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Abstract

Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident
during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been
attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our
current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our
findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are
proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic
antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37,
canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory
concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of
mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was
found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-
37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication
potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini a-helices of
dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This
demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation,
highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections.
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Introduction

Cystic fibrosis (CF) is the most common lethal, heritable disease

in the US and results from mutations in the gene encoding the CF

transmembrane conductance regulator. One of the most concern-

ing effects of this mutation is altered anion transport of the airway

epithelial cells resulting in increased susceptibility to infections and

enhanced innate immune responses (reviewed in ref. [1]). The

combinatorial effect of defects in the CF airway and chronic

bacterial infections results in a hyper inflammatory environment

dominated by an influx of polymorphonucleocytes (PMNs).

Chronic pulmonary infections with Pseudomonas aeruginosa are a

leading cause of death in CF patients [2,3]. During the course of

infection, P. aeruginosa often undergoes a phenotypic change from a

non-mucoid to a mucoid appearance, which directly correlates

with a worsening clinical prognosis [2,4]. Mucoid conversion is

characterized by the overproduction of the polysaccharide

alginate, which confers a selective advantage for P. aeruginosa in

the CF lung by providing recalcitrance to currently available

therapeutics and host antimicrobials (reviewed in refs. [5,6]).

Mucoid conversion occurs when the negative regulator of

alginate synthesis, MucA, is genetically or physiologically disrupt-

ed [7,8]. Up to 84% of mucoid isolates from patients possess

mutations within mucA resulting in constitutive overexpression of

alginate [9–12]. Hyper inflammation in the CF lung environment

generates an abundance of mutagenic factors, which may be

responsible for directly inducing mucA mutations. For example,

PMNs and hydrogen peroxide (H2O2) elevate mucoid conversion

in vitro by promoting mutagenesis [13–15]. However, the robust

adaptive nature of the P. aeruginosa genome in chronic CF

infections is evident and perpetuated by the appearance of

mutator strains, which likely contribute to selection of mucoid

variants (reviewed in [16–19]). Therefore, it will be of therapeutic

utility to determine if specific host factors in CF promote mucA

mutagenesis and investigate if intervention at this initial stage

would prove effective.

This study aimed to examine the specific role of host

inflammatory factors in promoting mucA mutations leading

to mucoid conversion. PMNs derived from both healthy and

CF individuals stimulated mucoid conversion independent of
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selection. Surprisingly, while reactive oxygen species (ROS) have

the capacity to induce mucoid conversion in vitro, PMNs still

efficiently promote mucoid conversion in the absence of an

oxidative burst response. This led to the discovery that non-

oxidative PMN components, including the antimicrobial peptide

LL-37, are important for promoting mucoid conversion in CF.

Importantly, LL-37 also elevated spontaneous rifampin resistance

in P. aeruginosa and E. coli, indicating a new role for LL-37 as a

bacterial mutagen. LL-37-induced mutagenesis required the

translesion DNA polymerase, DinB (Pol IV); whose error-prone

replication is responsible for generating mucA mutations. Using

several independent methods, it was determined that, at sub-

inhibitory concentrations, LL-37 enters P. aeruginosa cells, interacts

with DNA, and promotes mucA mutations. Finally, conversion of P.

aeruginosa to the mucoid phenotype then protects the bacterial cells

from killing by lethal concentrations of LL-37. These data reveal a

novel mechanism to describe how antimicrobial peptides interact

with bacterial cells and demonstrate that LL-37 may promote

mutations leading to persistence and chronic infection.

Results and Discussion

Development of a genetic scheme to measure the
frequency of mucoid conversion and select for stable
P. aeruginosa mucoid variants
The study of mucoid conversion in the laboratory has been

hampered by the difficulty in isolating rare mucoid variants that

arise in a population (,161029). To circumvent this problem, a

system for selecting mucoid colonies was developed (Figure S1 and

Materials and Methods). A promoterless gene encoding chloram-

phenicol-resistance (cat) was placed under control of the promoter

of the alginate biosynthetic operon (algD) [20,21] and integrated

into the chromosome of non-mucoid, chloramphenicol sensitive P.

aeruginosa strain PAO1 to generate PAO1algD-cat (WFPA934).

Under this system, mucoid bacteria that are producing alginate

and therefore transcribing algD will be chloramphenicol-resistant,

allowing for selection of mucoid variants by growth on chloram-

phenicol-containing media (Figure S1A). By comparing the

numbers of colonies on non-selective versus chloramphenicol

media the relative frequency of mucoid conversion was deter-

mined.

To investigate the utility of this selection strategy, non-mucoid

P. aeruginosa were exposed to a sub-inhibitory concentration (1/10

the minimum inhibitory concentration (MIC; 0.1 mM)) of H2O2

for one hour, followed by overnight recovery in media alone.

Cultures are then serially diluted and plated on non-selective

media to determine the total number of bacteria (,161010) and

whole culture plated on chloramphenicol containing media to

determine the number of mucoid colonies (0–300 depending on

treatment). The mucoid conversion frequency is then determined

by dividing the number of mucoid colonies by the total. There was

no significant difference among treatments in the total number of

bacteria after the one-hour treatment or after the overnight

recovery period, therefore changes in mucoid conversion frequen-

cies are a direct result of induction of mucoid variants. In

agreement with previous studies [13,14,22], treatment with H2O2

significantly increased the frequency of mucoid conversion (Figure

S1B). While non-mucoid chloramphenicol isolates were observed,

the frequency was very low (,1.9610210) and was not altered by

the addition of H2O2 (or any of the other mutagens used in this

study, see below). Since the translesion DNA polymerase DinB

(Pol IV) and defects in the mismatch repair protein MutS

contribute to mucoid conversion [14,15,22], the role of these

proteins was also examined. As predicted, P. aeruginosa isolates

lacking mutS exhibited increased mucoid conversion frequencies

and dinB– deficient isolates had severely impaired mucoid

conversion (Figure S1B). Importantly, no reduction in growth

was observed during the short treatment periods utilized and

resulting mucoid variants were stable upon multiple passages,

where approximately 80% possessed mutations in mucA (Table S1).

