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Abstract

It is known that purely low-level saliency cues such as

frequency does not lead to a good salient object detection

result, requiring high-level knowledge to be adopted for

successful discovery of task-independent salient objects. In

this paper, we propose an efficient way to combine such

high-level saliency priors and low-level appearance mod-

els. We obtain the high-level saliency prior with the object-

ness algorithm to find potential object candidates without

the need of category information, and then enforce the con-

sistency among the salient regions using a Gaussian MRF

with the weights scaled by diverse density that emphasizes

the influence of potential foreground pixels. Our model ob-

tains saliency maps that assign high scores for the whole

salient object, and achieves state-of-the-art performance on

benchmark datasets covering various foreground statistics.

1. Introduction

Many computer vision applications may benefit from un-

derstanding where humans focus given a scene. Other than

cognitively understanding the way human perceive images

and scenes, finding salient regions and objects in the im-

ages helps various tasks such as speeding up object detec-

tion [27, 23] and content-aware image editing [4].

There is a line of saliency detection work centered

around visual attention models [13, 15, 12] that focuses on

finding locations of images that capture early-stage human

fixations before more complex object recognition or scene

parsing takes place. While this bears much importance in

understanding human visual systems, we focus on the prob-

lem of finding salient objects, aiming to find consistent fore-

ground objects, which is often of interest in many further

applications such as object detection. Existing work have

suggested that purely low-level information (such as the fre-

quency domain image signature [12]) often does not pro-

duce object-level saliency maps, and high-level information

such as common object detectors [15, 28] and global image

statistics [6] aid the selection of the most salient regions in
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Figure 1. An illustration of our approach from images to the fi-

nal saliency map: (a) Input Image (b) objectness detections, (c)

saliency prior from objectness, (d) diverse density scores for pix-

els, (e) the final saliency map, and (f) the segmented object.

the images.

In this paper, we propose a novel approach that fuses

top-down object level information and bottom-up pixel ap-

pearances to obtain a final saliency map that identifies the

most interesting regions in the image. While early work

such as [15] uses specific category-dependent object de-

tectors, there has been several work focusing on learning

category-independent object representations in the recent

years [3, 7, 11], making it possible to detect objects with-

out the need of knowing the object category present in the

images. Specifically, we adopt the recent objectness frame-

work [3] that finds potential object candidates in the image.

Such objectness information is then passed onto the pixel

level as a prior of the per-pixel saliency.

To fuse the high-level object information with the pixel

appearances, we used a fully-connected Markov random

field (MRF) that takes into consideration the overall agree-

ment between salient regions over the whole image, with an

explicit emphasis on nodes that are more likely to be fore-

grounds inspired by the work of graph-based multi instance

learning [25]. Unlike classical frequency-based saliency

maps that often focus on edges of the images and ob-

jects, we will show that our method returns a more object-

centric saliency map that is consistent over the salient ob-

ject, achieving state-of-the-art performance on the bench-
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mark MSRA and Weizmann datasets.

We will start by reviewing the related work in the

saliency detection field, and then formally describe our al-

gorithm in Section 3 and 4, including the employment of

the objectness cue in our model, and the Markov random

field that fuses high-level object information and low-level

appearance. The experiments on the MSRA and Weizmann

datasets, as well as the analysis of performance, are pre-

sented in Section 5.

2. Related Work

Pre-attentive bottom up saliency algorithms have been

extensively studied from biological and computational per-

spectives. These algorithms used low-level information

including biologically inspired center-surrounding opera-

tors [13], gradient information [29], local contrast features

[17, 20], frequency-domain information [12, 2], etc. We

note that such information is not neglected in our frame-

work, but is rather incorporated into the objectness detec-

tion component.

