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ABSTRACT: To obtain information about the transition state for the cationic poly­
merization of monophenylbutadienes, the ring-substituent and the temperature effects 
on the copolymerizability were investigated. Judging from the magnitude of the p+ 
values for the copolymerizations of styrene with ring-substituted 1- and 2-phenylbuta­
dienes, it is suggested that the propagation of monophenylbutadiene proceeds through 
the transition state which involves an cyclic carbonium ion intermediate. The same 
interpretation could be applied for the attack of a cinnamyl-type cation onto mono­
phenylbutadiene. The reactivity of monomers toward a styryl cation decreased accord­
ing to the following order: 1-phenylbutadiene>styrene>2-phenylbutadiene. The lower 
reactivity of 2-phenylbutadiene in comparison with styrene may be ascribed to the 
enthalpy increase which overweighs the entropy increase in the transition state. 

KEY WORDS 1-Phenylbutadiene / 2-Phenylbutadiene / Ring-Sub-
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In a previous paper,1 the authors reported 
the cationic copolymerization of l-phenyl-1,3-
butadiene (1-PB) with olefinic monomers such 
as isobutene, styrene, and a-methylstyrene. The 
reactivities of these monomers toward a I-PB 
propagating end in methylene chloride decreased 
in the following order: a-methylstyrene > 1-PB > 
isobutene > styrene. This order has been ex­
plained in terms of the nucleophilicity of the 
monomers and the stability of the resulting 
cations. 

In general, the kinetic feature of the propaga­
tion depends on the steric and the electronic 
effects of both the monomer and the propagat­
ing end. In addition, the propagation rate is 
sensitively influenced by a slight difference of 
the geometrical structures for the transition state. 

In this work, the transition state for the 
cationic polymerization of monophenylbuta­
dienes will be discussed on the basis of the 
reactivity difference in the copolymerization. 

EXPERIMENTAL 

Materials 

1-PB and 2-phenyl-1,3-butadiene (2-PB) were 
prepared as described in previous papers. 2 •3 
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l-p-Methylphenyl-1,3-butadiene (p-CH3-l-PB) and 
l-p-chlorophenyl-1,3-butadiene (p-Cl-1-PB) were 
synthesized from the corresponding benzalde­
hydes by the same method as 1-PB. l-m­
Chlorophenyl-1,3-butadiene (m-Cl-1-PB) was syn­
thesized by Meerwein arylation between buta­
diene and the corresponding diazonium salt, 
and subsequent dehydrochlorination by potas­
sium hydroxide. 4 These monomers were all 
trans isomers. Ring-substituted-2-phenyl-1,3-
butadienes including p-methoxy, p-methyl, and 
p-chloro groups were prepared from the corre­
sponding acetophenones and vinylmagnesium 
bromide by Grignard reaction and subsequent 
dehydration by potassium bisulfate. The boiling 
points of these monomers were as follows: p­
CH3-l-PB 87°C (7 mm); p-Cl-1-PB 98°C (7 mm); 
m-Cl-1-PB 100°C (8 mm); p-CH3O-2-PB 76°C 
(4 mm); p-CH3-2-PB 61-62°C (7 mm); p-Cl-2-PB 
67-69°C (5 mm). The purities of these mono­
mers were more than 99% according to gas 
chromatography. Styrene, p-methylstyrene, cata­
lysts, and methylene chloride were purified in 
the usual manners. Trichloroacetic acid (TCA) 
was used as the cocatalyst of stannic chloride 
(SnC14) without further purification. An equi­
molar mixture of SnC14 and TCA was used 
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to start the copolymerization. 

