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Abstract

Efficient intracellular delivery of proteins is needed to fully realize the potential of protein 

therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, 

poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid 

nucleic acid transfection reagents can potently deliver proteins that are fused to negatively 
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supercharged proteins, that contain natural anionic domains, or that natively bind to anionic 

nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre 

recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease 

complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA 

complexes resulted in up to 80% genome modification with substantially higher specificity 

compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase 

and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated 

recombination and 20% Cas9-mediated genome modification in hair cells.

Introduction

Therapeutic proteins including peptide hormones1, cytokines2, and monoclonal antibodies3 

have achieved widespread success as research tools and are among the fastest growing 

classes of drugs.4 Many powerful and potentially therapeutic proteins have been discovered 

or engineered over the past two decades, including enzymes capable of metabolic 

complementation,5 neutralizing antibodies against intracellular targets,6 engineered 

transcription factors,7 and programmable genome-editing enzymes.8 While protein biologics 

have proven effective for extracellular targets, their use to address intracellular targets is 

comparatively undeveloped due to the inability of most proteins to spontaneously enter 

mammalian cells. Enabling exogenous proteins to access intracellular targets is most 

commonly achieved by delivery of their encoding DNA sequences through chemical 

transfection,9 electroporation,10 or viral delivery.11 The introduction of exogenous DNA 

into cells, however, raises the possibility of permanent recombination into the genome, 

potential disruption of endogenous genes, and long-term exposure to the encoded agent. The 

recent development of methods to deliver in vitro transcribed mRNAs or mRNA analogs has 

offered an alternative to DNA delivery without requiring nuclear transport of an encoding 

gene, and with greatly reduced potential for genomic insertion of the foreign nucleic acid. 

While promising, mRNA delivery continues to face challenges including immunogenicity 

and RNA stability.12 For genome editing applications that seek to effect a one-time, 

permanent modification of genomic DNA, the functional delivery of non-replicable protein 

agents may offer improved specificity, increased safety, and broader applicability.

We and others have previously developed protein delivery technologies based on fusion or 

conjugation to cationic molecules that facilitate endocytosis, such as unstructured 

peptides13,14 or engineered superpositively charged proteins15–17. While such methods can 

be effective in cell culture,15,17 and has even shown some success in vivo, they have not 

seen widespread adoption. Unprotected proteins can be rapidly degraded by extracellular 

and endosomal proteases, or neutralized by binding to serum proteins, blood cells, and the 

extracellular matrix.18 In addition, the low efficiency of endosomal escape and avoidance of 

lysosomal degradation are major challenges to all endocytic protein delivery strategies, as 

evidenced by ongoing interest in endosome altering17 and destabilizing strategies.19 These 

challenges have proven especially difficult in vivo.20

Nucleic acid delivery has benefited greatly from the development of liposomal reagents over 

the past two decades. Cationic lipid formulations have enabled DNA and RNA transfection 
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to become a routine technique in basic research and have even been used in clinical trials.21 

The lipid bilayer of the vehicle protects complexed nucleic acids from degradation and can 

prevent neutralization by antibodies.22 Notably, fusion of liposomes with the endosomal 

membrane during endosome maturation can enable the efficient endosomal escape of 

cationic lipid-delivered cargo.23

Because proteins, in contrast to nucleic acids, are chemically diverse with no dominant 

electrostatic property, no lipid formulation is likely to drive the efficient delivery of all 

proteins into mammalian cells. While proteins can be complexed non-specifically and 

delivered by rehydrated lipids in vitro,18 protein complexation is dependent on high protein 

concentrations, is generally inefficient,24 and has not been widely adopted. Specialty 

commercial reagents developed for protein delivery25,26 have shown modest and variable 

efficiency with different protein cargoes.27

We hypothesized that proteins that are highly anionic could be delivered by the same 

electrostatics-driven complexation used by cationic liposomal reagents for nucleic acid 

delivery (Fig. 1a). Although few proteins natively possess the highly anionic character of 

nucleic acids, we speculated that translational fusion or non-covalent complexation with a 

polyanionic molecule may render the resulting protein or protein complex sufficiently 

anionic to be efficiently delivered by common cationic lipid reagents. We demonstrate that 

fusion of proteins with an engineered supernegatively charged GFP28 enables efficient 

complexation and delivery of proteins into cultured mammalian cells by cationic lipids. Our 

approach is effective even at low nanomolar protein concentrations and in the presence of 

serum, requiring 1,000-fold less protein to achieve similar functional protein delivery levels 

than methods that use fusion to cationic peptides or proteins.15 We further show that Cas9 

nuclease protein complexed with polyanionic single guide RNA (sgRNA) can be efficiently 

delivered in functional form into mammalian cells using cationic lipid formulations. 

Delivery of Cas9:sgRNA complexes is highly efficient (up to 80% modification of cultured 

human cells from a single treatment) and also induces higher genome modification 

specificity (typically ~10-fold) compared with plasmid transfection. Finally, we demonstrate 

that this protein delivery approach can be effective in vivo by delivering functional Cre 

recombinase and functional Cas9:sgRNA complexes to hair cells in the inner ear of live 

mice. These findings suggest that the intracellular delivery of polyanionic proteins and 

protein:nucleic acid complexes by cationic lipids may significantly expand the scope of 

research and therapeutic applications of proteins.

RESULTS

Delivery of Cre recombinase fused to anionic proteins

First, we tested whether the engineered supernegatively charged GFP variant,28 (−30)GFP, 

could mediate complexation and delivery of fused protein cargo (Fig. 1b). We 

translationally fused (−30)GFP to Cre recombinase to generate (−30)GFP-Cre; note that 

(−30) refers to the net theoretical charge of the GFP moiety, not the net charge of the fusion. 

We assayed a variety of commercially available cationic lipids for their ability to 

functionally deliver (−30)GFP-Cre into HeLa cells that only express DsRed upon Cre-

mediated recombination (Fig. 2a). Lipofectamine RNAiMAX (Life Technologies), hereafter 
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referred to as “RNAiMAX”, is a commercial reagent designed for delivery of siRNAs. 

Delivery of 10 nM (−30)GFP-Cre complexed with 1.5 µL RNAiMAX in DMEM 

(Dulbecco’s Modified Eagle’s Media plus GlutaMAX, Life Technologies) containing 10% 

fetal bovine serum (FBS) led to strong DsRed fluorescence signal among treated cells. Flow 

cytometry revealed that 48 hours after treatment, 52% of cells expressed DsRed consistent 

with Cre recombination (Fig. 2b).