On combining high-level object knowledge and low-

level appearances, Chang et al. [5] was the first to adopt

a high-level object information as saliency prior. However,

the prior is combined with pixel-wise scores from another

low-level saliency model, which then creates an arbitrary

bias towards the specific algorithms’ behaviors, such as fa-

voring high frequency areas, and may in some cases hurt

the final performance. Other work, especially in segmenta-

tion [26, 16], adopt parameterized models such as Gaussian

Mixture Model (GMM) to model the foreground and to cut

out the foreground region with coarse supervised informa-

tion. While such tasks (such as cosegmentation) explicitly

need to identify the mixture components of the foreground,

it may not be necessary in finding saliency regions, and the

multiple parameters to be tuned in these models may hurt

performance. We empirically tested a parameterized mix-

ture model for foreground modeling, and found the MRF

approach in our paper to better fit the saliency problem.

To obtain a consistent salient object detection, an im-

portant structural choice is to use a fully-connected graph,

rather than a locally connected graph as many previous ap-

proaches do [5], as locally connected graph may lead to

overly smoothed saliency maps. We note that this is not the

first time fully connected graphs have shown advantages.

Previous work such as [18] have shown a significant perfor-

mance gain over locally connected graphs. With the help

of superpixels, inference takes only a short time for a rea-

sonably sized image. Note that efficient inference with such

graphs exists even for large-scale graphs.

Finally, several previous works have explored the choice

of feature extraction from pixels or superpixels, such as

pixel values and Gabor filter responses [28, 6]. There are

also work on weighting or encoding for more discrimina-

tive features [15, 28, 20]. What we will show in the pa-

per is that, despite its simplicity, a purely top-down prior

and a fully-connected graph built on simple color fea-

tures could achieve state-of-the-art performance, without

the need of additional bottom-up saliency prior or additional

handcrafted features.

3. Saliency Detection with Object-level Infor-

mation

In this section, we formally describe the algorithm we

proposed to perform saliency detection based on high-level

object information.

3.1. Object Detection

Our method starts with finding an informative prior that

captures the potential salient regions from images. While

specific object detectors such as faces and vehicles have

been adopted to help finding good prior knowledge of

salient objects [15, 28], we focus on algorithms that are

able to handle general object appearances without category-

specific information. To this end, we adopted the objectness

algorithm as proposed in [3] to find a set of object candi-

dates in input images.

Specifically, the objectness algorithm finds a set of object

candidates represented by bounding boxes, together with

the confidence scores, for each input image. It adopts four

different low-level cues to learn if a certain bounding box

contains an object or not, which we give a brief explanation

to the cues adopted in the method as follows for complete-

ness.

1. Multiscale Saliency (MS): this cue utilizes the spectral

residual of the Fourier Transform on multiple scales to

find regions with unique appearances within the image.

2. Color Contrast: this cue computes the dissimilarity of

the color distribution of a candidate bounding box with

that of its surrounding area. The idea is that an object

would look sufficiently different from the background

that surrounds it.

3. Edge Density: this cue computes the density of the

edges (computed by Canny edge detection) near the

borders of the candidate bounding box. The idea is that

an object would have a dense edge distribution around

its boundary.

4. Superpixel Straddling: this cue computes the agree-

ment between the candidate bounding box and the su-

per pixels obtained by [8]. Since pixels in the same su-

perpixel often belong to the same semantic group (ei-

ther the object or the background), for a good object

candidate most superpixels should lie mostly either in-

side or outside the bounding box, and should not cross

the boundary.



Figure 2. The top row shows sample images with the most con-

fident 5 bounding boxes, with the bottom row the corresponding

saliency map priors obtained from objectness.

Image rss ave no smooth

Figure 3. The per-superpixel image saliency obtained directly from

the objectness detection. Computing the rss of object scores allow

us to favor areas with densely detected objects, and smoothing al-

lows us to reduce boundary artifacts.

We note that unlike previous works such as [5], we keep the

low-level, frequency based saliency component (MS) in the

objectness pipeline. This allows the objectness method to

more accurately identify possible objects in the image, and

as we will discuss in the next section, low-level saliency

may impose a negative impact on the final saliency measure

when used alone.

We trained the objectness parameters on a randomly se-

lected subset of ImageNet images that are separate from our

testing data. For each input I, we then performed objectness

detection on each image with K top object candidates1, de-

noted by {(B1, b1), (B2, b2), · · · , (BK , bK)} where Bk is

the bounding box and bk is the corresponding confidence

score. Figure 2 shows exemplar results with the most con-

fident 5 bounding boxes shown. In most cases, the algo-

rithm is able to capture the correct location of the salient

object, although in rare cases such as the last column ex-

ample, where the large number of vertical lines in the back-

ground building causes the objectness to bias towards it.

