
H
K

U
ST

 T
he

or
et

ic
al

 C
om

pu
te

r
Sc

ie
nc

e
C

en
te

r
R

es
ea

rc
h

R
ep

or
t H

K
U

ST
-T

C
SC

-2
00

0-
08

Caterpillars� A Context Speci�cation Technique
�

Anne Br�uggemann�Kleiny Derick Woodz

January ��� ����

Abstract

We present a novel� yet simple� technique for the speci�cation of context in

structured documents that we call caterpillar expressions� Although we are primar�

ily applying this technique in the speci�cation of context�dependent style sheets

for HTML� SGML and XML documents� it can also be used for query speci�ca�

tion for structured documents� as we shall demonstrate� and for the speci�cation of

computer program transformations�

From a conceptual point of view� structured documents are trees� and one of

the oldest and best�established techniques to process trees and� hence� structured

documents are tree automata� We present a number of theoretical results that

allow us to compare the expressive power of caterpillar expressions and caterpillar

automata� their companions� to the expressive power of tree automata� In particular�

we demonstrate that each caterpillar expression describes a regular tree language

that is� hence� recognizable by a tree automaton�

Finally� we employ caterpillar expressions for tree pattern matching� We demon�

strate that caterpillar automata are able to solve tree�pattern�matching problems

for some� but not all� types of tree inclusion that Kilpel�ainen investigated in his PhD

thesis� In simulating tree pattern matching with caterpillar automata� we reprove

some of Kilpel�ainen�s results in a uniform framework�

�

The work of both authors was supported partially by a joint German�HK grant� In addition� the
work of the second author was supported under a grant from the Research Grants Council of Hong Kong�
Earlier and shorter versions of some of the ideas in this paper were presented at PODDP ��� ��� and at
DLT ��� �	
��

yInstitut f�ur Informatik� Technische Universit�at M�unchen� Arcisstr� �	� �
��
 M�unchen� Germany�
E�mail
 brueggem�informatik�tu�muenchen�de�

zDepartment of Computer Science� Hong Kong University of Science � Technology� Clear Water Bay�
Kowloon� Hong Kong� E�mail
 dwood�cs�ust�hk�

�

� Introduction

Context�dependent processing and speci�cation are not new topics� they surface in almost
all computing activities� What is somewhat surprising is that the issue of context as a
topic in its own right does not appear to have been studied� In the Designer project
�a typesetting project� that we have been working on for a number of years� we were
faced with the problem of the speci�cation of context�dependent style rules for structured
documents� At �rst� we expected to use the traditional approach from the compiler and
programming�languages community� attribution 	
� ���

�� In addition� we also expected
to be able to adopt and modify previous approaches to style speci�cation such as suggested
by the DSSSL 	�
� and XSL 	��� documents and by Lie�s work 	��� ��� for SGML 	���
and XML 	��� style speci�cation� Alternatively� we considered Munson�s approach in
the Proteus system 	
�� and Murata�s more general approach 	
�� which is based on tree
automata� Murata�s approach is the closest technique to ours� although more traditional
and quite di�erent� But� we were faced with an additional constraint that changed our
thinking� We wanted to provide a system that graphic designers could easily use to specify
style rules and style sheets 	��� The point is that such designers would be� to a large extent�
computer naive� They would almost certainly �nd the manipulation of attributes di�cult�
Therefore� we decided to separate� somewhat� the speci�cation of context from the more
general issue of style speci�cation� One observation about this separation is in order�
we need provide a mechanism that tests only whether a speci�c context of a given part
of a document is present or not� Based on this observation� the style rules may now
incorporate conditional statements or expressions to express context�dependent choices�
Thus� we can isolate context determination from style rule syntax to a large extent� The
preliminary work on Designer did just that 	�� ��� We have also investigated style�sheet
speci�cation for tables 	
�� and some basic decidability questions for style sheets 	
��

Before discussing further the contextual speci�cation technique that we introduce and
study� we make some comments on contextual style rules and provide some typical ex�
amples� General design rules suggest that the elements of a document that are logically
or structurally identical should also be laid out identically� There are� however� excep�
tions to this rule� due to tradition or aesthetics� or because the context of an element
requires nonstandard treatment� Thus� graphic designers need the facilities to make the
visual semantics of an element type conditional on the context of its instantiation in the
document� We give some examples of designs that call for context�dependent processing
in Fig� �� In the �ve examples described in Fig� �� the style rule that is to be applied
to a speci�c element depends on the position of the current element instance within the
structure of the document� Its position� however� is in general not solely characterized by
the element types higher up in the document hierarchy as it happens to be the case in
Examples � and �� Rather� it is often necessary to take the siblings �Examples � and
�
or the internal structure of the current element instance into account or even to consider

�

�� In some designs� all paragraphs are indented� with the only exception being para�
graphs immediately preceded by a heading�

�� The headings in an appendix might be labeled A�� B� and C�� whereas the headings
in the main part are labeled ��� �� and
�

� Three coauthors such as Aho� Sethi and Ullman are referred to as �Aho et al���
whereas two coauthors such as Hopcroft and Ullman are referred to as �Hopcroft
and Ullman��

�� In footnotes� list items are run�in instead of being placed on a new line�
�� Cross references are automatically pre�xed with the name of the object to which

they refer� that is� �see Theorem ���� and �see Lemma �����

Figure � Examples of context�

the structure of the element it refers to �Example ���

The contextual technique we introduce is also applicable to the compilation of computer
programs� but has little appeal since compiler designers and writers do not usually al�
low users to modify a compiler according to new context dependencies� Our techniques
may� however� be used when developing code optimizers or other program transformation
tools since� in both cases� there may be a number of individuals collaborating on the
development 	
���

Once we have isolated the speci�cation of contexts from the more general speci�cation
of style sheets� we are able to provide naive users with better support for this aspect
of style speci�cation� Indeed� it also frees us to consider di�erent techniques �di�erent
from attribution� for example� for context speci�cation� Since regular expressions are
understood by many people who are not programmers per se� and they are a simple
speci�cation technique� we decided to use them for context speci�cation� There is a body
of somewhat related work� which we discuss in Section �� in which a similar decision was
made�

We make the well�accepted assumption that a set of similar documents are modeled by
syntax trees or abstract syntax trees of a given grammar �an SGML document grammar�
an XML document grammar or HTML� that generates the set of all such documents�
From now on we will no longer mention SGML and HTML but restrict ourselves to
XML and XML document grammars� Indeed� for this paper it is irrelevant which speci�c
grammar mechanism is used to de�ne classes of documents�

We introduce and motivate� in Sections � and
� the notions of caterpillars and context
and establish a basic complexity result for the evaluation of caterpillar automata on doc�
ument trees� In Section �� we investigate the expressive power of caterpillar automata
in comparison with tree automata� In particular� we demonstrate that each caterpillar
expression describes a regular tree language that is� hence� recognizable by a tree au�

tomaton� Finally� in Section �� we demonstrate that caterpillar automata can be used to
solve tree�pattern�matching problems� before we conclude with some open questions and
general remarks�

� Caterpillars and context

It is natural to write of a context of a node � in a document tree� for example� if � is a
paragraph� we may wish to determine whether � is the �rst paragraph of a chapter or of
a section� In this setting� the property �is the �rst paragraph of a chapter or of a section�
is the context� and each �rst paragraph of a chapter or a section satis�es it� Hand in hand
with this intuitive notion is the notion of a context set that consists of all �rst paragraphs
in chapters and sections of a document� the context set ��rst paragraph�� Thus� for a
speci�c abstract syntax tree� the set of �rst�paragraph�in�a�chapter�or�in�a�section nodes
is the context set ��rst paragraph�� In other words� for a given tree t� each set S of nodes
of t may be a context set in the sense that the nodes in S are all the nodes in t that�
intuitively� have a speci�c context�

Since a real caterpillar crawls around a tree� we de�ne a �contextual� caterpillar as a
sequence of atomic movements and atomic tests� A caterpillar can move from the current
node to its parent� to its left sibling� to its right sibling� to its �rst child or to its last child�
To prevent a caterpillar from dropping o� a tree it is allowed to test whether it is at a leaf
�external node�� at the root� at the �rst sibling or at the last sibling� Finally� a caterpillar
can read the label at the current node of the document tree� Note that these navigational
and testing operations de�ne an abstract data type for trees� however� caterpillars are
more than an abstract data type as they capture a speci�c sequence of abstract�data�type
operations�

For example� given the partial document tree in Fig� �� a �rst�paragraph�in�chapter cater�
pillar is

p isFirst up up up ch�

where a node label is an implicit test on the current node� and a �rst�paragraph�in�section
caterpillar is

p isFirst up sect �

Similarly� a last�section caterpillar is

sect isLast �

In each of these examples� if we place the caterpillar at any node in a given tree� it crawls
and evaluates until it has executed the sequence successfully� it cannot carry out the

�

authorstitle

titlepage ch

title body

refs

ref ref

... pp

sect

... pp

sect

sects

... pp

preamble

appsch

title body

doc

Figure � An example document tree�

text

text

text

text

emph

p

text text

text text

emph

emph

emph

Figure � A document tree with nested emphasized text�

next move� or it has obtained a false evaluation of a test� This notion of a caterpillar�s
evaluation leads to a set of nodes in a tree that are the context set of the caterpillar� as
we will make precise in the next section�

In general� we want to be able to specify a given context for all trees of a given XML DTD
�document type de�nition aka document grammar� and we may not be able to do so with
a single caterpillar� For example� consider document trees in which emphasized text can
be nested �as it can be in LATEX�� see Fig�
� Typically� we emphasize text in a roman
environment by setting it in italic whereas we emphasize text in an italic environment by
setting it in roman� Thus� we need to determine the parity of the nesting to be able to
specify the appropriate typeface� The caterpillar

text up p

and the caterpillar

text up emph up emph up p

�

specify contexts with even parity whereas the caterpillars

text up emph up p

and

text up emph up emph up emph up p

specify odd�parity contexts in the tree of Fig�
� We need� however� to specify caterpillars
of any length as the depth of emphasis nesting is not bounded� even though it is �nite�
Our solution is simple� yet powerful�

Rather than allowing only a �nite number of caterpillars for each context� we allow in�nite
sets of caterpillars� Since we can consider a caterpillar to be a string over the set of
positional tests� movements� and nonterminals �or elements� of the grammars� a set of
caterpillars is a language in the usual language�theoretic sense�

We use regular expressions� caterpillar expressions� to specify such languages and we use
�nite�state automata� caterpillar automata� to model their execution� For example� we
can specify all even�parity�emphasis contexts for trees of the form given in Fig�
 with the
caterpillar expression

text 	up emph up emph�� up p

and all odd�parity�emphasis contexts with

text up emph 	up emph up emph�� up p�

Our method of specifying contexts singles out those nodes in the trees of a grammar
for which the execution of one of the caterpillars in the language of a given caterpillar
expression succeeds when it is started on these nodes� One immediate implication of this
model is that we must separately specify even�parity contexts and odd�parity contexts
since we need to specify di�erent actions in each case�

The novelty of our approach is that we use strings of node labels� tests and navigational
operations rather than strings of only node labels� Readers of drafts of this paper have
pointed out earlier work that uses caterpillar�like ideas� The �rst and larger body of
work uses the idea of a regular expression� a path expression� to determine a set of paths
in a labeled graph� Mendelzon�s research 	�
� ��� has shown� with his graph�theoretic
query language G�� for databases� that this approach is not only powerful but can also
be visualized well 	�
�� �In Mendelzon�s project� users provide restrictions of a graph�
theoretic view of a database by graph�theoretic means� This visual process provides�
essentially� a subgraph as the query�� More recently� Abiteboul and his coworkers 	��
have used similar ideas to specify paths in graphs for semi�structured document queries�

�

COSY 	�
�� a language for the speci�cation of concurrent processes developed by Lauer
and his codesigners� also uses path expressions as its central speci�cation tool� In all
cases� path expressions do not include any explicit navigational operations� they are very
similar to standard regular expressions�

The second body of related work is the programming language developed in the Logo
Group of the MIT Arti�cial Intelligence Laboratory 	��� It was designed to explore math�
ematics by students who ranged in age from preschool to postdoctoral� One of the cute
aspects of the language is the use of turtle geometry to investigate geometrical notions�
It was called turtle geometry because a user manipulated a �turtle� �a representation of
the cursor�s current position� with a simple command�based language� In this language�
programs were sequences of movements and actions�

Last� Klarlund and Schwartzbach 	��� proposed a new approach to recursive data structure
speci�cation that allows the resulting structures to be graph�like� Essentially� their work
is closest in spirit to ours� although the domain and usage are very di�erent� The central
idea in their work is that recursive tree structures are enhanced by using additional routing
expressions� The expressions add extra edges �or links� to a tree�structure instance when it
is instantiated� The routing expressions also include navigational and testing operations�

� Evaluating caterpillar expressions

We formally de�ne caterpillars as well as caterpillar expressions and their languages� We
also demonstrate that we can model the execution of caterpillar expressions with �nite�
state automata� Merk 	�
� has investigated some of the basic properties of caterpillar
expressions�

Document trees �or abstract syntax trees� have node labels from an alphabet �� Since
we view XML �and grammatical� documents as trees� element names �or nonterminals�
are the node labels� The content of a document is represented as an external node or leaf
of such a tree whose label is also in �� Each XML DTD �or document grammar� de�nes
a set of trees T � Not every set of trees we are discussing needs to be de�ned by an XML
DTD though� Given a set T � a context mapping C for T maps any tree t in T to a subset
C�t� of nodes�t�� Note that C�t� forms a context set in the sense of the previous chapter�
Hence� a context mapping C identi�es which nodes of a tree satisfy the context�

Let � denote the alphabet of moves and tests� that is�

� � fup� left � right � �rst � last � isFirst � isLast � isLeaf � isRootg�

A string x over � � � is a caterpillar and it denotes a context mapping Cx for the set of
��labeled trees as follows� For any tree t and any node � of t�

�

� if x � �� then � belongs to C��t��

� if x � aw� where a � � �� and w � �� ����� then � belongs to Caw�t� if and only
if one of the following conditions holds�

�� a is in �� � has label a� and � belongs to Cw�t��

�� a � up� � has a parent � � in t� and � � belongs to Cw�t��

� a � left � � has a direct left sibling � � in t� and � � belongs to Cw�t��

�� a � right � � has a direct right sibling � � in t� and � � belongs to Cw�t��

�� a � �rst � � has children in t� ��s leftmost child is � �� and � � belongs to Cw�t��

�� a � last � � has children in t� ��s rightmost child is � �� and � � belongs to Cw�t��

�� a � isFirst � � is the leftmost node among its siblings in t� and � belongs to
Cw�t��

� a � isLast � � is the rightmost node among its siblings in t� and � belongs to
Cw�t��

�� a � isLeaf � � is an external node in t� and � belongs to Cw�t��

��� a � isRoot � � is the root node of t� and � belongs to Cw�t��

Note that this formal de�nition of the meaning of a caterpillar corresponds to the informal
notion we used in the previous section�

We can extend the context mapping of a caterpillar to the context mapping of a language L
over the alphabet � �� in the usual way� namely�

CL�t� �
�

x�L

Cx�t��

Hence� a node � of a tree t satis�es the context denoted by a language L if� starting from
�� it is possible to perform at least one sequence x in L of moves and tests in t� Note
that� for each context mapping C for a set of trees T � there is a language L over � � �
such that C � CL�

We call � � � the caterpillar alphabet of �� A regular expression and a �nite�state
automaton over a caterpillar alphabet are called a caterpillar expression and a caterpil�
lar automaton� respectively� We now restrict our attention to regular languages over a
caterpillar alphabet and to context mappings de�ned by such languages� We can de�ne
how caterpillar automata operate on trees by de�ning sequences of con�gurations in the
standard manner� A con�guration� in this case� consists of a node of a tree �the current
node�� a state of the automaton �the current state�� and a string x over the caterpillar
alphabet �the remaining input string�� We are now in a position to state and prove a
basic time�complexity result for the computation of a caterpillar automaton on a given
tree�

Theorem A Given a tree t with m nodes and a caterpillar automaton M with n transi�
tions� we can compute the set of nodes in t that are in the context set CL�M��t� in worst�case

time O�m� n��

Proof We assume without loss of generality that the automaton M has at most as
many states than it has transitions�

Our goal is to compute the set R of all pairs ��� s� such that the automaton M with s as
its initial state has an accepting computation on t when starting from node �� We can
then determine the nodes in the context set CL�M��t� by reporting all pairs ��� sI� in R�
where sI is M �s initial state�

The set R can be computed as a transitive closure in a graph G� Let the vertices of G be
the pairs ��� s� of t�nodes � and M �states s� Let there be an edge from ��� s� to �� �� s��
in G if and only if M � starting from node � � in state s�� can move to node � and into
state s� More precisely� for each transition s�

a
�� s of M �

�� If a is a move in � and M can move from � � to � using move a� then G has an edge
leading from ��� s� to �� �� s��� �Note that when a is up� all children of � satisfy the
condition��

�� If a is a test in � or a symbol in � and the node � satis�es the test a or has the
label a� then G has an edge leading from ��� s� to �� �� s���

Each path in G from ��� s� to �� �� s�� reverses a computation of M � starting on node � � in
state s� and leading to node � in state s� Hence� R is the closure of the set of vertices
��� s�� s being a �nal state of M � in G�

The graph G has at most m�n edges� so the transitive closure R and� hence� the context
set CL�M��t�� can be computed in worst�case time O�m� n�� �

� Caterpillar�regular and regular tree languages

Finite�state �string� automata are a well�established model for regular languages of strings�
or regular string languages� as we will call them from now on� In analogy� �nite�state tree
automata have been investigated since the early sixties to model regular languages of
trees or regular tree languages� We now introduce tree languages that are recognized by
caterpillar automata and investigate how they relate to regular tree languages�

A tree t is recognizable by a caterpillar automaton M if and only if its root is in the
context set CL�M��t�� In other words� if M has at least one accepting computation on t

when starting at t�s root in the initial state� The tree language T�M� that is recognizable
by a caterpillar automaton M is the set of trees that are recognizable by M � A tree
language is caterpillar regular if it is recognizable by some caterpillar automaton�

The main result in this section is that each caterpillar�regular tree language is also regular

�

s�s�s� s�

isLast

up

isLeaf

right

isRoot

�rst

Figure � The tree�traversing caterpillar automaton MT �

�Theorem F�� The proof requires a new characterization of regular tree languages in terms
of congruences and local views 	���

It is an open question whether regular tree languages are also always caterpillar regular�
We do not believe so� but at least we provide evidence in this section that the caterpillar�
regular languages form a rich language class� We demonstrate that the �nite tree lan�
guages� the so�called local tree languages and the so�called path�closed tree languages all
form proper subclasses of the caterpillar�regular languages and that the caterpillar�regular
tree languages are closed under union �Theorems B�E��

The core part of some of the constructions in this section is the tree�traversing caterpillar
automaton MT de�ned in Fig� �� When started at the root of a tree� MT carries out a
depth��rst traversal of the tree and terminates at the root in the �nal state�

The depth��rst tree traversal has three phases which continuously alternate� going down�
going right� and going up� The automaton goes down until it reaches a leaf� Then� it
goes right� A right�going phase is interrupted as soon as it reaches an internal node and�
hence� a downward move is possible� at the point of interruption� a new down�going phase
starts� A right�going phase ends when the automaton cannot move to the right� in which
case� the automaton goes up� The up�going phase ends as soon as the automaton can
move to the right� At this point� the automaton starts or resumes a right�going phase�
Fig� � illustrates a state trace of MT on an example tree�

The tree�traversing automaton MT is deterministic in a very strong sense� which we call
strongly deterministic� In any state and at any node of the tree� MT executes at most one
transition� For example� if MT is in state s�� it can either move down or execute an isLeaf
transition� depending on whether MT is at an internal or an external node� respectively�
The next transition is in each case unambiguously determined by the position of the
current node in the tree� Hence� when starting from t�s root in state s�� MT has exactly
one computation that cannot be continued any further�

Lemma ��� The unique computation of MT on a tree t that cannot be continued any
further has the following properties�

�� MT visits each node of t at least twice� the �rst time in state s� and the second time
in state s��

��

	��

	

	

	 	

	 	�

	 	�

	�

	�

	

	 	�

	�

Figure � The state trace of MT on an example tree�

�� Between the �rst two visits of each node �� MT visits other nodes only in ��s subtrees�

�� After visiting a node � the second time� MT immediately visits � again in state s� if
� has no right sibling� and then again in the �nal state if � is the root� Apart from
these additional visits� neither � nor any of its descendants are ever visited again�

It is straightforward to prove the three claims of Lemma ��� by induction on the tree
structure� It follows that MT does indeed perform a depth��rst tree traversal and it
terminates at the tree�s root in the �nal state�

Note that MT visits each node of a tree exactly once in state s� and these visits are in
preorder� Hence� we can �and will� enhance MT with other caterpillar automata that
carry out some local testing at each node�

We now establish that caterpillar automata are able to recognize an important subset
of the regular tree languages known as tree�local tree languages� Takahashi 	
�� has
demonstrated the cetral r�ole of tree�local languages in the theory of regular tree languages�
Since the sets of syntax trees of �extended� context�free grammars are tree local� many
document�grammar mechanisms� XML�s among others� de�ne tree languages that are tree
local� Hence� document tree languages are tree local� After some preliminaries� we prove�
in Theorem B� that caterpillar automata are an appropriate mechanism to check whether
document instances conform to a given grammar�

A tree grammarG over an alphabet � is a tuple ��� P� I�� where P is a subset of ����� for
each a in �� the set fw ja��w is in Pg is a regular string language� and I is a nonempty
subset of �� We refer to P as the set of productions and I as the set of sentence symbols�
A tree grammar is similar to an extended context�free grammar with just two di�erences�

��

First� a tree grammar can have more than one sentence symbol and� second� there is no
distinction between terminal and nonterminal symbols�

The derivation trees of a tree grammar G � �P� I� with root label a� a � �� are de�ned
inductively� For each production a��w� w � a� � � �an� n � �� and for any derivation
trees t� with root label a�� � � � � tn with root label an� the tree a�t�� � � � � tn� is a derivation
tree of G with root label a� A derivation tree of G is a derivation tree with a root label
in I� Note that a�labeled leaves in a derivation tree correspond to productions a�� � in
the grammar and only labels that have such a production can label a leaf�

A tree language is tree local if and only if it is the set of derivation trees for a tree
grammar�

Theorem B Every tree�local language is caterpillar regular�

Proof Letting G � ��� P� I� be a tree grammar� we construct a caterpillar automaton
that checks whether a tree t is a derivation tree of G�

Our approach is to enhance the tree�traversing caterpillar automaton MT of Fig� � to also
check� for each node � in t� whether the sequence of the labels of ��s children conforms
to the rules of the grammar G� The new automaton checks for local conformance of each
node before it visits it for the �rst time in state s� of MT �

The enhancement involves adding to MT new caterpillar automata� one for each symbol
in �� For each a in �� there is� by the de�nition of tree grammars� a �nite�state string
automaton Ma that recognizes fw ja��w is in Pg� We �rst convert Ma into a caterpillar
automaton M �

a as follows� Initially� M �
a has the same states as Ma and has no transitions�

Then� for each transition �p� b� q� in Ma� add a new state r to M �
a and add two new

transitions �p� b� r� and �r� right� q� to M �
a�

Second� we construct the caterpillar automaton of Fig� � that combines all the caterpil�
lar automata M �

a and includes additional testing and tidying up after a local check has
terminated successfully�

Third� we join MT and the automaton of Fig� � at state s�� The state s�� is the new initial
state� The dotted transition from sa to s� on isLeaf is present only if Ma recognizes the
empty string� Note that the isLast transition leaving Ma in Fig� � denotes a collection of
isLast transitions� one for each �nal state of Ma� There is also a copy of sa and Ma in the
enhanced automaton for each a in �� Finally� we redirect the two transitions on �rst and
right of MT into the new start state s���

As a result� the enhanced automaton does everything the tree�traversing automaton MT

does� and in addition it checks before it enters a node of the tree in state s� whether the
labels of that node and its children conform to grammar G� Since MT visits each node
exactly once in state s�� the enhanced automaton checks the whole tree for conformance
with G�

��

s
�

�

a �rst
s�

isLast up
s�M �

a

isLeaf

sa

Figure � Testing for local grammar conformance�

To complete the construction of the enhanced automaton we still have to ensure that the
root label of the given tree is in the set of G�s sentence symbols� For this purpose we add
another state to the enhanced automaton� make this new state the sole �nal state� and
add a transition from the original �nal state of MT to its new �nal state on each sentence
symbol� �

We establish that tree�local languages form a proper subfamily of the caterpillar�regular
languages in two steps� First� we prove that every �nite tree language is caterpillar regular
and� second� we exhibit a �nite tree language that is not tree local�

Theorem C First� the family of caterpillar�regular tree languages is closed under union�
Second� every �nite tree language is caterpillar regular� Third� every co��nite tree language
is caterpillar regular�

Proof First� given two �nite�state caterpillar automata M� and M�� we de�ne their
�sum� M� �M� as usual by building the disjoint union of the state sets and the transition
sets of M� and M� and then adding a new initial and a new �nal state and empty�string
transitions from the new initial state to each of the initial states of M� and M� and from
each of the �nal states of M� and M� to the new �nal state� Obviously� L�M� � M�� �
L�M�� � L�M��� Hence� T�M� � M�� � T�M�� � T�M���

Second� for each tree t� we can construct a caterpillar that recognizes t and only t� For
example� a caterpillar for the tree a�ba� is

a �rst b isLeaf right a isLeaf isLast �

Since the family of caterpillar�regular tree languages is closed under union� all �nite tree
languages are caterpillar regular�

Third� starting from a caterpillar x that recognizes the tree t and no other tree� we
construct a strongly�deterministic caterpillar automaton Mx that recognizes any tree but

�

a b isLeaf right a isLeaf isLast�rst

b isLeaf a �rst isLast b �rst right

up isRoot

Figure � Recognizing trees di�erent from a�ba��

tx and ends each computation where it began� namely at the root of the tree it attempts
to recognize� Fig� � demonstrates the automaton Mx for the caterpillar

x � a �rst b isLeaf right a isLeaf isLast �

which recognizes t � a�ba�� The automaton Mx looks for a reason why x might fail� only
if it �nds one does it return to the root in an accepting state�

Given a number of trees t�� � � � � tn and caterpillars x�� � � � � xn that recognize the single�
ton tree languages ft�g� � � � � ft�� � � � � tng� respectively� we catenate Mx� � � � � �Mxn � The
resulting automaton recognizes the complement of the tree language ft�� � � � � tng� �

Theorem D There are caterpillar�regular tree languages that are not tree local�

Proof The tree language L � fa�a�g is �nite and� hence� is caterpillar regular� but it
is not tree local� If L were tree local� then the productions a� a and a� � must be in
its tree grammar� Immediately� the trees a and a�a�a��� for example� must also be in L�
which is not the case� hence� we have obtained a contradiction� �

Given a string language L� we de�ne the tree language PL�L�� the path�closed tree lan�
guage of L� as follows� A tree t is in PL�L� if and only if the labels of each root�to�leaf
path in t spell out a string in L� Our interest in such languages is that they shed light on
the power of caterpillars as we see in Theorem E� The tree languages PL�L� are similar
to� but di�erent from� the branch�tree languages of Courcelle 	���� The di�erence is that
in Courcelle�s work each path in a tree is encoded by both its label string and its branch�
ing string �the indexes of the speci�c children on the path�� As a result� the label and
branching strings of a tree characterize the tree uniquely which is not the case when we
have only label strings�

��

Theorem E If L is a regular string language� then its path�closed tree language PL�L�
is a caterpillar�regular tree language�

Proof The idea behind the proof is that a regular string language L is recognized
by some �nite�state automaton M � We now construct from M a caterpillar automa�
ton PL�M� such that a tree t is recognized by PL�M� if and only if t � PL�L�� The
backbone of PL�M� is the tree�traversing caterpillar automaton MT of Fig� ��

Let M be a nondeterministic �nite�state automaton for L that has no null�string tran�
sitions and has initial state sI � Furthermore� we also assume� without loss of generality�
that M is reverse deterministic� that is� for each symbol a in � and each state s� of M
there is at most one state s in S such that s

a
��
M

s�� Such an automaton can be constructed

from a deterministic automaton for the reverse of language L�

The caterpillar automaton PL�M� for PL�L� has states that are pairs of states as in the
standard cross�product of two automata �here the two automata are M and MT � but we
also need some additional states as we shall see� The paired states of PL�M� are pairs
�si� S�� where si� � � i � �� is a state of MT and S is a set of states of M �

While traversing a tree t� we ensure that the �rst component of PL�M��s state is MT �s
state at the same point of the traversal and that the second component consists of all the
states M can be in after processing the labels of the nodes on the path from the root to
the current node� including the label of the current node�

Since M is reverse deterministic� given the label a of the current node and the second
component of PL�M��s state� we can compute the second component of PL�M��s state at
the current node�s parent�

In addition to the paired states� PL�M� has an initial state � �� a �nal state 	 � and some
auxiliary states� The auxiliary states are named A�S�� A��a� S�� A��a� S�� and A��a� S��
where a � � and S is a set of states of M �

Here are PL�M��s transitions�

� �
a
���s�� S�� S � fs j sI

a
��
M

sg

�s�� S�
�rst
��A�S�

a
���s�� S

��� S � � fs� j s
a
��
M

s�� s � Sg

�s�� S�
isLeaf
�� �s�� S� if S contains a �nal state of M

��

�s�� S�
a
��A��a� S�

right
��A��a� S�

b
���s�� S

���

S � � fs� j there are states s and s�� of M such that s�� � S� s
a
��
M

s��� s
b

��
M

s�g

�s�� S�
isLast
�� �s�� S�

�s�� S�
a
��A��a� S�

up
���s�� S

��� S � � fs� j s�
a
��
M

s� s � Sg

�s�� S�
isRoot
�� 	 �

We can verify from the transitions that a computation of PL�M� does indeed have the
properties we have claimed� Furthermore� PL�M� can successfully complete a computa�
tion only if each label sequence of a the root�to�leaf path is recognized by M � Hence�
PL�M� recognizes PL�L�� �

We now compare caterpillar automata to tree automata and the tree languages they
recognize� namely regular tree languages� We de�ne tree automata and regular tree
languages using the approach of Thatcher 	
��� The key point about his approach is that
the node labels are not ranked� any node label may label any node in a tree independently
of the number of children that node has� We refer to our synopsis 	�� on the state of the
art on tree automata and regular tree languages over unranked alphabets� the more widely
known literature on tree automata 	��� ��� ��� addresses primarily the ranked�alphabet
case�

We have characterized 	�� the regular tree languages using congruences and local views�
We now summarize the pertinent de�nitions and results before proving the following main
result�

Theorem F Every caterpillar�regular tree language is a regular tree language�

A pointed tree �sometimes also called a tree with a handle or a handled tree� is a tree over
an extended alphabet ��fXg such that precisely one node is labeled with the variable X
and that node is a leaf�

If t is a pointed tree and t� is a �pointed or nonpointed� tree� we can catenate t and t�

by replacing the node labeled X in t with the root of t�� The result is the �pointed or
nonpointed� tree tt��

Let T be a tree language� Trees t� and t� are top congruent with respect to T �t� 	T t�
or simply t� 	 t�� if and only if for each pointed tree t the following condition holds�

tt� � T if and only if tt� � T�

The top congruence for trees is the tree analog of the left congruence for strings�

Proposition ��� The top congruence is an equivalence relation on trees	 it is a congru�
ence with respect to catenations of pointed trees and trees
pointed or nonpointed��

��

The top index of a tree language T is the number of 	T �equivalence classes�

A string language is regular if and only if it has �nite index� however� that a tree language
has �nite top index is insu�cient for it to be regular� For example� consider the tree
language

L � fa�bici� � i � �g�

Clearly� L has �nite top index� but it is not regular� A second condition� namely regularity
of so�called local views� has to be satis�ed as well�

De�nition ��� Let T be a tree language� a be a symbol in �� t be a pointed tree and
Tf be a �nite set of trees� The local view of T with respect to a� t and Tf is the string
language

Va�t�Tf �T � � ft� � � � tn � T �
f j ta�t�� � � � � tn� � Tg

over the alphabet Tf �

For the purposes of local views we consider the trees in a �nite set Tf to be symbols of
the alphabet Tf � so the trees in Tf are primitive entities that can be catenated to form
strings over Tf �

Proposition ��� �
� A tree language is regular if and only if it is of �nite top index and
all its local views are regular string languages�

At �rst glance it may appear that the local�view condition for regular tree languages is a
condition on an in�nite number of trees� But� if we exchange a tree t� in a �nite set Tf
by an equivalent�with respect to top congruence�tree t�� then

Va�t�Tf �T � � Va�t��Tf nft�g��ft�g�T ��

Hence� if T has �nite top index� we need to check the local�view condition for only a �nite
number of tree sets Tf �

We split the proof of Theorem F into the following two parts�

Lemma ��� Every caterpillar�regular tree language has �nite top index�

Proof Let M � �Q� sI� �� F � be a caterpillar automaton that recognizes the tree lan�
guage T � We assume without loss of generality that each accepting computation of M
terminates at the root of t� We prove that T is of �nite top index� using a technique that
is familiar from string languages�

Let Qt be the set of all pairs �s� s�� of states such that M � when starting at the root of t in
state s� performs a computation on t that ends at the root once more in state s� without

��

doing any isRoot � isFirst � or isLast transitions at the root� Since Q is �nite� there are
only �nitely many sets Qt�

Now� de�ning t to be equivalent to t� if and only if Qt � Qt� � we obtain an equivalence
relation of �nite index on the set of all trees� Furthermore� for any pointed tree t and
equivalent trees t� and t�� any computation on tt� and on tt� that enters the root of t�
in state s and leaves it is state s� also enters the root of t� in state s and leaves it in
state s�� Hence� for an accepting computation of M � it does not matter whether t� or
t� is appended to the pointed tree t� Therefore� the equivalence relation re�nes the top
congruence� which consequently must also be of �nite index� �

Lemma ��� Every caterpillar�regular tree language has only regular local views�

Proof Let M � �Q� sI� �� F � be a caterpillar automaton that recognizes the tree lan�
guage T � We assume that each accepting computation of M terminates at the root of t�
Furthermore� let a be a symbol in �� t be a pointed tree� and Tf be a �nite set of trees�
We need to prove that the local view of T with respect to a� t and Tf � namely the string
language

Va�t�Tf �T � � ft� � � � tn � T �
f j ta�t�� � � � � tn� � Tg�

is regular�

First� for a pair �s� s�� of states consider the set Xs�s� of all strings t� � � � tn over Tf such that
M � starting at the root of a�t�� � � � � tn� in state s performs a computation that returns to
the root in state s� but never visits the root in between�

Let us examine a computation of M on a tree ta�t�� � � � � tn� that starts and ends at the root
of the tree� We can break the computation down into segments that happen within t and
others that happen within a�t�� � � � � tn�� The outcome of the complete computation�
whether it recognizes the tree or not�does not depend on the exact subcomputations
within a�t�� � � � � tn� but only on the pairs s and s� of states that M is in at the start and
the end of each such subcomputation� So each computation on ta�t�� � � � � tn� corresponds
to a �short�cut� computation on the pointed tree t that replaces the subcomputations
within a�t�� � � � � tn� with a short�cut transition from some state s to another state s� on
the handle X� On the one hand� for each string t� � � � tn in Va�t�Tf �T �� there is an accepting
short�cut computation on t with short�cut state transitions �s�� s

�
��� � � � � �sm� sm�� hence�

t� � � � tn �
m
i��Xsi�s

�

i
�

On the other hand� for any accepting short�cut computation on t with short�cut state
transitions �s�� s

�
��� � � � � �sm� sm� and any string t� � � � tn� if

t� � � � tn �
m
i��Xsi�s

�

i
�

�

then

t� � � � tn � Va�t�Tf �T ��

Therefore� Va�t�Tf �T � is the union of intersections of sets Xs�s�� Since there is only a �nite
number of such sets� for Va�t�Tf �T � to be regular it su�ces to show that each Xs�s� is
regular�

We can test whether t� � � � tn � Xs�s�� for n � �� by executing the caterpillar automaton M

on a�t�� � � � tn�� Indeed� after M moves down from the root into some state z on either t��s

root by s
�rst
��
M

z or on tn�s root by s
last
��
M

z� the only transitions we need consider are ones

within the trees ti or between the roots of the ti� The crucial question is whether M can
then reach a state z� at the root of some ti such that z�

up
��
M

s��

We transform the caterpillar automatonM into a string automaton M over Tf by replacing
a computation of M on some ti with a single state transition of M � Since M may move
from left to right and from right to left among the sibling subtrees t�� � � � � tn� the string
automaton M is a two�way automaton� Since M may perform tests isFirst and isLast at
the roots of the trees ti� the automaton M is an automaton with endmarkers � and a for
the left and right ends of the strings� respectively�

We now give a more detailed description of the transformation of M into a two�way string
automaton M � � Q� sI� �� F � with endmarkers over Tf � The automaton M has three move
operations� left� stay and right� It has endmarkers � and a for the left and right ends of
strings� The transition relation � is a subset of Q����f��ag�� Q�fleft � right � stayg� For
the input string � a� � � �an a the automaton M starts on the �rst symbol a� in state sI �
An accepting computation must end on a in a �nal state� The transition relation � does

not contain any transitions s
�
�� s�� left or s

a
�� s�� right � so M can never fall o� either

end of its input string�

It is well known that two�way automata recognize precisely the regular string languages
as proved by Shepherdson 	
���

The states of M are states of M � but M has some additional states� For each walk that
M can perform on some tree t in Tf � starting in state z at the root and returning to
the root in state z�� without doing any isRoot� isFirst� or isLast transitions at the root�

we include a transition z
t

��
�M
z�� stay � Thus� we can reduce the whole computation of M

within a tree t to a single transition of M on t�

For each transition z
a
��
M

z� in M and each t in Tf with root label a� we add the transition

z
t

��
�M
z� to M �

��

For each transition z
left
��
M

z� in M and each t in Tf � we add z
t

��
�M
z�� left to M � We treat

the right transitions analogously�

For each transition z
isFirst
��
M

z� in M � M does a left move from state z on any symbol in �Tf �

then moves right again on �� Again� we treat the test isLast analogously�

Finally� we have to ensure that M starts and �nishes appropriately� Hence� we introduce
new initial and �nal states sI and sF for M � Then� M either moves from sI into any

state z such that s
�rst
��
M

z without changing its position or moves from sI into any state z

such that s
last
��
M

z while simultaneously changing its position to the last Tf symbol in

the input string� Furthermore� for any state z such that z
up
��
M

z�� M moves to the right

endmarker and enters state sF �

By construction� M recognizes Xs�s�� �

� Caterpillars and tree pattern matching

Kilpel!ainen 	��� uses tree pattern matching and tree inclusion as a means of querying
databases of structured documents� Although originally designed for context speci�cation�
we can also employ caterpillar expressions and automata to specify queries for document
databases� It turns out that caterpillar expressions and automata are able to represent
several variants of tree inclusion that Kilpel!ainen has investigated� In particular� we
reprove two of Kilpel!ainen�s time�complexity results 	��� ��� using the notion of caterpillar
automata� The proofs are simpler and more uniform than Kilpel!ainen�s original proofs�

Tree pattern matching and tree inclusion use a tree p to specify a pattern� the goal is
to �nd occurrences of the pattern tree p in a target tree t �in general� in a set of target
trees�� We now introduce the various notions of tree inclusion studied by Kilpel!ainen�

A mapping f � nodes�p��� nodes�t� is a tree inclusion of p in t if and only if the following
three conditions hold�

�� f is injective�

�� f preserves labels� for each node �� the labels of � and f��� are identical�

� f preserves ancestorship� for any two nodes � and � of p� � is an ancestor of � if
and only if f��� is an ancestor of f����

A tree inclusion f � nodes�p��� nodes�t� is ordered if and only if it preserves the postorder
of nodes �or� equivalently� the preorder�� that is� for any two nodes � and � of p� the node
� precedes � in the postorder of nodes if and only if f��� precedes f����

��

A pattern tree p speci�es a context mapping Cp with respect to �ordered� tree inclusion
as follows� For a tree t and a node � in t� the node � is in the context set Cp�t� if and only
if there is an �ordered� inclusion f � nodes�p���nodes�t� that maps the root of p to ��

An �ordered� path inclusion of p in t is an �ordered� tree inclusion f of p in t that preserves
the parent�child relationship� that is� if � is the parent of � in p� then f��� is the parent
of f���� An �ordered� range inclusion of p in t is an �ordered� tree inclusion f of p in t that
maps the set of children of a node � in p onto a continous range of children of f���� An
�ordered� child inclusion of p in t is an �ordered� tree inclusion f of p in t that surjectively
maps the set of children of a node � in p onto the set of children of f���� This is the
classical notion of tree pattern matching� An �ordered� subtree inclusion f of p in t is an
�ordered� child inclusion f of p in t that maps each external node of p to an external node
of t� that is� p is isomorphic to a subtree of t�

A pattern tree p speci�es contexts C
�O�T
p � C

�O�P
p � C

�O�R
p � C

�O�C
p and C

�O�S
p with respect to

�ordered� tree� path� region� child and subtree inclusion� respectively�

Theorem G For each pattern tree p� the context mappings C
�O�P
p � C

�O�R
p � C

�O�C
p and C

�O�S
p

are caterpillar context mappings� Furthermore� for each ordered type of inclusion� there
are a caterpillar expression and a deterministic caterpillar automaton of sizes O�p� that
denote the corresponding context mapping�

Proof For each pattern tree p and each target tree t the context sets CPp � CRp � CCp and
CSp of the unordered inclusion type are �nite unions of some context sets COPp � CORp � COCp

and COSp of the ordered inclusion type� respectively� Hence� we need to consider only the
ordered inclusion type�

We �rst demonstrate the case of ordered path inclusion� constructing� by induction on
the pattern tree p� a caterpillar expression Ep such that the caterpillar�regular language
L�E� denotes COPp �

If p � a� a � �� then Ep � a�

If p � a�p�� � � � � pn�� n � �� then

Ep � a �rst right�Ep� right right
� Ep� � � � right right

� Epn up�

The observation that L�E� denotes COPp is based on the following characterization of COPp �
Letting p � a�p�� � � � � pn�� n � �� a node � of a target tree t is in the context set COPp �t�
if and only if � is labeled a and � has children ��� � � � � �n such that �i is in the context
set COPpi

�ti�� � � i � n� and t � a�t�� � � � � tn�� The crucial property of Ep is that each
caterpillar w in L�Ep�� when started at a node � of a pattern tree t� only visits � and
descendants of � and if it is successful� then it terminates at node �� This property
guarantees CL�Ep� � COPp �

��

For the other three types of inclusion we provide only the inductive de�nitions of cater�
pillar expressions�

Ordered range inclusion	

Ea � a�

Ea�p����� �pn� � a �rst right�Ep� right Ep� � � � right Epn up�

Ordered child inclusion	

Ea � a�

Ea�p����� �pn� � a �rst Ep� right Ep� � � � right Epn isLast up�

Ordered subtree inclusion	

Ea � a isLeaf �

Ea�p����� �pn� � a �rst Ep� right Ep� � � � right Epn isLast up�

Obviously� the expressions Ep we have constructed are of sizes linear in the size of p�
Furthermore� deterministic caterpillar automata of the same size are easily constructed
from the expressions� �

If we combine Theorems A and G� we obtain new proofs of two of Kilpal!ainen�s time�
complexity results 	��� ��� on tree inclusion�

Theorem H Given a pattern tree p with m nodes and a target tree t with n nodes� we
can compute in time O�m� n� all ordered path and range inclusions of p in t�

The proof is simpler than Kilpel!ainen�s and uniform for both types of inclusion� The same
technique also works for unordered child and subtree inclusions� but the time complexities
are worse than those obtained by Kilpel!ainen�

In the proof of Theorem G for unordered inclusions the sizes of the caterpillar expressions
and automata we obtain are exponential in the sizes of the pattern trees� It is an open
question whether polynomially sized expressions or automata can be found�

If we restrict the alphabet � to only movements� omitting the positional tests� Theorem G
still holds for �ordered� path and region inclusion but no longer holds for �ordered� child
or subtree inclusions 	����

Theorem I Let �r � fup� left � right � �rst � lastg� For any pattern tree p� there are cater�
pillar expressions and deterministic caterpillar automata over the reduced alphabet �r��
that denote C

�O�P
p and C

�O�R
p � respectively� For each of the two ordered types of inclusion�

expressions and automata of sizes O�p� can be found�

��

Proof The proofs for the cases of �ordered� path and range inclusion in Theorem G also
carry the stronger results of this theorem� since the expressions and automata that were
constructed in the proofs of Theorem G make use of only the reduced alphabet� �

Theorem J Let �r � fup� left � right � �rst � lastg�

�� For any pattern tree p with at least two nodes� there is no caterpillar�regular language
over the reduced alphabet �r � � that denotes either COCp or CCp �

�� For any pattern tree p� there is no caterpillar�regular language over the reduced
alphabet �r � � that denotes either COSp or CSp �

Proof The proofs use the surjectivity of the inclusion mapping to obtain contradictions�

�� Let p be a pattern tree with at least two nodes� that is� p � a�p�� � � � � pn�� n � ��
We construct a target tree t � a�p�� � � � � pn� p�� � � � � pn� such that t contains two
copies of each of p�s subtrees pi� � � i � n�

There is a natural relationship between the roots of p and t and between each nonroot
node of p and its two copies in t� It is intuitive that each walk of a caterpillar on p

corresponds to either one or two related walks of the same caterpillar on t� depending
on whether the walk starts at the root or at an interior node� respectively� We
omit a formal proof� which uses induction on the length of the walk since it is
straightforward� The crucial observation is that when a walk on p moves down from
the root� the corresponding walk on t moves down either with a �rst move� in the
left copy of the forest �p�� � � � � pn�� or with a last move� in the right copy of the
forest �p�� � � � � pn�� In both cases the caterpillar is at a node in t that corresponds
naturally to the node the caterpillar is at when traversing p� As a consequence�
each caterpillar over the restricted alphabet �r � � that successfully completes its
walk when started at p�s root also successfully completes its walk when started at
t�s root�

We now assume that there is a regular language L over �r � � such that either
CL � COCp or CL � CCp � Since the identity mapping is an �ordered� child inclusion
of p in p� we can �nd a caterpillar w in L such that w succeeds when started at p�s
root� hence� w also succeeds when started at t�s root� But there is no child inclusion
of p in t that maps p�s root to t�s root since the two roots have di�erent numbers of
children� Therefore� we have obtained a contradiction�

�� Let p be any pattern tree� We construct a target tree t by appending a new singleton
node to one of p�s leaves� Observe that each caterpillar over the restricted alphabet
�r�� that successfully completes its walk when started at p�s root also successfully
completes its walk when started at t�s root�

Assume that there is a regular language L over �r � � such that either CL � COSp

or CL � CSp � Since the identity mapping is a subtree inclusion of p in p� there is
a caterpillar w in L such that w succeeds when started at p�s root� hence� it also

�

succeeds when started at t�s root� But there is no subtree inclusion of p in t that
maps p�s root to t�s root� For� any such subtree inclusion would induce a inverse
image for each of t�s leaves and for t�s root� hence� the inclusion mapping must
be surjective� But t has one more node than p� therefore� we have obtained a
contradiction�

�

� Closing remarks

Our investigation of caterpillar�regular and regular tree languages leaves a number of
questions unanswered� Among them are�

�� For all pattern trees p� are the context mappings COTp and CTp caterpillar contexts"
Our strong intuition is� No� they are not�

�� Is the family of caterpillar�regular languages closed under complement"
Our strong intuition is� No� they are not�

� Can each caterpillar�regular language be denoted by a strongly deterministic cater�
pillar automaton �in the sense that the tree�traversing caterpillar automaton of
Fig� � is strongly deterministic"��
Our tentative conjecture is� No� they cannot�

�� Is each regular tree language also caterpillar regular"
Our strong intuition is� No� they are not�

We have mentioned our interest in document classes that are constrained by some type
of grammars� for example by XML DTDs� The results in this paper hold for the classes
of all documents that are given as trees over a �xed alphabet� Applications� particularly
applications based on document databases� often come with non�trivial document gram�
mars� It is therefore pertinent to generalize our results to document classes de�ned by
non�trivial document grammars and to address the open questions in this light�

Children� and even adults� were able to draw complex �gures very quickly in the Logo
language 	�� using the turtle as metaphor and guide� We hope that our use of caterpillars
will garner a similar response from graphics designers�

References

	�� H� Abelson and A� A� diSessa� Turtle Geometry� The Computer as Medium for
Exploring Mathematics� MIT Press� Cambridge� MA� ��
��

	�� Serge Abiteboul� Dallan Quass� Jason McHugh� Jennifer Widom� and Janet L�
Wiener� The Lorel query language for semistructured data� International Journal
on Digital Libraries� ���
�

� �����

��

	
� H� Alblas and B� Melichar� Attribute Grammars� Applications and Systems� Springer�
Verlag� Heidelberg� ����� LNCS ����

	�� A� Br!uggemann�Klein� Formal models in document processing� Habilitationsschrift�
Faculty of Mathematics at the University of Freiburg� ���
�

	�� A� Br!uggemann�Klein and S� Hermann� Design by example� In F� Rowland and
J� Meadows� editors� Electronic Publishing ���
� New Models and Opportunities�
pages ��
��
�� ����� Proceedings of an ICCC#IFIP Conference held at the University
of Kent at Canterbury� England� ������� April �����

	�� A� Br!uggemann�Klein� S� Hermann� and D� Wood� Context and caterpillars and
structured documents� In E� Munson� C� Nicholas� and D� Wood� editors� Principles
of Digital Document Processing� PODDP ��� pages ���� Heidelberg� ���
� Springer�
Verlag� Lecture Notes in Computer Science ��
��

	�� A� Br!uggemann�Klein� M� Murata� and D� Wood� Regular tree and regular hedge
languages over unranked alphabets� ���
� Working paper�

	
� A� Br!uggemann�Klein and T� Schro�� Grammar�compatible stylesheets� In
C� Nicholas and D� Wood� editors� Proceedings of the Third International Work�
shop on Principles of Document Processing
PODP ���� pages ����
� Heidelberg�
����� Springer�Verlag� Lecture Notes of Computer Science ���
�

	�� A� Br!uggemann�Klein and D� Wood� Electronic style sheets� Interner Bericht ���
Institut f!ur Informatik� Universit!at Freiburg� January �����

	��� A� Br!uggemann�Klein and D� Wood� Caterpillars� context� tree automata and tree
pattern matching� ����� Proceedings of the Fourth International Conference on De�
velopments in Formal Language Theory �DLT �����

	��� H� Comon� M� Daucher� R� Gilleron� S� Tison� and M� Tommasi� Tree automata
techniques and applications� ���
� Available on the Web from l
ux���univ�lille
�fr in
directory tata�

	��� D� Connolly� W
C web page on XML� http�##www�w
�org#XML#� �����

	�
� M� P� Consens� F� C� Eigler� M� Z� Hasan� A� O� Mendelzon� E� G� Naik� A� G�
Ryman� and D� Vista� Architecture and application of the Hy� visualization system�
IBM Systems Journal�

�
����
����� �����

	��� B� Courcelle� A representation of trees by languages� Theoretical Computer Science�
�������� ���
�

	��� F� G$ecseg and M� Steinby� Tree Automata� Akad$emiai Kiad$o� Budapest� ��
��

	��� F� G$ecseg and M� Steinby� Tree languages� In G� Rozenberg and A� Salomaa� editors�
Handbook of Formal Languages� Volume �� Beyond Words� pages ���
� Springer�
Verlag� Berlin� Heidelberg� New York� �����

	��� ISO

��� Information processing�Text and o�ce systems�Standard Generalized
Markup Language �SGML�� October ��
�� International Organization for Standard�

��

ization�

	�
� ISO#IEC ������ Information technology�Processing languages�Document Style
Semantics and Speci�cation Language �DSSSL�� ����� International Organization
for Standardization�

	��� P� Kilpel!ainen� Tree Matching Problems with Applications to Structured Text
Databases� PhD thesis� Department of Computer Science� University of Helsinki�
����� Series of Publications A� No� A#��������

	��� Pekka Kilpel!ainen and Heikki Mannila� Ordered and unordered tree inclusion� SIAM
Journal on Computing� ���
���
��� �����

	��� Nils Klarlund and Michael I� Schwartzbach� Graph types� In Twentieth Annual ACM
SIGPLAN�SIGACT Symposium on Principles of Programming Languages� pages
�������� New York� NY� ���
� ACM�

	��� D� E� Knuth� Semantics of context�free languages� Mathematical Systems Theory�
������������� ���
�

	�
� P� E� Lauer� P� R� Torrigiani� and M� W� Shields� COSY� A system speci�cation
language based on paths and processes� Acta Informatica� ���������
� �����

	��� H� Lie� Cascading style sheets� http�##www�w
�org#Style#css#� �����

	��� H� Lie and B� Bos� Cascading Style Sheets� Designing for the Web� Addison�Wesley
Publishing Company� Reading� MA� �����

	��� C� Lilley� Extensible style language �XSL�� http�##www�w
�org#Style#XSL#� Septem�
ber ���
�

	��� A� O� Mendelzon and P� T� Wood� Finding regular simple paths in graph databases�
SIAM Journal of Computing� ������ December �����

	�
� M� Merk� Spezi�kation von Mustern als Kontexte� Master�s thesis� Institut f!ur
Informatik� Universit!at Freiburg� �����

	��� M� Merk� Spezi�kation von mustern als kontexte� Master�s thesis� Institut f!ur Infor�
matik� Universit!at Freiburg� July �����

	
�� J� D� Morgenthaler� Static Analysis for a Software Transformation� PhD the�
sis� University of California� San Diego� Department of Computer Science and
Engineering� ����� Also available as Technical Report CS������ and from URL�
http���www�cse�ucsd�edu�users�jdm�Papers�Dissertation�html�

	
�� E� V� Munson� Proteus� An Adaptable Presentation System for a Software Devel�
opment and Multimedia Document Environment� PhD thesis� Computer Science
Division� University of California� Berkeley� �����

	
�� M� Murata� Transformation of documents and schemas by patterns and contextual
conditions� In C� Nicholas and D� Wood� editors� Proceedings of the Third Interna�
tional Workshop on Principles of Document Processing
PODP ���� pages ��
�����

��

Heidelberg� ����� Springer�Verlag� Lecture Notes in Computer Science ���
�

	

� W� Schreiber� Generierung von Dokumentverarbeitungssystemen aus formalen Spez�
i�kationen von Dokumentarchitekturen� PhD thesis� Institut f!ur Informatik� Tech�
nische Universit!at M!unchen� �����

	
�� J� C� Shepherdson� The reduction of two�way automata to one�way automata� IBM
Journal on Research and Development�
���
����� �����

	
�� M� Takahashi� Generalization of regular sets and their application to a study of
context�free languages� Information and Control� ��������
�� January �����

	
�� J� W� Thatcher� Characterizing derivation trees of context�free grammars through a
generalization of �nite automata theory� Journal of Computer and System Sciences�
��
���
��� �����

	
�� X� Wang and D� Wood� Xtable�A tabular editor and formatter� In A� Brown�
A� Br!uggemann�Klein� and A� Feng� editors� EP��� Proceedings of the Sixth Interna�
tional Conference on Electronic Publishing� Document Manipulation and Typography�
pages �����
�� ����� Special Issue� Electronic Publishing�Origination� Dissemina�
tion and Design
�� and
��

��

