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ABSTRACT

The Goldschmidt tolerance factor in halide perovskites limits the number of cations that can 

enter their cages without destabilizing their overall structure. Here we have explored the limits of 

this geometric factor and found that the ethylammonium (EA) cations which lie outside the 

tolerance factor range can still enter the cages of the 2D halide perovskites by stretching them. The 

new perovskites allow us to study how these large cations occupying the perovskite cages affect 
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the structural, optical, and electronic properties. We report a series of cation engineered 2D 

Ruddlesden-Popper lead iodide perovskites (BA)2(EAxMA1-x)2Pb3I10 (x = 0-1, BA is n-

butylammonium, MA is methylammonium) by incorporating large EA cation in the cage. Analysis 

of the single-crystal structures reveals that the incorporation of EA in the cage significantly 

stretches Pb-I bonds, expands the cage, and induces a large octahedral distortion in the inorganic 

framework. Spectroscopic and theoretical studies show that such structural deformation leads to a 

blue-shifted bandgap, sub-bandgap trap states with wider energetic distribution, and stronger 

photoluminescence quenching. These results enrich the family of 2D perovskites and provide new 

insights for understanding the structure-property relationship in perovskite materials. 

INTRODUCTION

Lead halide perovskites have revolutionized the fields of photovoltaics and optoelectronics 

as promising semiconductors.1-4 Since the first incorporation of CsSnI3 and CH3NH3PbI3 in solar 

cells3,4, high performance photovoltaic and optoelectronic devices have been achieved with this 

class of materials adopting a three-dimensional (3D) perovskite structure of APbX3, where A is 

Cs+, CH3NH3
+ (MA), or [HC(NH2)2]+ (FA), and X is a halide anion. The crystal structure consists 

of 3D corner sharing PbX6
4- octahedra with the A cation occupying the cuboctahedral site formed 

in the middle of eight adjacent octahedra. Recently, the two-dimensional (2D) perovskite 

derivatives have been demonstrated as promising more stable alternatives to their 3D counterparts 

for solar cells and light emitting diodes.5 It is not only the increased chemical stability but also the 

more diverse and tunable optical and electronic properties that make this class of perovskites 

highly attractive for investigation.6-11 The family of 2D perovskites has a general formula of 

(A′)m(A)n−1PbnX3n+1, where A′ is a large monovalent (m = 2) or divalent (m = 1) organic cation, 
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and n is an integer that indicates the thickness of the perovskite layer. Conceptually these materials 

derive by slicing the 3D perovskites structure along the (100) plane and incorporating large spacer 

cations (A′) between the resulting layers. Most of reported 2D structures can be considered as self-

assembled multiple quantum wells with charge carriers confined in the perovskite layers due to 

both the wider bandgap and the lower dielectric constant of the organic spacer.6,12-14

With a view to further enhancing device efficiency, extensive studies have been carried out 

to understand the role played by the A-cations in structural, optoelectronic, and charge carrier 

properties. The desirable photophysical properties have been mostly attributed to the inorganic 

framework because, in most known compounds, the A-cation does not directly contribute to the 

electronic structure of band edge states, but it does so indirectly.15 Comparative studies on the 

three APbBr3 (A = Cs, MA or FA) perovskites showing markedly similar carrier properties and 

device performance further support such a picture. Nevertheless, the interplay between the A 

cation and the inorganic framework may influence the optoelectronic properties and carrier 

dynamics. For example, the bandgap of 3D APbI3 decreases with increasing size of A-cation due 

to the decrease of octahedral tilt which is characterized by the Pb-I-Pb angle.16,17 Moreover, there 

have been several proposals as how A-site cations may contribute to the remarkable carrier 

properties such as long-lived carriers and long carrier diffusion lengths.18-21 These mechanistic 

studies suggested unusual structure-property relationships such as formation of ferroelectric 

domains, local symmetry breaking, large polaron formation, and dynamic Rashba effect that might 

be closely associated with the dynamic disorder and polarity of the A-site cations.22-26 Despite 

progress in our understanding, further investigation on the structure-property relationship is 

hindered by the limited options of A-cations in 3D perovskites due to the geometric consideration 

of the so-called Goldschmidt rule.27-29 In general, the formation of a perovskite structure depends 
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4

on Goldschmidt tolerance factor (t), , in which , , and  is the 𝑡= (𝑟𝐴 + 𝑟𝑋)/[ 2(𝑟𝑃𝑏 + 𝑟𝑋)] 𝑟𝐴 𝑟𝑃𝑏 𝑟𝑋
effective radii of A, Pb, and X ion. Large (such as EA) or small (such as Rb) cations can result in 

non-perovskite structures due to the large ionic size mismatches (i.e. t > 1 or t < 0.8).

In this article, we advance fundamental understanding on the structure-property relationship 

in lead iodide perovskites by studying new 2D crystal structures with unusual A-cations which do 

not follow the Goldschmidt rule and use these materials to perform ultrafast spectroscopic studies. 

Large organic cations such as guanidinium, dimethylammonium, and ethylammonium cannot by 

themselves crystallize in a 3D perovskite structure but can be alloyed into the 3D lattice of MAPbI3 

or CsPbI3 to form mixed-cation compositions which is referred to as tuning of the effective 

Goldschmidt tolerance factor.30-32 Some other large cations such as ethylenediammonium can be 

incorporated into a 3D perovskite structure with expelling metal and halide atoms from the 

structure, forming a discontinuous perovskite lattice.33-35 While chemical engineering of 2D 

perovskites has focused in the past on changing the organic cation occupying the A′-site9,36, recent 

studies pointed out that the Goldschmidt rule could be relaxed in the 2D perovskites,37 allowing 

large organic cations to occupy the perovskite cages (A-site). This was unambiguously 

demonstrated by a few crystallographically well characterized 2D perovskites including (n-

C6H13NH3)2[C(NH2)3]Pb2I7,
37 (n-C5H11NH3)2[C(NH2)3]Pb2I7,

38 (i-PA)2(i-PA)Sn2I7 [i-PA = 

(CH3)2CHNH3
+],15 and (EA)2(EA)2Pb3X10 (X = Cl, Br).39-41 The relaxed Goldschmidt rule 

significantly expands the library of 2D perovskites, providing a new platform for investigating the 

role of the A-cation on the structural and photophysical properties.  

Here we report a 2D tri-layered perovskite (BA)2(EA)2Pb3I10 (BA is n-butylammonium) 

which incorporates large EA cation in the lead iodide perovskite cage. The structure features a 

significantly stretched perovskite cage with elongated Pb-I bond lengths and a higher level of 
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octahedral distortion compared to the prototypical (BA)2(MA)2Pb3I10. To provide a clearer picture 

of the interplay between the A-cation and the inorganic structure in determining the properties, we 

synthesized a series of A-cation alloyed 2D perovskites (BA)2(EAxMA1-x)2Pb3I10 and investigated 

their crystal structures, optical and electronic properties, and excited state dynamics using a range 

of structural and spectroscopic techniques in combination with theoretical calculations. 