Therefore, we were able to identify mucoid variants, which

acquire mutations by direct induction versus selection based on

resistance. This selection strategy now provides a unique

opportunity to interrogate the CF factors that directly promote

mutations leading to mucoid conversion.

PMNs promote mucoid conversion independent of
phagocytosis and the oxidative burst response
To examine the role of PMNs in mucoid conversion, opsonized

PAO1algD-cat was incubated in the presence of PMNs derived

from three sources: peripheral PMNs from healthy or CF human

donors, or an inducible promyelocytic cell line (HL-60) as

described in Supporting Material and Methods (Text S1). Treatment

with each cell type significantly increased the frequency of mucoid

conversion (Figure 1A). A trend was also observed for increased

mucoid conversion in CF PMNs compared to healthy PMNs from

multiple donors; however, this was not a statistically significant

difference. Moreover, mucA from mucoid isolates treated with

healthy human PMNs harbored mutations (Table S1), demon-

strating that human PMNs can induce mutations promoting

mucoid conversion.

To investigate the mechanism(s) by which PMNs induce mucoid

conversion, we first sought to determine if bacterial uptake is

necessary. Phagocytosis was blocked by the addition of cytocha-

lasin D (Figure 1B; confirmed by microscopy (Figure S2A)), or by

separating PMNs from the bacteria with transwells (Figure 1B).

Efficient mucoid conversion was maintained when phagocytosis

was inhibited by either method, demonstrating the factors

promoting mucoid conversion are released from the PMN. Since

we hypothesize ROS generation is responsible for PMN-induced

mucoid conversion, we sought to determine if inhibition of bacterial

uptake affected the oxidative burst response. Surprisingly, both

Author Summary

Antimicrobial peptides (AMPs) are produced by the
mammalian immune system to fight invading pathogens.
The best understood function of AMPs is to interact with
the membranes of microbes, thereby disrupting and killing
cells. However, the amount of AMP available during
chronic bacterial infections may not be sufficient to kill
pathogens (sub-inhibitory). In this study, we found that at
sub-inhibitory levels, AMPs promote mutations in bacterial
DNA, a function not previously attributed to them. In
particular, we found that in the bacteria Pseudomonas
aeruginosa, one AMP called LL-37 can promote mutations,
which enable the bacteria to overproduce a protective
sugar coating, a process called mucoid conversion. P.
aeruginosa mucoid conversion is a major risk factor for
those suffering from cystic fibrosis (CF), the most common
lethal, heritable disease in the US. We found that LL-37 is
able to produce these mutations by penetrating the
bacterial cell and binding to the bacterial DNA. DNA
binding disrupts normal DNA replication and allows
mutations to occur. Furthermore, we observed LL-37
induced mutagenesis in processes apart from mucoid
conversion, in both P. aeruginosa and E. coli. This suggests
that AMP-induced mutagenesis may be important for a
broad range of chronic diseases and pathogens.

Antimicrobial Peptides Promote Mutagenesis
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cytochalasin D and separation by transwells blocked the PMN

oxidative burst (Figure S2B, C respectively), suggesting PMNs

can promote mucoid conversion in the absence of ROS. To

confirm this, PMNs were specifically inhibited by pretreatment

with the NADPH oxidase inhibitor diphenyleneiodonium (DPI).

While treatment of PMNs with DPI significantly inhibited ROS

production (Figure 1C), this did not lead to inhibition of mucoid

conversion (Figure 1D). Inhibition of oxidative burst was further

confirmed with lucigenin and scopoletin, which measure O2N

generation, and H2O2, respectively (data not shown). Collec-

tively, these data demonstrate that PMNs deficient in generating

ROS can still efficiently induce mucoid conversion.

Non-oxidative PMN pathways promote mucoid
conversion
The above data reveal that ROS-independent PMN factors

may be important determinants of mucoid conversion.

Moreover, while ROS clearly promote mucoid conversion in

vitro and likely contribute to pathoadaptation in vivo, oxygen

independent mechanisms may predominate in CF due to the

hypoxic nature of the mucopurulent masses in the lumen of

patient airways, where P. aeruginosa microcolonies reside

[23,24]. To test whether non-oxidative components are

involved in mucoid conversion, PMN lysates that retained

granular components but lack ROS were prepared (see Text

S1. Supporting Materials and Methods). Treatment of PAO1algD-

cat with PMN lysates or soluble components specifically

isolated from granules increased the frequency of mucoid

conversion compared to vehicle treated P. aeruginosa

(Figure 2A). Moreover, PMN lysates and granule fractions

promoted mutations within mucA, indicating non-oxidative

PMN components possess mutagenic capacity (Table S1). To

investigate which granule component(s) are responsible for

mucoid conversion, PAO1algD-cat was incubated with sub-

inhibitory concentrations (0.25 mM) of purified AMP including

the human cathelicidin, LL-37, beta defensins (hBD) 1 and 2,

and human neutrophil peptide 1 (HNP1). LL-37 and hBD2

treatment increased the frequency of mucoid conversion

approximately four-fold and two-fold respectively compared

to buffer controls, while hBD1 and HNP1 did not exhibit any

effect (Figure 2B). Together these data reveal a novel property

for non-oxidative PMN granular components, including

specific antimicrobial peptides, in promoting P. aeruginosa

mucoid conversion.

LL-37 is a human cationic host defense molecule elevated in

CF sputum and found in the granules of PMNs and at mucosal

surfaces [25]. In addition to possessing a broad range of

antimicrobial action against bacteria, viruses, and fungi, LL-37

possess immunomodulatory and anti-biofilm activities at sub-

inhibitory concentrations [26–28]. In PMNs, the propeptide

form of LL-37 is stored within the specific granules and upon

stimulation is released to the extracellular environment and

Figure 1. PMNs induce mucoid conversion independent of bacterial uptake and the oxidative burst response. A, opsonized
PAO1algD-cat was incubated with either Hank’s Buffered Saline (HBSS), HL-60 cells, or PMNs isolated from healthy human donors or CF patients
followed by determination of the mucoid conversion frequency as described in Figure S1. B, phagocytosis of healthy PMNs was blocked by either
physical separation from bacteria with transwells or treatment with cytochalasin D. In C and D, the PMN oxidative burst response was blocked by
pretreatment of healthy PMNs with diphenyleneiodonium (DPI) (or DMSO, vehicle control) prior to incubation with PAO1algD-cat. The kinetic
oxidative burst response of PMNs was measured by luminol (relative luminescent units (RLU)) in C, and the mucoid conversion frequency determined
in B and D. All experiments were performed in triplicate on four to five independent occasions. Values are mean +/2 standard error of the mean
(SEM). For the statistical analysis of the kinetic oxidative burst response (C), the area under each curve was calculated ((RLU*min)2) for each treatment.
Statistical analysis was carried out using an unpaired two-tailed student’s t-test in B and C and Mann-Whitney test in A and D. (* p#0.05, **p#0.001).
doi:10.1371/journal.ppat.1004083.g001
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cleaved to the mature form by serine proteases [29]. Since the

