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Abstract

We present a novel, yet simple, technique for the specification of context in
structured documents that we call caterpillar expressions. Although we are primar-
ily applying this technique in the specification of context-dependent style sheets
for HTML, SGML and XML documents, it can also be used for query specifica-
tion for structured documents, as we shall demonstrate, and for the specification of
computer program transformations.

From a conceptual point of view, structured documents are trees, and one of
the oldest and best-established techniques to process trees and, hence, structured
documents are tree automata. We present a number of theoretical results that
allow us to compare the expressive power of caterpillar expressions and caterpillar
automata, their companions, to the expressive power of tree automata. In particular,
we demonstrate that each caterpillar expression describes a regular tree language
that is, hence, recognizable by a tree automaton.

Finally, we employ caterpillar expressions for tree pattern matching. We demon-
strate that caterpillar automata are able to solve tree-pattern-matching problems
for some, but not all, types of tree inclusion that Kilpelainen investigated in his PhD
thesis. In simulating tree pattern matching with caterpillar automata, we reprove
some of Kilpeldinen’s results in a uniform framework.
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1 Introduction

Context-dependent processing and specification are not new topics; they surface in almost
all computing activities. What is somewhat surprising is that the issue of context as a
topic in its own right does not appear to have been studied. In the Designer project
(a typesetting project) that we have been working on for a number of years, we were
faced with the problem of the specification of context-dependent style rules for structured
documents. At first, we expected to use the traditional approach from the compiler and
programming-languages community: attribution [3, 22, 33]. In addition, we also expected
to be able to adopt and modify previous approaches to style specification such as suggested
by the DSSSL [18] and XSL [26] documents and by Lie’s work [24, 25] for SGML [17]
and XML [12] style specification. Alternatively, we considered Munson’s approach in
the Proteus system [31] and Murata’s more general approach [32] which is based on tree
automata. Murata’s approach is the closest technique to ours, although more traditional
and quite different. But, we were faced with an additional constraint that changed our
thinking. We wanted to provide a system that graphic designers could easily use to specify
style rules and style sheets [5]. The point is that such designers would be, to a large extent,
computer naive. They would almost certainly find the manipulation of attributes difficult.
Therefore, we decided to separate, somewhat, the specification of context from the more
general issue of style specification. One observation about this separation is in order:
we need provide a mechanism that tests only whether a specific context of a given part
of a document is present or not. Based on this observation, the style rules may now
incorporate conditional statements or expressions to express context-dependent choices.
Thus, we can isolate context determination from style rule syntax to a large extent. The
preliminary work on Designer did just that [4, 9]. We have also investigated style-sheet
specification for tables [37] and some basic decidability questions for style sheets [8].

Before discussing further the contextual specification technique that we introduce and
study, we make some comments on contextual style rules and provide some typical ex-
amples. General design rules suggest that the elements of a document that are logically
or structurally identical should also be laid out identically. There are, however, excep-
tions to this rule, due to tradition or aesthetics, or because the context of an element
requires nonstandard treatment. Thus, graphic designers need the facilities to make the
visual semantics of an element type conditional on the context of its instantiation in the
document. We give some examples of designs that call for context-dependent processing
in Fig. 1. In the five examples described in Fig. 1, the style rule that is to be applied
to a specific element depends on the position of the current element instance within the
structure of the document. Its position, however, is in general not solely characterized by
the element types higher up in the document hierarchy as it happens to be the case in
Examples 2 and 4. Rather, it is often necessary to take the siblings (Examples 1 and 3)
or the internal structure of the current element instance into account or even to consider



1. In some designs, all paragraphs are indented, with the only exception being para-
graphs immediately preceded by a heading.

2. The headings in an appendix might be labeled A), B) and C), whereas the headings
in the main part are labeled 1., 2. and 3.

3. Three coauthors such as Aho, Sethi and Ullman are referred to as “Aho et al.”,
whereas two coauthors such as Hopcroft and Ullman are referred to as “Hopcroft
and Ullman”.

4. In footnotes, list items are run-in instead of being placed on a new line.

5. Cross references are automatically prefixed with the name of the object to which
they refer; that is, “see Theorem 1.2” and “see Lemma 1.17.

Figure 1 Examples of context.

the structure of the element it refers to (Example 5).

The contextual technique we introduce is also applicable to the compilation of computer
programs, but has little appeal since compiler designers and writers do not usually al-
low users to modify a compiler according to new context dependencies. Our techniques
may, however, be used when developing code optimizers or other program transformation
tools since, in both cases, there may be a number of individuals collaborating on the
development [30].

Once we have isolated the specification of contexts from the more general specification
of style sheets, we are able to provide naive users with better support for this aspect
of style specification. Indeed, it also frees us to consider different techniques (different
from attribution, for example) for context specification. Since regular expressions are
understood by many people who are not programmers per se, and they are a simple
specification technique, we decided to use them for context specification. There is a body
of somewhat related work, which we discuss in Section 2, in which a similar decision was
made.

We make the well-accepted assumption that a set of similar documents are modeled by
syntax trees or abstract syntax trees of a given grammar (an SGML document grammar,
an XML document grammar or HTML) that generates the set of all such documents.
From now on we will no longer mention SGML and HTML but restrict ourselves to
XML and XML document grammars. Indeed, for this paper it is irrelevant which specific
grammar mechanism is used to define classes of documents.

We introduce and motivate, in Sections 2 and 3, the notions of caterpillars and context
and establish a basic complexity result for the evaluation of caterpillar automata on doc-
ument trees. In Section 4, we investigate the expressive power of caterpillar automata
in comparison with tree automata. In particular, we demonstrate that each caterpillar
expression describes a regular tree language that is, hence, recognizable by a tree au-



tomaton. Finally, in Section 5, we demonstrate that caterpillar automata can be used to
solve tree-pattern-matching problems, before we conclude with some open questions and
general remarks.

