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Abstract

In this paper we continue the investigation of the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. In
particular we extend some previous results about the Cauchy problem and the quasi-stationary limit to the case
where the magnetic permeability and the electric permittivity are variable.
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1 Introduction

The models. This paper deals with two physical models which describe the propagation of electromagnetic waves,
that is of the magnetic field H and of the electric field E, in some special medium which occupies an open subset 2 of
R3. with magnetic permeability p and electric permittivity . In both cases we denote by f the extension of a function
f by 0 outside the set ©. The time variable is ¢ > 0, and the space variable is z € R3.

The first model refers to Maxwell-Landau-Lifschitz equations (see [10] and [26] for Physics references). The
magnetic field H and the electric field E satisfy the Maxwell equations in R3:

wo, H + curl E = —ud M,
e E —curl H =0,
divu(H + M) =0,
diveFE =0,

(1)

where M stands for the magnetic moment in the ferromagnet 2 and takes values in the unit sphere of R3. It is solution
to the Landau-Lifschitz equation:

M =~yM NHy —aM AN (M A Hr) for z € Q, (2)

where 7 # 0 is the gyromagnetic constant, and a > 0 is some damping coefficient. Neglecting the exchange phe-
nomenon, the total magnetic field Hr is the sum

Hyr = H+ Hy(M) + Heyy, (3)
where the anisotropy field writes H, (M) = V3, ®(M), for some convex function ®, and Hey is some applied (exterior)
magnetic field.

The second model refers to Maxwell-Bloch equations (see for example [7], [8], [16], [33], [36], [39]). In this
setting ) denotes some quantum medium with N € N energy levels described by a Hermitian, non-negative, N x N
density matrix p. Assuming the usual dipolar approximation, these quantum states change under the action of an
electric field E by the quantum Liouville-Von Neumann (or Bloch) equation:

i0hp = [A— BT, p] +iQ(p). (4)

The N x N Hermitian symmetric matrix A, with entries in C, represents the (electromagnetic field-) free Hamiltonian
of the medium. The dipole moment operator I' is a N x N Hermitian matrix, with entries in C?, and depends on the
material considered. The (linear) relaxation term Q(p) takes dissipative effects into account (see [5], [6], [30]). The
polarization P of the matter is given by the constitutive law P = Tr(I'p) which influences back the electric field E.
Again, the electromagnetic field satisfies the Maxwell equations in R3:

uOsH + curl E = 0,
e E — curl H = -0, P,
div(eE 4+ P) =0,
divpuH = 0.

Cauchy problems. We first address the questions of global existence, uniqueness and stability for the Cauchy
problem associated with these equations. The physically relevant solutions have finite energy: they satisfy the usual
(L?) energy estimates. Mathematically, this regularity leads to weak solutions and is usually not enough to ensure the
desired uniqueness and stability properties (requiring for these hyperbolic semilinear systems in space dimension 3, in
the general theory, H® Sobolev regularity with s > 3/2).

However, in the case of the Maxwell-Landau-Lifschitz system, Joly, Métivier and Rauch [23] noticed that specific
(algebraic) properties of the nonlinearities, as well as (geometric) properties of the differential operator involved,
allowed to show the existence of global finite energy solutions (essentially, using compensated compactness arguments)



enjoying stability properties. Furthermore, only a small amount of regularity (curl H and curl E in L?) ensures
uniqueness. This is achieved using dispersive properties of the system; namely, a limit Strichartz estimate controlling
the L?L° norm of (a limited frequency part of) the fields H and E. These results were obtained for equations posed
in the whole space (€ = R?) and for constant coefficients & and p.

In practice, the various coefficients of the system may not be constant. Typically, the magnetic permeability and
electric permittivity may depend on the space variable x and have jumps across the boundary of the domain €.

Adapting the above mentioned compensated compactness argument, Jochmann established in [22] the existence
and weak stability of global finite energy solutions for the Maxwell-Landau-Lifschitz system, considering any domain
Q2 C R3, and variable, possibly discontinuous coefficients (¢, € L>(R?)). In the (space) 2-dimensional case, we refer
to the work of Haddar [20].

