functions, making these a natural target for our categorification
program. Fortunately, we have made progress towards a theory of L-functors which adapts the techniques
in [AK] and the present work to a more general framework that accommodates L-functions. We will present
this work in a future article, using an objective linear algebra theory that replaces simplicial sets with sim-
plicial objects in other categories (see Appendix A for a brief introduction). For Artin L-functions, their
corresponding L-functors are linear functors of continuous Galois representations.

Motivic Zeta and L-Functions. To push beyond the point counting applications in this article, it’s
natural to ask for a categorification of motivic zeta and L-functions, as suggested in [Kob, Sec. 4]. In this
direction, the authors in [DH] have constructed a numerical version of Kapranov’s motivic zeta function
Zmot(X, t) for a k-variety X that lies in an incidence algebra1 constructed from the Grothendieck ring of
k-varieties, K0(Vark). As K0(Vark) is itself a decategorification of the category Vark, it should still be
possible to lift Zmot(X, t) further to an objective incidence algebra, as originally suggested in [Kob]. Using
the language of L-functors, we will offer such a construction in future work. This will also provide a natural
home for motivic L-functions, defined as L(X,V, t) = Zmot((X ⊗ V )G, t) for an algebraic group G acting on
X and a G-representation V . We also plan to unify these with the L-functions in the previous paragraph by
extending the whole formalism to stacks.

A Objective Linear Algebra

A.1 Objective Linear Algebra Using the Category Set

In Section 3, we constructed objective incidence algebras for the decomposition sets of effective 0-cycles for
an algebraic curve C/k. The theory of decomposition spaces from [GKT1, GKT2, GKT3, GKT4, GKT5]
extends far beyond “objective” techniques in the category of sets, allowing for greater flexibility in our
categorifications. To summarize the general theory, we reproduce below the dictionary from Section 3 in an
arbitrary category of spaces.

A.2 Replacing the Category of Sets

Let (C,⊗, 1) be a symmetric monoidal category with coproduct ⊕. Furthermore, assume C has a terminal

object ∗, and fix a section s : ∗ → 1. By abuse of notation, let s also refer to the composition A → ∗ s−→ 1

for any object A of C.
With this setup, we revise the table given in section A.1.

1the authors in [DH] call it the reduced incidence algebra for the poscheme of effective 0-cycles of X
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Linear Objective

field of scalars k a symmetric monoidal category C
scalar addition + ⊕

scalar multiplication ⊗
a basis B an object B

a vector v in the basis B a morphism v : X → B
the vector space with basis B the slice category C/B

vector addition v + w coproduct v ⊕ w : X ⊕ Y → B

scalar multiplication av A⊗ (v : X → B) := (A⊗X
id⊗v−−−→ A⊗B

s⊗idB−−−−→ B)

a matrix M a span

B C

M
v w

the linear map with matrix M the linear functor w!v
∗ : C/B → C/C

matrix multiplication span composition

Example A.1. Fix the base field Fq and an algebraic closure F of Fq. Let G = Gal(F/Fq) be the absolute

Galois group of Fq; it is isomorphic to the profinite completion of the integers Ẑ, and is topologically generated
by the q-power Frobenius Frq. We define the category G-Rep to have objects which are complex vector spaces
which have a continuous action of G, with G-equivariant morphisms. For our purposes, its terminal object
is not interesting, as it is the zero vector space. So we use instead the slice category G-mod/C[G].

The coproduct in G-Rep is the direct sum ⊕, and it can be made into a symmetric monoidal category by
way of the tensor product ⊕.

A.3 Using G-Representations

The main advantage to using a category such as G-Rep over Set is that objects in G-Rep have richer

decategorifications than those in Set. Take, for instance, an ordinary 2× 2 matrix A =

(
a b
c d

)
. If a, b, c, d

are all nonnegative integers, then A is easily lifted to an objective matrix

A =




B B

X
s t




where B = {1, 2} and X = Xa ∐Xb ∐Xc ∐Xd, with |Xi| = i and s (resp. t) sending elements in Xa, . . . , Xd

to the number of the column (resp. row) their label appears in in A. However, if any of a, b, c, d are negative,
rational, real, complex or beyond, it is only possible to lift A to an objective matrix over a more general
category.