2 Caterpillars and context

It is natural to write of a context of a node v in a document tree; for example, if v is a
paragraph, we may wish to determine whether v is the first paragraph of a chapter or of
a section. In this setting, the property “is the first paragraph of a chapter or of a section”
is the context, and each first paragraph of a chapter or a section satisfies it. Hand in hand
with this intuitive notion is the notion of a context set that consists of all first paragraphs
in chapters and sections of a document, the context set “first paragraph.” Thus, for a
specific abstract syntax tree, the set of first-paragraph-in-a-chapter-or-in-a-section nodes
is the context set “first paragraph.” In other words, for a given tree ¢, each set S of nodes
of ¢ may be a context set in the sense that the nodes in S are all the nodes in ¢ that,
intuitively, have a specific context.

Since a real caterpillar crawls around a tree, we define a (contextual) caterpillar as a
sequence of atomic movements and atomic tests. A caterpillar can move from the current
node to its parent, to its left sibling, to its right sibling, to its first child or to its last child.
To prevent a caterpillar from dropping off a tree it is allowed to test whether it is at a leaf
(external node), at the root, at the first sibling or at the last sibling. Finally, a caterpillar
can read the label at the current node of the document tree. Note that these navigational
and testing operations define an abstract data type for trees; however, caterpillars are
more than an abstract data type as they capture a specific sequence of abstract-data-type
operations.

For example, given the partial document tree in Fig. 2, a first-paragraph-in-chapter cater-
pillar is

p 1sFirst up up up ch,

where a node label is an implicit test on the current node, and a first-paragraph-in-section
caterpillar is

p isFirst up sect.
Similarly, a last-section caterpillar is

sect 1sLast.

In each of these examples, if we place the caterpillar at any node in a given tree, it crawls
and evaluates until it has executed the sequence successfully, it cannot carry out the

4



doc

titl epage ch ch
e F e

title authors title body title body ref ref
|

\ \

preanbl e sects

\ \
refs apps

—
p.---p sect sect
| |

\ b \
p---p p---p

Figure 2 An example document tree.
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Figure 3 A document tree with nested emphasized text.

next move, or it has obtained a false evaluation of a test. This notion of a caterpillar’s
evaluation leads to a set of nodes in a tree that are the context set of the caterpillar, as
we will make precise in the next section.

In general, we want to be able to specify a given context for all trees of a given XML DTD
(document type definition aka document grammar) and we may not be able to do so with
a single caterpillar. For example, consider document trees in which emphasized text can
be nested (as it can be in WTEX); see Fig. 3. Typically, we emphasize text in a roman
environment by setting it in italic whereas we emphasize text in an italic environment by
setting it in roman. Thus, we need to determine the parity of the nesting to be able to
specify the appropriate typeface. The caterpillar

text up p
and the caterpillar

text up emph up emph up p



specify contexts with even parity whereas the caterpillars
text up emph up p

and
text up emph up emph up emph up p

specify odd-parity contexts in the tree of Fig. 3. We need, however, to specify caterpillars
of any length as the depth of emphasis nesting is not bounded, even though it is finite.
Our solution is simple, yet powerful.

Rather than allowing only a finite number of caterpillars for each context, we allow infinite
sets of caterpillars. Since we can consider a caterpillar to be a string over the set of
positional tests, movements, and nonterminals (or elements) of the grammars, a set of
caterpillars is a language in the usual language-theoretic sense.

We use regular expressions, caterpillar expressions, to specify such languages and we use
finite-state automata, caterpillar automata, to model their execution. For example, we
can specify all even-parity-emphasis contexts for trees of the form given in Fig. 3 with the
caterpillar expression

text [up emph up emph|* up p
and all odd-parity-emphasis contexts with

text up emph [up emph up emph|* up p.

Our method of specifying contexts singles out those nodes in the trees of a grammar
for which the execution of one of the caterpillars in the language of a given caterpillar
expression succeeds when it is started on these nodes. One immediate implication of this
model is that we must separately specify even-parity contexts and odd-parity contexts
since we need to specify different actions in each case.

The novelty of our approach is that we use strings of node labels, tests and navigational
operations rather than strings of only node labels. Readers of drafts of this paper have
pointed out earlier work that uses caterpillar-like ideas. The first and larger body of
work uses the idea of a regular expression, a path expression, to determine a set of paths
in a labeled graph. Mendelzon’s research [13, 27] has shown, with his graph-theoretic
query language G++ for databases, that this approach is not only powerful but can also
be visualized well [13]. (In Mendelzon’s project, users provide restrictions of a graph-
theoretic view of a database by graph-theoretic means. This visual process provides,
essentially, a subgraph as the query.) More recently, Abiteboul and his coworkers [2]
have used similar ideas to specify paths in graphs for semi-structured document queries.



COSY [23], a language for the specification of concurrent processes developed by Lauer
and his codesigners, also uses path expressions as its central specification tool. In all
cases, path expressions do not include any explicit navigational operations; they are very
similar to standard regular expressions.

The second body of related work is the programming language developed in the Logo
Group of the MIT Artificial Intelligence Laboratory [1]. It was designed to explore math-
ematics by students who ranged in age from preschool to postdoctoral. One of the cute
aspects of the language is the use of turtle geometry to investigate geometrical notions.
It was called turtle geometry because a user manipulated a “turtle” (a representation of
the cursor’s current position) with a simple command-based language. In this language,
programs were sequences of movements and actions.

Last, Klarlund and Schwartzbach [21] proposed a new approach to recursive data structure
specification that allows the resulting structures to be graph-like. Essentially, their work
is closest in spirit to ours, although the domain and usage are very different. The central
idea in their work is that recursive tree structures are enhanced by using additional routing
expressions. The expressions add extra edges (or links) to a tree-structure instance when it
is instantiated. The routing expressions also include navigational and testing operations.

3 Evaluating caterpillar expressions

We formally define caterpillars as well as caterpillar expressions and their languages. We
also demonstrate that we can model the execution of caterpillar expressions with finite-
state automata. Merk [28] has investigated some of the basic properties of caterpillar
expressions.