PMN factors primarily responsible for mucoid conversion are

released from the PMN into the extracellular environment

(Figure 1B) and we were able to confirm the presence of mature

LL-37 in PMN lysate preparations by immunoblot analysis

(Figure S3), we hypothesized that LL-37 may promote mucoid

conversion in CF and focused current studies on LL-37.

LL-37 contributes to P. aeruginosa mucoid conversion in
CF
Despite the presence of elevated LL-37 in CF sputum, it has

been argued that in the CF pulmonary environment some AMPs

may not function optimally due to high salt concentrations

[30,31] or may be sequestered by extracellular DNA and F-actin

bundles [32]. Therefore, to determine if LL-37 mediated mucoid

conversion is a process capable of functioning in the CF

pulmonary environment, the impact of sputum isolated from

CF patients on mucoid conversion was investigated. Sputum

isolated from four different CF individuals induced an average

mucoid conversion frequency of 361029 (Figure 2C). To

determine if LL-37 contributes to sputum induced mucoid

conversion, LL-37 was immune-depleted from each sputum

sample. The mucoid conversion frequency decreased significantly

upon depletion with antibodies directed toward LL-37, compared

to an isotype control antibody (Figure 2C), demonstrating LL-37

contributes to mucoid conversion in CF sputum. However,

immune-depletion of LL-37 did not completely abolish mucoid

conversion. This is likely a combination of incomplete elimination

of LL-37 from CF sputum, as well as potential contribution of

other inflammatory factors in sputum to mucoid conversion

(oxidative and nitrosative stress, other AMP, etc). Moreover, after

incubation of P. aeruginosa with CF sputum, no change in the

overall viability of the bacteria was observed (data not shown).

These data suggest that antimicrobial factors present in CF

sputum may not be present at bioavailable levels sufficient to

control P. aeruginosa infections, but are sufficient to promote

conversion to the mucoid phenotype.

LL-37 induces bacterial mutagenesis
To investigate how LL-37 promotes mucoid conversion, we first

interrogated the primary mechanism of mucoid conversion

observed in CF P. aeruginosa isolates, mutagenesis of the anti-sigma

Figure 2. Non-oxidative PMN pathways promote mucoid conversion. The mucoid conversion frequency was determined upon treatment of
PAO1algD-cat with PMN lysates or granule preparations (A), sub-inhibitory concentrations (0.25 mM) of LL-37, human beta defensin 1 and 2 (hBD1/2)
and human neutrophil peptide 1 (HNP1) (B), or sputum isolated from CF patients (C). In C, sputum was immune-depleted with a monoclonal LL-37
antibody or mouse IgG1 isotype control antibody. All experiments were performed in triplicate on four independent occasions. Values are mean +/2
SEM. Statistical analysis was carried out comparing HBSS or 10 mM sodium phosphate buffer (pH 6.2) (SPB) to PMN component treated in A and B
and anti-LL-37 to isotype control treated sputum in C, using an unpaired two-tailed Mann-Whitney test (* p#0.05, **p#0.001).
doi:10.1371/journal.ppat.1004083.g002

Figure 3. LL-37 induces bacterial mutagenesis in a DinB-dependent manner. A,mucA was expressed in PAO1algD-cat LL-37 1.1, 1.2 and, 2.1
on an arabinose-inducible plasmid (pHERD). Alginate was isolated from strains containing either empty pHERD (vector) or pHERDmucA (mucA+),
grown on 0.5% arabinose, and the amount of alginate produced measured by a carbazole assay and compared to the parental non-mucoid
PAO1algD-cat and mucoid PDO300. B, The frequency of rifampin resistance (RifR) of non-mucoid PAO1algD-cat (P. aeruginosa) and UTI89 (E. coli)
following treatment with sub-inhibitory doses of LL-37 or H2O2 was determined. C, Non-mucoid PAO1algD-cat, PAO1algD-catDdinB, PAO1algD-
catDmutS and PAO1algD-catDmutSDdinB were treated with sub-inhibitory LL-37 or SPB and the mucoid conversion frequency determined.
Experiments were performed in triplicate on four independent occasions. Values are mean +/2 SEM. Statistical analysis was carried out using an
unpaired two-tailed student’s t-test in A and C and Mann-Whitney test in B. (* p#0.05, **p#0.001).
doi:10.1371/journal.ppat.1004083.g003
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factor encoding gene mucA. We subjected ten LL-37-derived

mucoid isolates to mucA sequence analysis (Table S2). All isolates

possessed mutations within mucA and 70% of these were

frameshifts predicted to eliminate mucA function. Mucoid clinical

isolates from CF patients possess a range of mucA alterations;

however, frameshift mutations and C to T transitions are the most

common [33–36], a pattern represented here in LL-37 treated

mucoid isolates (Table S2). To confirm the alterations in mucA

were responsible for the mucoid phenotype, mucA was expressed

on an arabinose inducible plasmid (pHERD20TmucA) in repre-

sentative isolates with unique mucA alleles (WFPA934 LL-37 1.1

(DC at 184), 1.2 (CRA at 531), and (DT at 470)). The phenotype

of each isolate harboring pHERD20TmucA was complemented to

the non-mucoid phenotype upon growth on arabinose (Figure 3A),

indicating these mutations are directly responsible for LL-37-

dependent mucoid conversion.