3.2. Pixellevel Objectness Scores

As our goal is to obtain a saliency map for the whole

image, we transfer the objectness scores from the bounding

boxes to the pixel level. To this end, we propose to directly

adopt a pooling approach similar to the ones used in image

1We fixed K to be 1,000 in all our experiments to obtain a good esti-

mation of the object locations in the image.

classification, by computing each pixel p’s objectness score

(denoted by sp) as the square root of the summed squares

(rss) of the scores from all the bounding boxes that covers

it, weighted by a Gaussian function for smoothness:

sp =
[

N
∑

i=1

b2i I(p ∈ Bi) exp{−λd(p,Bi)}
]1/2

(1)

where bi is the objectness score for the bounding box,

I(p ∈ Bi) is the 0-1 indicator function denoting whether

p is inside the bounding box, and d(p,Bi) is the normalized

distance between the pixel p and the center of the bounding

box Bi measured in a scaled coordinate space where the

bounding box is normalized to length 1 on both axes. The

exponent term provides a discounting factor so that pixels

far from the bounding box center receives less contribution

from the bounding box than pixels near the bounding center

do.

To reduce the computation cost for subsequent steps we

adopted the idea of superpixels and averaged the saliency

values of pixels inside each superpixel. In our experiments,

we adopted the Turbopixel algorithm [19] to produce su-

perpixels that have similar sizes2. Further, since the scale of

the objectness scores from Eqn. 1 may vary due to different

objectness detections, we re-normalize the per-pixel scores

based on each image so that the maximum score is 1 and the

minimum is 0 over the whole image.

Figure 3 shows the resulting per-pixel objectness score

with summed pooling and two baseline choices, aver-

age pooling (as often used in classification), and without

smoothing. It could be observed that although the saliency

map is still coarse, it provides a reasonable initialization for

the final saliency map as it correctly identifies the salient ob-

ject location. More importantly, such saliency prior is not

biased towards specific low-level appearances such as high-

frequency regions, which often misses the inside region of

the salient objects.

4. Saliency Computation with Graph-based

Foreground Agreement

The pixel level prior gives us a reasonably informative

result on the salient regions of the images. However, due

to the fact that objectness bounding boxes are often over-

complete, the saliency map is often very coarse, and one

would expect low-level appearance based information to be

helpful in refining the saliency maps.

Thus, in our model we propose to extract features for in-

dividual pixels, and use a Markov random field to enforce

2While one may also want to use alternative algorithms such as the one

in [8], we found the Turbopixel algorithm to empirically work much better

in our algorithm, due to the fact that methods like [8] may produce many

small superpixels (usually in highly textured areas). Such statistics will

bias our further inference algorithm towards small highly textured areas, a

negative effect for saliency detection.



Figure 4. The superpixel diverse density values for the images

shown in Figure 2.

agreement between salient regions in the image, based on

the similarities between pixel level features. The idea is that

if a pixel has a high salient prior, then pixels that appear sim-

ilar in the image should also receive high salient scores even

if it lies in a region with low contrast, thus ensuring a con-

sistent saliency score assignment in the whole region of the

salient object. As a simple example, consider a red object

in a random background - while conventional frequency-

based saliency detections will only be able to capture the

edges of the object, enforcing consistency between salient

pixels makes it possible to give high saliency values for the

inside of the object as well.

4.1. MRF with Diverse Density

To construct the Markov random field, a classical ap-

proach is to consider each superpixel as a node and have

the edges represent the spatial connection with them. While

this enforces spatial consistency, it does not help in appear-

ance consistency, which is of more interest in our work.