Procedures 
Copolymerization was carried out in an Erlen­

meyer flask equipped with a three-way cock 
under a dry nitrogen atmosphere. After suitable 
time intervals, an aliquot amount of the copoly­
merization solution was withdrawn with a 
syringe into methanol, which contained a small 
amount of aqueous ammonia solution in order 
to stop the copolymerization. The copolymer 
compositions were determined by measuring the 
residual monomers by means of gas chromato­
graphy. The monomer reactivity ratios were 
calculated by Ezrielev's method. 5 

RESULTS AND DISCUSSION 

Figure 1 shows the result of the cationic 
copolymerization of 2-PB with styrene; the 
monomer reactivity ratios are listed in Table I. 
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Figure 1. Copolymer composition curves for the 
copolymerizations of 2-PB with styrene by SnCl4· 
TCA in methylene chloride: [M]o=0.50 mol//; O, 
0°C; 6, - 78°C. 

The ratios of the reactivity of 2-PB to that of 
styrene toward a styryl cation, by using SnC14. 
TCA, were about 0.6 at - 78°C and 0.9 at 0°c. 
The relative reactivity of 2-PB toward a 2-PB 
propagating end increased upon raising the tem­
perature. A similar temperature effect was ob­
served in the copolymerization of 1-PB with 
styrene in polar solvents such as nitroethane 
and methylene chloride. 1 From the activation 
parameters determined using the monomer re­
activity ratios in the temperature range from 
- 78 to 0°C, 2-PB is shown to be less -reactive 
than styrene in the enthalpy term but more 
reactive in the entropy one (Table II). The 
reactivity of monomers toward a styryl cation 
decreased in the following order: 1-PB > sty­
rene> 2-PB. This order may not be explained 
in terms of the stability of the resultant cation. 
The lower reactivity of 2-PB in comparison with 
styrene may be ascribed to the enthalpy increase 
which overweighs the entropy increase in the 
transition state. When a styryl cation attacks on 
1- and 2-phenylbutadienes, the values of these 
activation enthalpies are almost the same order, 
but the value of the activation entropy of 2-PB 
is smaller than that of 1-PB. This difference 
in the entropy term may be due to a difference 
of number of modes for the transition state. 

The ring-substituent effect on the cationic 
copolymerization of phenylbutadienes was in­
vestigated in methylene chloride at 0°C, using 
boron trifluoride etherate as a catalyst and sty­
rene as a reference monomer. Figures 2 and 3 
show the copolymerizations of styrene with l­
and 2-phenylbutadienes, respectively. The 
monomer reactivity ratios are summarized in 
Table III. The reactivity of phenylbutadiene 
was increased by introducing an electron-donat-

Table I. Monomer reactivity ratios in the copolymerization of 2-PB(M1) 
with styrene, /3-methylstyrene, and l-PB(M2)• 

M2 Temp, °C ri r2 r1X r2 l/r1 

Styrene 0 1.70±0.09 1.07±0.04 1.82 0.59 
Styrene -78 0.98±0.04 1.70±0.04 1.66 1.02 
p-Methylstyrene 0 1.67±0.15 0.05±0.05 0.08 0.60 
/3-Methylstyrene -78 1.07±0.11 0.42±0.07 0.44 0.93 
1-PB 0 0.50±0.02 1.43±0.04 0.72 2.00 
1-PB -78 0.42±0.08 2.09±0.13 0.88 2.38 

• Catalyst, SnCl4·TCA; solvent, methylene chloride. 
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Table II. Activation parameters of monomer reactivity ratios 

Monomer pair, 
M1-M2 

JHfi- JH:/;,, 

Styrene-I-PB 
Styrene-2-PB 
1-PB-2-PB 
p-Methylstyrene-2-PB 
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-0.66 
-0.63 
-0.52 
-2.89 

Figure 2. Copolymer composition curves for the 
copolymerizations of styrene with ring-substituted 
1-PB by BF3OEt2 in methylene chloride at 0°C: 
D, m-Cl; 0, p-Cl; 0, H; f::o., p-CH3. 
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Figure 3. Copolymer composition curves for the 
copolymerizations of styrene with ring-substituted 
2-PB by BF3OEt2 in methylene chloride at 0°C: 
0, p-Cl; 0, H; f::o., p-CH3; 0, p-OCH3. 