Concerning the Maxwell-Bloch system, the first author noticed that it shares with the Maxwell-Landau-Lifschitz
some of its structural properties. This author thus showed in [18] results on existence and uniqueness of global finite
energy solutions, similar to the ones of Joly, Métivier and Rauch, but for some general class of systems including
the two models above. Again, these results where obtained for equations posed in the whole space and for constant
coefficients € and p.

Here, we continue this study, again for a general class of systems including the Maxwell-Landau-Lifschitz equations
and the Maxwell-Bloch equations, so as to enlight the similarities and differences between these two models. Adapting
Jochmann’s method, we show the existence and stability of global finite energy solutions, for a given domain  C R?,
and L coefficients. Then, for smooth coefficients, constant out of some compact set, we prove a limit Strichartz
estimate analogous to the one obtained by Joly, Métivier and Rauch in the constant coefficient case. This allows us
to show propagation of regularity and uniqueness when initially, curl H and curl E belong to L?(R3). As a corollary
of a result of Saint-Raymond [38], we also infer generic uniqueness of the global finite energy solutions.

Quasi-stationary limits. Next, we turn to the problem of the so-called quasi-stationary limit. Physically, this
regime appears when the domain 2 is small compared to the wavelength. Mathematically, it amounts to some long-
time asymptotics (replacing in the equations 9; by nd;, for some small parameter 1) with weak nonlinearities (also
scaled so as to have an amplitude of size 7).

Jochmann showed in [22] the weak convergence of the corresponding solutions to the Maxwell-Landau-Lifschitz
system towards the solutions of some reduced system driven by the magnetization, using the weak stability property.
Starynkevitch extended this result, proving strong and global-in-time convergence in the constant coefficient case in
[40], thanks to local energy estimates performed on the explicit fundamental solution of the associated wave equation.
He also obtained the same result in the case of smooth coefficients, constant out of some compact set, in [41], thanks
to dispersive estimates obtained from resolvent estimates on elliptic operators.

Here, we apply the same methods to our general systems to get weak and strong convergence in the quasi-stationary
limit. For the latter however, some time integrability assumption is needed to conclude, which is satisfied by the
Maxwell-Landau-Lifschitz system (since ;M € L?((0,00) x ©Q)), but we do not know if the Maxwell-Bloch system
enjoys such a property.

Remark 1. Taking exchange energy into account, one should add to the total magnetic field in (3) a term —KAM.
The resulting system is then parabolic. We refer to [1], [2], [12], [15], [14] and [43] for works on the (weak or strong)
Cauchy problem, and long-time asymptotics.

2 Main results

Let us stress that we do not assume that ) is bounded, for the moment. To deal with both the Maxwell-Landau-
Lifschitz system (1)-(2) and the Maxwell-Bloch system (4)-(5), we put these two models above into a single class
of systems consisting in the coupling of the Maxwell equations (with the fields H and E as unknowns) with some
ODE (corresponding to a third unknown variable). The resulting sytem is symmetrizable hyperbolic, with semilinear
nonlinearity, and some structure assumptions are made, such as affine dependence of the nonlinearity with respect to
the electromagnetic field, and a priori pointwise estimates on the third unknown variable. One of the key points in
our study is that the electromagnetic fields decompose into an “irrotational” part, which is directly related to this
third unknown, and a “divergence free” part, which solves some wave equation.