Thus, we use a fully connected MRF where any two super-

pixels are connected, with the corresponding edge weight

computed as

Wij = exp
(−‖pi, pj‖

2
2

2σ2

)

(2)

between pixels i and j, where pi and pj are the features as-

sociated to the pixels. This leads to an N×N weight matrix

W where N is the number of superpixels. Despite its sim-

plicity, we found the raw color for the pixels to work best in

our case against other choices such as Gabor outputs. The

colors are represented in the LAB colorspace as distance in

LAB matches human perception well.

A potential issue with the direct computation of the

weight is that with images of small foreground regions,

the large number of background superpixels will domi-

nate the spectral characteristics of W , making it relatively

hard to identify the foreground object. Intuitively, a fore-

ground pixel should have more influence in propagating the

saliency information than pixels in the background.

Since we do not have foreground and background labels

in the first place, we could use the saliency prior as an ap-

proximation, and evaluate the “influence” of each pixel with

a diverse density measure, which is inspired by the work of

multi-instance learning [22, 25], to evaluate the agreement

between potentially foreground pixels.

Specifically, diverse density suppresses the weight val-

ues associated to pixels that are less likely to be fore-

grounds: given the objectness scores s for all the pixels,

the diverse density of a pixel i is computed as

DDi =
∑

j

(

Wijsj + (1−Wij)(1− sj)
)

(3)

where Wij is the weight between the pixels i and j com-

puted as Eqn. 2. The diverse density models how near other

salient regions are to it, and how far other non-salient re-

gions are from it, with the saliency approximated by the

prior information sj . For normalization purposes, we then

normalize all diverse density values by

DDi ←

(

DDi

maxj DDj

)γ

(4)

where γ is a scaling factor that controls the peakness of

the diverse density measure. In practice we found γ = 4
to work well under various image appearances. Figure 4

shows an example of the diverse density scores obtained.

Then, we define the weight of the MRF, denoted by G, to

be the conventional weight W scaled by the DD value of

each pixel. The weight between the pixels indexed i and j

is computed as

Gij =
DDi +DDj

2
Wij (5)

To introduce the saliency prior obtained from objectness,

we then add two abstract nodes: one source node with

saliency value 1 that connects to each pixel p with weight

sp, and one sink node with saliency value 0 that connects to

each pixel weight value 1 − sp. Then, we solve for the im-

proved saliency value for each pixel by viewing the graph

as a Gaussian MRF, which leads to an efficient computation

of the final saliency values ŝ as

ŝ =
(

diag(G1)−G

)+
[

s 1− s
]

[

1
0

]

(6)

where 1 is the all-one vector of length N . Examples of the

final saliency map can be seen in Figure 7.

4.2. Analysis of Performance Contributions

With the multiple stages of many current saliency de-

tection algorithms, it would be interesting to observe how

much each component contributes to the overall perfor-

mance. Specifically, we are interested in finding how much

the two key components, i.e. the objectness based prior and

the diverse density based inference algorithms, contribute

to the overall performance of the algorithm.

To analyze the effect of prior, we replace the objectness

based prior with three baselines: a uniform prior over the



whole image, a Gaussian prior that favors the center of the

image, and a more sophisticated prior from [28] that com-

bines multiple cues, such as location, semantics and color

to learn a final informed prior saliency. We then use them

as the initialization of our graph, and perform GMRF infer-

ence to get the final saliency measure.

Figure 5(a) illustrates the precision-recall curves result-

ing from the priors. A prior that captures coarse locations

of the foreground object does bear importance, as the unin-

formed priors do a very poor job of identifying the salient

region. It is interesting that despite its simplicity, a Gaus-

sian prior works as well as the prior from [28], partially

as the latter also derives from combination of location and

appearances. Both are still worse than the proposed ob-

jectness prior, which gives us a 4% average further preci-

sion increase, suggesting that the general objectness mea-

sure serves as a good heuristics in saliency detection.

Figure 5(b) shows different choices of the graph con-

struction methods. We start from a normal MRF construc-

tion, where only spatially connected superpixels are con-

nected in the graph. The diverse density (DD) term is then

imposed on computing the edge weights of the graph. Both

baselines are then compared against our method that uses

both a diverse density term and a fully connected graph.

