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Abstract

Two prominent cognitive capacity limitations are the maximal number of objects we

can place in working memory (WM) and the maximal number of objects we can track

in a display. Both are believed to have a numeric value of 3 or 4, which has led to the

proposal that we have a general cognitive capacity, and that this capacity is most likely

linked to limitations of how many objects we can attend simultaneously. Based on

previous results showing that we can memorize more objects if they come from different

categories than if they come from the same category (e.g., Feigenson & Halberda, 2008;

Wood, 2008; Wong, Peterson, & Thompson, 2008), we compare how category-based

grouping affects performance for WM and multiple object tracking (MOT). We present

participants with either “pure” displays of either cars or faces, or with “mixed” displays

of cars and faces. Overall, the effects of category are weak. In some analyses but not

others, we replicate the mixed advantage for WM, albeit with a small effect size. In

contrast, we observe a weak pure advantage for MOT tasks, at least in a meta-analysis

of five experiments, but not in all experiments. Accordingly, WM and MOT tasks

differed significantly in their sensitivity to category membership. We also find that WM

is slightly better for faces than for cars, but that no such difference exists for MOT. We

tentatively suggest that cognitive capacity limitations in different domains are at least

partially due to limitations of distinct mechanisms.

Keywords: Working memory; Interference; Temporary Memory; Memory Capacity
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Category-based grouping in working memory and multiple object tracking

Introduction

In one of his classic papers, Miller (1956) noted that people seem to have similar

cognitive capacities across a variety of domains, which he called the magical number 7,

plus or minus 2. This suggested that we might have a common cognitive capacity that

is used by many cognitive processes. While Miller (1956) used the magical number more

as a rhetorical device than an accurate estimate (Cowan, 2001), and while the magical

number might be closer to 4 than to 7 (Cowan, 2001), relatively little research has

directly addressed the relation between capacity limitations in different domains

(Cowan, 2015).

Two of the most prominent cognitive capacity limitations are the maximal number

of items we can place in working memory (WM), and the maximal number of items we

can attend to. Specifically, in those theories of Working Memory (WM) that posit

discrete memory capacities (e.g., Awh, Barton, & Vogel, 2007; Luck & Vogel, 1997;

Miller, 1956; Cowan, 2005; Rouder et al., 2008; W. Zhang & Luck, 2008; but see Alvarez

& Cavanagh, 2004; Bays & Husain, 2008; Bays, Catalao, & Husain, 2009; van den Berg,

Shin, Chou, George, & Ma, 2012 for authors holding WM to be a continuous resource),

WM is often considered to have a constant capacity of 3 or 4 items.

Likewise, the number of items we can attend to is usually measured in multiple

object tracking (MOT) experiments. In such experiments, participants have to follow

target objects among identical distractors while the objects move randomly on the

screen. The classic result holds that we can track about 3 or 4 of such items (Pylyshyn

& Storm, 1988; Scholl & Pylyshyn, 1999).

There is a third cognitive capacity that is limited to 3 or 4 but that we will not

investigate in the current experiments: the number of items we can enumerate exactly

without counting (Jevons, 1871; Trick & Pylyshyn, 1994), a capacity that is called

subitizing. If we see 3 or 4 dots on a screen, we know immediately and exactly how

many dots we see. In contrast, if we have to enumerate more items under time pressure,

we can only make an approximate estimate of the number of items. Hence, the
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enumeration error is constant and close to zero up to 3 or 4 objects, and then grows

proportionally to the number of items to be enumerated, yielding a Fechner-Weber

pattern (Izard & Dehaene, 2008; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008).

The observation that all of these cognitive capacities are limited to 3 or 4 has led

to the proposal that they might rely on a common mechanism, and that this mechanism

might be attention. Specifically, our ability to enumerate 3 or 4 items exactly and

immediately might rely on the same mechanisms that allow us to track 3 or 4 items

attentionally (e.g., Chesney & Haladjian, 2011; Feigenson, Carey, & Hauser, 2002;

Knops, Piazza, Sengupta, Eger, & Melcher, 2014; Piazza, Fumarola, Chinello, &

Melcher, 2011; Trick & Pylyshyn, 1994), be it through a system of attentional pointers

or through an object-file system.1

Likewise, according one of the most prominent models of WM (Cowan, 2005),

WM capacity limitations are really limitations of attention. Specifically, in his and

other models (e.g., Baddeley & Hitch, 1974; Engle, 2002; Oberauer, 2002), we need to

attend to items in memory to prevent them from disappearing from memory through

forgetting and interference. As we can attend only to 3 or 4 items, we have a WM

capacity of 3 or 4 items. Hence, WM, subitizing, and attention are thought to have a

common capacity, and this capacity is due to attention.

In the current experiments, we address the relationship between WM and

attentional tracking by comparing their functional properties. Specifically, we ask

whether these cognitive capacities differ in their sensitivity to the category structure of

the items they have to remember and track, respectively.

Evidence for a general cognitive capacity

While there are few direct tests of the view that a general cognitive capacity

underlies capacity limitations in different domains, it receives support from a number of

results. For example, Piazza et al. (2011) observed that visual WM capacity correlated

1Trick and Pylyshyn (1994) argued against a common mechanism between WM and subitizing, and
argued that the spatial pointers called FINSTs that allow us to track objects are pre-attentive. However,
as we will discuss below, other authors argued that small-number processing might be related to WM
via attention, and used MOT as a measure of attention.
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with subitizing capacity, and explained this finding with the hypothesis that both

mechanisms relied on the parallel individuation system (though the relationship

between WM and subitizing does not seem to hold up when WM is measured with

complex span tasks; Tuholski, Engle, & Baylis, 2001). In line with this view, Chesney

and Haladjian (2011) found that the more items participants had to track in a MOT

task, the more errors they made in a simultaneous subitizing task (that is, tracking

more items increased their coefficient of variation, and thus reduced their subitizing

capacity). Further, a verbal WM task reduced the subitizing capacity to a lesser extent

than MOT, at least when participants had to remember 3 letters, suggesting that the

subitizing capacity might be specifically impaired by a visual task.

However, in Chesney and Haladjian’s (2011) experiments, the subitizing display

was presented for just 50 ms. As a result, it was presumably quite easy to miss while

performing a demanding visual task such as MOT. Further, subitizing requires

attentional resources (Burr, Turi, & Anobile, 2010). Consequently, to enumerate the

items in the subitizing display, participants needed to disengage from the MOT stimuli

and to select the enumeration stimuli. Both aspects of the task might plausibly increase

subitizing errors even if subitizing and MOT did not rely on the same processes. In line

with this view, the verbal WM task also reduced subitizing capacities, albeit only when

participants had to remember 5 letters.

The relationship between tracking and WM is similarly unclear. Different authors

have used an individual difference approach to investigate the interrelations among

different types of attentional processing. For example, both Oksama and Hyönä (2004)

and Huang, Mo, and Li (2012) found that MOT performance correlated with measures

of visual WM, confirming that attentional tracking and WM might be related.