2.1 An abstract setting

On any finite-dimensional vector space RY, we denote by u-u’ the usual scalar product between vectors u and u’, and
by | - | the associated norm. For all » > 0, B, denotes the (closed) ball centered at 0, with radius r.
We consider two scalar functions x4 (z) and ko (), which are uniformly positive:

fori=1,2, ;€ L°R?), and 3Je> 0,k =c. (6)

We denote by Heu the space of functions f in L?(R? R?) with curl f in L?(R3,R3). We consider the operator B
defined by

B(uy,ug) = (,%1_1 curl us, 7112_1 curluy) for w:= (u1,us) € D(B) := Heyn X Heunl-

This is a skew self-adjoint operator on the Hilbert space L?(R3, R®) endowed with the scalar product

((r,02). (08, 0w 1= [ (a5 )
Rl}

We denote by P(ui,us) := (Plul,Pgug) the orthogonal projector on (ker B)+ with respect to the weighted scalar
product above, so that for i = 1,2,

ran P; = {u; € L*(R* R?) | div(ksu;) = 0}, ran (Id — P;) = {u; € L*(R* ,R?) | curl(u;) = 0}. (7)

We consider a function F : R? x R? x RS — R?, where d € N, affine in its third variable, and written
F(z,v,u) = Fy(z,v) + Fi(x,v)u. (8)
For each j = 0,1, Fj is measurable with respect to = and continuously differentiable with respect to v. Furthermore,

for j =0,1, for almost all z € R, Fj(z,0) =0,

9
and VR >0, for almost all z € R®, Vo € Bg, |Fj(z,v)| +|0,Fj(z,v)| < Cr(R). ©)

Finally, we assume that there exists K > 0 such that:
for almost all z € R3 V(v,u) € R x RS, F(z,v,u) - v < K[v|?. (10)

Remark 2. The constant K above may sometimes be taken equal to zero. In this case, Estimate (i) in Theorem 3 is
improved, since v does not undergo any growth. This is the case for the Mazwell-Landau-Lifschitz model, as well as
for the Mazwell-Bloch model, when only transverse relaxation is taken into account (Q(p) = —Ypoa, for some v = 0,
and with poq the off-diagonal part of p).

We also consider a function I = (Iy,1s) € (L®(R?, L(R? R?)))2, where L(RY,R?) denotes the space of linear
functions from R¢ to R®. We introduce the following shorthand notation: for any x € R?, (k! -1)(x) is the mapping
from R? to R, such that

for almost all z € R®, Vo € R?, (k7' - 1)(2)v := (k1 (2) " 1 (2)v, ko () "o (x)v).

Then, for any U := (u,v) in
L? := L*(R3 R x L?(Q,RY),

the conditions
div(mul - llﬁ) = 0, diV(liQUz - 12@) = 0,

may be equivalently written

(Id — P)(u — (% - 1)) = 0. (11)



We look for U € C([0,00), L?), with

v € L5, ((0,00), L (2, RY)), (12)

solution to
(0:+Bu = (k' -D)F(x,7,u) forzeR3, (13)
v = F(z,v,u) forz el (14)

and (11). Here, the solution is understood in the distributional sense, noticing that (12) gives sense to the nonlinear
term, since the function F(z,v,u) is affine in u.

Remark 3. Equations (11)-(13)-(14) reduce to the Mazwell-Landau-Lifschitz system (1)-(2) when uy = H, us = E,
v=M (withd=3), k1 =p, ko =¢,l1 = —p,lo =0, F(x,v,u) = ywA(u1+H; () 4+ Hext) —avA (A (u1+Hg (v)+ Hoxt )
and to the Mazwell Bloch system (4)-(5) when u; = H, us = E, v = p (with d = N?), k1 = p, k2 = ¢, l; = 0,
lo =Tr(T), F(z,v,u) = —i[A —ug - T',v] + Q(v). The exterior magnetic field above is usually depending on time. We
did not consider such time-dependent coefficients in our study, since it would have made notations more intricate; up
to some integrability assumptions, this extension is straightforward.

Definition 1. We call U = (u,v) € C([0,00),L?) a global finite energy solution to (11)-(14) if (12) holds true and
U is a solution to (11)-(14) in the distributional sense.