Document trees (or abstract syntax trees) have node labels from an alphabet . Since
we view XML (and grammatical) documents as trees, element names (or nonterminals)
are the node labels. The content of a document is represented as an external node or leaf
of such a tree whose label is also in 3. Each XML DTD (or document grammar) defines
a set, of trees T'. Not every set of trees we are discussing needs to be defined by an XML
DTD though. Given a set T, a context mapping C for 7" maps any tree ¢ in T to a subset
C(t) of nodes(t). Note that C(t) forms a context set in the sense of the previous chapter.
Hence, a context mapping C identifies which nodes of a tree satisfy the context.

Let A denote the alphabet of moves and tests; that is,
A = {up, left, right, first, last, isFirst, isLast, isLeaf , isRoot }.

A string x over ¥ U A is a caterpillar and it denotes a context mapping C, for the set of
Y-labeled trees as follows. For any tree t and any node v of t:



e if z = A, then v belongs to Cy(t).

e if z = aw, where a € YU A and w € (X UA)*, then v belongs to Cyy,(t) if and only
if one of the following conditions holds:

1. aisin ¥, v has label a, and v belongs to C,(t).

2. a = up, v has a parent ¢/ in ¢, and v/ belongs to C,(t).

3. a = left, v has a direct left sibling v’ in ¢, and v/ belongs to C,(t).

4. a = right, v has a direct right sibling +/ in ¢, and v’ belongs to C,(t).

5. a = first, v has children in ¢, v’s leftmost child is ¢/, and v/ belongs to C,(t).

6. a = last, v has children in ¢, v’s rightmost child is ©/, and ¢/ belongs to C,(t).

7. a = isFirst, v is the leftmost node among its siblings in ¢, and v belongs to
Cu(t).

8. a = isLast, v is the rightmost node among its siblings in ¢, and v belongs to
Cu(t).

9. a = isLeaf, v is an external node in ¢, and v belongs to C,(t).
10. a = isRoot, v is the root node of ¢, and v belongs to C,(t).

Note that this formal definition of the meaning of a caterpillar corresponds to the informal
notion we used in the previous section.

We can extend the context mapping of a caterpillar to the context mapping of a language L
over the alphabet ¥ U A in the usual way; namely,

Cu(t) = [ JCa(0).

reL

Hence, a node v of a tree t satisfies the context denoted by a language L if, starting from
v, it is possible to perform at least one sequence x in L of moves and tests in ¢. Note
that, for each context mapping C for a set of trees T', there is a language L over X U A
such that C = Cy.

We call ¥ U A the caterpillar alphabet of . A regular expression and a finite-state
automaton over a caterpillar alphabet are called a caterpillar expression and a caterpil-
lar automaton, respectively. We now restrict our attention to regular languages over a
caterpillar alphabet and to context mappings defined by such languages. We can define
how caterpillar automata operate on trees by defining sequences of configurations in the
standard manner. A configuration, in this case, consists of a node of a tree (the current
node), a state of the automaton (the current state), and a string x over the caterpillar
alphabet (the remaining input string). We are now in a position to state and prove a
basic time-complexity result for the computation of a caterpillar automaton on a given
tree.

Theorem A Given a tree t with m nodes and a caterpillar automaton M with n transi-
tions, we can compute the set of nodes int that are in the context set Cp)(t) in worst-case
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time O(m X n).

Proor We assume without loss of generality that the automaton M has at most as
many states than it has transitions.

Our goal is to compute the set R of all pairs (v, s) such that the automaton M with s as
its initial state has an accepting computation on ¢ when starting from node v. We can
then determine the nodes in the context set Cp)(t) by reporting all pairs (v,s;) in R,
where sy is M’s initial state.

The set R can be computed as a transitive closure in a graph G: Let the vertices of G' be
the pairs (v, s) of t-nodes v and M-states s. Let there be an edge from (v, s) to (v, s)
in G if and only if M, starting from node ¢/ in state s’, can move to node v and into
state s. More precisely, for each transition s' — s of M,

1. If a is a move in A and M can move from v’ to v using move a, then G has an edge
leading from (v, s) to (¢/,s"). (Note that when a is up, all children of v satisfy the
condition.)

2. If a is a test in A or a symbol in ¥ and the node v satisfies the test a or has the
label a, then G has an edge leading from (v, s) to (v/', s').

Each path in G from (v, s) to (¢, s") reverses a computation of M, starting on node v/ in
state s’ and leading to node v in state s. Hence, R is the closure of the set of vertices
(v, 5), s being a final state of M, in G.

The graph G has at most m x n edges, so the transitive closure R and, hence, the context
set Cr)(t), can be computed in worst-case time O(m x n). O

4 Caterpillar-regular and regular tree languages

Finite-state (string) automata are a well-established model for regular languages of strings,
or regular string languages, as we will call them from now on. In analogy, finite-state tree
automata have been investigated since the early sixties to model regular languages of
trees or regular tree languages. We now introduce tree languages that are recognized by
caterpillar automata and investigate how they relate to regular tree languages.

A tree t is recognizable by a caterpillar automaton M if and only if its root is in the
context set Crr)(t). In other words, if M has at least one accepting computation on ¢
when starting at ¢’s root in the initial state. The tree language T(M) that is recognizable
by a caterpillar automaton M is the set of trees that are recognizable by M. A tree
language is caterpillar regular if it is recognizable by some caterpillar automaton.

The main result in this section is that each caterpillar-regular tree language is also regular



first
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Figure 4 The tree-traversing caterpillar automaton M.

(Theorem F). The proof requires a new characterization of regular tree languages in terms
of congruences and local views [7].

It is an open question whether regular tree languages are also always caterpillar regular.
We do not believe so, but at least we provide evidence in this section that the caterpillar-
regular languages form a rich language class. We demonstrate that the finite tree lan-
guages, the so-called local tree languages and the so-called path-closed tree languages all
form proper subclasses of the caterpillar-regular languages and that the caterpillar-regular
tree languages are closed under union (Theorems B-E).

The core part of some of the constructions in this section is the tree-traversing caterpillar
automaton My defined in Fig. 4. When started at the root of a tree, My carries out a
depth-first traversal of the tree and terminates at the root in the final state.