However, Oksama and Hyönä (2004) also showed that MOT correlates not only

with visual WM but also with verbal WM when people have to track the identity of

items on top of their positions. Similarly, Huang et al. (2012) found a correlation

between MOT and counting speed outside of the subitizing range, as well as with other

tasks that have no obvious relation to attentional pointers or object files (e.g., with the
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reaction time to report the color of an item). As a result, it is unclear what these

correlations mean in terms of the underlying psychological mechanisms. In fact, Huang

et al. (2012) used no less than 18 different tasks, and showed that performance on most

of them correlated with a general “attention” factor that might well reflect how vigilant

or compliant participants are during the experiment.

Doubts about a general cognitive capacity

While the results discussed so far do not provide unambiguous evidence for a

general cognitive capacity, there are also other observations that are problematic for the

view that cognitive capacity limitations are due to the limitations of a parallel attention

system. First, dual-task experiments revealed only limited interference between

attentional tasks and WM tasks (e.g., Fougnie & Marois, 2006; Hollingworth & Hwang,

2013; H. Zhang, Xuan, Fu, & Pylyshyn, 2010), a result that would be unexpected if WM

and attention relied on the same mechanism. That said, there clearly are interactions

between MOT and WM. For example, WM might help binding features (e.g., colors) to

objects that are tracked (Makovski & Jiang, 2009b). However, our tracking abilities and

our WM abilities still seem to interfere remarkably little with each other.

Second, neither attention nor WM might necessarily have a capacity of 3 or 4.

When objects move slowly, we can track up to 8 of them, and when they move very fast,

only a single one (Alvarez & Franconeri, 2007; Franconeri, Jonathan, & Scimeca, 2010;

Holcombe & Chen, 2012). Likewise, the capacity of WM might not be fixed either, but

rather depend on other factors such as the complexity of the stimuli (e.g., Alvarez &

Cavanagh, 2004; Eng, Chen, & Jiang, 2005), their familiarity (e.g., Feigenson, 2008;

Jackson & Raymond, 2008) their confusability (e.g., Baddeley, 1966; Conrad, 1963;

Conrad & Hull, 1964; Viswanathan, Perl, Visscher, Kahana, & Sekuler, 2010), the

degree to which they can be perceived categorically (Olsson & Poom, 2005), the

presence of proactive interference among items (Banta Lavenex, Boujon,

Ndarugendamwo, & Lavenex, 2015; Endress & Potter, 2014; Sands & Wright, 1980), the

spatial configuration of the items (e.g., Makovski, 2016), and on the specific stimuli. For

example, Cowan, Johnson, and Saults (2005) observed memory capacities of about 6
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words (under high proactive interference), while Wood (2008) observed memory

capacities of only 2 actions.

Third, in a general sense, memory and some forms of attention (though not

necessarily the tracking variety) are certainly related. For example, attention is critical

to place items in memory to begin with (see, among many others, e.g., Chen & Cowan,

2009; Craik & Lockhart, 1972; Lepsien & Nobre, 2007; Majerus et al., 2014; Morey &

Bieler, 2013; Vergauwe, Camos, & Barrouillet, 2014). Further, recent physiological data

suggest that, at least in some situations, WM limitations might be in part encoding

limitations (e.g., Buschman, Siegel, Roy, & Miller, 2011; Tsubomi, Fukuda, Watanabe,

& Vogel, 2013). Conversely, WM might also support attention. For example, and as

mentioned above, WM might help binding features to objects that are tracked (e.g.,

Makovski & Jiang, 2009b). Further, items that are maintained in WM attract attention

in unrelated search tasks, suggesting that WM might even guide attention (e.g.,

Downing, 2000; see also Awh & Jonides, 2001 for a review).

However, the mechanistic basis for this two-way interaction between WM and

attention is unclear. Directing attention away from a stimulus certainly impairs

performance on tasks using this stimulus (see Awh & Jonides, 2001 for a review of the

WM literature, but also Toro, Sinnett, & Soto-Faraco, 2005; Turk-Browne, Jungé, &

Scholl, 2005, for similar results in rather different domains such as statistical learning).

However, such results only show that items need suitable encoding conditions for

appropriate processing, but it is unclear to what extent attentional tracking capacities

are required. Likewise, while WM can certainly guide attention, so can LTM, even when

participants never had any reason to memorize the stimulus features that guide

attention (Fan & Turk-Browne, 2016).2 Given that items in LTM are clearly not

2In Fan and Turk-Browne’s (2016) experiments, participants first encoded either the position or the
color of a novel shape, a manipulation that affects LTM for the stimulus dimension that was encoded
and probed (Fan & Turk-Browne, 2013). Following this encoding phase, participants completed a 1-item
delayed match-to-sample task with monochrome versions of these shapes. Critically, in the retention
interval, participants viewed two colored Gabor patches, and had to decide which of them was tilted.
One of the patches had the color that the memory object had during the encoding phase, and the other
patch a different color. Participants were faster to detect the target (i.e., the tilted shape) if it shared
the color that the memory object had during the encoding phase, suggesting that LTM representations
can guide attention.
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actively maintained by attentional mechanisms, this suggests that attentional guidance

from memory representations does not rely on attentional processing in memory.

The current experiments

The results reviewed so far are certainly problematic for the general capacity view.

However, they do not rule it out. That is, the numeric value of the capacities might not

be fixed, but the nature of these limitations might still be the same.

Here, we ask whether attention and WM rely on a common mechanism by

comparing their functional properties. Specifically, participants had to track or

remember items in a display. The items were either all from the same category (faces or

cars; hereafter “pure” displays), or mixed both categories (faces and cars; hereafter

“mixed” displays). We asked whether attention and memory would show a benefit or a

cost for mixed compared to pure displays. (In the experiments below, items in “mixed”

displays differ both in their category membership and their composition of visual

features; when we refer to mixed or pure displays below, we always refer to this

experiment situation.)

We selected faces and cars as contrasting categories, because evidence suggests

that objects and humans are processed differentially early in development (e.g., Bonatti,

Frot, Zangl, & Mehler, 2002) and have a different brain representation in adulthood

(e.g., Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Kanwisher, McDermott, &

Chun, 1997), suggesting that participants likely see them as members of distinct

categories.

Our predictions are as follows. With respect to WM, there is a considerable

literature showing that it is easier to memorize items from different categories than

items from only one category (Feigenson & Halberda, 2008; Wood, 2008; Wong et al.,

2008). While it has been suggested that the increase in memory capacity might be due

to the availability of independent memory stores for items from different categories, it is

also possible that using different categories reduces interference among memory items,

and thus improves performance (Endress & Szabó, in press). Be that as it might, we
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would expect mixed displays to be easier to remember than pure displays.

With respect to MOT, previous research is ambiguous as to whether pure sets

should be harder or easier to track than mixed sets. On the one hand, when targets in

MOT experiments can be grouped based on different features, tracking performance is

somewhat improved (e.g., Erlikhman, Keane, Mettler, Horowitz, & Kellman, 2013;

Störmer, Li, Heekeren, & Lindenberger, 2011; see Keane, Mettler, Tsoi, & Kellman,

2011, for non-feature-based grouping results). However, MOT performance is also

impaired when targets are grouped with distractors (e.g., Erlikhman et al., 2013; Keane

et al., 2011; Scholl, Pylyshyn, & Feldman, 2001; Störmer et al., 2011). Crucially, when

each target has a “paired” distractor it shares a feature with (while the features are

different across target-distractor pairs), performance is worse than when all items share

this feature. For example, Makovski and Jiang (2009a) used colored digits as stimuli. In

the “paired digit” condition, the digits 1, 2, 4 and 7 would appear both as targets and as

distractors, such that each digit would appear exactly twice in a display. Results showed

that performance in this condition was worse compared to a condition where all eight

digits were identical (e.g., all consisted of the digit 1). However, while Makovski and

Jiang (2009a) found a similar disadvantage when targets and distractors were paired in

both digit identity and digit color, color-based pairing was insufficient to yield such an

disadvantage (see also Horowitz et al., 2007, who did not find a significant disadvantage

in the paired condition, using cartoon animals as stimuli).3 Given these results, we

would expect better MOT performance for pure displays compared to mixed displays

(or equivalent performance in both kinds of displays). Crucially, we will ask whether the

effect of display composition is different between WM and MOT tasks.

In sum, we would expect a memory advantage for mixed displays, and a tracking

advantage for pure displays. This expectation also appears to make intuitive sense.

While memory performance can be improved by grouping items (e.g., through

3In principle, it is possible that the very presence of distinct objects has a tracking cost compared to
a homogenous tracking condition, because identifying the objects might distract resources from tracking
even if the object identity is irrelevant for the task. This is particularly plausible because, at least in
the case of WM, participants seem to encode the locations of objects relatively automatically (Makovski
& Jiang, 2008). Empirically, however, tracking is improved if items have unique features (Makovski &
Jiang, 2009a).
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chunking), object tracking requires keeping targets separate from distractors.

However, there is an important limitation of this design. Even if MOT and WM

have different properties with respect to category-based grouping, it would only show

that some mechanisms involved in these tasks are separable, but not that there are no

shared mechanisms that are involved in both tasks. Here, we thus address only the most

extreme version of a shared capacity view, namely that the mechanisms involved in WM

and object-tracking are identical. Given the current state of the art, we believe that the

assessment of the status of the simplest hypothesis is a first step towards a fuller

understanding of the relationship between different cognitive capacities.

To foreshadow our results, we found that memory is slightly better in mixed

displays, whereas tracking works slightly better with pure displays. WM and MOT

might thus rely on distinct capacities. However, these effects were weak and not

consistent across experiments. While this limits the generality of our results, we believe

that the current data are problematic for the stronger version of the shared capacity

view. For readability, we first present meta-analyses of our experiments (as well as

analyses treating the different experiments as one big experiment), and then report

analyses of individual experiments.

Materials and methods

Apparatus

Stimuli were presented on a Philips 109B 19′′ CRT monitor at a resolution of 1024

× 768 pixels and a refresh rate of 60 Hz. The experiment was administered in a

soundproofed booth and was run using EventIDE (http://www.okazolab.com).

Materials

In the MOT experiments, stimuli were a frontal view of the face of Lionel Messi

and a frontal view of a compact car (Seat Cordoba). We selected these stimuli because

they represent one of the best-known soccer player and best selling cars in Spain. Each

image spanned 53 × 53 pixels (approximately 3.8 × 3.8o at a typical view distance for

60 cm). In the WM experiments, stimuli were frontal views of faces of FC Barcelona
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players and frontal views of various cars. Each image measured 75 × 75 pixels

(approximately 5.4 × 5.4o at a typical view distance for 60 cm). We used a total of 12

images for each category.

Procedure

Multiple Object Tracking. Participants were informed that they would see 12

moving objects in each trial. They were told that, at the beginning of each trial, some

of them would blink, and that their task was to follow them. Each trial started with a

fixation cross (30 × 30 pixels; 2.2 × 2.2o) for 1000 ms. Then all objects would appear.

After a delay of 300 ms, the target objects would blink for 4.8 s at a frequency of 5 Hz.

The objects started moving 300 ms after they had stopped blinking, for a tracking

period of 10 s.

The stimuli were either 12 faces, 12 cars (pure conditions), or 6 cars and 6 faces

(mixed condition). Each condition was equally represented among the trials (except in

Experiment 3a, where mixed trials were twice as frequent as either pure condition). The

number of targets (among 12 objects in total) are given in Table 1. In the mixed

condition, half of the targets (and half of the distractors) came from either category.

The initial positions of the objects defined by random polar coordinates relatively

the screen center. The polar angle (θ) was randomly chosen between 0 and 360 degrees,

whereas the polar eccentricity (R) was random chosen between 0 and 9.5 dva (266

pixels).

To avoid overlap between the objects, we constructed imaginary circles inscribing

the objects, and discarded the stimulus positions when the circles corresponding to two

objects overlapped. As a result, distances between stimulus centers were greater than

106 pixels.

Motion trajectories for all 12 objects were precalculated at the start of every trial.

They were represented as series of object positions separated by 32 ms frames. Each

object started moving in a random direction and speed. In each of the following frames,

the position of each object was updated (i) according to its current velocity in the x and
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the y direction, (ii) by a repulsive component in the x direction that increased

exponentially (σ = .018) as the object approached the left or the right screen boundary,

(iii) by a repulsive component in the y direction that increased exponentially (σ = .018)

as the object approached the top or the bottom screen boundary, and (iv) by repulsive

components away from each of the other objects whose magnitude was a negative

exponential function (σ = .2) of the objects’ mutual distance. The repulsive

components prevented the objects from colliding with each other and the screen

boundaries. Details for this algorithm are given in Appendix A. Further, with a change

probability of 0.1, a new speed was selected randomly between the maximum and the

minimum velocity; these differed across the experiments, and are given in Table 1.

After the motion stopped, tracking performance was evaluated in one of two ways.

In the “yes/no” method (after Pylyshyn & Storm, 1988), one object was highlighted by

a green mask immediately after the objects stopped moving. Participants had to

indicate whether the highlighted object was among those they had tracked. If it was,

they had to press the up-arrow key, otherwise the down-arrow key. After their response,

participants received feedback for 2000 ms: For correct answers, they were shown a

green plus sign, and for incorrect answers a red minus sign.

In the “click-all” method, all objects turned into white circles after their

movements stopped. As there were 6 targets among 6 distractors, participants had to

select 6 by clicking on them. Circles turned orange after being clicked on, and

participants could unselect them. Once they had clicked on 6 circles, participants were

given feedback for 2000 ms: Their correct choices turned green, and the incorrect ones

red. They were also given the percentage of correct choices.