Remark 4. Equation (11) has to be seen as a (linear) constraint, which propagates from t = 0 for solutions to
(13)-(14):

0y(Id — P)(u— (7 - 1)T) = 0. (15)

Indeed, by definition of the projector P, we have (Id — P)B = 0, so that we get (15) when applying (Id — P) to (13),
using (14) (which extends to all x € R? since F(z,0,u) = 0) and commuting the derivative 0; with (Id— P) and k=1 -1.

We therefore have to consider initial data Uy, satisfying (11), and for such constrained initial data, the solutions
to (13)-(14) also satisty (11) as long as they exist. We shall write Uinit 1= (Winst, Vinit) With @inic := (Winit,1, Winit,2)-

Definition 2. Let Lq;, be the set of functions U := (u,v) € L(R3 R%) x (L2(Q,R?) N L>(Q,R?)) satisfying (11).

2.2 Cauchy problems

Our first result states the existence of global finite energy solutions to (11)-(14).

Theorem 3. Assume (6) and (8)-(10). For any Usnis in Laiy, there exists U := (u,v) € C([0,00),L?), global finite
energy solution to (11)-(14) with U;pir as initial data. Moreover, for all T > 0, there is C = C(T, F, 1, ||vinit||L<) such
that

(i) for almost all x € R®, for allt > 0, |v(t,z)| < |vinit(z)|eEt (with K from (10));
(i) for allt € [0,T), |(u,v)(®)||Lz < C||Uinit|lL2;
(iii) v e W2°((0,00), L2(Q,R%)), and for almost every t € [0,T], 10c0(t) | 2(0) < CllUsnit |12 -

loc

2
<

Finally, if Uinit is a bounded set of Lai, which is compact in L2, then for all T > 0, the set U of the above solutions
with Cauchy data in Upni is compact in C([0, T), L?).

To establish this first result, we follow the strategy of Jochmann in [22], which is itself an improvement of the
method by Joly, Métivier and Rauch in [23]. This is the classical regularization method, in which (global-in-time)
approximate solutions U™ = (u™, v™) are built first (Section 3.2); the delicate step consists of course in passing to the
limit » — oo in the regularization (Section 3.3). Pointwise bounds are available for v™, which imply LP bounds for
(Id — P)u™ = (Id — P)(k~! - 1)v™, for finite p. The main argument relies on compensated compactness, applied to
Pu™ (Lemma 13).

As a byproduct of the proof of Theorem 3, we also have the following version of stability, where we assume strong
convergence ounly for the v part of the initial data. It will be useful below (cf. proof of Theorem 7) when considering
the weak quasi-stationary limit.



Proposition 4. Let (U™),en be a sequence in LSS ((0,00), Laiv), bounded in L3S ((0,00), L?), with (v"),en bounded

loc loc

in WL (0, 00), L2()) 1 L (0, 00), L(92)) satisfying (14), "o — vinsy in L*(Q) and Bu® = 8,D" with (D"),
bounded in L$2.((0,00), L?(R?)). Then, up to a subsequence, v converges to v in L52.((0,00), LP(Q)) for any p > 2
and in L5 ((0,00), L% (9)) weak *, u™ converges to u in L5 ((0,00), L*(R?)) weak %, and U := (u,v) satisfies (11),

loc
(14), as well as v|i=o = Vinst-

Let us now turn our atttention to smoother solutions. We need to assume more smoothness on the coefficients &
and p. Of course, when considering in some physical situation a domain ) with boundaries, the coefficients ¢ and p
experiment discontinuity jumps. Since we do not know how to tackle this physical case, we assume from now on that

Q is bounded, and with K =9, x; —1€CL(R?),i=1,2. (16)

In order to get a uniqueness result, we only need to ensure that the “divergence free” part Pu of the fields has the
H' regularity. To this end, once a finite energy solution is given, we make use of the linear system solved by Pu, with
coefficients depending on the rest of the solution. As in [23], we proceed in two steps: we begin with the propagation
of H* regularity, for p € (0,1), using Strichartz estimates (Proposition 20). Applying this result with g = 1/2
provides enough integrability for the coefficients of the above mentioned linear equation to ensure propagation of H*
regularity. This implies that u is “almost” L°°, a natural condition to prove uniqueness of the solution. Technically,
a L approximation of u is built thanks to a limit Strichartz estimate for low frequencies (Proposition 21). We also
need a decoupling assumption, which was introduced in [18], and is satisfied by the Maxwell-Landau-Lifschitz system
as well as by the Maxwell-Bloch system.