The single-crystal X-ray diffraction measurements show that the average Pb-I bond length 

and the level of octahedral distortion increases with increasing the amount of EA cation (equivalent 

to increasing the size of A-cation), while the octahedral tilt is retained. Contrary to the bandgap 

redshift due to less octahedral tilting in 3D APbI3 with increasing cation size (such as bandgap 

shift from orthorhombic CsPbI3 to tetragonal MAPbI3 and to cubic FAPbI3 at room temperature,42 

or bandgap redshift in the alloys with an increasing average cation size43), the alloyed 2D 

perovskites exhibit blue-shifted bandgap with increasing EA content. The bandgap blueshift is 

consistent with band structure calculations, which point to the crucial role of Pb-I bond length as 

opposed to octahedral tilting in determining the bandgap of these EA-based halide perovskites. 

Moreover, the structural evolution with increasing the EA content further leads to gradual 

photoluminescence (PL) quenching and more asymmetric PL peaks. Transient absorption 

spectroscopy measurements on these alloys reveal the existence of a broad distribution of trap 

states below the optical bandgap. The energetic distribution of these trap states is broader with 

increasing EA content, which likely are responsible for PL peak asymmetry and quenching. These 

results provide guidelines for rational design of new and more efficient 2D perovskite materials 

for optoelectronic applications.

RESULTS AND DISCUSSION
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Crystal structure of (BA)2(EA)2Pb3I10. Single crystals of (BA)2(EA)2Pb3I10 were grown 

from concentrated hydroiodic acid using an off-stoichiometry protocol (see Experimental Section 

for more details). Crystallographic data and structural refinement information of (BA)2(EA)2Pb3I10 

are provided in Table S1. The crystal structure consists of three layers of corner-connected 

PbI6
4−octahedra with a bilayer of BA cations as spacers separating the perovskite slabs (Figure 1a), 

and the EA cations filling in the perovskite cavities (Figure 1b). The perovskite cages exhibit a 

combination of short and long Pb-I bonds along the out-of-plane direction (perpendicular to the 

layers), while almost the same Pb-I bond lengths along the in-plane directions. A view along c 

direction clearly shows that the structural distortion of the inner layer is different from that of the 

two outer layers. The inner layer exhibits less out-of-plane octahedral distortion but more in-plane 

octahedral tilting, while the outer layer displays more out-of-plane octahedral distortion but less 

in-plane octahedral tilting (Figure 1c). The inner layer can be viewed as templated by two cage 

EA cations, while the outer layer is templated by one interlayer BA cation and one cage EA cation. 

As a result, the inorganic framework distorts in a different way to accommodate the one of the 

possible conformations of these organic cations. The structural characteristics are similar to the 

previously reported single-cation templated 2D perovskites (EA)2(EA)2Pb3X10 (X = Cl-, Br-).39 

However, the iodide-based compounds have not been reported probably because the EA cation is 

too small to serve as interlayer spacer for the iodide perovskites.
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7

Figure 1. The crystal structure of (BA)2(EA)2Pb3I10. (a) Side-view of the crystal structure along c 

direction. Also illustrated are the definition of the thickness of perovskite slab (L1) and the 

interlayer distance (L2). (b) Crystal structure of the perovskite cages showing the occupation of the 

EA cations in the cuboctahedral sites. The dash lines highlight the longest Pb-I bonds. Also 

illustrated are the definition of equatorial and axial Pb-I-Pb angles. (c) Top-view of the outer layer 

and inner layer, which clearly shows different in-plane tilt.

Owing to the much larger size of EA (effective radius r = 274 pm) relative to MA (r = 217 

pm), the incorporation of EA cation in the cage significantly modulates the structural and bonding 

properties compared to previously reported 2D structures with MA cation in the cage. To illustrate 

the unique structural characteristics, we compare the structural parameters and bonding properties 

of (BA)2(EA)2Pb3I10 with the prototypical (BA)2(MA)2Pb3I10. The results are summarized in Table 

1. (BA)2(EA)2Pb3I10 crystallizes in the orthorhombic space group Cmc21 with cell parameters a =

52.0158(16) Å, b = 8.9727(3) Å, and c = 8.9745(3) Å, while (BA)2(MA)2Pb3I10 crystallizes in the 

orthorhombic space group C2cb with cell parameters a = 8.9275(6) Å, b = 51.959(4) Å, and c = 

8.8777(6) Å.44 One obvious difference between the two compounds is that the presence of EA 
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cation in the cage significantly stretches the Pb-I bond distances, expanding the unit cell of 

(BA)2(EA)2Pb3I10 in the three directions. The (BA)2(EA)2Pb3I10 exhibits much longer Pb-I bonds 

compared to any reported 2D lead iodide perovskites with n = 3 (Table S2). For example, the 

average Pb-I bond length of (BA)2(EA)2Pb3I10 is 3.213 Å, while that of (BA)2(MA)2Pb3I10 is 3.163 

Å. The longest Pb-I bond length in (BA)2(EA)2Pb3I10 is 3.458 Å (highlighted as dash bonds in 

Figure 1b), which is one of the longest bonds in all reported lead iodide perovskites. As a result, 

the volume of the unit cell increases by 70.6 Å3, corresponding to ~1.7 % volume expansion, for 

(BA)2(EA)2Pb3I10 compared to (BA)2(MA)2Pb3I10. If only the inorganic framework is considered, 

the volume expansion is even more significant, as indicated by the ~4.6 % expansion of the 

perovskite cage volume defined by the volume of the cuboid made up by eight adjacent Pb atoms 

at the cuboid corners.

Table 1. Comparison of the structural and bonding parameters between (BA)2(MA)2Pb3I10 and 

(BA)2(EA)2Pb3I10.