ing substituent, such as methyl and methoxy 
groups. The log (l/r1) obtained from the copoly­
merizations was plotted against Brown's a+ and 
the plots gave two straight lines (Figure 4). 
The p + values were obtained from the slopes 
of the Hammett plots by the least-squares 
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JHti-JH:fii,, JSfi-JS~, JSti-JSi2, 
kcal/mol cal/deg cal/deg 

-0.33 - 4.4 -4.2 
-0.75 - 2.2 -3.8 
-0.24 - 1.2 0.5 
-0.61 -16.5 -3.2 

Table III. Monomer reactivity ratios in 
the copolymerizations of styrene 

(M1) with ring-substituted 
phenylbutadienes (M2)• 

M2 ri r2 

p-CH3-l-PB 0.18±0.11 12.38±2.26 
1-PB 0.60±0.13 5.30±0.47 
p-Cl-1-PB 0.98±0.10 2.87±0.24 
m-Cl-1-PB 2.07±0.32 2.30±0.45 

1/ri 

5.56 
1.67 
1.02 
0.48 

p-CH3O-2-PB 0.06±0.05 40.09±4.39 17.24 
p-CH3-2-PB 0.30±0.05 4.02±0.25 3.33 
2-PB 0.92±0.03 1.62±0.04 1.09 
p-Cl-2-PB 2.06±0.14 0.45±0.07 0.49 

• Catalyst, BF3OEt2; solvent, methylene chloride; 
temp, 0°C. 

method. The ring-substituent effects of phenyl­
butadienes toward a styryl cation in the 
BF3OEt2-methylene chloride-0°C system were 
as follows. 

1-PB: p+=-1.51, r=0.993, s=0.064 

2-PB: p+=-1.67, r=0.994, s=0.092 

where p +, r, and s represent the reaction con­
stant, the correlation coefficient, and the stand­
ard deviation, respectively. These p + values 
were less negative than that of the hydro­
chlorination of 1-PB (p + = -2.98)6 or that of 
the cationic polymerization of styrene (p + = 
-2.03). 7 Judging from the ring-substituent and 
the deuterium isotope effects, Izawa, et al.,6 have 
concluded that the hydrochlorination of 1-fB 
proceeds through a transition state which is 
close to an intermediate allylic cation and that 
the relatively low absolute value of -2.98 com­
pared with the hydration of styrene (p + = -3.58)8 
must be due to the effective delocalization of a 
positive charge by allylic conjugation. In proto­
nation, therefore, the allylic resonance decreased 
the ring-substituent effect by a factor of about 0.8. 
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Figure 4. Plots of log (l/r1) against a+ in the 
copolymerizations of styrene with 1- and 2-phenyl­
butadienes: O, ring-substituted 1-PB; L:::,., ring­
substituted 2-PB. 

In the case of styrene, the absolute value of 
p + (-2.03) for the cationic polymerization is 
much smaller than that (p+=-4.21) 9 for bro­
mination which involves the transition state of 
an open benzilic carbonium ion. This value is 
very close to that of the sulfenyl chloride ad­
dition (p= -2.41--2.29)1° which has been 
well established to occur with the formation of 
a cyclic episulfonium ion intermediate for a 
transition state by Kharasch, et al. Therefore, 
it is suggested that the transition state of the 
propagation of the cationic polymerization of 
styrene also involves a cyclic intermediate, as 
the case of the addition of sulfenyl chloride. 11 

A positive charge localized on the olefinic car­
bons at a cyclic carbonium ion intermediate in 
the transition state would be responsible for 
the low ring-substituent effect. 