For an explicit example, take

A =

(
1 −3
−2 −1

)
.

In the category C2-Rep (say, over C), there are two irreducible representations up to isomorphism: V1

and V−1, where Vd is 1-dimensional with the nontrivial element in C2 acting as multiplication by d. Set
V = V1 ⊕ V−1 and consider the objective matrix

A =




V ⊕ V V ⊕ V

W
s t




where W = V1 ⊕ V ⊕3
−1 ⊕ V ⊕2

−1 ⊕ V−1 and s (resp. t) sends the first and third factors V1 and V ⊕2
−1 (resp. the

first two factors V1 and V ⊕3
−1 ) onto their corresponding factors in the first component of V ⊕ V , and the

remaining factors to their corresponding factors in the second component. Taking the trace of the action of
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a generator of C2 on components recovers the original matrix A. If A had entries which were roots of unity,
we could replace C2 with the appropriate cyclic group Cn and recover these entries as well. For more general
entries, more general structures are required (i.e. Galois representations over an appropriate extension of Q

containing the coefficients of the matrix, but possibly more generality is also required).
In this more general framework, it is possible to categorify formula (1) without splitting up the L-

function, in contrast to the formula in Theorem 4.2. In short, negative coefficients must be passed off as
positive coefficients on the other side of an objective formula over Set, but they can be represented directly
over C2-Rep using V−1. We will describe a vast generalization of this procedure in a future article. For now,
we give a brief description of an L-functor approach to formula (1).

A.4 Objective L-Polynomials

In this section, we will show how the L-polynomial L(E, t) = 1 − aqt + qt2 of an elliptic curve E/Fq can
be interpreted cohomologically in the objective setting. It is well-known that L(E, t) is a characteristic
polynomial, namely det(1 − tF ) where F = Frobq is the Frobenius operator acting on H1(E,Qℓ). There is
a general notion of characteristic polynomial in objective linear algebra, but we will only need the following
version.

As in Section A.3, let G = Gal(Fq/Fq) and let V be any continuous G-representation. Define the
L-functor of V to be the span

L(V ) =


 ⊕

n≥0 Qℓ Qℓ

⊕
n≥0 Sym

n V

 .

This defines an element in the incidence algebra of
⊕∞

n=0 Qℓ, viewed as a simplicial G-representation with
trivial structure in each level. When V is finite dimensional, taking traces of Frobenius yields the following
sequence in the numerical incidence algebra I#(N0;Qℓ):

|L(V )|(n) := Tr(F | Symn V )

These assemble into the reciprocal characteristic polynomial of V :

∞∑

n=0

|L(V )|(n)tn =

∞∑

n=0

Tr(F | Symn V )tn =
1

det(1− tF | V )
.

In the case of an elliptic curve E/Fq, let V = H1(E,Qℓ) so that det(1 − tF | V ) = L(E, t). Remark 4.4
also implies that

L(E, t) =

∞∑

n=0

(χ+(n)− χ−(n))tn

so as a consequence, the arithmetic functions L(E) := L(E)+ − L(E)− and |L(V )| are inverses in the
numerical incidence algebra I#(N0;Qℓ). In fact, these are inverses in an objective incidence algebra. To
show this, we have to realize L(E) in the category of G-representations. Using the notation from Section 4.2,
define

L(E) =


 ⊕

n≥0 Qℓ Qℓ

QℓS
+
1 ⊕ QℓS

−
1




where F = Frobq acts on QℓS
+
1 by the identity and on QℓS

−
1 by −1. Then in the objective incidence algebra

I
(⊕

n≥0 Qℓ

)
, we get a convolution L(V ) ∗ L(E), which has the same trace generating function2 as the unit

functor δ. This shows that we can view L(V ) is an objective lift of the reciprocal L-polynomial of E.

2In general, we cannot expect linear functors to have objective inverses [GKT2].
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[Mus] Mustată, M. “Zeta functions in algebraic geometry”. Unpublished, available online at
http://www.math.lsu.umich.edu/~mmustata/zeta book.pdf.

[Rot] Rota, G.-C. “On the foundations of combinatorial theory I: theory of Möbius functions”. Zeitschrift
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