The depth-first tree traversal has three phases which continuously alternate: going down,
going right, and going up. The automaton goes down until it reaches a leaf. Then, it
goes right. A right-going phase is interrupted as soon as it reaches an internal node and,
hence, a downward move is possible; at the point of interruption, a new down-going phase
starts. A right-going phase ends when the automaton cannot move to the right, in which
case, the automaton goes up. The up-going phase ends as soon as the automaton can
move to the right. At this point, the automaton starts or resumes a right-going phase.
Fig. 5 illustrates a state trace of Mp on an example tree.

The tree-traversing automaton My is deterministic in a very strong sense, which we call
strongly deterministic: In any state and at any node of the tree, My executes at most one
transition. For example, if M7 is in state sg, it can either move down or execute an isLeaf
transition, depending on whether My is at an internal or an external node, respectively.
The next transition is in each case unambiguously determined by the position of the
current node in the tree. Hence, when starting from #’s root in state sy, My has exactly
one computation that cannot be continued any further.

Lemma 4.1 The unique computation of Mr on a tree t that cannot be continued any
further has the following properties:

1. My wisits each node of t at least twice, the first time in state sq and the second time
i state s.

10



Figure 5 The state trace of M on an example tree.

2. Between the first two wisits of each node v, My visits other nodes only in v’s subtrees.

3. After visiting a node v the second time, My immediately visits v again in state so if
v has no right sibling, and then again in the final state if v is the root. Apart from
these additional visits, neither v nor any of its descendants are ever visited again.

It is straightforward to prove the three claims of Lemma 4.1 by induction on the tree
structure. It follows that My does indeed perform a depth-first tree traversal and it
terminates at the tree’s root in the final state.

Note that My visits each node of a tree exactly once in state sy and these visits are in
preorder. Hence, we can (and will) enhance My with other caterpillar automata that
carry out some local testing at each node.

We now establish that caterpillar automata are able to recognize an important subset
of the regular tree languages known as tree-local tree languages. Takahashi [35] has
demonstrated the cetral role of tree-local languages in the theory of regular tree languages.
Since the sets of syntax trees of (extended) context-free grammars are tree local, many
document-grammar mechanisms, XML’s among others, define tree languages that are tree
local. Hence, document tree languages are tree local. After some preliminaries, we prove,
in Theorem B, that caterpillar automata are an appropriate mechanism to check whether
document instances conform to a given grammar.

A tree grammar G over an alphabet ¥ is a tuple (2, P, I'), where P is a subset of ¥ x ¥*; for
each a in ¥, the set {w|a — w is in P} is a regular string language; and I is a nonempty
subset of 3. We refer to P as the set of productions and I as the set of sentence symbols.
A tree grammar is similar to an extended context-free grammar with just two differences.

11



First, a tree grammar can have more than one sentence symbol and, second, there is no
distinction between terminal and nonterminal symbols.

The derivation trees of a tree grammar G = (P, ) with root label a, a € ¥, are defined
inductively: For each production a — w, w = ay---a,, n > 0, and for any derivation
trees ¢; with root label aq, ... , t, with root label a,, the tree a(t, ... ,t,) is a derivation
tree of G with root label a. A derivation tree of GG is a derivation tree with a root label
in I. Note that a-labeled leaves in a derivation tree correspond to productions a — € in
the grammar and only labels that have such a production can label a leaf.

A tree language is tree local if and only if it is the set of derivation trees for a tree
grammar.

Theorem B Fuvery tree-local language is caterpillar reqular.

PROOF Letting G = (X, P,I) be a tree grammar, we construct a caterpillar automaton
that checks whether a tree ¢ is a derivation tree of G.

Our approach is to enhance the tree-traversing caterpillar automaton My of Fig. 4 to also
check, for each node v in ¢, whether the sequence of the labels of v’s children conforms
to the rules of the grammar GG. The new automaton checks for local conformance of each
node before it visits it for the first time in state so of Mr.

The enhancement involves adding to My new caterpillar automata, one for each symbol
in 3. For each a in X, there is, by the definition of tree grammars, a finite-state string
automaton M, that recognizes {w|a — w is in P}. We first convert M, into a caterpillar
automaton M as follows. Initially, M has the same states as M, and has no transitions.
Then, for each transition (p,b,q) in M,, add a new state r to M. and add two new
transitions (p, b, r) and (r,right,q) to M.

Second, we construct the caterpillar automaton of Fig. 6 that combines all the caterpil-
lar automata M/ and includes additional testing and tidying up after a local check has
terminated successfully.

Third, we join My and the automaton of Fig. 6 at state so. The state sj is the new initial
state. The dotted transition from s, to sy on isLeaf is present only if M, recognizes the
empty string. Note that the isLast transition leaving M, in Fig. 6 denotes a collection of
isLast transitions, one for each final state of M,. There is also a copy of s, and M, in the
enhanced automaton for each a in X. Finally, we redirect the two transitions on first and
right of Mr into the new start state s;.

As a result, the enhanced automaton does everything the tree-traversing automaton My
does, and in addition it checks before it enters a node of the tree in state sq; whether the
labels of that node and its children conform to grammar G. Since My visits each node

exactly once in state sy, the enhanced automaton checks the whole tree for conformance
with G.

12



isLast

isLeaf

Figure 6 Testing for local grammar conformance.

To complete the construction of the enhanced automaton we still have to ensure that the
root label of the given tree is in the set of GG’s sentence symbols. For this purpose we add
another state to the enhanced automaton, make this new state the sole final state, and
add a transition from the original final state of Mt to its new final state on each sentence
symbol. a

We establish that tree-local languages form a proper subfamily of the caterpillar-regular
languages in two steps. First, we prove that every finite tree language is caterpillar regular
and, second, we exhibit a finite tree language that is not tree local.

Theorem C First, the family of caterpillar-regular tree languages is closed under union.
Second, every finite tree language is caterpillar reqular. Third, every co-finite tree language
15 caterpillar reqular.