Further characteristics of the different MOT experiments are given in Table 1.

Working memory. The WM experiments used the change detection method

(e.g., Alvarez & Cavanagh, 2004; Luck & Vogel, 1997; Phillips, 1974; Vogel, Woodman,

& Luck, 2001). Participants were informed that they would see a number of objects on

the screen, and, after a delay, a second array of objects. They had to decide whether

any of the objects had changed. Each trial started with a fixation cross (76 × 76 pixels;
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5.5 × 5.5o) of 1000 ms, the sample array for durations between 2000 ms and 4000 ms

(see Table 2 for the specific durations), a retention delay of 900 ms, and finally the test

array. The presentation duration of the test array was always identical to that of the

sample array. Participants had to indicate with the arrow keys whether one of the

objects had changed between the sample and the test array (up: change; down: no

change). Following this, they were given feedback for 2000 ms.

The arrays contained an even number of objects between 2 and 10 (see Table 2),

either all faces, all cars (pure conditions), or half faces and half cars (mixed condition).

All three conditions were equally frequent.

The initial positioning of the objects was identical to that in the multiple object

experiments.

Familiarity judgment. In Experiments 1, 2b and 3b, we assessed the

participants’ familiarity with the stimuli. They were asked to rate, on a scale from 1 to

5, whether they would recognize the face and the car if they saw it in the street.

Sample size and participants

In the experiments below, we aimed for 24 participants per experiment. However,

we also report some pilot experiments for which the whole sample has not been

acquired. Further, in the analyses below, we excluded participants who scored at less

than 50% correct for set-size 6. We considered that participants performing at less than

50% clearly did not pay attention to the task. For example, in the click-all method,

even tracking a single item would yield a percentage of correct responses of about 55%,

and, if participants can track about 3 items, their percentage of correct responses should

be about 67% (Hulleman, 2005). The reason for excluding participants based on set-size

6 is because this set-size was present in all experiments. The number of excluded

participants is given in Tables 1 and 2.

The final numbers of participants in each experiment are given in Tables 1 and 2.

In total, 107 participants (76 females, mean age 21.7 y, range 18 – 34) took part in the

MOT experiments, and 98 participants (68 females, mean age 21.1 y, range 18-30) took
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part in the WM experiments. They were recruited from the Universitat Pompeu Fabra

community, and tested in sessions of 1.5 h that comprised other unrelated experiments

(generally on statistical learning) in addition to the current experiments.

Meta-analyses

For readability, we first present the results of our meta-anlyses, before presenting

the individual experiments in more detail. In the meta-analyses, we focus on set-size 6,

because the effects were most consistent at this set-size. On the one hand, it seems

plausible that the effects might be maximal at an intermediate set-size, as it avoids both

ceiling and floor effects. On the other hand, choosing a set-size based on the data

inflates the type I error rate. Given the weakness of the results presented below, this is

a serious caveat.

To compare the results across the MOT experiments and the WM experiments, we

use difference scores, where a difference score between two conditions C1 and C2 is

defined as the normalized difference (C2 − C1)/(C2 + C1).

In all (meta-) analyses, we discarded the first block as training.

Multiple object tracking

Pure vs. mixed displays. In our first meta-analysis, we averaged the score

from the pure conditions (i.e., either all cars or all faces), and compared it to the mixed

condition in a difference score. Positive difference scores indicate an advantage for pure

displays over mixed displays.

A mixed-effect meta-analysis (Borenstein, Hedges, Higgins, & Rothstein, 2010)

combined the results for set-size 6 for Experiments 1-3 (100 participants in total). As

shown in Figure 1, we observed a weak pure advantage, dmeta-analysis = .023, SE = .0007,

CI.95= .0008, .037, Z = 3.04, p = .002. We also entered all difference scores into a t

test against 0, and observed a weak advantage for the pure conditions (d = .026, SD =

.086), t(99) = 3.0, p = .0034, Cohen’s d = .3, CI.95 = .0087, .0429.4 The likelihood

ratio against the null hypothesis was 8.96 after correction with the Bayesian

4The significance level was somewhat smaller with a signed rank test, V = 2958, p = .012.
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Information Criterion, and 31.63 after correction with the Akaike Information Criterion

(AIC). Fifty-four participants showed a pure advantage, 41 a mixed advantage, and 5

had a difference score of exactly 0. There were no consistent results for other set-sizes.5

Faces vs. cars. We also asked whether, for set-size 6, there was a processing

advantage for faces over cars. In the analyses below, positive difference scores indicate a

face advantage.

As shown in Figure 2, a meta-analysis (100 participants in total) did not detect a

deviation from chance, dmeta-analysis = .002, SE = .003, CI.95 = -.005, .009, Z = .62,

p = .534, nor did a combined t-test, (d = .004, SD = .078), t(99) = .48, p = .635,

Cohen’s d = .048, CI.95 = -.012, .019.6 The likelihood ratio in favor of the null

hypothesis was 8.93 after BIC correction, and 2.53 after AIC correction. There were 43

participants with a face advantage, 43 participants with a car advantage, and 14

participants with a difference score of exactly 0.

Working memory experiments

Pure vs. mixed displays. As shown in Figure 3, a mixed meta-analysis for

set-size 6 (97 participants) revealed a significant mixed advantage, dmetanalysis = -.021,

SE = .009, CI.95 = -.039, -.003, Z = 2.26, p = .024, as did a combined t-test of all

experiments (d = -.021, SD = .094), t(96) = 2.17, p = .032, Cohen’s d = .22, CI.95 =

-.04, -.002.7 The likelihood ratio in favor of the alternative hypothesis was 1.07 after

5Given that, in some experiments, we observed weak mixed advantages for set-sizes 2 and 4, we also
performed a meta-analysis for these set-sizes in the experiments where these set sizes were administered
(i.e., Experiments 1 and 3b, 44 participants in total). For set-size 2, the meta-analysis did not detect
a deviation from chance, dmeta-analysis = -.009 SE =.0097, CI.95 = -.0285, .0096, Z = -.968, p = .333.
Entering the combined difference scores into a t-test did not detect a deviation from chance either (d =
-.000, SD = .035), t(43) = 1.64, p = .107, Cohen’s d = .25, CI.95 = -.019, .002; a signed rank test was not
significant either, V = 75, p = .268. Correcting with the Bayesian Information Criterion, the likelihood
ratio in favor of the null hypothesis was 1.72. However, after correction with the Akaike information
criterion, we observed a likelihood ratio of 1.29 in favor of the alternative hypothesis (.78 in favor of the
null hypothesis). We thus tentatively conclude that the significant mixed advantages we observed for
set-size 2 were type I errors.