Optimization resulted in recombination efficiencies of 65% using 25 nM (−30)GFP-Cre 

complexed with 1.5 µL RNAiMAX in 275 µL of DMEM containing 10% FBS (Fig. 2c). The 

potency of lipid-mediated (−30)GFP-Cre delivery is remarkable when compared to that of 

cationic protein-mediated delivery. Only 1 nM (−30)GFP-Cre with cationic lipid was needed 

to result in 15–20% recombined cells, whereas 1 µM (+36)GFP-Cre was required to achieve 

this extent of recombination, corresponding to a 1,000-fold difference in the required protein 

dose (Fig. 2c). Nearly identical results were observed in a second Cre reporter cell line (BSR 

TdTomato) (Supplementary Fig. 1a). Under the same conditions that deliver (−30)GFP-Cre 

most efficiently, cationic lipids did not increase the delivery potency of neutral or cationic 

Cre recombinase fusions (Fig. 2c), indicating that the highly negative charge of (−30)GFP-

Cre is required to participate in cationic lipid-mediated protein delivery. We also observed 

that increasing the amount of cationic lipid increased the concentration of protein required 

for maximal recombination, consistent with a model in which deliverable proteins are 

complexed with specific stoichiometries of cationic lipids (Fig. 2d).

To compare this method to standard plasmid DNA transfection, we optimized plasmid 

transfection on HeLa reporter cells. Optimized DNA transfection resulted in a maximum of 

33% DsRed fluorescent cells (Supplementary Fig. 1b). We also observed that lipid-mediated 

delivery of (−30)GFP-Cre protein was much less toxic than plasmid transfection 

(Supplementary Figs. 1c–d). In addition, flow cytometry revealed that the high potency of 

lipid-mediated delivery of (−30)GFP-Cre does not arise from unusually high protein uptake 

in each cell, but rather from post-endocytosis processes that likely include endosomal escape 

and/or the avoidance of lysosomal protein degradation (Supplementary Fig. 2 and 

Supplementary Results). These observations collectively indicate that cationic lipids can 

mediate the potent delivery of polyanionic proteins into mammalian cells, even in the 

presence of serum, and with low toxicity.

To test whether the ability to deliver polyanionic proteins is dependent on proprietary 

components in RNAiMAX or whether other cationic lipids are capable of mediating 

similarly potent delivery, we tested several other transfection reagents designed to deliver 

nucleic acids. Several, but not all, cationic lipid formulations tested are able to potently 

deliver negatively charged proteins into human cells (Fig. 2e and Supplementary Results).

Several other polyanionic protein, including the VP64 transcriptional activation domain 

(−22 net theoretical charge), (−20)GFP, (−7)GFP, and the 3x FLAG epitope tag (−7 net 

theoretical charge), all enhanced cationic lipid-mediated delivery of Cre in a charge-

dependent manner (Fig. 2f and Supplementary Results). Collectively these results suggest 

protein delivery efficacy by cationic lipids is predominantly a function of total negative 

charge, and does not require a particular distribution of anionic residues.
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Functional delivery of TALE activator proteins

Next we tested lipid-mediated delivery of TALE-VP64 transcriptional activators into 

HEK293T cells. While modestly effective cleavage of endogenous genes by delivered 

TALEN proteins has been demonstrated in mammalian cells in the absence of serum using 

cationic peptides,29 the delivery of TALE-based transcription factor proteins has not yet 

been reported, and no effective delivery of TALE proteins in serum-containing media has 

been previously described to our knowledge. We targeted the gene for neurotrophin-3 

(NTF3), a neural growth factor that when mutated has been associated with 

neurodegenerative diseases and hearing loss.30 We fused a previously described NTF3-

targetting TALE-VP6431 to (−30)GFP (Fig. 3a) and treated HEK293T cells with 25 nM 

(−30)GFP-NTF3 TALE1-VP64 and 1.5 µL RNAiMAX under the conditions optimized for 

Cre delivery. Gene expression levels of NTF3 4 hours after treatment were 3.5-fold higher 

in cells treated with 25 nM (−30)GFP-NTF3 TALE1-VP64 and RNAiMAX than in 

untreated cells, cells treated with RNAiMAX only, or cells treated with a VEGF-targeting 

TALE transcriptional activator (Fig. 3b). Similar levels of NTF3 expression were observed 

48 hours after transfection of plasmids encoding the same NTF3-targeting TALE-VP64 

(Fig. 3b).

Since the synergistic expression of multiple TALE activators targeting different sites on the 

same gene has been shown to augment gene activation,31 we simultaneously delivered five 

distinct NTF3-targeting TALE activators fused to (−30) GFP using RNAiMAX. Protein-

lipid complexes were prepared as above by adding the five (−30)GFP-NTF3-TALE-VP64 

proteins at 5 nM each, for a total of 25 nM protein. We observed an optimized 7-fold 

increase in NTF3 expression after a 4-hour incubation (Fig. 3b and Supplementary Fig. 3a), 

while plasmid co-transfection of all five NTF3 TALE activators, followed by a 48-hour 

incubation, resulted in a similar 10-fold increase in NTF3 expression levels (Fig. 3b). To 

characterize TALE activity over time using these two methods, we measured NTF3 mRNA 

levels over a 48-hour period following protein or DNA delivery. TALE activator activity 

following protein delivery peaks ~4 hours post-treatment and falls over the next 44 hours 

(Fig. 3c), whereas plasmid DNA transfection required ~24 hours to show above-background 

levels of NTF3 activation, which plateaued at ~36–48 hours (Fig. 3c). These findings 

collectively demonstrate that TALE activator proteins can be delivered using cationic lipids 

to rapidly and transiently activate gene expression in human cells. This capability may prove 

especially valuable for proteins that induce a permanent change in cell state or cell fate when 

transiently expressed.

Functional delivery of Cas9:sgRNA protein:RNA complexes

Given the potent lipid-mediated delivery of polyanionic Cre and TALE activator protein 

variants in full-serum media, we speculated that CRISPR-Cas9:sgRNA complexes, either as 

fusions with (−30)GFP or as native polyanionic Cas9:guide RNA complexes, might also be 

delivered into human cells using this approach. Using a well-established Cas9-induced gene 

disruption assay,32 we targeted specific sites within a genomic EGFP reporter gene in 

human U2OS cells (Supplementary Fig. 4a). On-target Cas9 cleavage induces non-

homologous end joining (NHEJ) in EGFP and the loss of cell fluorescence. To avoid 

interference from the fluorescence of (−30)GFP, we introduced a Y67S mutation into 
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(−30)GFP to eliminate its fluorescence, and designated this non-fluorescent variant as 

(−30)dGFP. Treatment of U2OS reporter cells with 25 nM (−30)dGFP-NLS-Cas9 and 25 

nM EGFP-targeting sgRNA with RNAiMAX in DMEM containing 10% FBS showed loss 

of EGFP expression in 48% of cells (Fig. 4a). No significant EGFP disruption was observed 

upon transfection of plasmids encoding EGFP sgRNA alone, Cas9 alone, or cotransfection 

of plasmids encoding Cas9 and an sgRNA designed to target a VEGF locus (Fig. 4a and 

Supplementary Fig. 4b).