Structure/comparison (BA)2(EA)2Pb3I10 (BA)2(MA)2Pb3I10

Difference (EA-

MA)

Formula weight 2131.05 2103.00 28.05

Crystal system orthorhombic orthorhombic /

Space group Cmc21 C2cb /

Unit cell dimensions

a = 52.0158(16) Å

b = 8.9727(3) Å

c = 8.9745(3) Å

α, β, γ = 90 °

a = 8.9275(6) Å

b = 51.959(4) Å

c = 8.8777(6) Å

α, β, γ = 90 °

/
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9

Volume of unit cell (Å3) 4188.6(2) 4118.0(5) 70.6 (~1.7%)

Volume of perovskite cage 

(Å3) 
267.2 255.1 12.1 (~4.7%)

L1 (cage) (Å) 13.274 12.876 0.398 (~3.1%)

L2 (spacer) (Å) 12.734 13.834 -1.100 (~8.0%)

Average Pb-I bong length 

(Å) 
3.213 3.163 0.050 (~1.6%)

Average quadratic 

elongation ( ) ⟨𝜆⟩ 1.00117 1.00058 5.9 × 10-4

Average bond angle variance 

(deg2)
19.3 4.4 14.9

Average Pb-I-Pb bond angle 

(deg)
166 170 -4

In addition to the lattice expansion, the incorporation of EA cation in the cage induces a 

higher level of structural distortion. In general, structural distortions of the inorganic framework 

can be categorized into two types. One is the geometrical distortion of the PbI6
4- octahedra 

themselves, which can be quantified by octahedral distortion parameters of bond length quadratic 

elongation (⟨λ⟩) and bond angle variance (σ2)45

⟨λ⟩=
1

6

6∑
{i = 1}

(
𝑑𝑖𝑑𝑜)2

𝜎2 =
1

11

12∑
{𝑖= 1}

(𝛼𝑖― 90)2
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10

where  is the Pb-I bond length,  is the mean Pb-I bond distance,  is the I-Pb-I bond angles of 𝑑𝑖 𝑑𝑜 𝛼𝑖
the octahedra. In an ideal PbI6 octahedron, both  and   are equal to 1. Larger  indicates a ⟨𝜆⟩ 𝜎2 ⟨𝜆⟩
more stretched octahedron, while larger  indicates higher deviation of Pb position from the 𝜎2

center. The average  and  of overall structure (BA)2(EA)2Pb3I10 is calculated to be 1.00117 ⟨𝜆⟩ 𝜎2

and 19.3 deg2, which is higher than that of (BA)2(MA)2Pb3I10 (1.00058 and 4.4 deg2), respectively. 

The other type of structural distortion is the larger global distortion between adjacent octahedra 

(i.e. octahedral tilting), which can be determined from the Pb−I−Pb bond angle. In an ideal cubic 

perovskite with no octahedral tilting, the Pb−I−Pb bond angle is equal to 180°. The average Pb-I-

Pb angle is 166 deg and 170 deg for (BA)2(EA)2Pb3I10 and (BA)2(MA)2Pb3I10, respectively, 

indicating a slightly higher octahedral tilting in the former. 

It is also interesting to point out that when switching the A-cation from MA to EA the 

thickness of the perovskite slab (defined as L1 in Figure 1a) is increased slightly from 12.876 Å to 

13.276 Å, while the interlayer distance (defined as L2 in Figure 1a) is reduced from 13.834 Å to 

12.734 Å. This has been considered as an indicator of inherent strain relaxation in 2D 

structures.37,46 Although the incorporation of EA cation in the perovskite cage creates large strain 

on the inorganic framework, this strain can be readily dissipated into the interlayer space via 

octahedral distortion of the outer layers. As a result, the BA cations change the molecular 

conformation to accommodate the distortion. In addition, from the viewpoint of the recent 

proposed ‘lattice mismatch model’,46 one may expect that substitution of the MA by EA will 

enhance the initial in-plane strain between the (BA)2PbI4 and 3D_like layers when they are 

associated to form in-plane coherent interface in a multilayered composite. Although the 3D 

EAPbI3 structure does not exist, simple considerations based on the Goldschmidt rule predict a 
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11

larger volume for the hypothetic unit cell of EAPbI3 than for the unit cell of MAPbI3 and thus a 

larger in-plane mismatch with (BA)2PbI4. 

Structural evolution of (BA)2(EAxMA1-x)2Pb3I10 alloys. To better illustrate the influence 

of A-cation on the structural properties, we further synthesized a series of single-crystal A-cation 

alloyed 2D perovskites of (BA)2(EAxMA1-x)2Pb3I10 using precursor solutions containing mixed 

MA and EA cations. The MA to EA ratios determined by 1H NMR measurements on three 

representative alloys are 0.73/0.27, 0.55/0.45 and 0.35/0.65, respectively. The determined MA to 

EA ratio is slightly higher than the ratio in the precursor solution (Figure S1), indicating the 

inorganic lattice enthalpically prefer MA cation. However, entropic gain will drive the mixing of 

the two cations. The compounds are described as MA0.73EA0.27, MA0.55EA0.45 and MA0.35EA0.65 for 

the following discussion. Figure S2 shows the calculated tolerance factor as a function of EA 

content. Using the tolerance factor of FAPbI3 as a reference point, the ability to incorporate large 

EA cation with content exceeding 0.62 stems from the relaxed tolerance factor requirement in 2D 

perovskites. Crystal structures of these alloys were solved using single-crystal X-ray diffraction 

for structural comparison. Because the MA and EA cations are highly disordered in our single-

crystal X-ray diffraction data, we cannot distinguish and model them accurately. Therefore, the 

structures were refined as either MA or EA as the A-cation, depending on which one gives better 

refinement, but this will not influence the structures of the inorganic framework. The 

crystallographic data and structural refinement information are provided in Table S3. These alloys 

crystallize in the monoclinic space group Cc, which has a lower symmetry than the pure A-cation 

structures. 

Cation alloying can be viewed as an effective approach to tune the average size of A-cation. 

Figure 2 shows the trends of several structural parameters as the EA/MA ratio (or the average size 
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of A-cation) increases. For example, the average Pb-I bond length and cage volume increase with 

increasing the EA/MA ratio (Figure 2a). The thickness of the perovskite slab (L1) also increases 

with increasing the EA/MA ratio, while the interlayer distance decreases (Figure 2b). The 

interlayer distance is indeed changing as a result of a strain along the stacking axis opposite to the 

in-plane initial strain.46 We consider this as an indicator of increasing strain in the alloys with more 

EA cations in the cages. Furthermore, incorporation of more EA cations induces a larger deviation 

from the ideal PbI6
4- octahedron, as demonstrated by the increasing  and  (Figure 2c). ⟨𝜆⟩ 𝜎2

Interestingly, the average octahedral tilting angle remains quite similar (Figure 2d), which appears 

to slightly increase and then decrease. In fact, the even slightly smaller tilting angle in the EA 

structure than MA structure is counterintuitive, because one may expect that EA cation will stretch 

Pb-I-Pb bond angle (make it closer to 180°) due to the much larger effective radius, similarly to 

the structural evolution from orthorhombic CsPbI3 to tetragonal MAPbI3 then to cubic FAPbI3 

(Table S4). However, octahedral tilting is an efficient way to relax internal stress46 related to the 

formation of the multilayered composite. These two effects play in opposite directions. 
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13

Figure 2. Structural properties of (BA)2(EAxMA1-x)2Pb3I10 alloys. The trends of (a) average Pb-I 

bond length and cage volume, (b) thickness of the perovskite slab (L1) and interlayer spacer 

distance (L2), (c) average I-Pb-I angle variance and Pb-I length quadratic elongation, (d) average 

Pb-I-Pb angle as a function of alloying degree.