Theorem 5. In addition to the assumptions of Theorem 3, assume (16). Let p €]0,1], and U;piz € Laiw with
curl winir ; € HP1(R3), for i =1,2. Then, the following holds true:

(a) Any solution U to (11)-(14) with Uipny as initial data given by Theorem 3 satisfies curlu; € C([0, co], H*~1(R3)),
fori=1,2.

(b) If p =1, assuming moreover that
there exists j € {1,2} such that Is_;F =0 and such that F' depends only on (x,v,u;), (17)
there exists only one solution to (11)-(14) with Uinir as initial data as in Theorem 3.

Theorem 5 asserts that the uniqueness property holds for initial data Ujp;: in Lgi, with curluin,: € L2(}R3)7
i = 1,2, which are dense in Lg;, for the topology of L2. The following theorem says that the uniqueness property
even holds generically for the following topologies. Let 75, and 7,, denote respectively the strong and weak topologies
of L?(R3,R%) and let 7, denote the strong topology of L?(2,R%). We consider the product topology Tss (resp. Tys)
on L2 obtained from 7, (resp. 7,,) and 7.

Theorem 6. Under the assumptions of Theorem 5 (b), for any Cinie > 0, there exists a G5 dense set IZ;, in the set
{Uinit € Laiv | |Vinitll L~ (@) < Cinit} for the topology Tss and Ty, such that for any Uit € Laiv, there exists only one
solution to (11)-(14) with Usni as initial data, with the same properties as in Theorem 3.

Let us stress that we cannot expect that the problem (11)-(14) admits smoother solutions than the ones given by
Theorem 5 since, by definition, v is discontinuous across the boundary 0€2. However it follows from the general theory
of discontinuous solutions of hyperbolic semilinear systems [32, 37] that the problem (11)-(14) admits piecewise regular
solutions discontinuous accross 9€2 (let us also refer to the appendix of [42]). Yet the general theory only guaranties
local-in-time solutions. We do not know if in the particular case of the problem (11)-(14) global-in-time solutions can
be obtained.

2.3 Quasi-stationary limits

As described in the Introduction, the quasi-stationary regime consists in the limit n — 0% for (11), (13), (14), where
0y is replaced with nd;, and F' is replaced with nF'. Equations (11) and (14) are invariant under this rescaling, whereas
(13) becomes

n0; +B)u = n(k - 1)F(z,v,u), forzcR> (18)



For this semi-classical version of (14), it is still true that the constraint (11) is propagated from the initial data.
Formally, in the limit  — 0%, v still satisfies (14), whereas u satifies (11) and Bu = 0. But for U = (u,v) €
C([0, 00), L?), these last two conditions are equivalent to the fact that for all t > 0, u(¢) is directly determined by v(t),
and more precisely:

uw=(Id— P)u= (Id— P)(x™* - 1)7. (19)

Then, (14) becomes
O = F(z,v,(Id — P)(k™ - )v). (20)

Using the stability result given by Proposition 4, we have a first result of convergence towards the quasi-stationary
limit, weakly for u and locally in time for v:

Theorem 7. Assume (6)-(10). For any Uipni+ in Laiy, for any n € (0,1), let U := (u,v") be a global finite energy
solution to (11), (14) and (18) with Uipn;s as initial data. Then, up to a subsequence, v converges in LSS ((0, 00), LP(§2))

loc

for allp > 2 and in LS. ((0,00), L>=(2)) weak * towards a solution v to (20), with vy as initial data; Pu" converges

to 0 in L2 ((0,00), L?(Q)) weak *, and (Id — P)u" = (Id — P)(k~1 - 1)v7 converges in L2 ((0,00), LP(R3)) for all

loc loc

p = 2 towards u, given by (19).