We confirmed that the robust disruption of EGFP was not a result of cellular toxicity 

(Supplementary Figs. 4c and d). We also observed that treatment of cells with (+36)dGFP-

NLS-Cas9 and sgRNA in the presence of 10% FBS did not lead to efficient gene disruption 

(Fig. 4a), suggesting that cationic-protein based methods of delivery for Cas9 and sgRNA 

may not be effective, perhaps due to interference of Cas9:sgRNA complex formation or 

nuclease function by cationic proteins,33 consistent with a recent study describing the 

delivery of Cas9 protein with an oligoarginine peptide tag which achieved only moderate 

levels of gene disruption.34 Optimization of plasmid transfection conditions did not yield 

higher than 40% EGFP disruption (Fig. 4a and Supplementary Fig. 5a), and the transfection 

conditions required to achieve this level of gene disruption resulted in high levels of cellular 

toxicity (Supplementary Fig. 5b). Together, these results establish that cationic lipid-

mediated delivery of (−30)dGFP-NLS-Cas9:sgRNA complexes can result in efficient 

sgRNA-dependent target gene disruption in human cells with minimal toxicity, unlike 

cationic peptide-based protein delivery or plasmid DNA transfection methods.

Anionic sgRNA is necessary and sufficient for Cas9 delivery

Since the complex of native Cas9 protein (+22 net theoretical charge) and an sgRNA (~103 

anionic phosphate groups) should be overall highly anionic, next we tested whether native 

Cas9:sgRNA complexes without fusion to polyanionic proteins can be delivered into human 

cells using cationic lipids. Treatment of U2OS EGFP reporter cells with 100 nM Cas9, 50 

nM EGFP sgRNA, and 0.8 µL RNAiMAX resulted in 65% disruption of the EGFP reporter 

gene (Fig. 4a). These observations suggest that sgRNA alone, even in the absence of a 

supernegatively charged fusion protein, can provide the highly anionic character needed to 

mediate cationic lipid-based delivery of Cas9. We evaluated several different Cas9 

constructs over a broad range of conditions (Supplementary Figs. 6a–g and Supplementary 

Results) and lipid formulations (Supplementary Fig. 7a and Supplementary Results) for their 

effect on EGFP disruption and observed that up to 80% targeted gene disruption resulted 

from Cas9:sgRNA complexed with Lipofectamine 2000 (Fig. 4a). Due to the modestly 

higher toxicity of Lipofectamine 2000 compared to RNAiMAX across a range of doses 

(Supplementary Figs. 7b–d and Supplementary Results), we continued using RNAiMAX for 

cell culture studies unless otherwise noted.

To verify that EGFP disruption arose from genome modification and not only from Cas9 

binding,35 we used the T7 endonuclease I (T7EI) assay36 to detect and quantify the 

frequency of Cas9-mediated genomic insertion/deletion mutations (indels) at the target 

EGFP locus (Fig. 4b). The T7EI assay results showed that only those cells treated with both 

Cas9 and EGFP sgRNA plasmids, or Cas9 protein and purified EGFP sgRNA, contained 
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indels at the target site 48 hours after treatment. We also treated U2OS EGFP reporter cells 

with a single lipid-mediated delivery treatment of Cas9 complexed with a mixture of four 

sgRNAs targeting EGFP, CLTA, EMX, and VEGF, resulting in cleavage efficiencies of 

58%, 28%, 16%, and 40%, respectively, as measured by T7EI cleavage assay (Fig. 4c). 

These high gene disruption efficiencies from a single delivery of 50 nM Cas9 and 12.5 nM 

of each sgRNA (50 nM total sgRNA) demonstrate that lipid-mediated Cas9:sgRNA delivery 

can support efficient multiplexed genome editing.

We also tested whether delivered Cas9 nuclease:sgRNA complexes are capable of effecting 

homology-directed repair (HDR) using an EGFP-repair reporter cell line.37 We combined 

Cas9 and EGFP-targeting sgRNA, mixed the resulting protein:RNA complexes with varying 

concentrations of single-stranded DNA oligonucleotide (ssODN) donor template 

(Supplementary Notes), and delivered the Cas9:sgRNA + ssODN mixture using 

Lipofectamine 2000 (Supplementary Fig. 8a). Cas9:sgRNA delivery achieved EGFP HDR 

frequencies of ~8–11%, similar to that of optimized plasmid transfection-based HDR 

(Supplementary Figs. 8b and c), and consistent with previous reports using the same reporter 

cell line37, suggesting that cationic lipid-based delivery of Cas9:sgRNA is a viable approach 

to efficient HDR.

Next we determined whether cationic lipid-based protein delivery could be applied to 

deliver other Cas9-derived genome engineering tools such as Cas9 nickases38 and Cas9-

based transcriptional activators.39 We measured gene disruption efficiency in U2OS EGFP 

reporter cells resulting from delivery of Cas9 D10A nickase (Fig. 4d and Supplementary 

Results) and achieved results similar to previous reports using plasmid transfection.40 

Delivery of dCas9-VP64 activators either by plasmid transfection or RNAiMAX-mediated 

protein delivery resulted in strong (≥ ~10-fold) activation of NTF3 transcription (Fig. 4e and 

Supplementary Fig. 9a). As observed above with TALE activators (Fig. 3c), dCas9-VP64 

protein delivery resulted in fast-acting and transient transcriptional activation compared to 

DNA delivery (Supplementary Fig. 9b and Supplementary Results). These results 

collectively indicate that both Cas9 nickases and Cas9 transcriptional activators can also be 

delivered effectively by cationic lipid-mediated protein:sgRNA complex delivery.

Cas9:sgRNA delivery improves genome modification specificity

Transient delivery of functional Cas9:sgRNA protein:RNA complexes circumvents risks 

associated with viral or other gene delivery methods and has the potential to improve the 

specificity of genome editing by minimizing the opportunity of agents to modify off-target 

substrates after the target locus is modified, or to reverse on-target modification. To test 

whether our approach can disrupt endogenous genes in human cells, we targeted genomic 

loci in the EMX1, CLTA2, and VEGF genes due to their potential biomedical relevance and 

their use in previous studies32,40,41 of Cas9 off-target cleavage activity. Cationic lipid-

mediated delivery of Cas9:sgRNA complexes into HEK293T cells resulted in robust 

cleavage of all three human genes with efficiencies similar to or greater than those of 

plasmid transfection methods as revealed by the T7EI assay (Fig. 5a).

To compare the endogenous gene modification specificity of plasmid versus protein:RNA 

delivery methods for Cas9, we amplified the on-target locus as well as several known off-
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target sites (Supplementary Table 1) from genomic DNA isolated from HEK293T cells 

treated either by transfection of Cas9 and sgRNA expression plasmids, or by RNAiMAX-

mediated Cas9:sgRNA complex delivery under conditions that resulted in similar on-target 

modification efficiencies. The indel frequencies at the three on-target and 11 off-target sites 

were assayed by high-throughput DNA sequencing (Supplementary Table 2). For all three 

target genes, the frequency of on-target DNA modification resulting from either plasmid or 

protein:sgRNA delivery was 10±2% (Supplementary Fig. 10), enabling the comparison of 

off-target modification under conditions that result in very similar on-target modification 

efficiencies. Importantly, the frequency of off-target genome modification for all 11 off-

target sites was lower from protein:sgRNA delivery compared with plasmid delivery 

(Supplementary Figs. 10a–c), and as a result the ratio of on-target to off-target modification 

ratio for all sites tested was up to 19-fold higher for protein:sgRNA delivery than for 

plasmid delivery (Figs. 5b–d).