The above comparisons are focused on the average of overall structure (i.e. two outer layers 

+ one inner layer). However, it is important to point out that the inner and outer layers exhibit 

distinctive structural properties. Figure 3 provides the trends of the octahedral distortion and 

octahedral tilt of the inner and outer layers as a function of alloying degree. The outer layer exhibits 

higher octahedral distortion than the inner layer, as demonstrated by larger  and  in all ⟨𝜆⟩ 𝜎2

compounds. Both the inner and outer layers show an increasing trend of the  with increasing the 𝜎2
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EA content (Figure 3a). The  of the inner layer is slightly reduced in the EA alloys compared ⟨𝜆⟩
to the MA structure (Figure 3b). Therefore, the increasing trend of the  in the overall structure ⟨𝜆⟩
is mainly determined by the outer layer, which exhibits larger  with an increasing EA content ⟨𝜆⟩
(Figure 3b). This is because the incorporation of EA cations in the cage induces a greater impact 

on elongating the longest Pb-I bonds (highlighted as dash lines in Figure 1b) than the other bonds. 

Figure 3. Structural properties of the inner and outer layers in the set of (BA)2(EAxMA1-x)2Pb3I10. 

The trends of (a) average I-Pb-I angle variance, (b) Pb-I length quadratic elongation, (c) average 

equatorial Pb-I-Pb angle of the inner and outer layers as a function of alloying degree. Panel c also 

shows the trend of axial Pb-I-Pb angle.

Due to the anisotropic 2D structure, we categorized the Pb–I–Pb angles into two groups: 

equatorial angle and axial angle (see Figure 1b for definition) for the comparison of octahedral tilt. 

As shown in Figure 3c, the average axial angle increases from 170 deg (MA) to 178 deg 

(MA0.73EA0.27) and then slightly decreases to 174 deg (EA). The average equatorial angle of the 

outer layer also increases from 168 deg (MA) to 176 deg (MA0.73EA0.27) and then decreases to 167 
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15

deg (EA). However, the average equatorial angle of the inner layer exhibits an opposite trend, 

which dramatically decreases from 170 deg (MA) to 156 deg (MA0.55EA0.45) and then remains 

almost unchanged. The results show that the incorporation of the EA cations in the cage induces a 

larger in-plane tilt in the inner layer. However, when the overall structures are considered, this 

effect is partially cancelled due to the smaller in-plane tilt of the outer layer and the smaller tilt 

along the stacking direction. Because the inner layer is templated by the two cage EA cations, the 

larger in-plane tilt of the inner layer is probably due to steric and Coulombic interactions between 

the EA cations and inorganic framework. For example, because the EA cation exhibits a more 

anisotropic shape than the MA cation, the octahedra of the inner layer have to tilt in a certain way 

to accommodate the EA configuration (as highlighted in Figure 1c). 

 Optical properties of (BA)2(EAxMA1-x)2Pb3I10 (x = 0-1). Absorption spectra collected on 

exfoliated single crystals show a continuous blue shift of the excitonic absorption peak as the EA 

content increases (Figure 4a). Absorption spectra of 15 randomly selected exfoliated crystals of 

MA0.55EA0.45 show close excitonic absorption peaks, confirming no phase segregation into the MA 

and EA structures (Figure S3). PL spectra of the corresponding bulk single crystals also exhibit 

blue shift (Figure 4b). The tuning of the bandgap can also be seen in the crystal color, which 

gradually changes from red to black with decreasing the EA content (Figure S4). The 

(BA)2(EA)2Pb3I10 has a PL emission peak located at 585 nm (corresponding to an optical bandgap 

of 2.12 eV), which is significantly blue shifted from that of (BA)2(MA)2Pb3I10 at 620 nm (2.00 

eV). In fact, (BA)2(EA)2Pb3I10 exhibits the highest bandgap among all previously reported n = 3 

lead iodide 2D perovskites (Table S2). We note that the PL spectra collected in the interior and 

edge of the (BA)2(EA)2Pb3I10 are almost unchanged (Figure S5).  Figure 4c shows the plot of 
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excitonic absorption/emission peaks as a function of x value, conforming to the Vegard’s law 

approximation (fitting lines). 

Figure 4. Optical properties of the (BA)2(EAxMA1-x)2Pb3I10 alloys. (a) Absorption spectra of the 

alloys. (b) PL spectra of the alloys. Normalized spectra are shown in the inset. (c) The plot of 

excitonic absorption peak and emission peak as a function of the EA content. The straight lines 

are the fits using the Vegard’s law (d) Plot of relative PL intensity and PL asymmetric factor as a 

function of the EA content.
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Besides the tuning of the bandgap, the PL intensity is quenched in the structure with an 

increasing EA fraction (i.e. x value) (Figure 4b and 4d). As an example, the PL intensity of 

(BA)2(EA)2Pb3I10 is about 20 times weaker than that of (BA)2(MA)2Pb3I10. Note that the PL 

spectra were collected on bulk single crystals with freshly cleaved surfaces under the same laser 

excitation power density. Such strong PL quenching seems to be associated with the higher 

octahedral distortion and elongated Pb-I bond length, as will be discussed below. Another 

interesting characteristic is that, each PL spectrum displays an asymmetric line-shape, tailing to 

lower energy. We introduce an asymmetric factor to quantify the PL tailing effect: 

As = Hr/Hb

where Hb and Hr are the peak half-widths at 10% of the peak height. Hb corresponds to the blue 

(higher energy) side, while Hr characterizes the red (lower energy) side relative to the peak 

position. As shown in Figure 4d, the asymmetric factor increases as the EA content increases and 

is anti-correlated with the relative PL intensity. The low-energy tail in the static PL spectra can be 

attributed to the radiative recombination of trap states below the bandgaps, as has been previously 

suggested.47 Further investigation of the trap states is discussed in a separate section below using 

ultrafast spectroscopic techniques. 

Having characterized the structural and optical properties, we turn to understand and derive 

the structure-property relationship. Table 2 summarizes the optical and structural properties of the 

set of (BA)2(EAxMA1-x)2Pb3I10. Optical transitions in perovskite materials occur between filled 

Pb(6s)−I(5p) hybrid orbitals and empty Pb(6p) orbitals of the inorganic layer (vide infra). As a 

result, the optical bandgap can be correlated with the degree of anti-bonding overlap between the 

Pb(6s) and I(5p) orbitals, which is strongly modulated by the bonding parameters such as Pb-I-Pb 

bond angle and Pb-I bond length.16 While the A-cations do not directly contribute to the electronic 
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band structure close to the band edges, they have a strong influence on the tilting of PbI6
4- 

octahedra and in turn affect the degree of orbital overlap between Pb and I orbitals. For example, 

there is a systematic decreasing trend in the bandgap with increasing the size of A-cation in the 

perovskite phases of 3D APbI3 (A = Cs, MA, FA) at room temperature (Table S4). This is because 

the octahedral tilting decreases (or Pb-I-Pb bond angle increases) while the Pb-I bond length 

almost remains unchanged as the cation size increases, leading to an increased overlap of the 