The results show that diverse density provides with a signif-

icant precision gain in the low recall area, possibly result-

ing from preventing background superpixels to have a too

strong influence on neighboring superpixels. Using a fully

connected graph allows us to obtain a significant perfor-

mance gain, suggesting that although spatial relationships

are crucial in obtaining saliency priors (as is both the case

in objectness detection and works like [28]), they should not

play an important role in later stages of saliency computa-

tion, possibly due to the many irregular and even disjoint

foreground objects (see e.g. the last 3 rows of Figure 7).

5. Experiments

We evaluated our method on the MSRA saliency dataset

containing 1000 images together with the salient object an-

notated by human participants as the ground-truth saliency

map, and compared the performance against state-of-the-

art algorithms. Our saliency maps on the MSRA dataset are

publicly available at http://www.eecs.berkeley.

edu/˜jiayq/ for benchmarking purpose.

5.1. Evaluation Criteria

We mainly adopted the criteria introduced in [2] to eval-

uate the performance of various saliency algorithms using

precision recall (PR) curves. In addition, we used two dif-

ferent criteria to generate the PR curves. The first method,

which we call PR-overall, follows the conventional cri-

terion in the literature and uses a fixed threshold T to get

precision and recall values over all images and then com-
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Figure 5. (a) PR curves under different choices of priors. The flat

prior is not shown as it achieves only 0.2 average precision and is

much below the shown priors (note the y axis is from 0.6 to 1). (b)

PR curves under different choice of graph construction. FC means

fully connected and DD means diverse density weighted.
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Figure 6. The precision-recall curves for our saliency detection

algorithm and the baseline algorithms. The top figure shows

PR-overall and the bottom figure shows PR-individual.

The methods are sorted alphabetically.

pute the average. Varying the T value between 0 and

255 gives us the average PR curve. The second method,

which we call PR-individual, focuses on analyzing the

http://www.eecs.berkeley.edu/~jiayq/
http://www.eecs.berkeley.edu/~jiayq/


Image GT OB GS SF LR RC SV IG JD

Figure 7. Results on the MSRA dataset with the saliency maps of the best 8 methods, ordered from left to right, where GT is the ground

truth and OB is our approach. See the text for references to individual baselines.

saliency orders within each image: it uses the threshold to

generate per-image PR curves, and then computes the aver-

age precision values at fixed recall (between 0 and 1 with

a stepsize of 0.01) values to get the final PR curve. In-

tuitively, the first method represents the robustness of the

algorithm in a cross-image fashion when an uninformative

threshold is used, and the second focuses on checking the

correct saliency order for pixels in a single image.

We also report the performance when we binarize the

saliency map with an adaptive thresholding method. For bi-

narization, we computed the mean m and the standard de-

viation σ of the saliency map, and then set all pixels whose

saliency value is larger than m + σ to be foreground and

the rest to be background. We then followed the benchmark

introduced in [2] and report the average precision and recall

values over the images, as well as the F-measure computed

as

Fβ =
(1 + β2)× precision× recall

β2precision + recall

with β2 = 0.3 as used in the literature [2].

5.2. Summary of Performance

We summarize in Figure 6 the performance of sev-

eral baseline algorithms, which could be briefly sepa-

rated to two categories. The first category of base-

lines uses low-level signals only, including Achanta et al.

(AC)[1], context-aware saliency (CA)[9], graph-based vi-

sual saliency (GB)[10], frequency-tuned saliency (IG)[2],

Itti et al. (IT)[13], contrast based attention model (MZ)[21],

spectral residual approach (SR)[12], and saliency filters

(SF)[24]. The second category is generally proposed more

recently, including Judd et al. (JD) [15], global contrast

based saliency (RC)[6], saliency by low rank recovery

(LR)[28], Chang et al. (SV)[5], geodesic saliency (GS)[30]

and also our method. Such methods utilize high-level ob-

ject or global image information to create an informative

prior for the saliency map. For all baseline methods, we

used either the published implementations with their recom-

mended parameters or the author-provided saliency maps.