We also observed that the increase in specificity for Cas9 protein delivery relative to DNA 

transfection persists across a wide range of on-target cleavage efficiencies (~1%, ~10%, and 

~40%) (Supplementary Fig. 11 and Supplementary Results). This increase in specificity 

using protein delivery is consistent with the transient nature of the delivered protein:sgRNA 

complexes compared to plasmid transfection (Supplementary Fig. 12 and Supplementary 

Results). We also measured the amount of protein internalized by cells using our cationic 

lipid-based protein delivery approach and determined that ~4% of the total protein used in 

the treatment was internalized by cells (Supplementary Fig. 13 and Supplementary Results). 

We note that the majority of this protein likely exists within endosomes and may not be 

available to effect genome modification.17,42 Taken together, these results show that the 

delivery of Cas9:sgRNA complexes using cationic lipids can effect target gene modification 

at high efficiency and with substantially greater specificity than the delivery of DNA 

expressing Cas9 and sgRNA.

In vivo delivery of Cre recombinase and Cas9:sgRNA

Efficient delivery of functional genome-editing proteins in vivo could enable a wide range of 

applications including non-viral therapeutic genome editing to correct genetic diseases. To 

evaluate this protein delivery method in a live animal, we chose delivery to the mouse inner 

ear due to its confined space, well-characterized inner ear cell types, and the existence of 

genetic deafness mouse models that may enable future hearing recovery studies. We 

attempted the in vivo delivery of two types of proteins into the mouse inner ear. First, we 

tested the delivery of (−30)GFP-Cre protein to assess the targeting of inner ear cell types and 

the efficiency of functional protein delivery. Second, we evaluated the delivery of 

Cas9:sgRNA complexes to the inner ear to determine whether cationic lipid-mediated 

protein:sgRNA complex delivery can support CRISPR-based gene editing in vivo.

We previously showed that (+36)GFP-Cre could be delivered to mouse retina,15 although 

the protein resulted in only modest levels of recombinant conversion suggestive of 

inefficient in vivo delivery. For our initial inner ear delivery trials, we complexed (−30)GFP-

Cre with RNAiMAX and injected the complex into the cochlea of postnatal day 1 (P1) 

reporter mice with a genomically integrated floxed-STOP tdTomato reporter. As with our in 
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vitro Cre reporter cell line, functional delivery of Cre to the inner ear cells, followed by 

endosomal escape, nuclear localization, and Cre-mediated recombination results in 

expression of tdTomato. After injection, the cochleas were harvested for immunolabeling 

with inner ear cell markers for co-localization with tdTomato. RNAiMAX injection alone 

was used as control. Five days following injection of (−30)GFP-Cre and RNAiMAX, 

cochlear outer hair cells, a type of auditory sensory cells that detect sound, showed strong 

tdTomato signal that co-localized with the hair cell marker myosin VIIa (Myo7a), 

demonstrating functional Cre delivery to hair cells (Figs. 6a–b). No tdTomato expression 

was detected in control cochleas (Fig. 6a). The tdTomato signal was concentrated in the 

region of the injection site at the basal turn of the cochlea. On average 33±3% of outer hair 

cells were tdTomato positive at the base of the cochlea (P < 0.001; mean ± SEM, n = 4) and 

intact sterocilia were observed indicative of healthy hair cells (Fig. 6b). We also tested 

delivery using Lipofectamine 2000 due to its higher potency in vitro (Supplementary Fig. 

7a) and observed dramatically higher recombination efficiency: 91 ± 5% outer hair cells in 

cochleas treated with (−30)GFP-Cre + Lipofectamine 2000 were tdTomato positive (Fig. 

6c). In comparison to control samples, some outer hair cell loss was observed (Fig. 6c), 

consistent with our previous observation of higher cell toxicity of Lipofectamine 2000, 

although overall cochlear architecture was preserved.

After validating Cas9:sgRNA delivery in reporter cells (Figs. 4a–e), and in neuron-derived 

mouse embryonic stem cells (Supplementary Fig. 14 and Supplementary Results), we tested 

Cas9:sgRNA delivery in vivo. Cas9 and sgRNA targeting EGFP were combined with 

RNAiMAX and the resulting complexes were injected into postnatal day 2 (P2) transgenic 

Atoh1-GFP mouse cochlea in which all hair cells express GFP under the control of a hair 

cell-specific enhancer for transcription factor Atoh1.43 Using this model, Cas9:sgRNA-

mediated disruption of Atoh1-GFP results in loss of GFP fluorescence in outer hair cells. 

Ten days after injection of Cas9:sgRNA with cationic lipid, we observed the absence of GFP 

in 13% of outer hair cells near the injection site. In contrast, control cochlea injected with 

Cas9 protein and RNAiMAX without any sgRNA showed no loss of EGFP signal (Fig. 6d). 

The outer hair cells of cochlea injected with Cas9:sgRNA RNAiMAX complexes appeared 

to be otherwise unaffected, with stereotypical expression of Myo7a and healthy nuclei, 

consistent with minimal hair cell toxicity (Fig. 6d). High-throughput DNA sequencing of 

genomic DNA isolated from cochlea tissue samples revealed indels consistent with GFP 

target gene disruption in the treated samples, but not in the control samples that lacked 

sgRNA (Supplementary Fig. 15a). In addition, we repeated inner ear in vivo delivery of 

Cas9:sgRNA using an sgRNA that targets the EMX gene and similarly observed indels in 

the EMX gene in treated animals, but not control animals (Supplementary Fig. 15b).

As (−30)GFP-Cre complexed with Lipofectamine 2000 resulted in more efficient 

modification of the target hair cell population than (−30)GFP-Cre complexed with 

RNAiMAX (Figs. 6a and c), we tested its use on Cas9:sgRNA delivery to Atoh1-GFP 

cochlea as above. We observed loss of GFP expression in 20 ± 3% of outer hair cells near 

the injection site after 10 days, whereas all outer hair cells maintained strong GFP 

expression in control cochlea injected with Cas9 and Lipofectamine 2000 but no sgRNA 

(Fig. 6d). In contrast to modest hair cell loss observed following Lipofectamine 2000 
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delivery of (−30)GFP-Cre (Fig. 6c), outer hair cells targeted by Cas9:sgRNA exhibited no 

obvious toxicity or structural alteration (Fig. 6d).

As with (−30)GFP-Cre, virus-free, cationic lipid-mediated delivery of Cas9:sgRNA into the 

mouse inner ear successfully modified a specific genomic locus in the outer hair cell 

population, leading to loss of target gene expression. As nearly half of all types of genetic 

deafness arise from hair cell loss or dysfunction,44 our results suggest a potential strategy 

based on the delivery of Cas9:sgRNA complexes to genetically modify these cells to effect 

hearing recovery. Taken together, these findings suggest that cationic lipid-mediated 

delivery of genome-editing proteins can serve as a powerful tool and a potential in vivo 

strategy for the treatment of genetic disease.