Pb(6s) and I(5p) orbitals and in turn a more destabilized valence band.15,42 

Table 2. Comparison of optical properties and structural parameters for (BA)2(EAxMA1-x)2Pb3I10

EA EA0.65MA0.35 EA0.45MA0.55 EA0.27MA0.73 MA

Absorption peak (eV) 2.145 2.119 2.079 2.065 2.023

PL emission (eV) 2.118 2.086 2.049 2.029 2.001

Relative PL intensity 0.050 0.097 0.146 0.285 1

PL asymmetric factor 1.95 1.92 1.87 1.68 1.56

Ave. Pb-I bond length (Å) 3.213 3.206 3.203 3.178 3.165

Ave. cage volume (Å3) 267.2 264.5 264.4 259.5 255.1

Ave. Pb-I-Pb bond angle (°) 166 167 169 172 169

Quadratic elongation (⟨𝜆⟩) 1.00117 1.00087 1.00079 1.00063 1.00058

Bond angle variance ( , deg2)𝜎2 19.3 14.2 8.0 5.8 4.4

Interestingly, the average octahedral tilting of the overall structure in the set of 

(BA)2(EAxMA1-x)2Pb3I10 alloys remains similar. The wider optical bandgap can thus be attributed 
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to the gradually increasing Pb-I bond elongation which leads to less overlap between the electron 

wave functions of the Pb(6s) and I(5p) orbitals and narrower band widths. In fact, the trend is 

consistent with high-pressure studies on 2D perovskites, which show bandgap redshift with 

decreasing Pb-I bond length under pressure.48 The alloying of EA cation into the cage acts like 

“negative chemical pressure” to expand the crystal structure, which can be a generic approach to 

tune the optoelectronic properties of 2D perovskites.48 Similar bandgap blueshift in the 3D 

“hollow” perovskites with increasing Pb-I bond lengths has also been observed.34,35 

Another interesting structure-property relationship is that the PL quenching seems to 

correlate with Pb-I bond length and/or individual PbI6
4- octahedral distortion. PL efficiency is 

determined by the relative ratio of radiative recombination rate to non-radiative recombination 

rate.49 The radiative recombination rates of these alloys are expected to be similar, as they likely 

have similar exciton binding energies. Therefore, the pronounced PL quenching which usually 

indicates poor photophysical properties in a direct band gap semiconductor might originate from 

more non-radiative recombination losses in the structures with higher EA content. Comparable 

photophysical properties have been reported in the perovskite phases of orthorhombic CsPbI3, 

tetragonal MAPbI3, and cubic FAPbI3, which exhibit almost ideal PbI6
4- octahedra and constant 

Pb-I bond length but different octahedral tilting (Table S4). In conjunction with the observations 

here, the photophysical properties of these 2D perovskite materials appear to be mostly governed 

by the Pb-I bond length and/or octahedral distortion, with no noticeable effect of octahedral tilting. 

Electronic structure and dielectric properties. We next consider how the A-site cations 

affect the electronic structure and dielectric properties from a theoretical perspective. In this 

respect, we first performed Density Functional Theory (DFT) based calculations using the PBE 

functional and including spin-orbit coupling (SOC), which will be the default level of theory if not 
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otherwise stated. Figure 5a and 5b compare the computed band structures of (BA)2(EA)2Pb3I10 and 

(BA)2(MA)2Pb3I10. Both band structures present an almost direct bandgap at Γ, and the calculated 

bandgaps are 0.86 eV and 0.50 eV for the EA and MA structure, respectively. In (BA)2(EA)2Pb3I10, 

a slightly indirect band gap appears owing to the breaking of symmetry along Γ-X direction (not 

shown). The slight shift of valence band maxima (VBM) from Γ points to possible Rashba effect 

due to the giant SOC of Pb atom.50 Moreover, the band structures of both compounds show that 

dispersive bands are only present in the 2D plane while flat bands occur along Γ-Y. This suggests 

little or no electronic coupling along the direction that corresponds to the layer stacking axis.
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Figure 5. Comparison of electronic band structures of (BA)2(EA)2Pb3I10 and (BA)2(MA)2Pb3I10. 

Calculated electronic band structures including SOC of (a) (BA)2(EA)2Pb3I10 and (b) 

(BA)2(MA)2Pb3I10. Wave-functions computed without SOC at Γ for (c) (BA)2(EA)2Pb3I10 and (d) 

(BA)2(MA)2Pb3I10, show the orbital hybridizations at VBM and CBM. Local density of states 

computed with SOC at VBM and CBM for (e) (BA)2(EA)2Pb3I10 and (f) (BA)2(MA)2Pb3I10. The 

density profiles of the two structures along the stacking direction are also shown. All results have 

been obtained using the PBE functional.

The DFT predicted bandgaps are underestimated compared to the experimental results as 

expected when using the PBE functional and taking SOC into account. We further used the recently 

reported Tran-Blaha-Modified Becke-Johnson potential optimized for 2D perovskites to improve 

the accuracy of bandgap prediction (ppTB-mBJ).51 Using ppTB-mBJ with the organic cations 

substituted by Cs (see Ref.51 for more details), the calculated bandgaps become 2.62 eV and 2.53 

eV for (BA)2(EA)2Pb3I10 and (BA)2(MA)2Pb3I10, respectively, which are in better agreement with 

the experiment given that excitonic effects are not considered. Overall, regardless of the level of 

theory, (BA)2(EA)2Pb3I10 exhibits a larger bandgap compared to (BA)2(MA)2Pb3I10. 

We next plot the wave functions to highlight the nature of electronic states at the band edges. 

Wave functions at the Γ point show an antibonding hybridization between Pb(6s) and I(5p) orbitals 

at the VBM while the conduction band minima (CBM) is mainly made of bonding type between 

Pb(6p) states (see Figure 5c and 5d for the EA and MA structure, respectively). Comparing the 

two structures, we find that the CBM is less stabilized in (BA)2(EA)2Pb3I10 because the longer Pb-

Pb distances result in weaker bonding interactions and reduced bandwidth. Similarly, VBM is also 

less destabilized in (BA)2(EA)2Pb3I10 due to weaker anti-bonding interactions associated with 
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longer Pb-I bonds. The combined effect of less stabilized CBM and less destabilized VBM in 

(BA)2(EA)2Pb3I10 therefore results in the wider bandgap. 

As mentioned above, in (BA)2(EA)2Pb3I10, the bands are less dispersive than in 

(BA)2(MA)2Pb3I10 as can be inferred from their band widths in Figure 5a-b. That is, the extent of 

orbital overlap as discussed above generally defines the electronic bandwidth. As it is clearly 

shown in Figure 5a and 5b, the band widths of the VB as well as the CB for the EA compound are 

much narrower. Accordingly, the calculated reduced effective masses (using ppTB-mBJ) are larger 

for (BA)2(EA)2Pb3I10 (~0.34m0 to 0.69m0) as compared to (BA)2(MA)2Pb3I10 (~0.20m0) (Table 

S5). We note that the predicted reduced mass of (BA)2(MA)2Pb3I10 is in good agreement with the 

experimentally reported 0.201m0 using magneto-absorption experiments52 whereas that of 

(BA)2(EA)2Pb3I10, for which no experimental data is currently available, appears to be much higher 

(note, ppTB-mBJ generally overestimates the effective masses, see Ref.51). These results suggest 

that photogenerated carriers are probably less mobile in (BA)2(EA)2Pb3I10 than in 

(BA)2(MA)2Pb3I10.

The localization of the carriers can influence the recombination process of the generated 

electron-hole pairs. In Figure 5e and 5f, we plot the local density of states (LDOS) and their 

profiles for both compounds at VBM and CBM to show the spatial localization of holes and 

electrons, considering the static averaged crystallographic structured. In (BA)2(MA)2Pb3I10, holes 

(at VBM) are localized on the inner layer whereas the electrons (at CBM) appear at the outer 

layers.52 In contrast, both holes and electrons are delocalized on the three layers for 

(BA)2(EA)2Pb3I10. This suggests that generated hole-electron pairs are probably spatially more 

evenly distributed in (BA)2(EA)2Pb3I10 as compared to (BA)2(MA)2Pb3I10. The origin of these 

different spatial localizations is discussed in the supporting information. In order to better gauge 
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the influence of these aspects on the PL quantum yield, it is necessary to further evaluate the square 

of electric dipole matrix elements (defined as Kane energies for 2D materials in reference53). The 

computed results (Table S6) show the Kane energy of EA structure is smaller than that of MA 

structure (3.9 eV versus 4.7 eV). The results are qualitatively consistent with the experimental 

findings, but the additional effect of a higher density of non-radiative trap states in EA structure 

should also be taken into account.

By applying the composite approach, detailed in Refs12,54, we obtained the band energy 

alignment between the inorganic well and the organic spacer barrier. The ppTB-mBJ bandgaps 

were used for constructing the conduction band alignment (Figure S6). The confinement potentials 

(Vh for holes, Ve for electrons) are more balanced in (BA)2(EA)2Pb3I10 (2.6 eV versus 2.1 eV) than 

in (BA)2(MA)2Pb3I10 (3.3 eV versus 1.5 eV). Figure S7 shows high-frequency dielectric constant 

profiles [𝜀∞(z)] along the stacking axis for the two compounds. 𝜀∞ varies from 2.4 [2.2] for 

(BA)2(EA)2Pb3I10 [(BA)2(MA)2Pb3I10] in the organic spacer layer to 5.3 [5.1] in the inorganic 

layer. The two compounds present similar dielectric contrasts between the inorganic and the 

organic layers, which may suggest similar exciton binding energies in the two structures. The 

slightly different 𝜀∞ in (BA)2(EA)2Pb3I10 can be understood by the volumetric expansion of 

inorganic layers and the compression of organic spacer layers as compared to (BA)2(MA)2Pb3I10.  

Nevertheless, the dielectric environment is similar in the two compounds. 

Excited state dynamics. We further studied the excited state dynamics using ultrafast 

transient absorption (TA) spectroscopy. Except for a few reports,47 we note that the excited state 

dynamics of 2D perovskites with n > 1 remain largely unexplored. Figure 6 shows the normalized 

TA spectra of (BA)2(EAxMA1-x)2Pb3I10 (x = 0, 0.27, 0.45, 0.67, 1) obtained with 2.41 eV pump 

and broadband probe (1.74–2.28 eV) on exfoliated single crystals. For all five compositions, the 
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TA spectra largely resemble each other. There are four features to pay attention to: (1) a strong 

ground state bleaching (GSB) at the bandgap, (2) a short-lived excited stated absorption (ESA) 

below the bandgap, which is most prominent in the 0.40-ps cut and disappeared before 0.80 ps, (3) 

a long-lived ESA above the bandgap, the intensity of which remains largely unchanged within the 

first 8 ps, and (4) a weak bleaching below the bandgap, which becomes visible after the 

overlapping ESA disappears near 0.8 ps. The relative locations and shapes of the four features do 

not change much across the entire series of samples we made, indicating similar electronic 

structures and almost identical mechanisms behind the excited state dynamics, which agrees with 

the band structure calculations conducted in the section above. The fact that no overlap occurred 

between all five spectra, along with the structural characterization we presented above, confirm 

the pure nature of the n = 3 structure (i.e. absence of other n-value structures) and the uniform 

cation alloying. 
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Figure 6. Pseudocolor plots of the normalized transient absorption (TA) spectra of the (a) MA, (b) 

MA0.73EA0.27, (c) MA0.55EA0.45, (d) MA0.35EA0.65, and (e) EA structures obtained with 2.41 eV 

pump for the first 8 ps. Dash lines indicate the cuts at delay time of 0.40 ps (black), 0.80 ps (green), 

and 7.95 ps (black). TA spectra cuts of the (f) MA, (g) MA0.73EA0.27, (h) MA0.55EA0.45, (i) 
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MA0.35EA0.65, and (j) EA structures at four representative delay time points (t = 0.40, 0.80, 7.95, 

160 ps). The arrows in f-g indicate the zero cross points of the curves at 7.95 ps. 

The normalized dynamics of the four features in the pure MA and EA structures extracted at 

representative energy are plotted in Figure 7a and 7b. Convolution between different features 

exists because of unavoidable spectral overlap. To better decompose the highly convoluted TA 

spectra, spectra at late time delays (> 160 ps) were acquired and a global analysis was performed 

on each TA spectra. Similar decay associated spectra (DAS) were generated from all five 

compositions (Figure S8). Only the ones from pure (BA)2(MA)2Pb3I10 and (BA)2(EA)2Pb3I10 are 

plotted here (Figure 7c and 7d). Three processes were gleaned from the global analysis. The pale 

green one shows a derivative shape and has a lifetime < 1 ps. The second component (blue, Figure 

7c&d) with picoseconds lifetime has a broad bleaching peak below the bandgap. The last 

component (black, Figure 7c&d) comes with a relatively long lifetime and a bleaching at the 

bandgap. With the spectra and dynamics decomposed, we next discuss the assignment of the four 

features and analyze the dynamic processes.
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Figure 7. Normalized dynamics of bleaching below the bandgap (triangle), absorption below the 

bandgap (square), bleaching at the bandgap (cross), and absorption above the bandgap (diamond) 

of (a) (BA)2(MA)2Pb3I10 and (b) (BA)2(EA)2Pb3I10. Decay associated spectra of (c) 

(BA)2(MA)2Pb3I10 and (b) (BA)2(EA)2Pb3I10 obtained with global analysis.