For set-size 4, the mixed-factor meta-analysis did not detect a deviation from chance, dmeta-analysis = -
.012, SE = .009, CI.95 = -.030, .007, Z = -1.25, p =.211. However, a combined t-test reached significance,
(d = -.012, SD = .040), t(43) = 2.05, p = .0465, Cohen’s d = .31, CI.95 = -.025, -.0002); a signed rank
test was significant as well, V = 121, p = .0219. Further, likelihood analysis favored the alternative
hypothesis (Λ = 1.23 after BIC correction and Λ = 2.72 after AIC correction). It thus is unclear whether
there is a mixed advantage at set-size 4.

6A signed rank test did not differ from chance either, V = 1735, p = .561.
7A signed rank test differed from chance as well, V = 1378, p = .0234.
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BIC correction, and 3.72 after AIC correction. 57 participants had a mixed advantage,

30 a pure advantage, and 10 had a difference score of exactly 0.

Cars vs. faces. Curby and Gauthier (2007) showed that, at least for long

encoding durations, faces are better remembered than other objects (but see Wong et

al., 2008). We thus compare whether our results reveal a similar effect, by conducting a

meta-analysis of the difference score between face only trials and car only trials.

As shown in Figure 4, a meta-analysis for set-size 6 (97 participants) revealed a

significant face advantage, d = .023, SE = .005, CI.95 = .012, .033, Z = 4.21,p =

.00003, though a combined t-test was only marginal (d = .024, SD = .121), t(96) =

1.93, p = .057, Cohen’s d = .2, CI.95 = -.0007, .048.8 The likelihood ratio is 1.54 in

favor of the null hypothesis after BIC correction, but in favor of the alternative

hypothesis after AIC correction (Λ = 2.25). 43 participants had a face advantage, 31 a

car advantage and 23 a difference score of exactly 0.

Discussion

In the current experiments, we asked to what extent visual attention and visual

WM share common properties. Based on earlier results suggesting that it might be

easier to memorize mixed sets (Feigenson & Halberda, 2008; Wood, 2008; Wong et al.,

2008) but that it might be harder to track mixed sets (at least when the sets are defined

by simple features; Erlikhman et al., 2013), we sought to directly contrast parallel

attention and WM in their respective sensitivity to category information, using identical

stimuli.

Meta-analyses of our experiments revealed a small pure advantage for MOT

experiments, and a small mixed advantage for WM experiments, at least for set-size 6.

As shown in Figure 5, the difference scores were significantly larger for MOT

experiments than for WM experiments, t(195) = 3.62, p = .0004, Cohen’s d = .516.

This difference was confirmed by a signed rank test, p = .0002, as well as by comparing

the counts of participants having pure, mixed and no advantages, using Fisher’s test,

p = .0035. Further, a mixed model analysis on the difference scores with set-size and

8A signed rank test was significant as well; V = 1011, p = .043.
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task (MOT vs. WM) as fixed factors, their interactions as well as participants and

choice type (click-all vs. up/down) as random factors revealed that the difference score

was higher for set-size 6 (with a reference level of 2), β = .041, SE = .018, p = .031, but

that, for set-size 6, the difference score was reduced in the WM experiments β = -.053,

SE = .026, p = .038.

In line with previous results, we thus tentatively conclude that visual attention

and visual WM have different properties and hence are likely not to share all of their

underlying mechanisms.9

However, while the MOT experiments differed from the WM experiments in the

effects of the category structure of the stimuli with a medium effect size (Cohen’s d =

.516), the effects in the individual tasks were fairly weak, and, as we will now show, not

observed in all experiments.

Results of individual experiments

The meta-analyses above revealed a small advantage for pure displays in MOT

experiments, and a small advantage for mixed displays in WM experiments. While the

effect sizes were rather small in both cases, we note that these results are in line with

previous results in both MOT (Erlikhman et al., 2013; Horowitz et al., 2007; Makovski

& Jiang, 2009a) and WM (e.g., Feigenson & Halberda, 2008; Wood, 2008; Wong et al.,

2008). However, these effects did not emerge in all experiments. We thus report the

individual experiments below, noting in each case to what extent they were consistent

with the meta-analysis above.

Multiple object tracking

Experiment 1. In Experiment 1, participants had to track 2, 4 or 6 objects

among 12 items in total. At the end of the tracking phase, a single object was

highlighted, and participant had to indicate whether it was among the target objects.

9While performance did not differ between car and face trials in MOT experiments, we observed
a small face advantage for WM experiments. However, the face advantage did not differ significantly
between MOT and WM experiments, either in a t-test, t(195) = 1.38, p = .17, Cohen’s d = .196, or in
a signed rank test, p = .185, or when comparing counts of face vs. car vs. no advantages, p = .131.
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Participants completed three blocks with 36 trials each.

We analyze the different set-sizes individually, both because not all experiments

below comprise all set-sizes, and because Levene’s test indicated differences in the

variance of the difference scores at different set sizes. While we report t-tests, the

pattern of significance is unchanged with a signed rank test.

For set-size 2, the difference score (M = .0003, SD = .033) did not differ

significantly from zero, t(23) = .042, p = .967, Cohen’s d = .0085, CI.95 = -.014, .014.

For set-size 4, the difference score (M = -.021, SD = .039) revealed a mixed advantage,

t(23) = 2.65, p = .014, Cohen’s d = .54, CI.95 = -.037, -.0046. In contrast, with set-size

6, the difference score (M = .08, SD = .12) revealed a pure advantage, t(23) = 3.32,

p = .003, Cohen’s d = .68, CI.95 = .03, .13. The distribution of the number of

participants with mixed and pure advantages is shown in Table 3; performance in terms

of the percentage of correct responses is shown in Figure 6.

Participants were highly familiar with the face (Lionel Messi; M = 4.75, SD = .85;

on a scale of 1 to 5) and also reasonably familiar with the car (M = 3.54, SD = 1.59).

Experiments 2a and 2b. In Experiments 2a and 2b, participants had to track

6 items among 12 items in total. At the end of the tracking phase, the items changed to

white circles, and participants had to click on all targets. There were 4 blocks with 30

trials each. The difference between Experiments 2a and 2b was that in Experiment 2b

(but not in Experiment 2a), participants had to rate their familiarity with the objects.

As for Experiment 1, we report t-tests, but the pattern of significance is unchanged with

a signed rank test.

Given that the difference scores did not differ between Experiments 2a and 2b,

F (1,45) = .08, p = .779, η2
p= .002, we combined the experiments. The difference scores

(M = .012, SD = .031) indicated a small pure advantage, t(46) = 2.58, p = .013,

Cohen’s d = .38, CI.95 = .003, .021. Counts of participants showed pure, mixed or no

advantages are shown in Table 3.

Participants in Experiment 2b rated the face as highly familiar (M = 4.39, SD =

.89) and also the car as reasonably familiar (M = 3.78, SD = 1.35).
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Experiments 3a and 3b. Experiment 3a was a replication of set-size 6 in

Experiment 1, except that the frequency of mixed and pure trials was equated. There

were 4 blocks of 32 trials. Experiment 3b was an exact replication of Experiment 1,

except that it comprised four rather than three blocks. Again, we report t-tests, but the

pattern of significance is unchanged with a signed rank test.