DISCUSSION

Efficient intracellular protein delivery in vitro and especially in vivo has been a persistent 

challenge in biomedical research and protein therapeutics. Here we report a general strategy 

for protein delivery that makes use of anionic protein complexation with cationic liposomes. 

We used this method to deliver diverse protein classes, including the Cre tyrosine 

recombinase, TALE transcriptional activators, and Cas9 nucleases, nickases, and 

transcriptional activators (Fig. 1a) to cultured cell lines, stem cell colonies, and 

therapeutically relevant in vivo sites within the mouse inner ear. Our approach is highly 

efficient, producing modification rates similar to or exceeding those of established nucleic 

acid transfection methods in cell culture, and enabling Cre recombinase- and Cas9-mediated 

genome modification rates of up to 90% and 20%, respectively, within the inner ear hair cell 

population of live mice (Figs. 6c and d). For Cas9 nuclease delivery, this approach also 

typically results in >10-fold more specific genome modification than traditional plasmid 

transfection (Figs. 5b–d), likely due to the transient window of Cas9 activity to which each 

genome is exposed (Supplementary Fig. 12) compared to DNA delivery methods, consistent 

with previous reports.45

Others groups have reported the in vivo delivery of Cas9 expression constructs in DNA or 

mRNA form.46,47 This study establishes that protein delivery is a viable approach to in vivo 

genome editing. Since the commercial lipid reagents used in the current study were 

optimized for the delivery of DNA and RNA, it is likely that future development of specific 

components of the liposomal formulation will further improve the performance of this 

strategy, especially for in vivo use. These results also suggest that cationic lipids can 

efficiently deliver other proteins in vitro and in vivo, including natively anionic proteins or 

proteins that can be fused or bound to polyanionic macromolecules.

ONLINE METHODS

Construction of Cas9, Cre, and TALE fusion and sgRNA expression plasmids

Sequences of all constructs used in this paper are listed in the Supplementary Notes. All 

protein constructs were generated from previously reported plasmids for protein of interest 

cloned into a pET29a expression plasmid. All plasmid constructs generated in this work will 
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be deposited with Addgene. sgRNA expression plasmids were obtained from J. Keith Joung 

and are available from Addgene.

Expression and purification of S. pyogenes Cas9 and other proteins

E. coli BL21 STAR (DE3) competent cells (Life Technologies) were transformed with 

pMJ80641 encoding the S. pyogenes Cas9 fused to an N-terminal 10xHis-tag/maltose 

binding protein. The resulting expression strain was inoculated in Luria-Bertani (LB) broth 

containing 100 µg/mL of ampicillin at 37 °C overnight. The cells were diluted 1:100 into the 

same growth medium and grown at 37 °C to OD600 = ~0.6. The culture was incubated at 20 

°C for 30 min, and isopropyl β-D-1- thiogalactopyranoside (IPTG) was added at 0.5 mM to 

induce Cas9 expression. After ~16 h, the cells were collected by centrifugation at 8,000 g 

and resuspended in lysis buffer (50 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 

8.0, 1 M NaCl, 20 % glycerol, 10 mM tris(2-carboxyethyl)phosphine (TCEP; Soltec 

Ventures). The cells were lysed by sonication (1 sec pulse-on, 1 sec pulse-off for 15 min 

total at 6 W output) and the soluble lysate was obtained by centrifugation at 20,000 g for 30 

min.

The cell lysate was incubated with His-Pur nickel-nitriloacetic acid (nickel-NTA) resin 

(Thermo Scientific) at 4 °C for 30 min to capture His-tagged Cas9. The resin was transferred 

to a 20-mL column and washed with 20 column volumes of lysis buffer. Cas9 was eluted in 

50 mM Tris-HCl (pH 8), 0.1 M NaCl, 20 % glycerol, 10 mM TCEP, and 300 mM imidazole, 

and concentrated by Amicon ultra centrifugal filter (Millipore, 100-kDa molecular weight 

cut-off) to ~50 mg/mL. The 6xHis tag and maltose-binding protein were removed by TEV 

protease treatment at 4 °C for 20 hours and captured by a second Ni-affinity purification 

step. The eluent, containing Cas9, was injected into a HiTrap SP HP column (GE 

Healthcare) in purification buffer containing 50 mM Tris-HCl (pH 8), 0.1 M NaCl, 20 % 

glycerol, and 10 mM TCEP. Cas9 was eluted with purification buffer containing a linear 

NaCl gradient from 0.1 M to 1 M over five column volumes. The eluted fractions containing 

Cas9 were concentrated down to a concentration of 200 µM as quantified by Bicinchoninic 

acid (BCA) assay (Pierce Biotechnology), snap-frozen in liquid nitrogen, and stored in 

aliquots at −80 °C. All other proteins were purified by this method but without TEV 

cleavage step and proteins containing (-30)GFP were purified by anion exchange using a Hi-

Trap Q HP anion exchange column (GE Healthcare) using the same purification protocol.

In vitro transcription of sgRNAs

Linear DNA fragments containing the T7 promoter binding site followed by the 20-bp 

sgRNA target sequence were transcribed in vitro using the T7 High Yield RNA Synthesis 

Kit (NEB) according to the manufacturer’s instructions. In vitro transcribed RNA was 

precipitated with ethanol and purified by gel electrophoresis on a Criterion 10% 

polyacrylamide TBE-Urea gel (Bio-Rad). Excised gel fragments were extracted in 420 µL of 

300 mM NaCl overnight on a rocking surface at 4 °C. Gel-purified sgRNA was precipitated 

with ethanol and redissolved in water and sgRNA concentration was finally quantified by 

UV absorbance and snap-frozen at −80 °C.
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Plasmid transfection

Plasmid DNA was transfected using Lipofectamine 2000 (Life Technologies) according the 

manufacturer’s protocol. For Cre recombinase experiments, 500 ng of DNA was transfected. 

For TALE activator plasmids, 300 ng of DNA was transfected, and for the activator synergy 

experiments 60 ng of each of five plasmids was pooled and transfected. For Cas9 nuclease 

plasmid delivery experiments targeting genomic sites in CLTA, EMX, or VEGF, linear PCR 

products expressing sgRNAs were used along with the normal Cas9 plasmid. Linear PCR 

products were generated using plasmid containing the U6 promoter as template, forward 

primers containing the U6 promoter upstream sequence, and reverse primers containing U6 

downstream sequence followed by the sgRNA sequence (20-bp sequences unique to each 

target plus constant sgRNA backbone architecture sequence). sgRNAs expressed from linear 

DNA templates contained at least two 5’ guanosines to match in vitro-transcribed sgRNAs 

that required these bases for transcription by T7 RNA polymerase. Primer sequences and 

PCR conditions are referred to in the Supplementary Notes. For dCas9 activator 

experiments, 750 ng of Cas9 or dCas9-VP64 plasmid DNA was co-transfected with 250 ng 

of the appropriate sgRNA expression plasmid. For Cas9 activator synergy experiments 50 

ng of DNA from each of the six sgRNA were pooled and co-transfected with 750 ng of 

dCas9-VP64 plasmid.