The bandgap bleaching peak (blue, Figure 7a and 7b) with two main processes can be 

assigned to the band-edge population. The growing process likely comes from the fast bandgap 

bleaching and hot carrier relaxation, as its formation time aligns well with the lifetime of the first 

DAS, which will be discussed below. The decaying one has a relatively long lifetime and the 

spectra features overlap the last DAS, which presumably is associated with the recombination 

process usually lasting nanoseconds in perovskite materials.55 The short-lived ESA feature (green, 

squares), is most-likely to be associated with the shot-lived hot carriers.47,55-57 The fact that the 

absolute intensity of the peak decreased with an increasing bandgap value (as well as the x value) 
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is probably due to less excess energy of initial generated hot carriers.58 The first DAS, largely 

associated with this feature, may indicate the flow from higher energy levels to the bandgap. The 

long-lived ESA above the bandgap (black, diamonds) show no obvious decay before 8 ps, and has 

similar dynamics to the main bleaching peak, as they both show up in the last DAS. We assign it 

to the ESA caused by band edge carrier, as higher band can be easily accessed according to the 

DFT calculation (Figure 5a and 5b). Another explanation could be that this peak is generated by 

the blue shift of the bandgap after excitation, however, we believe this likely to be less feasible as 

the amount of the blue shift did not change as a function of photo-excited carrier density or delay 

time (see details about the fluence-dependent study in Figure S9 and S10). 

Though largely overlapping with the ESA, the bleaching below the bandgap (red, triangles) 

shows completely different growing dynamics compared to the main bleaching peak (blue, 

crosses). The energy of this sub-bandgap peak happens to overlap with the only peak in the second 

DAS. This indicates that this bleaching feature may be a separate process happening in the system 

other than hot-carrier cooling and bandgap renormalization summarized by the first and the last 

DAS. Judging by the peak location, it is most likely attributed to the trap states below the bandgap, 

as also suggested by other report.47 The lifetime of the second DAS is slightly longer than expected 

but still within the same scale of magnitude. This is probably because this peak convolves a lot 

with the main bleaching peak, and there is energy transfer back and forth between the two states. 

As discussed above, the main electronic transitions of excited states are qualitatively similar 

in these structures. This can be understood by the fact that electronic band structures are mainly 

determined by the inorganic frameworks which are all made of 2D corner sharing PbX6
4- 

octahedra. However, the change of octahedral parameters such as distortion level and Pb-I bond 

length can modify the energy landscape, especially for the sub-bandgap states. As is shown in the 
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TA surfaces in Figure 6a–e, the bleaching peak below the bandgap is getting broader (the pale red 

area below the bandgap) with an increasing amount of EA, indicating wider energetic distribution 

of these states. Such wider energetic distribution is well correlated with larger octahedral distortion 

and variation of Pb-I bond length in the structures with an increasing EA content. 

Lastly, we discuss several possible explanations for the PL quenching. Worse crystals with 

more defects can lead to PL quenching.  However, the clear trend of PL quenching cannot be 

simply attributed to the crystal quality, because all the crystals were synthesized in a similar 

condition. The single-crystal XRD data show that the EA structure has the best refinement (Table 

S1 and S2), indicating the crystal quality is at least comparable (if not better) to other structures. 

In contrast, the EA structure has the least PL emission. Therefore, the PL quenching might stem 

from the inherent structures with varied bonding characters.

 Phonons that interact with charge carriers significantly impact non-radiative recombination 

rates. For example, a recent work established a correlation between the nonradiative recombination 

rate and molecular rigidity of spacer cations in 2D perovskites through exciton-phonon 

interaction.49 Charge carriers in perovskite materials are mainly coupled to the low-frequency 

vibrational modes of the Pb-I framework. One may expect that the elongated Pb-I bond length 

leads to softened phonon modes, which is especially assisted by the stereochemical activity of the 

Pb2+ 6s2 lone pair of electrons. This process can induce more phonon mediated non-radiative 

recombination paths via exciton-phonon interaction. Indeed, the emission peak width is larger in 

the (BA)2(EA)2Pb3I10 relative to (BA)2(MA)2Pb3I10, indicating a stronger exciton phonon 

interaction in the former. 

A second explanation is that, the Pb-I bond strength may influence the thermodynamics of 

interstitial iodine defects which could introduce deep energy levels within the bandgap. A recent 
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proposal suggested the key to explaining the so-called defect tolerance in perovskites lays in the 

photochemical properties of such defects.59 Such defects acting as recombination centers can 

accelerate non-radiative recombination of charge carriers and thus reduce the photoluminescence. 

Our transient absorption measurements reveal  the existence of the trap states by applying global 

analysis and separate the energy transferring processes related to this state. The broader energetic 

distribution of the trap states correlates well to the PL quenching, while the radiative emission 

from these trap states may lead to the asymmetric PL peak in the higher EA content structures. 

CONCLUSIONS

The Goldschmidt rule of perovskite cage stability is significantly relaxed with EA as the cage 

cation.  This cation is larger than the rule allows yet it incorporates in the perovskite cage by 

stretching it, giving rise to a stretched version of the n = 3 2D perovskite structure featuring the 

longest Pb-I bond lengths and extremely large octahedral distortion. In contrast to the bandgap 

redshift in 3D APbI3 with increasing the cation size, the alloyed 2D perovskites exhibit blue-shifted 

bandgap with increasing EA content (equivalent to increasing the size of A-cation). The bandgap 

blueshift is consistent with the band structure calculations and can be explained by the significant 

volumetric expansion of the perovskite cage with increased Pb-I bond length. Moreover, it is found 

that the structure with larger octahedral distortion and longer Pb-I bond length has stronger PL 

quenching and more asymmetric PL peak. Transient absorption spectroscopy measurements reveal 

similar excited state dynamics and the existence of a broad distribution of trap states below the 

bandgap. The energetic distribution of trap states is broader with lager octahedral distortion and/or 

longer Pb-I bond length, which might be responsible for the asymmetricity and quenching of the 
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PL emission. Our results provide guidelines for rational design of new and more efficient 

perovskite materials for optoelectronic applications.

EXPERIMENTAL SECTION  

All chemicals and regents were purchased from Sigma-Aldrich and used as received unless 

noted otherwise.