In Experiment 3a, the difference score (M = .009, SD = .05) failed to differ from

chance, t(8) = .51, p = .621, Cohen’s d = .17, CI.95 = -.030, .047, potentially due to

the small sample size.

In Experiment 3b, we observed a small pure advantage for set-size 2 (M = -.019,

SD = .035), t(19) = -2.48, p = .0226, Cohen’s d = .55, CI.95 = -.035, -.003. For set-size

4, the difference scores did not differ from chance (M = -.002, SD = .041), t(19) = .25,

p = .804, Cohen’s d = .056, CI.95 = -.021, .017. For set-size 6, the difference score did

not differ from chance either (M = .003, SD = .12), t(19) = .1, p = .923, Cohen’s d =

.022, CI.95 = -.05228, .057. The counts of participants showing pure and mixed

advantages in shown in Table 3.

In sum, in Experiments 3a and 3b we do not find the same effects as in

Experiments 1 and 2.

Working memory

Experiment 4. In Experiment 4, participants had to detect changes in arrays of

2, 4, 6, 8 or 10 cars or faces. The presentation duration was 3 s for the sample array.

There were 4 blocks of 60 trials each.

As in the MOT experiments above, we analyze the set-sizes individually. As

above, a signed rank test yielded the same pattern of significance as a t-test.

The difference score did not differ from chance for any of the set-sizes: Set-size 2:

M = -.011, SD = .041, t(18) = 1.14, p = .27, Cohen’s d = .26, CI.95 = -.030, .009;

set-size 4: M = -.016, SD = .093, t(18) = .72, p = .478, Cohen’s d = .17, CI.95 = -.061,

.030; set-size 6: M = -.026, SD = .116, t(18) = .99, p = .333, Cohen’s d = .23, CI.95 =

-.082, .029; set-size 8:M = .015, SD = .162, t(18) = .39, p = .698, Cohen’s d = .091,
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CI.95 = -.063, .093; set-size 10: M = .017, SD = .152, t(18) = .5, p = .625, Cohen’s

d = .11, CI.95 = -.056, .091.

Counts of participants showing pure, mixed or no advantages are shown in Table 4;

the performance in terms of the percentage of correct responses is shown in Figure 7.

Experiment 5. In Experiment 5, participants had to detect changes in arrays of

4, 6 or 8 cars or faces. The presentation duration was 3 s for the sample array. There

were 6 blocks of 36 trials each.

For set-size 6, we observed a significant mixed advantage, where the difference

score indicated better performance for pure displays (M = -.034, SD = .08), t(23) =

2.07, p = .0498, Cohen’s d = .42, CI.95 = -.067, -.00004. In contrast, the difference

score did not differ from chance for set-size 4 (M = -.012, SD = .054), t(23) = 1.09,

p = .289, Cohen’s d = .22, CI.95 = -.035, .011, nor for set-size 8 (M = -.017, SD =

.118), t(23) = .72, p = .481, Cohen’s d = .15, CI.95 = -.067, .033.

Experiment 6a and 6b. Experiment 6a was a replication of set-size 6 from

Experiment 5, except that we used 6 blocks with 40 trials each. Experiment 6b was an

exact replication of Experiment 5.

In Experiment 6a, the difference score failed to differ from zero (M = -.0105,

SD = .045), t(9) = .74, p = .477, Cohen’s d = .23, CI.95 = -.043, .022, perhaps due to

the small sample size.

In Experiment 6b, the difference score did not deviate from zero either for set-size

4 (M = -.023, SD = .079), t(23) = -1.39, p = .177, Cohen’s d = .28, CI.95 = -.056,

.011, or for set-size 6 (M = .0008, SD = .0896), t(23) = .04, p = .967, Cohen’s d =

.009, CI.95 = -.037, .039, or for set-size 8 (M = -.005, SD = .094), t(23) = -.28, p =

.782, Cohen’s d = .06, CI.95 = -.045, .034.

Experiment 7. Experiment 7 was identical to Experiment 4, except that the

sample array was presented for 2 s rather than 3 s.

The difference score did not deviate from chance for any set-size, set-size 2: (M =

-.012, SD = .039), t(9) = -.99, p = .349, Cohen’s d = .31, CI.95 = -.040, .016; set-size 4:

(M = -.007, SD = .123), t(9) = -.17, p = .87, Cohen’s d = .053, CI.95 = -.095, .081;
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set-size 6: (M = .017, SD = .093), t(9) = .59, p = .572, Cohen’s d = .19, CI.95 =

-.0495, .084; set-size 8: (M = .145, SD = .214), t(9) = 2.14, p = .061, Cohen’s d = .68,

CI.95 = -.008, .298; set-size 10: (M = -.025, SD = .130), t(9) = -.61, p = .558, Cohen’s

d = .19, CI.95 = -.118, .068.

Experiment 8. Experiment 8 was identical to Experiment 4, except that the

sample array was presented for 4 s rather than 3 s.

The difference score did not deviate from zero for any of the set-sizes, set-size 2:

(M = .003, SD = .050), t(9) = .2, p = .844, Cohen’s d = .064, CI.95 = -.032, .039;

set-size 4: (M = -.025, SD = .07), t(9) = -1.03, p = .33, Cohen’s d = .33, CI.95 =

-.080, .030; set-size 6: (M = -.0795, SD = .116), t(9) = -2.17, p = .058, Cohen’s d =

.69, CI.95 = -.162, .003; set-size 8: (M = .051, SD = .122), t(9) = 1.3, p = .225,

Cohen’s d = .41, CI.95 = -.037, .138; set-size 10: (M = .037, SD = .129), t(9) = .9, p =

.39, Cohen’s d = .29, CI.95 = -.055, .129.

General Discussion

What types of mechanisms underlie our cognitive capacity limitations? Following

Miller’s (1956) seminal paper, a prominent view has been that capacity limitations in

different domains might be interrelated (see Cowan, 2001, 2015), perhaps because they

are all based on a parallel individuation system. While some results supported this view

(e.g., Chesney & Haladjian, 2011; Knops et al., 2014; Piazza et al., 2011; see also Huang

et al., 2012; Oksama & Hyönä, 2004, for individual differences approaches), there is also

a growing literature suggesting that VWM might not rely on a parallel individuation

system. For example, there seems to be relatively little cross-talk between a MOT task

and a VWM task (Fougnie & Marois, 2006; Hollingworth & Hwang, 2013; H. Zhang et

al., 2010), and the effects that WM was thought to exert on attention can also stem

from LTM (Fan & Turk-Browne, 2016).

Similarly, the specific value of the capacity limitations is not necessarily diagnostic

for the underlying mechanisms. In the case of MOT experiments, the tracking capacity

seems to depend on task parameters such as the speed of the objects (e.g., Alvarez &
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Franconeri, 2007; Franconeri et al., 2010; Holcombe & Chen, 2012). In the case of WM

experiments, a variety of factors influence the observed memory capacities (see

introduction). As a result, the historic assumption that different cognitive capacities

share a numeric value might be little more than a coincidence due to the way in which

these capacities have been tested.