Delivery of proteins complexed with cationic lipids in cell culture

Cultured cells were plated in 48-well format (250 µL volume) in Dulbecco’s Modified 

Eagle’s Media plus GlutaMAX (DMEM, Life Technologies) with 10% FBS (“full serum 

media”) and antibiotics at a cell density necessary to reach ~70% confluence the next day. 

Full serum media was replaced with the same media but containing no antibiotics at least 

one hour before delivery. Delivery of Cre and TALE proteins was performed by combining 

1 nM to 1 µM protein (based on a 275 µL final volume) with 0.2–2.5 µL commercially 

available cationic lipids in 25 µL OPTIMEM media (Life Technologies) according to the 

manufacturer’s protocol for normal plasmid transfection, including incubation time. 25 µL 

of the OPTIMEM mixture containing cationic lipids and protein was then added to cells in 

250 µL of full serum media. For Cas9 delivery in vitro, purified sgRNA was incubated with 

Cas9 protein for 5 min before complexing with the cationic lipid reagent in 25 µL 

OPTIMEM and treating cells in 250 µL of full serum media. All complexing steps were 

performed at room temperature. For all protein deliveries that lasted longer than 12–16 

hours, media containing lipid complexes was replaced with fresh full serum media without 

antibiotics after 12–16 hours unless otherwise noted. Cells were assayed for recombination 

48 hours after delivery, for optimal gene activation either 4 hours (TALE) or 12–16 hours 

(dCas9-VP64) after delivery, and for gene modification (Cas9) 48 hours after delivery.

T7 endonuclease I assay to detect genomic modifications

U2OS-EGFP cells or HEK293T cells were transfected with Cas9 expression and sgRNA 

expression plasmids or linear DNA PCR products as described above or treated with only 

Cas9 protein, only in vitro transcribed sgRNA, or only RNAiMAX. Genomic DNA was 

isolated from cells 2 days after transfection using the DNAdvance Kit (Agencourt) 

following the manufacturer’s instructions. 200 ng of genomic DNA was used as template in 
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PCR reactions to amplify the targeted genomic loci with flanking survey primer pairs 

specified in the Supplementary Notes. PCR products were purified with a QIAquick PCR 

Purification Kit (Qiagen) and quantified with Quant-iT™ PicoGreen ® dsDNA Kit (Life 

Technologies). 250ng of purified PCR DNA was combined with 2 µL of NEBuffer 2 (NEB) 

in a total volume of 19 µL and denatured then re-annealed with thermocycling at 95 °C for 5 

min, 95 to 85 °C at 2 °C/s; 85 to 20 °C at 0.2 °C/s. The re-annealed DNA was incubated 

with 1 µl of T7 Endonuclease I (10 U/µl, NEB) at 37 °C for 15 min. 10 µL of 50 % glycerol 

was added to the T7 Endonuclease reaction and 12 µL was analyzed on a 5 % TBE 18-well 

Criterion PAGE gel (Bio-Rad) electrophoresed for 30 min at 200 V, then stained with 1x 

SYBR Gold (Life Technologies) for 30 min. Cas9-induced cleavage bands and the 

uncleaved band were visualized on an AlphaImager HP (Alpha Innotech) and quantified 

using ImageJ software48. The peak intensities of the cleaved bands were divided by the total 

intensity of all bands (uncleaved + cleaved bands) to determine the fraction cleaved which 

was used to estimate gene modification levels as previously described.40 For each sample, 

transfections and subsequent modification measurements were performed in triplicate on 

different days.

Stem cell culture and delivery

Mouse embryonic stem cell (ES) line Tau-GFP (courtesy of Dr. A. Edge, Massachusetts Eye 

& Ear Infirmary, Boston) containing a permanent GFP gene insertion was cultured in 

DMEM with 10% FBS (Gibco), 100 mM MEM nonessential amino acids (Gibco), 0.55 mM 

2-mercaptoethanol (Sigma), and leukemia inhibitory factor (1,000 units/ml; Chemicon). 

After 3 days floating spheres were formed that exhibited GFP fluorescence. Complexes of 

Cas9:sgRNA and Lipofectamine 2000 were added to the culture containing the floating 

spheres for 16 hours. After Cas9:sgRNA treatment, the cells were cultured in the above 

media for 3 days. The floating spheres were treated with trypsin for 5 min then passed 

through a 70 µm filter to collect single cells. The cells were cultured on laminin-coated 

slides in DMEM/F12 (1:1) supplemented with 1xN2, 1xB27, penicillin-streptomycin (100 

µg/mL; Life Technologies) and 10% FBS for two days before labeling. 

Immunohistochemistry was performed using an anti-GFP antibody (#ab13970, Abcam) to 

assess GFP expression. To quantify the number of GFP-negative cells, we counted the total 

number of GFP-positive and GFP-negative cells from three representative visual fields at 

20X magnification, and calculated the average efficiency. Three independent experiments 

were performed for each condition.

Microinjection of proteins to mouse inner ear

Animals were used under protocols approved by the Massachusetts Eye & Ear Infirmary 

IACUC committee. P0 floxP-tdTomato mice (The Jackson Laboratory) were used for 

(−30)GFP-Cre injection and P2 Atoh1-GFP mice (courtesy of Dr. J. Johnson, Southwestern 

Medical Center, University of Texas) were used for Cas9:sgRNA injection. Mice were 

anesthetized by lowering their temperature on ice. Cochleostomies were performed by 

making an incision behind the ear to expose the cochlea. Glass micropipettes held by a 

micromanipulator were used to deliver the complex into the scala media, which allows 

access to inner ear hair cells. For delivery of (-30)GFP-Cre, 3 µL of 45 µM protein was 

mixed with 3 µL of either RNAiMAX or Lipofectamine 2000 and incubated at room 
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temperature for 30 minutes prior to injection. Four mice were injected per treatment group. 

For delivery of Cas9:sgRNA complexes, 1 µL of 200 µM Cas9 protein was mixed with 2 µL 

of 50 µM sgRNA and incubated for 5 minutes at room temperature before mixing with 3 µL 

of either RNAiMAX or Lipofectamine 2000 and incubating for an additional 30 minutes 

prior to injection. Three mice were injected per treatment group. The total delivery volume 

for every injection was 0.3 µL per cochlea and the release was controlled by a 

micromanipulator at the speed of 3 nL/sec.

Immunohistochemistry and quantification

5–10 days after injection, the mice were sacrificed and cochlea were harvested by standard 

protocols.49 For immunohistochemistry, antibodies against hair-cell markers (Myo7a and 

Esp) and supporting cells (Sox2) were used following a previously described protocol.49 To 

quantify the number of tdTomato positive cells after (−30)GFP-Cre or GFP negative cells 

after Cas9:sgRNA delivery, we counted the total number of outer hair cells in a region 

spanning 200 µm around the site of injection in the base turn of the cochlea. The efficiency 

of (−30)GFP-Cre-induced recombination or Cas9:sgRNA-induced genome modification was 

calculated as the percentage of outer hair cells that expressed tdTomato or that lost GFP 

expression.