Growth of (BA)2(EAxMA1-x)2Pb3I10 single crystals and 1H NMR measurements. The 

crystals were grown from concentrated hydroiodic acid using previously reported off-

stoichiometry protocol.44,60 Specifically, to grow (BA)2(EA)2Pb3I10 single crystals, powders of 

PbI2 (1380 mg), EAI (346 mg), and BAI (175 mg) were dissolved in 4.5 mL of HI solution (57 wt 

% in H2O) and 0.5 mL of H3PO2 in a vial. Note that the solution was heated to 120 °C on a hot 

plate to completely dissolve all the solids. The solution was kept on a hot plate until ~1/3 of the 

solution had evaporated. Red rectangular plate-like crystals precipitated during cooling to room 

temperature. To grow (BA)2(MA)2Pb3I10 single crystals, powders of PbI2 (1380 mg), MAI (318 

mg), and BAI (175 mg) were dissolved in 4.5 mL of HI solution (57 wt % in H2O) and 0.5 mL of 

H3PO2 in a vial. The solution was heated to 120 °C on a hot plate to completely dissolve all the 

solids. The solution sited undisturbed at room temperature for several hours to yield red-black 

flake-like single crystals. Similar, the precursor solutions for (BA)2(EA)2Pb3I10 and 

(BA)2(MA)2Pb3I10 were mixed at volumetric ratios of 1:2, 1:1, and 2:1 to grow mixed cation alloys. 

1H-NMR spectra were measured on the dissolved crystals with Bruker Avance III 600 MHz system 

with BBI probe.
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Exfoliated crystal preparation. Samples for the TAM measurements were prepared by 

mechanical exfoliation. Plate-like single crystals were picked and were put on a clear scotch one-

sided tape, on top of which another clean area of the tape was folded. Parts of the crystals were 

detached from the crystals for further exfoliation, exposing fresh cleaved layers, and the rest of the 

crystals remained on the tape. This process was repeated for several times to obtain optically thin 

2D perovskite sheets (see Figure S11 for an optical image). The exfoliated crystals were then 

transferred on to a piece of coverslip by pressing the tape on top of the coverslip. After that, a 

protective layer of poly (methyl methacrylate) (Mw ~ 120000 by GPC, PMMA) was deposited on 

the coverslip by spin-coating a solution containing 4 wt% PMMA in chlorobenzene at 3000 rpm 

for 30 s. The samples were sealed by another coverslip using parafilm as a spacer on a hot plate 

(100 °C) in the ambient air. 

Single crystal structure determination. Single-crystal X-ray diffraction experiments were 

performed using a STOE IPDS II or IPDS 2T diffractometer with Mo Kα radiation (λ = 0.71073 

Å) and operating at 50 kV and 40 mA. Integration and numerical absorption corrections were 

performed using the X-AREA, X-RED, and X-SHAPE programs. The structures were solved by 

charge flipping and refined by full-matrix least-squares on F2 using the Jana 2006 package. 

Photoluminescence spectrum. Steady-state PL spectra of single crystals were collected 

using HORIBA LabRAM HR Evolution confocal Raman microscope with 532 nm laser excitation. 

The crystals were exfoliated by scotch tape once to expose fresh surface, and same excitation 

power density was used for all the measurements.

DFT calculations. The calculations were performed within the Density Functional Theory 

(DFT)61,62 as implemented in SIESTA package63 with a basis set of finite-range of numerical 

atomic orbitals. We used the Generalized Gradient Approximation (GGA) with Perdew-Burke-
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Ernzerhof (PBE) functional to describe the exchange-correlation term, and norm-conserving 

Troullier-Martins pseudopotentials were used for each atomic species to account for the core 

electrons.64 1s1, 2s22p2, 2s22p3, 5s25p5 and 5d106s26p2 were used as valence electrons for H, C, N, 

I, and Pb respectively. Polarized Double-Zeta (DZP) basis set with an energy shift of 50 meV and 

a Mesh cutoff 200 Rydberg were used for the calculations. The Brillouin zone was sampled with 

2×2×6 and 4×4×1 Monckhorst-Pack grids for the primitive cells and slab systems, respectively. 

The electronic and dielectric properties were calculated with the experimental lattice parameters, 

and atomic coordinates were transformed to their primitive cells whenever applicable. Spin-orbit 

coupling (SOC) was taken into account in the calculation of the electronic properties, although it 

was not considered in the high-frequency dielectric constant computations. For the high-frequency 

dielectric constant profiles, the (010) surface of (BA)2(MA)2Pb3I10 was considered. For technical 

reasons, the surface was rotated such that the stacking corresponds to the z-axis. Slabs based on 

the respective systems were constructed and an electric field of 0.01 eV/Å was applied along the 

[001] direction with the relaxation of the sole electron density as described elsewhere.65,66 

Additional TB-mBJ calculations along with the computation of the electric dipole matrix 

elements were done with the ABINIT code.67 The electric dipole matrix elements were computed 

as in the reference53 with the LDA exchange-correlation functional68 used for the description of 

the spinor wave functions. The relativistic, norm conserving, separable, dual-space Gaussian-type 

pseudopotentials of Hartwigsen, Goedecker, and Hutter were used for all atoms.69 More 

specifically, we considered 6s1, 5s25p2 and 6s26p2 as valence electrons for Cs I, and Pb, 

respectively. TB-mBJ in ABINIT was invoked from the library of exchange-correlation 

functionals Libxc.70 We used optimized pseudopotential TB-mBJ (ppTB-mBJ) parameters α = 
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0.65 and β = 1.023 for hybrid perovskites within pseudopotential implementation of DFT as 

detailed elsewhere.51 All the calculations take SOC into account.

Transient absorption microscopy. The block diagram of the home-built TAM is shown in 

Figure S12 and our previous paper.71 Briefly, the fundamental 1030-nm beam was generated from 

an Yb:KGW amplifier system (Light Conversion, PHAROS) operating at 200 kHz with a pulse 

duration of 190 fs. The beam was split into pump and probe arms. The pump was focused into a 

beta barium borate (BBO) crystal to produce second harmonic generation light centered at 515 nm. 

The pump was then delayed relative to the probe with a high resolution motorized linear stage 

(Aerotech). White-light probe (1.74–2.28 eV) was generated by focusing the fundamental beam 

into an yttrium aluminum garnet (YAG) crystal and then compressed with a pair of chirped mirrors 

(DCM, LayerTec). Both beams were recombined and focused collinearly onto the sample with a 

74× reflective objective (NA 0.65, Beck). The beam spot size was ~0.6 µm. The sample was taped 

on a piezo-driven XYZ stage with a resolution of 0.2 μm (PiezosystemJena, Newport XPS). The 

signal was collected using a 100× refractive objective (NA 0.70, Leica), spatially filtered through 

a 300-μm pinhole, and then spectrally dispersed in a spectrometer (Horiba, IHR-320). The TA 

signal was detected using a high-speed CCD camera (Andor, Ixon Ultra 897). Linear absorption 

of probe and photoluminescence (PL) maps were measured within the same setup.  The results 

shown in the main text are the average of about 10-15 exfoliated flakes on each sample at an 

excitation power of 450 nW. The decay associated spectra (DAS) was obtained by globally fit the 

entire TA dataset. Multiple-exponential fit was performed at each wavelength to extract the 

lifetimes of the DASs. The fitting algorithm used was the “fminuit” package in MATLAB. A 

“seek” step was added to avoid convergence at the local minimum. 
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