To determine if LL-37 promotes global bacterial mutagenesis,

the frequency of LL-37-induced rifampin resistance (RifR) was

examined. Upon treatment of non-mucoid PAO1 with sub-

inhibitory concentrations of LL-37 a moderate, but significant

increase in RifR was observed compared to cells treated with

buffer. The frequency of acquisition of RifR was similar to control

treatments with H2O2 (Figure 3B), which is known to promote

global mutagenesis in a range of microorganisms [37]. Further-

more, LL-37 also elevated the acquisition of RifR in E. coli,

demonstrating this mechanism of mutagenesis is not specific to

P. aeruginosa (Figure 3B). Collectively, these data demonstrate for

the first time that LL-37 can function as bacterial mutagen and

may contribute to the generation of mutations during chronic

infection.

The translesion DNA polymerase DinB is essential for
LL-37 induced mucoid conversion
To uncover the mechanism by which LL-37 induces mutations,

we investigated the DNA repair enzymes MutS and DinB, due to

their previously identified role in both P. aeruginosa and E. coli

mutagenesis [14,15,22,38]. The mucoid conversion frequency of

DmutS, DdinB and double DmutSDdinB mutants upon treatment

with LL-37 was determined (Figure 3C). In the mutS mutant the

spontaneous mutation frequency was increased nearly 1000-fold

and this was further elevated with LL-37 treatment. Of notable

significance, mucoid conversion was almost eliminated in a dinB-

deficient strain, independent of the mutS status. These results

illustrate an important role for DNA repair proteins in LL-37-

induced mucoid conversion.

Cell envelope stress has been linked to production of

intracellular ROS, which induce mutagenesis and bacterial SOS

response genes [39]. Since DinB is a member of the SOS regulon

[15]; we initially hypothesized that LL-37 interactions with the P.

aeruginosa cell envelope would result in membrane stress, leading to

induction of SOS response genes, including dinB. Therefore, the

expression of P. aeruginosa regulators of membrane and SOS

responses, algT/U (sE/22), and lexA, respectively, were evaluated

by quantitative real time PCR (qRT-PCR) following LL-37

exposure. However, treatment of non-mucoid PAO1 with sub-

inhibitory concentrations of LL-37 did not significantly alter the

expression of lexA or algT/U, whereas positive control treatments

did (mitomycin C and D-cycloserine, respectively) (Table S3).

Surprisingly, expression of dinB was also not altered by LL-37

treatment (Table S3). Combined with the observation that DinB is

required for spontaneous generation of mucA mutations (buffer

treated, Figure 3C), these results suggest that basal levels of DinB

present during normal replication are sufficient to promote

mutagenesis leading to mucoid conversion. We propose that LL-

37 elevates mutagenesis in P. aeruginosa by a mechanism

independent of membrane or SOS stress responses.

Sub-inhibitory concentrations of LL-37 enter the
P. aeruginosa cytosol and interact with DNA
Bacterial DNA has been proposed to be an alternative target for a

subset of AMPs, whereby peptides gain entry to the cytosol and bind

bacterial DNA, resulting in subsequent disruption of DNA or

protein synthesis [40–45]. Since membrane stress and SOS

response pathways were not induced by LL-37, we explored an

alternative hypothesis that LL-37 may induce translesion DNA

synthesis and mutagenesis by interacting directly with genomic

DNA. The structure of LL-37 resembles classical cell-penetrating

peptides and it has been postulated that LL-37 may enter both

prokaryotic and eukaryotic cells. Lande et al demonstrated that LL-

37 is capable of trafficking into dendritic cells, providing evidence

that LL-37 can penetrate eukaryotic cells [46]. While multiple

Figure 4. Sub-inhibitory concentrations of LL-37 enter the
bacterial cytosol and interact with DNA. Visualization of LL-37
localization in P. aeruginosa cells using confocal (A) and transmission
electron microscopy (TEM, B). Bacteria were treated +/2 sub-inhibitory
LL-37, fixed and in A, permeabilized (top and bottom panels), stained
for LL-37 (AlexaFluor647, red) (indicated by white arrows) and visualized
by 1006 objective. The percentage of cells counted on triplicate
coverslips with LL-37 labeling inside the cell is indicated. In B, bacteria
were treated with sub-inhibitory LL-37 (middle and bottom panels) or
untreated (top) and cells were labeled with anti-LL-37 antibody
conjugated to Protein G colloidal gold (20 nm). In the bottom panel,
cells were additionally labeled with anti-dsDNA antibody conjugated to
Protein G colloidal gold (10 nm). C: cytosol, M: membrane and E:
extracellular. White arrows: cytosolic LL-37, Black arrows: membrane LL-
37. In the bottom panel, boxed images are 26 magnified and LL-37
labeling is indicated by *. Twenty random, blind images were taken for
each condition and the percentage of LL-37 labeling in the membrane
and in the cytosol is indicated.
doi:10.1371/journal.ppat.1004083.g004
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reviews have generalized this observation to include all cell types, it

has yet to be formally determined if LL-37 can enter the cytosol of

bacterial cells [27,45]. Therefore, the capacity of sub-inhibitory

concentrations of LL-37 to enter the P. aeruginosa cytosol was

examined utilizing fluorescent confocal- and transmission-electron

microscopy (TEM). Non-mucoid PAO1 was treated with LL-37,

fixed, and labeled with anti-LL37. For confocal microscopy, the

localization of anti-LL37 labeling of permeabilized PAO1 (to allow

antibody access to the cytosol) was compared to non-permeabilized

cells. Non-permeabilized cells showed a weak, diffuse signal on the

surface, compared to permeabilized cells, which demonstrated a

stronger, punctate signal in the center of the cell (indicated by white

arrows, Figure 4A). This was clearly visible only in the cytosol, when

sequential images where taken along the extent of the Z plane of the

cells (shown in Movie S1). With transmission electron microscopy

(TEM), LL-37 labeling was visible in the cytosol of approximately

28% (white arrows) of cells and in the membrane of 11% (black

arrows)(Figure 4B, center).