High-throughput DNA sequencing of genome modifications

HEK293T cells were either transfected with Cas9 and sgRNA expression plasmids or linear 

DNA PCR products or treated with 50 nM Cas9 protein, 125 nM purified sgRNA, and 

cationic lipids as described earlier for Cas9 protein delivery to U2OS-EGFP reporter cells. 

For plasmid-based transfection experiments, 700 ng of Cas9 expression plasmid plus 250 ng 

of sgRNA plasmid or 50 ng of a linear DNA PCR product expressing sgRNA for targeting 

either the EMX1, CLTA2, or VEGF locus were transfected with Lipofectamine 2000 (Life 

Technologies) and cells were isolated 2 days later. For protein delivery experiments in vivo, 

~30 mg of mouse tissue was isolated as previously described49 from anesthetized mice and 

genomic DNA was extracted using the Agencourt DNAdvance Genomic DNA Isolation Kit 

(Beckman Coulter). For cell culture experiments genomic DNA was isolated as described 

above. 150 ng of genomic DNA was used as template to amplify by PCR the on-target and 

off-target genomic sites with flanking HTS primer pairs specified in the Supplementary 

Notes. Relative amounts of crude PCR products were quantified by gel electrophoresis and 

samples treated with different sgRNA pairs or Cas9 nuclease types were separately pooled 

in equimolar concentrations before purification with the QIAquick PCR Purification Kit 

(Qiagen). ~150 ng of pooled DNA was electrophoresed using a 5% TBE 18-well Criterion 

PAGE gel (Bio-Rad) for 30 min at 200 V and DNAs ~125 bp to ~300 bp in length were 

isolated and purified by QIAquick PCR Purification Kit (Qiagen). Purified DNA was 

amplified by PCR with primers containing sequencing adapters, purified, and sequenced on 

a MiSeq high-throughput DNA sequencer (Illumina) as previously described.41

Quantification of Cas9 protein uptake

We used Alexa Fluor 647 C2 Maleimide (Life Technologies) to fluorescently label Cas9 

protein on surface cysteines. A 10 mM stock solution of Alexa 647 was prepared in 
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anhydrous DMSO (Sigma). In a 0.4 mL reaction, 10 nmol of purified Cas9 protein and 200 

nmol of Alexa 647 maleimide were combined in buffer conditions used for Cas9 protein 

storage. The labeling reaction was incubated at 4° C for 16 hours. At the end of the reaction, 

excess unconjugated Alexa 647 was removed by re-purifying the labeled Cas9 protein by 

cation exchange chromatography as described above. To measure the amount of protein 

delivered into treated cells, 20,000 cells were plated in the wells of a 48-well plate 1 day 

prior to treatment. On the day of treatment, 50 nM of Alexa 647-labeled Cas9 (Cas9-Alexa 

647) and 50 nM of EGFP sgRNA were prepared for delivery using 0.8 µL of Lipofectamine 

2000 as described above, and applied to the cells. After 4 hours, Cas9-Alexa 647:sgRNA 

Lipofectamine-containing media was removed, and cells were washed three times with 500 

µL of PBS containing 20 U/mL heparin. The cells were trypsinized and prepared for 

counting and flow cytometry as described above. Cas9-Alexa 647 uptake was measured by 

flow cytometry, while 10,000 cells of the treated population were transferred to a black, flat-

bottomed, opaque 96-well plate. Standard curves of Cas9-Alexa 647 were prepared by 

complexing 50 pmol of the Cas9-Alexa 647 protein with Lipofectamine 2000 exactly as 

described for Cas9-Alexa 647 delivery, followed by serial 2-fold dilutions in DMEM with 

10% FBS containing 10,000 U2OS cells per well in the 96-well plate. The effect of U2OS 

cells or complexation with Lipofectamine 2000 on Alexa 647 fluorescence was determined 

by preparing three additional Cas9-Alexa 647 standard curves: (i) with Lipofectamine 2000 

in media lacking U2OS cells, (ii) without Lipofectamine 2000 in media containing U2OS 

cells, and (iii) without Lipofectamine 2000 in media lacking U2OS cells.

Data Analysis

Illumina sequencing reads were filtered and parsed with scripts written in Unix Bash as 

outlined in Supplementary Notes. DNA sequences are deposited in NCBI’s Sequencing 

Reads Archive (SRA). Sample sizes for sequencing experiments were maximized (within 

practical experimental considerations) to ensure greatest power to detect effects. Statistical 

analyses for Cas9-modified genomic sites (Supplementary Table 2) were performed as 

previously described.50

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Strategy for delivering proteins into mammalian cells by fusion or non-covalent 

complexation with polyanionic macromolecules and complexation with cationic lipids. (a) 

Recombinases, transcriptional-activator-like effector (TALE) proteins, and Cas9 

endonucleases bind nucleic acids and are natively cationic (net theoretical charges are 

shown in black) and are not efficiently complexed with cationic lipids. These proteins can be 

rendered highly anionic, however, by fusion to either a supernegatively charged protein such 

as (−30)GFP, or by complexation with polyanionic nucleic acids. (b) We envisioned that 

cationic lipids commonly used to transfect DNA and RNA would complex with the resulting 

highly anionic proteins or protein:nucleic acid complexes, mediating their delivery into 

mammalian cells.
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Figure 2. 

Delivery of Cre recombinase to cultured human cells. (a) Fusion of either highly cationic 

(+36)GFP or highly anionic (−30)GFP to Cre recombinase. We used a HeLa reporter cell 

line that expresses DsRed upon Cre-mediated recombination to evaluate Cre delivery 

efficiency. (b) HeLa dsRed cells treated with 10 nM (−30)GFP-Cre and 1.5 µL of the 

cationic lipid formulation RNAiMAX. Cells were visualized after incubation for 48 hours in 

media containing 10% fetal bovine serum (FBS). (c) Delivery of (+36)GFP-Cre in 10% FBS 

media or in serum-free media, and (−30)GFP-Cre with or without the cationic lipid 

RNAiMAX (0.8 µL) in full-serum media. (d) Effect of cationic lipid dose on functional 

(−30)GFP-Cre delivery efficacy after 48 hours. (e) Comparison of several commercially 

available cationic lipids and polymers for functional delivery efficacy of (−30)dGFP-Cre. (f) 

RNAiMAX-mediated delivery of multiple anionic peptide or protein sequences fused to Cre. 

The net theoretical charge of the VP64 activation domain and the 3xFLAG tag is −22 and 

−7, respectively. All experiments were performed with 25 nM protein in 48-well plate 

format using 275 µL DMEM with 10% FBS and no antibiotics. Error bars reflect s.d. from 

three biological replicates performed on different days.
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Figure 3. 

Delivery of TALE transcriptional activators into cultured human cells. (a) Design of an 

18.5-repeat TALE activator fused C-terminally to a VP64 activation domain and N-

terminally to (−30)GFP and an NLS. The overall net theoretical charge of the fusion is −43. 