In the case of 1-PB, it has already been shown 
from the result of 13C NMR that the inductive 
,effect of the ring substituent was missing 20-
30% on carbon 4 of I-PB on which an electro­
philic attack took place after crossing the 1,2 
double bond. 12 Therefore, the p+ value (-1.51) 
obtained in the cationic copolymerization of 
styrene with ring-substituted 1-PB, which is 0. 74 
times as high as in the case of styrene (-2.03), 
suggests a similar transition state for both cases 
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of I-PB and styrene, that is, the cyclic carbonium 
ion between the attacking styryl cation and the 
ir-orbital on the 3,4 double bond of 1-PB. 
Ishida, et al., 13 have reported the p+ value 
(-1.50) for the copolymerization of 1-PB with 
ring-substituted 1-PB. In this case it is also 
reasonable to consider a similar cyclic carbonium 
ion as the intermediate in the transition state. 

The same interpretation could be applied for 
the copolymerization of styrene with ring-sub­
stituted 2-PB. The magnitude of the p + value 
( -1.67) suggests that the cyclic carbonium ion 
is between the styryl cation and the 2-PB deriva­
tives, and that a small part of the positive charge 
will be delocalized on the phenyl group in the 
transition state compared with that of the 
cinnamyl-type cation. 

However, we cannot choose whether the 
transition state is a symmetrical intermediate 
in which the vacant orbital of the styryl cation 
overlaps equivalently occupied orbitals of a,(,­
carbons of the monomer or an asymmetrical 
one. The authors will discuss the transition 
state for the propagation of phenylbutadienes 
in further detail in the next paper on the catio­
nic polymerization of methylphenylbutadienes. 14 

The cationic copolymerization of 2-PB with 
(,-methylstyrene was carried out in order to 
obtain information on the reactivity of the 2-PB 
propagating end (Figure 5 and Table I). (,­
Methylstyrene was 0.9-1.0 times as reactive as 
styrene in attacking the 2-PB propagating end. 
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Figure 5. Copolymer composition curves for the 
copolymerizations of 2-PB with p-methylstyrene 
by SnCl4 -TCA in methylene chlroride: 0, 0°C; 
L:::,., - 78°C. 
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Figure 6. Copolymer composition curves for the 
copolymerizations of 2-PB with I-PB by SnCJ4· 
TCA in methylene chloride: 0, 0°C; ,0,., - 78°C. 

Mizote, et al., 15 reported that the reactivity of 
/3-methylstyrene toward a styryl cation was 
about a half of that of styrene. Therefore, a 
2-PB propagating end may attack /3-methylsty­
rene through a more bridged carbonium ion 
than a styryl cation does, since the steric inter­
action between 2-PB propagating end and /3-
methylstyrene was less than that between the 
styryl cation and /3-methylstyrene. On the other 
hand, the reactivity of /3-methylstyrene decreased 
considerably because of the large steric hindrance 
of the /3-methyl group. 

The copolymerization of 1-PB and 2-PB was 
carried out in methylene chloride, using SnC14. 
TCA (Figure 6). In this copolymerization, the 
reactivity difference between the two monomers 
was smaller than that expected in the copoly­
merization of styrene with phenylbutadienes: 
namely, the relative reactivity of 2-PB toward 
1-PB increased compared with that toward a 
styryl cation. This result may be explained as 
follows: since the ring-substituent effect has 
already suggested that a styryl cation attacks 
2-PB through the following model (A), the 
overlap between the lowest vacant orbital of the 
cation and the highest occupied orbital of 2-PB 
will increased as the bond length of the double 
bond of the monomer becomes as short as 
possible. However, if a cinnamylic cation at­
tacks 2-PB through model (B), it is favorable 
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that the carbon-carbon double bond of the 
monomer is long in order to give a much greater 
overlap. The length of the olefinic double bond 
of phenylbutadiene is greater than that of sty­
rene because of a long conjugation. Therefore, 

~CH-Ph r, 

,,·$\\ 
cf{":.c-CH=CH 

2 I 2 
Ph 

Model (A) 

.,-CH 
--vvC:,h··:::cH2 

\ EB j 
CH2 =CH-C:::.tH 2 

r 
Ph 

Model (B) 

the relative reactivity of 2-PB toward an allylic 
cation is greater than that expected in the copoly­
merization of styrene with phenylbutadienes. 
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