These data reveal for the first time that LL-37 can gain entry to the

cytosol of P. aeruginosa. However, intracellular LL-37 was visualized in

only a subset of cells. Of note, 43% of cells with cytosolic LL-37

labeling, as visualized by confocal microscopy, appeared to be

actively dividing (Figure 4A). At lethal concentrations, LL-37 readily

interacts with the septum of diving cells [47]; therefore active

replication may also play a role in LL-37 gaining access to the P.

aeruginosa cytosol at sub-inhibitory concentrations. Several models

have been proposed to explain how AMPs interact with bacterial

membranes, but accumulating evidence for LL-37 supports the Shai-

Matsuzaki-Huang model [28,48–51]. In this model, peptides carpet

the outer leaflet of the bacterium and integrate into the membrane.

This is followed by a transient pore forming stage, where lipids and

peptides are transported to the inner leaflet, resulting in collapse of

membrane fragments and disruption of the membrane. In some

cases, transient pore formation results in diffusion of peptides into the

cytosol, where peptides can then interact with intracellular targets

[48]. At sub-inhibitory concentrations, transient pore formation may

occur without significant disruption of the membrane or loss of cell

viability.

To determine if bacterial DNA might be an intracellular target

of LL-37, TEM experiments were performed as described

Figure 5. LL-37 DNA binding promotes mucoid conversion. A, homology modeling of LL-37 bound to B-DNA was performed manually on the
basis of the backbone atomic coordinates of the homologous protein, sterol regulatory element binding protein, bound to DNA. In B, amino acid
sequences of native LL-37 and synthetic derivatives are represented and the putative DNA binding region is indicated in yellow. Red: positive
residues, blue: negative residues. In C, the percent of DNA bound by LL-37 derivatives was calculated from electrophoretic mobility shift assays
(representative images in Figure S4), where densitometry was performed on each image using ImageJ. D represents the mucoid conversion
frequency after treatment with LL-37 derivatives. Values are mean +/2 SEM. Experiments were performed in triplicate on three independent
occasions and statistical analysis was carried out using an unpaired two-tailed student’s t-test (C) or Mann-Whitney test (D). (* p#0.05).
doi:10.1371/journal.ppat.1004083.g005

Antimicrobial Peptides Promote Mutagenesis
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previously, with a second label added for double-stranded DNA.

76% of intracellular LL-37 was localized with P. aeruginosa DNA

(Figure 4B, bottom panel). Electrophoretic mobility shift assays

(EMSA) were also performed, where LL-37 treatment resulted in a

shift of all DNA tested with similar affinity (apparent

KD=12.8 mM, Figure S4), further demonstrating that LL-37

binds non-specifically to P. aeruginosa DNA. It was observed that

upon the addition of increasing amounts of LL-37 a threshold

concentration was reached where no migration of DNA was

observed, instead of a step-wise migration, a phenotype that has

been observed for other short DNA binding peptides [41,52].

To investigate how LL-37 may interact with DNA and whether

DNA binding is necessary for mucoid conversion, a structure-

based search of LL-37 revealed homology to eukaryotic transcrip-

tion factors containing basic region leucine zipper (bZIP) motifs. A

three-dimensional model of LL-37 bound to DNA suggested that

the amino-terminal basic residues of LL-37 occupy positions

suitable for interactions with the negatively charged phosphate

groups of the DNA backbone (Figure 5A). To investigate LL-37/

DNA interactions, two synthetic peptides were generated: an LL-

37 variant with the amino acid sequence randomly scrambled and

a variant with the basic residues in the predicted DNA binding

region replaced with glutamate residues (K/R7-19E, Figure 5B).

Scrambled LL-37 had a moderate loss of DNA binding, as well as

a decrease in the ability to induce mucoid conversion (Figure 5C

and D). When basic residues within the putative DNA binding

region were modified, a complete loss of both DNA binding and

mucoid conversion was observed (Figure 5C and D). These data

suggest that LL-37/DNA interactions are required for LL-37 to

promote mucoid conversion. Studies are currently underway to

further define LL-37/DNA interactions, their impact upon DinB

and/or the DNA replisome, and the precise mechanism of

mutagenesis.

LL-37 contributes to pathoadaption of P. aeruginosa
Herein, we show that LL-37 induces mucoidy but it is unknown

if this conversion provides P. aeruginosa adaptive protection from

lethal concentrations of LL-37. We observed a 10-fold increase in

survival of two mucoid isolates derived from LL-37 treatment

when compared with parental non-mucoid PAO1 (Figure 6A). To

determine if protection was dependent upon prior treatment with

LL-37, a H2O2-derived mucoid isolate, and a genetically

engineered mucoid strain, PDO300 (PAO1DmucA22) were exam-

ined and both showed enhanced resistance to LL-37 mediated

killing (Figure 6A). These data demonstrate that conversion to the

mucoid phenotype provides P. aeruginosa protection from lethal

concentrations of LL-37, independent of prior exposure to LL-37.

Since mucA inactivation and subsequent algT/U induction controls

an entire regulon, of which only a subset are dedicated to alginate

production, it was necessary to determine if alginate overproduc-

tion is specifically responsible for LL-37 protection. FRDmucA22-

DalgD (deficient in alginate production) was 10-fold more

susceptible to LL-37 compared to the isogenic mucoid parental

strain FRD1 (mucA22, Figure 6B). These data demonstrate that

alginate overproduction contributes to protection of P. aeruginosa

from LL-37 killing and this might promote P. aeruginosa

pathoadaptation in the CF pulmonary environment.

Collectively, these data provide evidence for an additional role

for LL-37 beyond the antimicrobial, anti-biofilm, and immuno-

modulatory functions previously described. We demonstrate that

at sub-inhibitory levels, LL-37 promotes bacterial mutagenesis,

which may contribute to evolution and pathoadaptation during

chronic infections. Importantly, LL-37 induced mutations

within mucA mimic what is observed in mucoid P. aeruginosa

strains isolated from the CF airway and the sub-inhibitory

conditions utilized may be representative of the level of

bioavailable peptide present in the CF pulmonary environ-

ment. Furthermore, LL-37 induced mutagenesis of mucA

leading to mucoid conversion was modulated exclusively by

the error-prone polymerase DinB. We were intrigued by the

stringent dependence upon DinB in this process, particularly

since previous studies demonstrate DinB is not required for

spontaneous or UV-induced RifR [15]. We observed that LL-

37 can promote RifR in both P. aeruginosa and E. coli, suggesting

Figure 6. Alginate provides P. aeruginosa protection from lethal concentrations of LL-37. The survival of P. aeruginosa strains (non-mucoid
parental PAO1algD:cat (PAO1), mucoid PDO300, mucoid strains derived from LL-37 (1.2 and 2.1) or H2O2 (1.1) treatment (A), FRDDalgD (non-mucoid)
and FRD1 (mucoid) (B)) was determined following treatment with lethal concentrations of LL-37 (6.25 mM) and is represented as a fold increase from
the non-mucoid isogenic strain. Experiments were performed in triplicate on three or four independent occasions. The mean +/2 SEM is indicated.
Statistical analysis was carried out to compare the survival of mucoid isolates compared to the non-mucoid isogenic strain (PAO1 or FRDDalgD), using
an unpaired two-tailed student’s t-test to compare in (* p#0.05).
doi:10.1371/journal.ppat.1004083.g006
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perhaps the mechanism for acquisition of LL-37-induced mucA