Convergence of the whole sequence U" is ensured as soon as the Cauchy problem associated with the limiting
equation (20) has a unique solution. This is given by the following proposition, which extends [41, Theorem 3.1] by
Starynkevitch.

Proposition 8. Assume (16), and let vip;e € L*°(Q). Then, there is a unique v € C ([0, 00), L*(£2))NLSS,
solution to (20), with Vi as initial data.

((0,00), L>(€2))

We also prove strong and global-in-time convergence for u, assuming (16) again, as well as integrability in time for
||8tv||2Lz(Q) and non-trapping for some wave operator:

Theorem 9. Under the assumptions of Theorem 7, assume moreover (16), the non-trapping hypothesis (110) and
that 0;v" is bounded (w.r.t. ) in L2((0,00) x Q). Then, Pu" goes to zero in L*((0,00), L% .(R?)).

loc

Remark 5. In the case of the Mazwell-Landau-Lifschitz system (1)-(2), ;M actually belongs to L*((0,00) x Q).
Define the energy E(t) as

1 1
E(t) = 3 /Rs(s|E\2 + p|H|?) dz +/Qu <<I>(M) + 5|cht - M|2> dz.

Differentiating formally this expression with respect to time, we see that the integral of H-curl E—E-curl H = div(EAH)
vanishes, as well as M - 0;M (since |M| is constant). Using the orthogonality relations of the nonlinearity, we get

O:M - Hp = oM A Hp|* and |0;M|? = (a® +~*)|M A Hy|?,

so that estimate (ii) in Theorem 3 is improved to

« ¢ 1 t
E(t) + ﬁ/ H\/ﬁatM(t’)H%z(Q)dt' — fH\/ﬁHext(t)H%z(Q) +/ / uM - Oy Hoypdx | dt’ = cst,
a4+ v Jo 2 0 Q

and the same is true with the quasi-stationary scaling. Assuming for example that Heyy € L;’oLi and Oy Heyy € L%’I,
we deduce that € is bounded, and d; M belongs to L*((0,00) x Q).
In the case of the Maxwell-Bloch system, we do not know if such an estimate is available for Oyp.



3 Existence of global finite energy solutions: proof of Theorem 3

3.1 Technical interlude 1
3.1.1 Intersections and sums of Banach spaces

We recall some useful properties of the intersection and the sum of Banach spaces. Consider two Banach spaces X3
and X5 that are subsets of a Hausdorff topological vector space X. Then

XlﬂXgiz{fEX| fEXl, fEXQ}
(respectively X1 + Xo :={f € X | E(f) # 0}, where E(f) :={(f1,fo) e X1 xXa| i+ fo=f})

is a Banach space endowed with the norm

”fHXlﬁXz = ||f||X1 + ||fHX2
(respectively || fllx,+x, = nf{||fillx, + [[f2llx, | (f1, f2) € E(f)}).

If furthermore X; N X5 is a dense subset of both X; and Xs, then (X7 N X5) = X| + X} and (X7 + X3) = X{ N X}
(cf. Bergh and Lofstrom [4], Lemma 2.3.1 and Theorem 2.7.1).

3.1.2 Mollifiers
We shall use the following symmetric operators R : L?(R3) — L?(R?), defined by

(R"f)(x) := - fyw"(@ —y)dy for z € R?, (21)

where w" € C§°(R?) is a mollifier with supp w™ C B(0,1/(1+n)) and [;; w™ = 1. These operators have the following
well-known properties: there exists C' > 0 such that for all f € L2(R3), » > 1 and n € N,

|f = R" fllz2®s) — O, IR fllLzgsy < Cll fllL2re), (22)
IR"fllc2s,) < Cllfll2(B,40),  and  [[R"fllL2@o\s,) < CllfllL2@s\B,-)- (23)