ProoOF First, given two finite-state caterpillar automata M; and M,, we define their
“sum” Mj 4 M, as usual by building the disjoint union of the state sets and the transition
sets of M, and M, and then adding a new initial and a new final state and empty-string
transitions from the new initial state to each of the initial states of M; and M, and from
each of the final states of M; and M, to the new final state. Obviously, L(M; + M) =
L(Ml) U L(MQ) Hence, T(M1 + Mg) = T(Ml) U T(MQ)

Second, for each tree ¢, we can construct a caterpillar that recognizes ¢ and only ¢. For
example, a caterpillar for the tree a(ba) is

a first bisLeaf right a isLeaf isLast.

Since the family of caterpillar-regular tree languages is closed under union, all finite tree
languages are caterpillar regular.

Third, starting from a caterpillar x that recognizes the tree ¢ and no other tree, we
construct a strongly-deterministic caterpillar automaton M, that recognizes any tree but
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up

Figure 7 Recognizing trees different from a(ba).

t, and ends each computation where it began, namely at the root of the tree it attempts
to recognize. Fig. 7 demonstrates the automaton M, for the caterpillar

x = a first bisLeaf right a isLeaf isLast,

which recognizes ¢t = a(ba). The automaton M, looks for a reason why = might fail; only
if it finds one does it return to the root in an accepting state.

Given a number of trees tq,...,t, and caterpillars zq,...,x, that recognize the single-
ton tree languages {t1},...,{t1,...,t,}, respectively, we catenate M,,,...,M, . The
resulting automaton recognizes the complement of the tree language {¢i,... ,t,}. O

Theorem D There are caterpillar-regular tree languages that are not tree local.

PROOF The tree language L = {a(a)} is finite and, hence, is caterpillar regular, but it
is not tree local. If I were tree local, then the productions a — a and a — A must be in
its tree grammar. Immediately, the trees a and a(a(a)), for example, must also be in L,
which is not the case; hence, we have obtained a contradiction. O

Given a string language L, we define the tree language PL(L), the path-closed tree lan-
guage of L, as follows: A tree t is in PL(L) if and only if the labels of each root-to-leaf
path in ¢ spell out a string in L. Our interest in such languages is that they shed light on
the power of caterpillars as we see in Theorem E. The tree languages PL(L) are similar
to, but different from, the branch-tree languages of Courcelle [14]. The difference is that
in Courcelle’s work each path in a tree is encoded by both its label string and its branch-
ing string (the indexes of the specific children on the path). As a result, the label and
branching strings of a tree characterize the tree uniquely which is not the case when we
have only label strings.
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Theorem E If L is a reqular string language, then its path-closed tree language PL(L)
1s a caterpillar-reqular tree language.

PROOF The idea behind the proof is that a regular string language L is recognized
by some finite-state automaton M. We now construct from M a caterpillar automa-
ton PL(AM) such that a tree t is recognized by PL(A/) if and only if ¢ € PL(L). The
backbone of PL(M) is the tree-traversing caterpillar automaton My of Fig. 4.

Let M be a nondeterministic finite-state automaton for L that has no null-string tran-
sitions and has initial state s;. Furthermore, we also assume, without loss of generality,
that M is reverse deterministic; that is, for each symbol a in ¥ and each state s’ of M
there is at most one state s in .S such that s % s’. Such an automaton can be constructed

from a deterministic automaton for the reverse of language L.

The caterpillar automaton PL(M) for PL(L) has states that are pairs of states as in the
standard cross-product of two automata (here the two automata are M and Mr) but we
also need some additional states as we shall see. The paired states of PL(M) are pairs
(si,S), where s;, 0 < i < 2, is a state of My and S is a set of states of M.

While traversing a tree ¢, we ensure that the first component of PL(M)’s state is My's
state at the same point of the traversal and that the second component consists of all the
states M can be in after processing the labels of the nodes on the path from the root to
the current node, including the label of the current node.

Since M is reverse deterministic, given the label a of the current node and the second
component of PL(M)’s state, we can compute the second component of PL(M)’s state at
the current node’s parent.

In addition to the paired states, PL(A/) has an initial state (), a final state [] and some
auxiliary states. The auxiliary states are named A(S), Ai(a,S), Az(a,S), and Asz(a, S),
where @ € ¥ and S is a set of states of M.

Here are PL(M)’s transitions:
() —5(s0.5), S = {s |51~ 5}
(50,5) 5 A(S) (50, 5), S' = {s'| s, s € S)

(50, 5) Z-i%af(sl, S) if S contains a final state of M
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(51,5) =% Ay (a, S) ™ Ay(a, S) —2>(s0, "),

S" = {s' | there are states s and s” of M such that s” € S, s ﬁ)s”, s #s’}

(s1,8) L% (s,, S)

(52,9) == Ag(a, S) 5(s1,5"), ' ={s'| ¢ ﬁs, se S}
(52, 8) =]

We can verify from the transitions that a computation of PL(M) does indeed have the
properties we have claimed. Furthermore, PL(M) can successfully complete a computa-

tion only if each label sequence of a the root-to-leaf path is recognized by M. Hence,
PL(M) recognizes PL(L). O

We now compare caterpillar automata to tree automata and the tree languages they
recognize, namely regular tree languages. We define tree automata and regular tree
languages using the approach of Thatcher [36]. The key point about his approach is that
the node labels are not ranked; any node label may label any node in a tree independently
of the number of children that node has. We refer to our synopsis [7] on the state of the
art on tree automata and regular tree languages over unranked alphabets; the more widely
known literature on tree automata [11, 15, 16] addresses primarily the ranked-alphabet
case.

We have characterized [7] the regular tree languages using congruences and local views.
We now summarize the pertinent definitions and results before proving the following main
result.

Theorem F Fuvery caterpillar-reqular tree language is a reqular tree language.

A pointed tree (sometimes also called a tree with a handle or a handled tree) is a tree over
an extended alphabet ¥ U{X} such that precisely one node is labeled with the variable X
and that node is a leaf.