The current results are consistent with this view, suggesting that WM limitations

cannot be explained just based on attentional limitations. Indeed, attention and WM

seem to have different properties: MOT performance was slightly better in pure displays

than in mixed displays, while WM performance was slightly better with mixed displays.

These effects were rather weak, but are consistent with earlier results on both MOT

(Erlikhman et al., 2013; Makovski & Jiang, 2009a) and WM (e.g., Feigenson &

Halberda, 2008; Wood, 2008; Wong et al., 2008). In particular, the effect of category

membership seems to differ between MOT and WM experiments, respectively. While

this effect was not large, it was not expected to be so. Considering the primitive nature

of the mechanisms involved in WM and MOT, the very fact of finding that categories

differentially affect them is remarkable. We thus tentatively conclude that WM and

MOT do not rely on the same mechanisms.10

Do our results rely on category-membership or visual similarity?

While MOT and WM seem to react differently to manipulations of

group-membership, it is important to ask which aspects of this manipulation drove

these differences. In fact, not only did our different-category items belong to different

categories, but they also had different visual features. As a result, differences in category

membership or on visual feature composition might affect MOT and WM performance,

and might also affect them differently. While the current data do not allow us to tease

apart these possibilities, we speculate that WM performance might be more affected by

category membership, while MOT performance might be more sensitive to similarity in

10We draw this conclusion for the change detection paradigm where all items are presented simultane-
ously, as this paradigm provided the most consistent evidence for fixed visual WM capacity limitations.
However, it is possible that the link between MOT and WM might be stronger when the WM paradigm
has a temporal component, for example when items are presented and tested sequentially (e.g., Endress
& Potter, 2012; Intraub, 1980; Potter, Staub, Rado, & O’Connor, 2002).
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perceptual features. This speculation is based on a number of observations. With

respect to WM, it is well known that items have to be encoded categorically for adults

to have non-trivial WM capacities (e.g., Olsson & Poom, 2005). Likewise, in infants and

children, visually identical objects are memorized as if they belong to different

categories if they are given distinct verbal labels (e.g., Feigenson & Halberda, 2008).

Given the close two-way relationship between verbal labels and categories (e.g., Balaban

& Waxman, 1997; Markman, 1994; Waxman & Markow, 1995), these results suggest

that category membership might be critical to WM. This view is also consistent with

recent findings suggesting that memory items are stored in those brain regions where

they are processed to begin with (e.g., Lee, Kravitz, & Baker, 2013; Riggall & Postle,

2012; Sreenivasan, Vytlacil, & D’Esposito, 2014; Sreenivasan, Curtis, & D’Esposito,

2014). As items from different categories likely are stored in different regions, this might

reduce interference among memory representations, and thus lead to better memory.

In the case of MOT, performance can be affected by simple perceptual features

such as color (e.g., Erlikhman et al., 2013; Makovski & Jiang, 2009a; Störmer et al.,

2011), and, more generally, by perceptual grouping (e.g., Keane et al., 2011; Scholl et

al., 2001; Yantis, 1992). To the extent that colors are not perceived as categories,

category structure might thus be more important for WM than for MOT. If this

speculation is correct, it would suggest another way in which WM and MOT dissociate.

Further research is needed to test this possibility.

Explaining earlier evidence for a general cognitive capacity

The arguments provided thus far do not imply that there is no relation between

attention, small number processing and WM. In fact, data such as Piazza et al.’s (2011)

correlation between the subitizing range and VWM capacity still require an

explanation. We speculatively envision three such explanations. Our first account is

maybe the most deflationary one. Given that MOT performance correlates with

performance on tasks that, at least intuitively, have no obvious mechanistic relationship

to parallel individuation (e.g., to report colors, Huang et al., 2012), it is possible that all
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tasks that require processing of visual objects are linked through some common factors

such as general vigilance or compliance with the task.

Our second account is based on the observation that, at least in the case of WM

and MOT, there might be a common limitation that does not imply a common

mechanism. Specifically, Franconeri, Alvarez, and Cavanagh (2013) suggested that, in

MOT experiments, objects might interfere with each other when they pass close to each

other, and that this interference limits how many objects we can track (see also Zhong,

Ma, Wilson, Liu, & Flombaum, 2014, for a related model).

With respect to (visual) WM, Endress and Potter (2014) argued that proactive

interference was a common feature of many WM experiments, due to the reuse the same

set of limited items across many trials.11 Accordingly, they showed that there are no

clear bounds to how many items we can temporarily remember when proactive

interference is minimized (though it is not clear to what extent memory is limited when

participants have to encode spatial information; see e.g. Banta Lavenex et al., 2015;

Makovski, 2016). Further, Endress and Szabó (in press) provided mathematical proofs

that limited memory capacity estimates are essentially an inevitable consequence of the

mere existence of inter-item interference. Both MOT and WM might thus be

constrained by inter-item interference, though the mechanisms that are susceptible to

interference likely differ across these tasks.

Our third speculative account is that WM might use a parallel attentional system

to individuate items that need to be retained; however, once the memory items are

individuated, WM might also be constrained by other limiting factors. That is, WM

and MOT might rely on a common set of mechanisms, but also on other mechanisms

that are different across the tasks. If so, it will be important to perform more targeted

experiments to find out which mechanisms are shared, and which are not. Under either

of these accounts, the current results suggest that WM and parallel attention may have

at least partially dissociable properties, and might thus not rely on the same

11For example, in Luck and Vogel’s (1997) change detection experiment, participants had to remember
color patches, such that 7 colors where reused across hundreds of trials. Hence, the participants faced
the question to decide whether they had seen a given color in the current trial, or one of the preceding
trials, leading to proactive interference.
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mechanisms.
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Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2014).

Cross-modal decoding of neural patterns associated with working memory:

Evidence for attention-based accounts of working memory. Cerebral Cortex . doi:

10.1093/cercor/bhu189

Makovski, T. (2016). Does proactive interference play a significant role in visual

working memory tasks? Journal of experimental psychology. Learning, memory,

and cognition, 42 , 1664–1672. doi: 10.1037/xlm0000262

Makovski, T., & Jiang, Y. V. (2008). Proactive interference from items previously

stored in visual working memory. Memory and Cognition, 36 (1), 43–52.

Makovski, T., & Jiang, Y. V. (2009a). Feature binding in attentive tracking of distinct

objects. Visual Cognition, 17 (1-2), 180–194. (PMID: 19492017) doi:

10.1080/13506280802211334

Makovski, T., & Jiang, Y. V. (2009b, Dec). The role of visual working memory in

attentive tracking of unique objects. Journal of Experimental Psychology. Human

Perception and Performance, 35 (6), 1687–1697. doi: 10.1037/a0016453

Markman, E. M. (1994). Constraints on word meaning in early language acquisition.