Moreover for all n € N, there exists C,, > 0 such that for all f € L*(R3),
R fll Lo ®s) < Cullfllz2(ms)- (24)

3.2 Approximate solutions
The following lemma claims the existence of global solutions to some regularized problem.

Lemma 10. For all n € N, there exists U™ := (u",v") € C([0,0),L?), with
o™ € C([0,00), L=(Q,RY) N C*([0, 0), L*(2,RY)), (25)

solution to the reqularized problem:

(O +Byu™ = (v ' )F™  foraeR?, (26)
o™ = F"  forxeQ, (27)

where
F"(t,x) := F(z,0(t,x), R"u"(t, x)), (28)

with Usnie as initial data. Moreover, for allm € N,

(a) For almost all x € R3, for allt > 0, [v"(¢, )| < |vini(x)|eX? (with K from (10)).



(b) For all T >0, there is C = C(T, .k, [vinstl| =) such that, for all t € [0,T], [[(u,v")(®)llz + 90" (1) | 2y <
CllUinit||r2-

Proof. The local-in-time solution is constructed via a usual fixed point argument for the mapping A" : C([0, 7], L?) —
c([o, 1], LQ)7

A" (u,v)(t,-) = (exp(—tB)uim't —|—/0 exp((t — t)B) (k™ - DF™(t',)dt', vinis +/O Fr(t, .)dt/),
where
Fr(t, ) = F(,o(t,-), R u(t,)).

For T > 0 small enough, A™ is shown to be a contraction mapping thanks to properties (8)-(10) of F, (24), and
because B is a skew self-adjoint operator in the Hilbert space L?(R3,R®) endowed with the scalar product (-, )., «,-

Global existence is given by the a priori bounds (a) and (b). The first one follows directly from (10) and Gronwall’s
lemma. In the same way, taking the L? norm of (u™,v™)(t) = A™(u™,v™)(t), one gets

t
l@™, o™ O)lles < [Tinaelle + / (Ul ) [F™ () edt
0

One may add to this inequality the one obtained from (27),
[0ev™ (¢, )l L2 < 1 F™ (2, )| L2

From (8), (9), we have
1E™ (2, )2 < Cpl|vimiell 2 e[| (u” 0™)(B) Lz,

so that Gronwall’s lemma concludes. O

3.3 Passing to the limit n — oo
Let us stress that Estimate (24) is not uniform with respect to n. However, we have:

Proposition 11. For all T > 0, there is a subsequence of (U™)nen given by Lemma 10 that strongly converges in
C([0,T),L2) to U := (u,v) € C([0,00),L2), global finite energy solution to (11)-(14) with Us,: as initial data, and
satisfying the estimates (i), (ii), (ili) of Theorem 3.

Proof. First we infer from the bounds (a)-(b) in Lemma 10 that there exists a subsequence, still denoted (u",v™), such
that u™ (respectively F™) tends to u (resp. to Fiiy) in L°°((0,T),L?) weak * (resp. L>((0,T), L?(R?)) weak ) and
v™ tends to v in WH°((0,T), L3(2)) weak * and in L°((0,T), L°°(Q)) weak *. This is enough to ensure that (u,v)
satisfies (11). Moreover, Fatou’s lemma yields that u and v satisfy (i)-(ii) of Theorem 3 for almost every ¢ in (0,7) .

Since the function F' is not linear, these weak limits do not suffice to pass to the limit in Equation (27). The
strategy is to carefully study the nonlinear term F™ to prove that the solutions U™ of the regularized problems
(26)-(27) actually converge (strongly) in L?. The key step consists in proving the strong convergence of v™.