If ¢ is a pointed tree and t' is a (pointed or nonpointed) tree, we can catenate ¢ and ¢’
by replacing the node labeled X in ¢ with the root of #. The result is the (pointed or
nonpointed) tree tt'.

Let T be a tree language. Trees t; and ty are top congruent with respect to T (¢; ~r to
or simply #; ~ t5) if and only if for each pointed tree ¢ the following condition holds:

tt; € T if and only if tty € T.
The top congruence for trees is the tree analog of the left congruence for strings.

Proposition 4.2 The top congruence is an equivalence relation on trees; it is a congru-
ence with respect to catenations of pointed trees and trees (pointed or nonpointed).
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The top index of a tree language 7" is the number of ~r-equivalence classes.

A string language is regular if and only if it has finite index; however, that a tree language
has finite top index is insufficient for it to be regular. For example, consider the tree
language

L= {a(b'c'):i>1}.

Clearly, L has finite top index, but it is not regular. A second condition, namely regularity
of so-called local views, has to be satisfied as well.

Definition 4.1 Let T be a tree language, a be a symbol in ¥, ¢ be a pointed tree and
Ty be a finite set of trees. The local view of T with respect to a, ¢t and T} is the string
language

Vo, (T) ={t1 -+ tn € T} | ta(ty, ... ,t,) € T}
over the alphabet T%.

For the purposes of local views we consider the trees in a finite set Tt to be symbols of
the alphabet T, so the trees in Ty are primitive entities that can be catenated to form
strings over 1.

Proposition 4.3 [7] A tree language is reqular if and only if it is of finite top index and
all its local views are reqular string languages.

At first glance it may appear that the local-view condition for regular tree languages is a
condition on an infinite number of trees. But, if we exchange a tree ¢; in a finite set T
by an equivalent—with respect to top congruence—tree t5, then

Va1, (T) = Vo pyoqey (1)

Hence, if T has finite top index, we need to check the local-view condition for only a finite
number of tree sets T'.

We split the proof of Theorem F into the following two parts.
Lemma 4.4 FEvery caterpillar-reqular tree language has finite top index.

PROOF Let M = (Q, s;,d, F) be a caterpillar automaton that recognizes the tree lan-
guage 7. We assume without loss of generality that each accepting computation of M
terminates at the root of . We prove that T is of finite top index, using a technique that
is familiar from string languages.

Let @ be the set of all pairs (s, ') of states such that M, when starting at the root of ¢ in
state s, performs a computation on ¢ that ends at the root once more in state s’ without
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doing any isRoot, isFirst, or isLast transitions at the root. Since () is finite, there are
only finitely many sets @);.

Now, defining ¢ to be equivalent to t' if and only if Q; = @y, we obtain an equivalence
relation of finite index on the set of all trees. Furthermore, for any pointed tree ¢t and
equivalent trees t; and 5, any computation on t¢; and on t¢, that enters the root of #;
in state s and leaves it is state s’ also enters the root of t5 in state s and leaves it in
state s’. Hence, for an accepting computation of M, it does not matter whether ¢; or
ty is appended to the pointed tree t. Therefore, the equivalence relation refines the top
congruence, which consequently must also be of finite index. O

Lemma 4.5 FEvery caterpillar-reqular tree language has only reqular local views.

PROOF Let M = (Q, s;,d, F) be a caterpillar automaton that recognizes the tree lan-
guage T'. We assume that each accepting computation of M terminates at the root of ¢.
Furthermore, let a be a symbol in ¥, ¢ be a pointed tree, and Ty be a finite set of trees.
We need to prove that the local view of T with respect to a, ¢ and T, namely the string
language

V;JJV(IU ={t; -ty € Ty | ta(ty,... ty) € T},

is regular.

First, for a pair (s, s') of states consider the set X o of all strings ¢; - - - ¢,, over Ty such that
M, starting at the root of a(ty,... ,t,) in state s performs a computation that returns to
the root in state s’ but never visits the root in between.

Let us examine a computation of M on a tree ta(ty, ... ,t,) that starts and ends at the root
of the tree. We can break the computation down into segments that happen within ¢ and
others that happen within a(t,...,t,). The outcome of the complete computation—
whether it recognizes the tree or not—does not depend on the exact subcomputations
within a(ty, ... ,t,) but only on the pairs s and s of states that M is in at the start and
the end of each such subcomputation. So each computation on ta(ty, ... ,t,) corresponds
to a “short-cut” computation on the pointed tree t that replaces the subcomputations
within a(t1, ... ,t,) with a short-cut transition from some state s to another state s’ on
the handle X. On the one hand, for each string t; - - - ¢, in V@,t,Tf (T), there is an accepting
short-cut computation on ¢ with short-cut state transitions (s1,s}),... , (Sm, Sm); hence,

tl o 'tn S mzrilei,s’i-

On the other hand, for any accepting short-cut computation on ¢ with short-cut state
transitions (s1,5)),..., (Sm, Sm) and any string t - - - t,,, if

ty ety € N X
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then
ty oty € Vo, (T).

Therefore, Va1, (T') is the union of intersections of sets X y. Since there is only a finite
number of such sets, for Va1, (T) to be regular it suffices to show that each Xy is
regular.

We can test whether ¢, - - -1, € X, ¢, for n > 1, by executing the caterpillar automaton M
on a(ty,...t,). Indeed, after M moves down from the root into some state z on either #;’s

first last o, .
root by s — z or on t,’s root by s — 2, the only transitions we need consider are ones
M M

within the trees ¢; or between the roots of the ¢;. The crucial question is whether M can
then reach a state 2z’ at the root of some ¢; such that 2’ u—};> s’

We transform the caterpillar automaton M into a string automaton M over T} by replacing
a computation of M on some ¢; with a single state transition of M. Since M may move
from left to right and from right to left among the sibling subtrees t,... ,t,, the string
automaton M is a two-way automaton. Since M may perform tests isFirst and isLast at
the roots of the trees ¢;, the automaton M is an automaton with endmarkers - and - for
the left and right ends of the strings, respectively.