(b) Activation of NTF3 transcription by traditional transfection of plasmids encoding TALE-

VP64 activators that target sites in the NTF3 gene, or by RNAiMAX cationic lipid-mediated 

delivery of the corresponding NTF3-targeting (−30)GFP-TALE-VP64 proteins. For protein 

delivery experiments, 25 nM VEGF TALE, 25 nM NTF3 TALE 1, or 25 nM NTF3 TALEs 

1–5 (5 nM each) were delivered with 1.5 µL RNAiMAX in 275 µL DMEM-FBS without 

antibiotics for 4 hours before being harvested. For plasmid transfections, a total of 300 ng of 

one or all five NTF3 TALE expression plasmids (60 ng each) were transfected with 0.8 µL 

Lipofectamine 2000 in 275 µL DMEM-FBS without antibiotics and harvested 48 hours later. 

Gene expression levels of harvested cells were measured by qRT-PCR and are normalized to 

GAPDH expression levels. Incubation times for TALE activators by plasmid transfection 

and protein delivery were those found to give maximal increases in NTF3 mRNA levels. (c) 

Time course of TALE activation for protein delivery and plasmid transfection by measuring 

NTF3 mRNA levels and then normalizing each method to the highest activation value 

achieved over any time point for that method. Optimal protein (25–50 nM) and lipid dosage 

(1.5 µL RNAiMAX) was used for each delivery technique. Error bars reflect s.d. from three 

biological replicates performed on different days.
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Figure 4. 

Delivery of Cas9:sgRNA, Cas9 D10A nickase, and dCas9-VP64 transcriptional activators to 

cultured human cells. (a) Green entries: U2OS EGFP reporter cells were treated with 100 

nM of the Cas9 protein variant shown, 0.8 µL of the cationic lipid shown, and either 50 nM 

of the sgRNA shown for Cas9 protein treatment, or 125 nM of the sgRNA shown for 

(+36)dGFP-NLS-Cas9 and (−30)dGFP-NLS-Cas9 treatment. The fraction of cells lacking 

EGFP expression was measured by flow cytometry. Blue entries: plasmid DNA transfection 

of 750 ng Cas9 and 250 ng sgRNA expression plasmids using 0.8 µL Lipofectamine 2000. 
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(b) T7 endonuclease I (T7EI) assay to measure modification of EGFP from no treatment 

(lane 1), treatment with EGFP-targeting sgRNA alone (lane 2), Cas9 protein alone (lane 3), 

Cas9 protein + VEGF-targeting sgRNA + RNAiMAX (lane 4), DNA transfection of 

plasmids expressing Cas9 and EGFP-targeting sgRNA (lane 5), or Cas9 protein + EGFP-

targeting sgRNA + RNAiMAX (lane 6). (c) T7EI assay of simultaneous genome 

modification at EGFP and three endogenous genes in U2OS cells 48 hours after a single 

treatment of 100 nM Cas9 protein, 25 nM of each of the four sgRNAs shown (100 nM total 

sgRNA), and 0.8 µL RNAiMAX. (d) Delivery of Cas9 D10A nickase and pairs of sgRNAs 

either by plasmid transfection or by RNAiMAX-mediated protein:sgRNA complex delivery 

under conditions described in (a) with 50 nM EGFP-disrupting sgRNAs (25 nM each) for 

protein delivery, and 250 ng sgRNA-expressing plasmids (125 ng each) for DNA delivery. 

EGFP-disrupting sgRNAs g1 + g5, or g3 + g7, are expected to result in gene disruption, 

while g5 + g7 target the same strand and are expected to be non-functional. (e) Delivery of 

dCas9-VP64 transcriptional activators that target NTF3 either by DNA transfection or 

RNAiMAX-mediated protein delivery. Error bars reflect s.d. from six biological replicates 

performed on different days.
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Figure 5. 

DNA sequence specificity of Cas9-mediated endogenous gene cleavage in cultured human 

cells by plasmid transfection or by cationic lipid-mediated protein:sgRNA delivery using 1.6 

µL RNAiMAX complexed with 100 nM Cas9 and 100 nM sgRNA. (a) T7EI assay was 

performed for on-target modification of endogenous CLTA, EMX, and VEGF genes in 

HEK293T cells. (b–d) On-target:off-target DNA modification ratio resulting from 

Cas9:sgRNA for plasmid transfection or cationic lipid-mediated protein:sgRNA delivery. 

The conditions for each treatment were adjusted to result in ~10% on-target cleavage, 

enabling a comparison of DNA cleavage specificity between the two delivery methods 

under conditions in which on-target gene modification efficiencies are similar. P values for a 

single biological replicate are listed in Supplementary Table 2. Each on- and off-target 

sample was sequenced once with > 10,000 sequences analyzed per on-target sample and an 

average of > 111,000 sequences analyzed per off-target sample (Supplementary Table 2). 

All protein:sgRNA deliveries and plasmid transfections were performed in 24-well format 

using 1.6 µL RNAiMAX in 550 µL DMEM-FBS without antibiotics. Error bars reflect s.d. 

from three biological replicates performed on different days.
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Figure 6. 

In vivo delivery of Cre recombinase and Cas9:sgRNA complexes to hair cells in the mouse 

inner ear. (a) The scala media (cochlear duct) of P0 floxP-tdTomato mice (n = 4) were 

injected with 0.3 µL of 23 µM (−30)GFP-Cre in 50% RNAiMAX or with RNAiMAX alone 

(control). After 5 days, tdTomato expression indicative of Cre-mediated recombination was 

visualized using immunohistology. Red = tdTomato; green = Myo7a; white = Sox2; blue = 

DAPI. Yellow brackets indicate the outer hair cell (OHC) region. (b) Ten days after 

(−30)GFP-Cre delivery, intact espin (Esp)-expressing stereocilia of tdTomato-positive outer 

hair cells were present (arrow), similar to stereocilia in control cochlea. Red = tdTomato; 

green = Esp; white = Sox2; blue = DAPI. (c) Identical to (a) except using Lipofectamine 
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2000 instead of RNAiMAX. (n = 4). The upper and lower panels are images of mice cochlea 

at low and high magnification, respectively, detailing the efficiency of delivery and the 

effect on cochlear architecture and hair cell loss. (d) The scala media of P2 Atoh1-GFP mice 

(n = 3) were injected with 0.3 µL of 33 µM Cas9, 16.5 µM EGFP sgRNA in 50% 

RNAiMAX or Lipofectamine 2000 commercial solutions. Cas9-mediated gene disruption 

results in the loss of GFP expression when visualized 10 days later. The upper panels show 

GFP signal only, while lower panels include additional immunohistological markers. Yellow 

boxes in the lower panels highlight hair cells that have lost GFP expression. No obvious 

OHC loss was observed in the Cas9 + RNAiMAX or Cas9 + Lipofectamine 2000 groups. 

Red = tdTomato; green = Myo7a; white/light blue = Sox2; blue = DAPI. All scale bars 

(white) are 10 µm.
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