mutations and RifR occur via different pathways. Moreover,

LL-37 did not increase the expression of DinB under these

conditions demonstrating basal levels of DinB are sufficient to

promote mutagenesis. Typical translesion DNA synthesis

occurs when the replisome stalls upon encountering damaged

DNA or a challenging template and low-fidelity polymerases

like DinB will displace Pol III in order to perpetuate

replication [53]. Since LL-37 interactions with DNA are

required for LL-37-incuded mutagenesis we postulate that LL-

37 presents a physical barrier that stalls Pol III, inducing a

switch to DinB, whose error-prone replication promotes

mutagenesis (see Figure 7 for model). EMSAs suggest that

LL-37 non-specifically interacts with DNA; however, peptides

have been identified which specifically interact with DNA

repair intermediates, such as Holliday junctions [54,55].

Therefore, an alternative hypothesis could be that LL-37

perturbs effective DNA repair by binding to repair interme-

diates. In this regard, Overhage et al performed microarray

experiments with sub-inhibitory concentrations of LL-37 and

identified changes in expression of genes involved in alginate

regulation and DNA repair [26]. However, differences in the

conditions utilized in these experiments and a lack of

convergence upon a single pathway do not support any one

hypothesis. Additionally, sub-inhibitory levels of LL-37 have

been found to stimulate expression of the capsule synthesis

operon in Group A Streptococci [56]. Together these studies

suggest additional functions for sub-inhibitory levels of LL-37

impacting the expression of virulence genes. While the current

study identified stable variants generated by mutagenesis, it is

interesting to speculate how transient gene expression may

impact their generation and selection in the host environment

and further studies are clearly warranted.

While data presented here demonstrate PMNs can promote

mucoid conversion in the absence of an oxidative burst

response, it is likely that mucoid conversion in the CF lung

results from a combination of non-oxidative, oxidative, and

nitrosative stresses. Moreover, other chronic pneumonias, such

as COPD, are also characterized by elevated levels of PMNs,

generally on the order of two to three-fold higher than healthy

controls [57,58]. Mucoid P. aeruginosa have been isolated from

patients with COPD, therefore, the mechanisms elucidated in

this study may be important in other infections where chronic

inflammation ensues [59]. Bronchial alveolar lavage fluid

recovered from CF patients can have up to a 380-fold increase

in PMNs recovered compared to healthy patients, even in

patients without symptoms of an active infection [60].

Moreover, elevated levels of PMNs are detectable in CF

newborns, which persist and undergo cycles of exacerbation

throughout the life-time of the patient [61]. We therefore

hypothesize that persistent exposure of P. aeruginosa to chronic

inflammation for decades significantly contributes to microbial

pathoadaptation in CF patients. Future investigation of how

these inflammatory factors function in combination to promote

P. aeruginosa pathoadaptation will be important for compre-

hensive understanding of these processes and the development

of rational therapeutics for chronic infections.

Aggressive antibiotic and anti-inflammatory use over the

past decade has drastically improved the life expectancy and

disease outcome for CF patients. However, increased acquisi-

tion of antibiotic resistance mechanisms is presenting a

significant challenge for future treatment options [62]. Many

are turning towards cationic antimicrobial peptides as a

promising alternative for developing antimicrobials, as they

are thought to be relatively insusceptible to the development of

resistance mechanisms by mutations [63]. This study demon-

strates that some antimicrobial peptides may instead act to

promote mutagenesis and the acquisition of resistance at sub-

inhibitory levels. These data reinforce how important it is to

consider the impact of current and novel treatments and the

host immune response on evolution of microbial communities

during chronic infections.

Materials and Methods

Ethics statement
Human PMNs and serum were obtained from healthy adult

human donors according to the protocol approved by The Ohio

State University Biomedical Sciences Institutional Review Board

(2009H0314), where informed consent was obtained from all

donors. Sputum, PMNs and serum were obtained from CF

patients (adults and minors) according to the protocol approved by

The Nationwide Children’s Hospital Institutional Review Board

Figure 7. Proposed model of LL-37 induced mutagenesis. At
sub-inhibitory concentrations, LL-37 can penetrate P. aeruginosa cells
and enter the bacterial cytosol, where LL-37 dimers then bind to DNA.
DNA binding by LL-37 then promotes DinB-dependent replication,
which potentiates mutations in mucA leading to mucoid conversion.
Alginate overproducing bacteria are then protected from lethal
concentrations of LL-37 and mucoid variants are selected for and
persist in CF.
doi:10.1371/journal.ppat.1004083.g007
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(IRB12-00405) with informed consent obtained from all adult

donors and from the parents/guardians of minors who partici-

pated. For children between the age of 9 and 18 an assent form

was also obtained.