Lingua, 92 , 199 - 227. doi: http://dx.doi.org/10.1016/0024-3841(94)90342-5

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review , 63 (2), 81–97.

Morey, C. C., & Bieler, M. (2013). Visual short-term memory always requires general

attention. Psychonomic Bulletin and Review , 20 (1), 163–170. doi:

10.3758/s13423-012-0313-z

Oberauer, K. (2002). Access to information in working memory: exploring the focus of

attention. Journal of Experimental Psychology. Learning, Memory, and



CATEGORIES IN WM AND MOT 32

Cognition, 28 (3), 411–421.
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Table 3
Counts of a participants with pure vs. mixed advantages in the MOT experiments

Set-size Exp. 1 Exps. 2a & 2b Exps. 3a & 3b
Pure None Mixed Pure None Mixed Pure None Mixed

2 5 14 5 NA NA NA 1 10 9
4 2 7 15 NA NA NA 5 7 8
6 15 3 6 27 1 19 12 1 16
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Figure 1 . Distribution of individual difference scores (pure-mixed)/(pure+mixed) across
the different multiple object tracking experiments. Positive difference scores indicate a
processing advantage for pure (i.e., car or face) displays, while negative difference scores
indicate an advantage for mixed (car and face) displays. Circles represent individual
participants; the solid line represents the density estimate with a Gaussian kernel and a
bandwidth of .01615 (as determined by the Sheather-Jones method). Across
experiments, participants had a small pure advantage.
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Figure 2 . Distribution of individual difference scores (car-face)/(car+face) across the
different multiple object tracking experiments. Positive difference scores indicate a
processing advantage for car displays, while negative difference scores indicate an
advantage for face displays. Circles represent individual participants; the solid line
represents the density estimate with a Gaussian kernel and a bandwidth of .00895 (as
determined by the Sheather-Jones method). Across experiments, participants showed
no advantage in either direction.
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Figure 3 . Distribution of individual difference scores (pure-mixed)/(pure+mixed) across
the different change detection experiments. Positive difference scores indicate a
processing advantage for pure (i.e., car or face) displays, while negative difference scores
indicate an advantage for mixed (car and face) displays. Circles represent individual
participants; the solid line represents the density estimate with a Gaussian kernel and a
bandwidth of .0293 (as determined by the Sheather-Jones method). Across experiments,
participants had a small mixed advantage.
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Figure 4 . Distribution of individual difference scores (car-face)/(car+face) across the
different change detection experiments. Positive difference scores indicate a processing
advantage for car displays, while negative difference scores indicate an advantage for face
displays. Circles represent individual participants; the solid line represents the density
estimate with a Gaussian kernel and a bandwidth of .01966 (as determined by the
Sheather-Jones method). Across experiments, participants had a small face advantage.
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Figure 5 . Distribution of individual difference scores (pure-mixed)/(pure+mixed) across
multiple object tracking (red) and working memory (turquoise) experiments. Positive
difference scores indicate a processing advantage for pure (i.e., car or face) displays,
while negative difference scores indicate an advantage for mixed (car and face) displays.
Circles represent individual participants; the shaded areas represent the corresponding
density estimates. Across experiments, the pure advantage was larger for MOT
experiments than for WM experiments, indicating the MOT experiments showed a
small pure advantage while WM experiments showed a small mixed advantage.
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Figure 6 . Performance in terms of the percentage of correct responses in the MOT
experiments. Error bars show 95% confidence intervals.
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Figure 7 . Performance in terms of the percentage of correct responses in the WM
experiments. Error bars show 95% confidence intervals.
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Appendix

Multiple object tracking algorithm

// The code be low shows the a l gor i thm f o r o b j e c t j

// The o b j e c t s curren t 2D v e l o c i t i e s i n i t i a l l y d e f i n e the

↪→ d i sp l a c em e n t s in the x and y d i r e c t i o n

// The v e c t o r C u r r e n t O b j e c t V e l o c i t i e s s t o r e s the norms o f the

↪→ v e l o c i t i e s ( i . e . , t h e i r magnitudes )

// o f a l l o b j e c t s .

// I n i t i a l l y , a l l o b j e c t s are a s s i g n e d random v e l o c i t i e s . At

↪→ each time step , v e l o c i t i e s change to another

// random v a l u e wi th p r o b a b i l i t y . 1 .

double MaxVelocity =10.4;

DeltaX [ j , i ]= Cur r en tOb j e c tVe l o c i t i e s [ j ]*Math . Cos (

↪→ CurrentObjec tDi rec t ions [ j ]*Math . PI /180 .0 ) ;

DeltaY [ j , i ]= Cur r en tOb j e c tVe l o c i t i e s [ j ]*Math . Sin (

↪→ CurrentObjec tDi rec t ions [ j ]*Math . PI /180 .0 ) ;

// Next , the w a l l r e p u l s i o n components are added

double LeftScreenEdgeRepuls ionMagnitude=Math . Exp(−0.5*

↪→ NormDistanceToLeftScreenEdge/ WallRepulsionSigma ) ;

double RightScreenEdgeRepulsionMagnitude=Math . Exp(−0.5*

↪→ NormDistanceToRightScreenEdge/ WallRepulsionSigma ) ;
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double TopScreenEdgeRepulsionMagnitude=Math . Exp(−0.5*

↪→ NormDistanceToTopScreenEdge/ WallRepulsionSigma ) ;

double BottomScreenEdgeRepulsionMagnitude=Math . Exp(−0.5*

↪→ NormDistanceToBottomScreenEdge/ WallRepulsionSigma ) ;

DeltaX [ j , i ]=DeltaX [ j , i ]+MaxVelocity *(Math . Cos (0 ) *

↪→ LeftScreenEdgeRepuls ionMagnitude+Math . Cos (Math . PI ) *

↪→ RightScreenEdgeRepulsionMagnitude ) ;

DeltaY [ j , i ]=DeltaY [ j , i ]+MaxVelocity *(Math . Sin (Math . PI /2 . 0 ) *

↪→ TopScreenEdgeRepulsionMagnitude+Math . Sin (3 . 0*Math . PI /2 . 0 ) *

↪→ BottomScreenEdgeRepulsionMagnitude ) ;

// F i n a l l y , the mutual r e p u l s i o n components among o b j e c t s are

↪→ added

For ( int j j =0; j j <ObjectNumber ; j j ++)

{

// Object j doesn ’ t i n t e r a c t wi th i t s e l f

I f ( j j==j ) continue ;

. . .
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DeltaX [ j , i ]=DeltaX [ j , i ]−MaxVelocity*Math . Exp(−0.5*

↪→ NormTwoObjectDistance/ ObjectRepulsionSigma ) *Math

↪→ . Cos ( Theta ) ;

DeltaY [ j , i ]=DeltaY [ j , i ]−MaxVelocity*Math . Exp(−0.5*

↪→ NormTwoObjectDistance/ ObjectRepulsionSigma ) *Math . Sin ( Theta

↪→ ) ;

. . .

}