We now give a more detailed description of the transformation of M into a two-way string
automaton M = (Q, 31, 5, F') with endmarkers over Ty. The automaton M has three move
operations: left, stay and right. It has endmarkers - and  for the left and right ends of
strings. The transition relation 4 is a subset of Qx (SU{F, 4}) x Q x {left, right, stay}. For
the input string - a; - - - a, 4 the automaton M starts on the first symbol a; in state s;.
An accepting computation must end on - in a final state. The transition relation 5 does

not contain any transitions s — s', left or s — ', right, so M can never fall off either
end of its input string.

It is well known that two-way automata recognize precisely the regular string languages
as proved by Shepherdson [34].

The states of M are states of M , but M has some additional states. For each walk that
M can perform on some tree ¢t in 7%, starting in state z at the root and returning to
the root in state z', without doing any isRoot, isFirst, or isLast transitions at the root,

we include a transition z L> Z', stay. Thus, we can reduce the whole computation of M
M

within a tree ¢t to a single transition of M on t.

For each transition z # 2" in M and each t in Ty with root label a, we add the transition

. :
z— 2" to M.
Y
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For each transition z le—]\fm’ in M and each ¢t in T}, we add 2 sz’, left to M. We treat
M

the right transitions analogously.

For each transition z ls# Z'in M, M does a left move from state z on any symbol in X7,

then moves right again on . Again, we treat the test isLast analogously.

Finally, we have to ensure that M starts and finishes appropriately. Hence, we introduce

new initial and final states s; and sp for M. Then, M either moves from s; into any

state z such that s %) z without changing its position or moves from $; into any state z

such that sla—]\j>z while simultaneously changing its position to the last 7y symbol in

the input string. Furthermore, for any state z such that z u—];)z’, M moves to the right

endmarker and enters state $p.

By construction, M recognizes X, o. O

5 Caterpillars and tree pattern matching

Kilpeldinen [19] uses tree pattern matching and tree inclusion as a means of querying
databases of structured documents. Although originally designed for context specification,
we can also employ caterpillar expressions and automata to specify queries for document
databases. It turns out that caterpillar expressions and automata are able to represent
several variants of tree inclusion that Kilpeldinen has investigated. In particular, we
reprove two of Kilpeldinen’s time-complexity results [19, 20] using the notion of caterpillar
automata. The proofs are simpler and more uniform than Kilpeldinen’s original proofs.

Tree pattern matching and tree inclusion use a tree p to specify a pattern; the goal is
to find occurrences of the pattern tree p in a target tree ¢ (in general, in a set of target
trees). We now introduce the various notions of tree inclusion studied by Kilpelédinen.

A mapping f : nodes(p) — nodes(t) is a tree inclusion of p in ¢ if and only if the following
three conditions hold:

1. f is injective.

2. f preserves labels: for each node v, the labels of v and f(v) are identical.

3. f preserves ancestorship: for any two nodes p and v of p, p is an ancestor of v if

and only if f(u) is an ancestor of f(v).

A tree inclusion f : nodes(p) — nodes(t) is ordered if and only if it preserves the postorder
of nodes (or, equivalently, the preorder); that is, for any two nodes p and v of p, the node
i precedes v in the postorder of nodes if and only if f(u) precedes f(v).
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A pattern tree p specifies a context mapping C, with respect to (ordered) tree inclusion
as follows: For a tree t and a node v in ¢, the node v is in the context set C,(¢) if and only
if there is an (ordered) inclusion f : nodes(p) — nodes(t) that maps the root of p to v.

An (ordered) path inclusion of p in t is an (ordered) tree inclusion f of p in ¢ that preserves
the parent—child relationship; that is, if p is the parent of v in p, then f(u) is the parent
of f(v). An (ordered) range inclusion of p in t is an (ordered) tree inclusion f of p in ¢ that
maps the set of children of a node v in p onto a continous range of children of f(v). An
(ordered) child inclusion of p in ¢ is an (ordered) tree inclusion f of p in ¢ that surjectively
maps the set of children of a node v in p onto the set of children of f(v). This is the
classical notion of tree pattern matching. An (ordered) subtree inclusion f of p in t is an
(ordered) child inclusion f of p in ¢ that maps each external node of p to an external node
of ; that is, p is isomorphic to a subtree of ¢.

A pattern tree p specifies contexts C,(,O)T, CZ(,O)P, C,(,O)R, CZ(,O)C and C,(,O)S with respect to

(ordered) tree, path, region, child and subtree inclusion, respectively.

Theorem G For each pattern tree p, the context mappings C,(,O)P, C;,(,O)R, C;,(,O)C and C,(,O)S

are caterpillar context mappings. Furthermore, for each ordered type of inclusion, there
are a caterpillar expression and a deterministic caterpillar automaton of sizes O(p) that
denote the corresponding context mapping.

Proor For each pattern tree p and each target tree ¢ the context sets sz), C;{, Cpc and
CS of the unordered inclusion type are finite unions of some context sets CZ?P, CI(,)R, CI(,)C
and C]DOS of the ordered inclusion type, respectively. Hence, we need to consider only the
ordered inclusion type.

We first demonstrate the case of ordered path inclusion, constructing, by induction on
the pattern tree p, a caterpillar expression F, such that the caterpillar-regular language
L(E) denotes CP":

If p=a,ack, then £, = a.
If p=a(pi,...,pn), n > 1, then

E, = a first right™ E,, right right* E,, - - - right right* E, up.

The observation that L(E) denotes Cp¥ is based on the following characterization of CP":
Letting p = a(p1,... ,pn), n > 0, a node v of a target tree ¢ is in the context set CI?P (t)
if and only if v is labeled a and v has children v4,... , v, such that v; is in the context
set CI(,)iP(ti), 1 <i<mn,and t = a(ty,...,t,). The crucial property of E, is that each
caterpillar w in L(E},), when started at a node v of a pattern tree ¢, only visits v and
descendants of v and if it is successful, then it terminates at node v. This property
guarantees Cr(g,) = CpOP.
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For the other three types of inclusion we provide only the inductive definitions of cater-
pillar expressions.