Mucoid conversion studies
Overnight cultures of WFPA934 (PAO1algD-cat, Table S4) were

diluted into fresh M63 media and grown to mid-log phase. 26108

colony forming units (CFU)/ml were resuspended in Hank’s

buffered saline (HBSS) or 10 mM sodium phosphate buffer

(pH 6.2, SPB), as indicated and treated with sub-inhibitory

concentrations of antimicrobials for one hour. Reactive oxygen

species were used at 1/10 the minimum inhibitory concentration

(MIC): hydrogen peroxide, 0.1 mM, hypochlorous acid, 0.1 mM,

and paraquat to generate superoxide, 100 mM, antimicrobial

peptides (LL-37, human beta-defensin 1, human beta-defensin 2

and human neutrophil peptide 1) were used at 0.25 mM

(PeproTech, Rocky Hill, NY). Human PMNs and serum were

isolated according to previously described protocols [64]. Mid-log

phase P. aeruginosa suspensions were opsonized with 10% fresh

human serum at 37uC for 30 min, added (MOI of 50) to the wells

and centrifuged at 100 g for 2 min at 4uC to synchronize the

infection. PMN treatments were performed according to previ-

ously described protocols and are described in detail in Supporting
Materials and Methods (Text S1). P. aeruginosa cells were then washed

twice and resuspended in M63 media for an overnight growth

recovery period. Cultures were then serially diluted for plating on

non-selective Pseudomonas isolation agar (PIA) and incubated at

37uC overnight to determine the total CFU and plated straight

onto PIA containing chloramphenicol (250 mg/ml) and incubated

at 37uC for 48 hours to determine the number of mucoid CFU.

The mucoid conversion frequency was then determined by

dividing the number of mucoid variants by the total number of

CFU.

CF sputum samples
CF sputum samples were collected by spontaneous expectora-

tion from patients attending Nationwide Children’s Hospital in

Columbus, OH (IRB12-00405). The samples were diluted 1:1 in

buffer containing 140 mM NaCl, 10 mM Tris, 0.2 mM CaCl2
(pH 7.4) and physically disrupted by pipetting up and down with

decreasing sized serological pipettes, followed by pushing through

decreasing sized needles until sample is easily pushed through a 27

gauge needle. Samples were then centrifuged (10 min; 15,500 g) to

pellet the remnant cells and bacteria. For immune-depletion of

LL-37, sputum was incubated with 1.6 mg/ml monoclonal anti-

LL37 antibody (Santa Cruz Biotechnology, Dallas, TX) or mouse

IgG1 isotype control antibody (R & D Systems, Minneapolis, MN)

overnight at 4uC. The antibody/antigen complex was then pulled-

down with Protein A/G Agarose Beads (Thermo Scientific,

Rockford, IL) according to the manufacturer’s instructions and

confirmed by immunoblot analysis (See Text S1. Supporting Materials

and Methods).

PCR and sequencing
Genomic DNA was harvested from the mucoid variants isolated

in the mucoid conversion assay using the Wizard genomic

purification kit (Promega). PCR amplification was performed

using mucA-specific primers mucAupF and mucAdnR (Table S5).

After verification of PCR product by agarose gel electrophoresis,

The Ohio State University Medical Center Nucleic Acid Core

sequenced the PCR products using Sanger sequencing techniques

with mucAupF, mucAdnR, and mucA1F21. The sequence data

produced for mucoid variants were then aligned with mucA gene

sequence of the non-mucoid PAO1algD-cat parental to determine

if and/or where mutations occurred in the mucA gene of the

variants.

Complementation analyses and alginate quantification
The mucA allele was cloned into the shuttle vector pHERD20T

[65] for complementation with gene expression driven by the

pBAD arabinose-inducible promoter. P. aeruginosa strains were

grown at 37uC on PIA plates supplemented with carbenicillin and

0.1% (wt/vol) arabinose for 24 h. Bacterial growth was removed

from plates with phosphate-buffered saline (PBS) and the optical

density at 600 nm (OD600) of the bacterial suspension in PBS was

measured. Alginate was isolated and measured by a standard

carbazole assay as previously described [66,67].

Rifampin assays
Overnight cultures were diluted into fresh M63 media for P.

aeruginosa or LB for E. coli and grown to mid-log phase.

26108 CFU/ml were resuspended in 10 mM sodium phosphate

buffer (pH 6.2)(SPB), and treated with sub-inhibitory concentra-

tions of LL-37 or H2O2 (1.25 mM or for P. aeruginosa and 6.25 mM

for E. coli.). Cells were then washed twice and resuspended in

media for an overnight growth recovery period. Cultures were

then serially diluted for plating on non-selective PIA or LB and

plated straight onto media containing 100 mg/ml rifampin (Rif)

and incubated at 37uC for 24 hours. The Rif resistance frequency

was then determined by dividing the number of Rif resistant

variants by the total number of CFU.

Microscopy studies
For determination of localization of sub-inhibitory concentra-

tion of LL-37 by confocal microcopy, PAO1algD-cat was grown to

mid-log phase and 16106 cells were incubated with 0.25 mM LL-

37 or SPB for one hour. Cells were washed, fixed in 4%

paraformaldehyde for 10 min, permeabilized with 0.2% Triton-X

for 1 min, blocked with 2% bovine serum albumin (BSA) and

stained with anti-LL-37 antibody (Santa Cruz) (1:100) conjugated

directly to Alexa Fluor 647 (Invitrogen). Bacteria were wet-

mounted onto coverslips and visualized by confocal microscopy

(Olympus FV 1000 Spectral) using a 1006 oil objective. For

quantification, 100 cells were chosen at random and intracellular

and membrane-associated peptides counted and averaged by two

readers blinded to the treatment conditions. For transmission

electron microscopy, PAO1 was grown to mid-log phase and

16106 cells were incubated with 0.25 mM LL-37 or SPB for one

hour. Cells were washed and fixed in 4% paraformaldehyde for

12 h. Free aldehyde was quenched by the addition of 0.1 M

glycine for 20 min and cells were resuspended in 0.2 M sucrose

and incubated at 4uC overnight. Samples were embedded in LR

white, cut into ultrathin sections (Leica EMU 6 ultramicrotome)

(60–90 nm) and collected into formvar-coated nickel grids.

Sections were stained by anti-LL37 (Santa Cruz) antibody

conjugated to Protein-G colloidal gold (20 nm)(1:500)(EY Labo-

ratories) and/or anti-dsDNA (Abcam) conjugated to Protein-G

colloidal gold (10 nm, 1:100, EY Laboratories). Sections were

viewed by transmission electron microscopy (FEI Tecnai G2

Spirit) operating at 80 kV. Twenty images were chosen at random

and intracellular and membrane-associated peptides counted and

averaged by two readers blinded to the treatment conditions.

Structure analysis and molecular modeling
A structural based homology search was performed using the

DALI server. Homology modeling of LL-37 bound to B-DNA was
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performed manually on the basis of the backbone atomic

coordinates of the homologous protein, sterol regulatory element

binding protein, bound to DNA, whose crystal structure is known

(pdbid: 1am9) [68].

LL-37 susceptibility assay
26108 CFU of mid-log phase P. aeruginosa strains were

incubated with lethal doses of LL-37 (2.5 mM) of LL-37 for

1 hour at 37uC washed, serially diluted and plated on PIA to

determine the total CFU.

Statistical analysis
Results of mutagenesis studies presented significant variation

(including spontaneous untreated controls) in accordance with

previous observations [69]. Therefore all mutagenesis studies

(including rifampin resistance) were performed in triplicate on at

least four independent occasions. For all statistical analyses, data

were tested for normality using Prism Version 5.0b. Data

determined to be normally distributed were analyzed for statistical

significance using parametric unpaired two-tailed students t-test in

Prism. Data not normally distributed were analyzed using non-

parametric unpaired two-tailed Mann-Whitney test using Stata

Version 10.1. For experiments with multiple treatments

(Figure 3BC, 5D, and S1B) ANOVA or Kruskal-Wallis (for data

not normally distributed) with a Dunn’s post-test yielded similar

results as the indicated t-tests.

Accession numbers
Proteins discussed in this manuscript are listed followed by their

corresponding UniProtKB (Universal Protein Knowledgebase)

number: MucA (MUCA_PSEAE), DinB (DPO4_PSEAE), AlgT/

U (RPSH_PSEAE), and LexA (LEXA_PSEAE).

Supporting Information

Figure S1 Development of selection strategy to measure

the frequency of mucoid conversion. A, representative input

non-mucoid and output mucoid PAO1algD-cat isolates following

mucoid conversion assay. B, non-mucoid PAO1algD-cat,

PAO1algD-catDdinB, PAO1algD-catDmutS, and PAO1algD-catD-

mutSDdinB were treated with sub-lethal hydrogen peroxide

(H2O2, 0.1 mM) or Hank’s Buffered Saline (HBSS) for one hour

and the mucoid conversion frequency determined according to the

Materials and Methods. All experiments were performed in triplicate

on four independent occasions. Values are mean +/2 SEM.

Statistical analysis was carried out using an unpaired two-tailed

student’s t-test comparing the mucoid conversion frequencies of

H2O2-treated PAO1algD-cat to HBSS-treated in B (*= p#0.05,

** = p#0.001).

(PNG)

Figure S2 PMNs induce mucoid conversion indepen-

dent of bacterial uptake and the oxidative burst

response. A, representative immunofluorescent images demon-

strating cytochalasin D treated PMNs (stained with CytoTracker

Blue) do not uptake PAO1gfp compared to DMSO treated PMNs

(stained with CytoTracker Red). In B and C, phagocytosis of

human peripheral PMNs was blocked by either treatment with

cytochalasin D (B) or physical separation of PMNs from bacteria

with transwells (C) and incubated with opsonized PAO1algD-cat

(MOI 50). The kinetic oxidative burst response of PMNs was

measured by luminol (relative luminescent units, RLU) over

60 minutes. All experiments were performed in triplicate on three

independent occasions. Values are mean +/2 SEM. For the

statistical analysis of the kinetic oxidative burst response, the area

under each curve was calculated ((RLU*min)2) for each treatment.

Analysis was carried out using an unpaired two-tailed student’s

t-test to compare the oxidative burst response of either

cytochalasin D compared to DMSO treated PMNs (B) or PMN

+ PAO1 together compared to separate (C). (* p#0.05).

(TIFF)

Figure S3 Immunoblot demonstrating detection of

mature LL-37 in PMN Lysates. PMN lysates were separated

by SDS-PAGE on a 16.5% tris-tricine gel and mature LL-37 was

detected by immunoblot analysis. Purified LL-37 (0.25 mM) was

included as a positive control. Arrow indicates detection of mature

LL-37 (4 KDa).

(TIFF)

Figure S4 Electrophoretic mobility shift analysis of LL-

37 interactions with P. aeruginosa DNA. Increasing

amounts of native LL-37 (top panel) and LL-37 variants

(scrambled, middle panel and KR7-19E, bottom panel) were

incubated with 59 FAM labeled DNA fragments generated from

the mucA gene (identical results were found with fragments

generated from the lecB and algU/T genes (data not shown)). A

representative image of three independent experiments and the

position of free DNA and DNA bound by LL-37 are indicated.

(TIFF)

Movie S1 Z-stack movie of confocal microscopy show-

ing localization of LL-37 in P. aeruginosa cells. Bacteria

were treated +/2 0.25 mM LL-37, fixed, permeablized, stained for

LL-37 (red) and visualized by 1006 objective. Movie is a

compilation of images taken sequentially through the Z-plane of

the image every 0.16 mm.

(MOV)

Table S1 Summary of mucA mutations induced by

inflammatory factors. Sequence analysis of the mucA gene

from mucoid P. aeruginosa isolates derived from mucoid conversion

assays.

(DOCX)

Table S2 Summary of mucA mutations induced by LL-

37. Sequence analysis of the mucA gene from mucoid P. aeruginosa

isolates treated with sub-lethal LL-37.

(DOCX)

Table S3 qRT-PCR reveals sub-lethal LL-37 does not

induce P. aeruginosa membrane or SOS stress respons-

es. Expression of lexA, dinB, and algT by non-mucoid PAO1

treated with sub-lethal LL-37 (0.25 and 1.25 mM) measured by

qRT-PCR. Fold increase in relative copy number (RCN,

compared to the housekeeping gene rpsL) from untreated cells is

indicated. Values are the mean of at least three independent

experiments performed in triplicate +/2 SD. NA=not applicable.

*Indicates a statistically significant difference in RCN compared to

untreated cells using an unpaired student’s t-test (P#0.05).

(DOCX)

Table S4 Bacterial strain table. Bacteria and plasmids used

in this study.

(DOCX)

Table S5 Primer table. Primers used in this study.

(DOCX)

Text S1 Supporting Materials and Methods. Description

of materials and methods not described in the primary manuscript.

(DOCX)
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