In general, methods that utilize high-level information

to obtain more informative saliency priors perform bet-

ter than purely low-level approaches, and our method

achieves the highest average precision on both PR curves

over all baselines. When measured using the size of the

area under the PR curve (aka. average precision, AP),

our method achieves 92.70% with PR-individual and

87.63% with PR-overall, while the second best ap-

proach (GS) achieves 90.21% and 87.82% on the two crite-

ria respectively, achieving a higher recall while our method

has a higher precision. Figure 7 shows exemplar images and

their corresponding saliency maps from various algorithms.

Full results on the dataset can be found in the supplemen-
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Figure 8. Precision, recall and F-measures of the adaptive thresh-

olding method, sorted by the F-measure. Our method (the right-

most one) achieves the best overall performance (LR and GS ob-

tains higher recalls despite lower F-measure). See supplementary

material for numbers.

Image GT OB DR RC

Figure 9. Results on the Weizmann Dataset with 2 foreground ob-

jects, showing the 3 best methods (OB, DR and RC). GT = ground

truth.

tary material.

Figure 8 summarizes the performance of adaptive seg-

mentation. As our binarization routine is different than the

one used in some baseline algorithms, we re-ran both bi-

narization on all baselines and reported the better result for

a fair comparison. It can be observed that our method ob-

tains the best result on the overall F-measure with a signif-

icant precision rate increase. This partially results from the

fact that it correctly identifies foreground regions that have

a consistent appearance, without being biased towards e.g.

high-frequency low-level saliency predictions.

Finally, we note that the best results on the MSRA

dataset by the time we write the paper is achieved by Jiang

et al. with discriminative regional features (DR)[14], in

which a pixel-wise saliency prediction model is trained on

ground-truth saliency maps3. It is interesting to note that a

major contribution is also due to the introduction of object-

level information, further justifying the use of such ap-

proaches in saliency detection.

5.3. Performance on the Weizmann Dataset

The MSRA saliency dataset mainly contains single

salient objects of medium sizes per image, which is the as-

sumption made by several saliency detection algorithms, es-

pecially those with a high-level object appearance model.

To evaluate the performance of our approach under more

varied conditions such as multiple foreground objects, we

used the Weizmann Dataset, which contains two subsets of

images with single foreground object and two foreground

objects respectively.

Figure 10 summarizes the precision-recall curves for our

method and DR, LR, RC, SV, IG and CA whose results

are published or implementations are available. It could be

observed that, when there is only 1 object present (Figure

10(a)), the performance of the algorithms align with those

on the MSRA dataset very well, and methods with high-

level model (LR, SV) perform better than pure low-level

models (RC, IG, CA). However, multiple foreground ob-

jects being present hurts some high-level model baselines

(Figure 10(b)), leading to an even slightly worse perfor-

mance than good low-level models (RC). This is possibly

due to the fact that these models explicitly models one sin-

gle foreground (LC) or favors a connected foreground (SV).

Our method is free from such assumptions,

On contrary, our model does not make such assumptions,

and is able to naturally cope with multiple foreground blobs,

as we model the appearance of the foreground with a graph,

implicitly allowing mixtures of foreground appearances4.

As a result it performs on par with the supervised approach

(DR) on the 2 object dataset. We visualize representative

results from the Weizmann 2-object dataset in Figure 10.

6. Conclusion

In this paper we proposed a novel image saliency al-

gorithm that utilizes the object-level information to obtain

better discovery of salient objects. In the model, we ob-

tain the high-level saliency prior with the objectness algo-

rithm to find potential object candidates without the need

of category information, and then enforce the consistency

among the salient regions using a Gaussian MRF with the

weights scaled by diverse density, which emphasizes the in-

fluence of potential foreground pixels. Our model obtains

saliency maps that assign high scores for the whole salient

3We report the performance on the MSRA dataset in the supplementary

material, as their result is on a test subset and is not directly comparable.
4We note that similar benefits have also been observed in the multi-

instance classification field [25].
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(b) Weizmann 2 Object Dataset

Figure 10. The precision-recall curves for our saliency detection

algorithm and the baseline algorithms on the Weizmann dataset.

object, and achieves state-of-the-art performance on bench-

mark datasets covering various foreground statistics.
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