Ordered range inclusion:

Ea = a,
Eapr,... pn) = a first right™ E,, right E,, - - - right £, up.

Ordered child inclusion:

E, =a,
Eapy,... pn) = a first B, right E,, - -- right E, isLast up.

Ordered subtree inclusion:

E, = aisLeaf,
Eopy,... pn) = a first By, right Ep, - - right E,, isLast up.

Obviously, the expressions E, we have constructed are of sizes linear in the size of p.
Furthermore, deterministic caterpillar automata of the same size are easily constructed
from the expressions. O

If we combine Theorems A and G, we obtain new proofs of two of Kilpaldinen’s time-
complexity results [19, 20] on tree inclusion.

Theorem H Given a pattern tree p with m nodes and a target tree t with n nodes, we
can compute in time O(m X n) all ordered path and range inclusions of p in t.

The proof is simpler than Kilpeldinen’s and uniform for both types of inclusion. The same
technique also works for unordered child and subtree inclusions, but the time complexities
are worse than those obtained by Kilpelédinen.

In the proof of Theorem G for unordered inclusions the sizes of the caterpillar expressions
and automata we obtain are exponential in the sizes of the pattern trees. It is an open
question whether polynomially sized expressions or automata can be found.

If we restrict the alphabet A to only movements, omitting the positional tests, Theorem G
still holds for (ordered) path and region inclusion but no longer holds for (ordered) child
or subtree inclusions [29].

Theorem I Let A, = {up, left, right, first, last}. For any pattern tree p, there are cater-
pillar expressions and deterministic caterpillar automata over the reduced alphabet A, UX
that denote CZ(,O)P and C,(,O)R, respectively. For each of the two ordered types of inclusion,
expressions and automata of sizes O(p) can be found.
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PROOF The proofs for the cases of (ordered) path and range inclusion in Theorem G also
carry the stronger results of this theorem, since the expressions and automata that were
constructed in the proofs of Theorem G make use of only the reduced alphabet. O

Theorem J Let A, = {up, left, right, first, last}.

1.

For any pattern tree p with at least two nodes, there is no caterpillar-reqular language
over the reduced alphabet A, U Y that denotes either Cz?c or Cpc.

For any pattern tree p, there is no caterpillar-reqular language over the reduced
alphabet A, U Y that denotes either CI(,)S or CS.

PrROOF The proofs use the surjectivity of the inclusion mapping to obtain contradictions.

1.

Let p be a pattern tree with at least two nodes; that is, p = a(p1,... ,pn), n > 1.
We construct a target tree ¢ = a(py,...,Pn,P1,--.,Pn) such that ¢ contains two
copies of each of p’s subtrees p;, 1 < i < n.

There is a natural relationship between the roots of p and ¢ and between each nonroot
node of p and its two copies in t. It is intuitive that each walk of a caterpillar on p
corresponds to either one or two related walks of the same caterpillar on ¢, depending
on whether the walk starts at the root or at an interior node, respectively. We
omit a formal proof, which uses induction on the length of the walk since it is
straightforward. The crucial observation is that when a walk on p moves down from
the root, the corresponding walk on ¢t moves down either with a first move, in the
left copy of the forest (pi,...,pn), or with a last move, in the right copy of the
forest (p1,...,pn). In both cases the caterpillar is at a node in ¢ that corresponds
naturally to the node the caterpillar is at when traversing p. As a consequence,
each caterpillar over the restricted alphabet A, U Y that successfully completes its
walk when started at p’s root also successfully completes its walk when started at
t’s root.

We now assume that there is a regular language L over A, U ¥ such that either
C, = CJC or C;, = Cy. Since the identity mapping is an (ordered) child inclusion
of p in p, we can find a caterpillar w in L such that w succeeds when started at p’s
root; hence, w also succeeds when started at ¢’s root. But there is no child inclusion
of p in ¢t that maps p’s root to t’s root since the two roots have different numbers of
children. Therefore, we have obtained a contradiction.

. Let p be any pattern tree. We construct a target tree ¢ by appending a new singleton

node to one of p’s leaves. Observe that each caterpillar over the restricted alphabet
A, UY that successfully completes its walk when started at p’s root also successfully
completes its walk when started at t’s root.

Assume that there is a regular language L over A, U X such that either C;, = CI(,)S
or Cr, = CS. Since the identity mapping is a subtree inclusion of p in p, there is
a caterpillar w in L such that w succeeds when started at p’s root; hence, it also
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succeeds when started at #’s root. But there is no subtree inclusion of p in ¢ that
maps p’s root to t’s root. For, any such subtree inclusion would induce a inverse
image for each of t’s leaves and for t’s root; hence, the inclusion mapping must
be surjective. But ¢ has one more node than p; therefore, we have obtained a

contradiction. 0

6 Closing remarks

Our investigation of caterpillar-regular and regular tree languages leaves a number of
questions unanswered. Among them are:

1. For all pattern trees p, are the context mappings C;’" and C, caterpillar contexts?
Our strong intuition is: No, they are not.

2. Is the family of caterpillar-regular languages closed under complement?
Our strong intuition is: No, they are not.

3. Can each caterpillar-regular language be denoted by a strongly deterministic cater-
pillar automaton (in the sense that the tree-traversing caterpillar automaton of
Fig. 4 is strongly deterministic?).

Our tentative conjecture is: No, they cannot.

4. Is each regular tree language also caterpillar regular?

Our strong intuition is: No, they are not.

We have mentioned our interest in document classes that are constrained by some type
of grammars, for example by XML DTDs. The results in this paper hold for the classes
of all documents that are given as trees over a fixed alphabet. Applications, particularly
applications based on document databases, often come with non-trivial document gram-
mars. It is therefore pertinent to generalize our results to document classes defined by
non-trivial document grammars and to address the open questions in this light.

Children, and even adults, were able to draw complex figures very quickly in the Logo
language [1] using the turtle as metaphor and guide. We hope that our use of caterpillars
will garner a similar response from graphics designers.
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