Tt shall be useful several times to keep in mind that, thanks to the growth conditions (9) on F' and to the pointwise
bound Lemma 10, (a) of the v™, there holds, for all n,m € N, for all (¢,z) € [0,T] x R3,

|F(t2)] < Cr(e |JvintllL=), (29)
[FP (ta) = ' (t2)] < Or(ef il =) [o7 (¢, 2) — 0™ (¢, )], (30)

where F" = F;(xz,0"), i =0,1.
Strong convergence of v"™. We perform energy estimates on (26)-(27). Since u may be unbounded, we introduce a

weight function, which precisely depends on u. More exactly, we choose a positive function pg(x) in L>(R3) N L?(R3)
and define

p(t, ) == po(x)e~ " fo lulsmlds, (31)



with L > CF(GKT||vm¢t||Loo). First, using (27) we get
Ld n m n m n m n m
s (120" =) O = [ A =om) - (7 = Fyde =L [ Pulle” = oo

Next, decompose F™ — F™ according to (8) to get

1d
s (I =™ ) (1) = /Q (0" —v™) - (B — Fy)da .

+/ P(u™ —v™) - (FPR™™ — F{"R™u™)dx — L/ P2 lulfo™ — v™|?d.
Q Q
The first term in the r.h.s. of (32) can be estimated by C|/p(v™ — vm)||%2(m (t) thanks to (30). Now, decompose
FPR™™ — F"R™™ into

FI'R"W" — F"R™u™ = F{'(R"u" — u) — F{"(R™u™ — u) + (F{' — F{")u.

The terms produced by the third parenthesis are estimated thanks to (30), and absorbed by the last term in (32), so
that

N | =
Q“Q_,

= (o™ = o™ Ba@)) () < Cllpe" = v™)2ay(t) + /Q P — ™) - F] (R — u)da

+/ P2 (™ — ™) - F{(R™u™ — u)dz.
Q

Then, decompose R"u™ and R™u™ according to the orthogonal projector P to get

3

22 (Il — 0™ By ) () < Cllp™ ~ o™ ey () + Dy (®) iy n0) (33)
j=
where
hman(t) = /sz(v" —v™) - F'R"P(u" — u)dx,
homn(t) = /sz(’u" — ™). F'R™(Id — P)(u"™ — u)dz,
hamn(t) = /Qp2(v" —o™) - F'(R"u — u)dx.
The following lemma deals with the term Ay, (%).
Lemma 12. There holds
V6 >0, 3N; € N, Vn > Nj, ¥m € N, ‘ /OT B (t)dt| < 26. (34)

Proof. First notice that
Manalt) = [ R (07~ ) B )P~ i
R3

We first handle the case where z is outside of a large ball. Using the Cauchy-Schwarz inequality, the second
property of R™ in (23), the uniform bound in L*([0,T], L*(R3)) for v™ given in Lemma 10, (b) and the bound (29)
for FJ*, we get that

T T
/ / ’R” (pQ(W - W)F{L) - P(u™ — u)’dmdt < C/ [p(t)2 || L2 o\ B, )dt. (35)
0 JR3\B, 0

By definition of p there exists r > 0 so that this integral is less than .
It remains to tackle the case where x € B,. We use the following compactness lemma:
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Lemma 13 (Jochmann [22], Lemma 3.4). Let (G™)nen and (K™),en be bounded sequences in L°([0,T), L*(R3,RS)),
with K™ converging to 0 in L°°([0,T), L>(R®,R®)) weak *. Suppose that (G™)nen is equicontinuous from [0,T] to
L?*(R3,R%) and that BK™ = 9;C™ with (C™)nen bounded in L°°([0,T), L*(R3,RS)). Then for all r > 0,

sup‘/ / GP(t) - PK"(t)dxdt| —
peN | Jo

Let us denote G*! = R’“( (vk —vl)- F} ) and K™ = u™—u. Thanks to (29), (22) and to Lemma 10, (b), we get that

(GFY) g 1en and (K™),en are bounded in LOO([O T) L?(R3)). Moreover K™ tends to zero in L>([0,T), L?(R3)) weak x,
by definition of u. Let us denote F™ = fo I F*dt’ and F = fo “L. ) Fijmdt'. From (26) we infer that

(36)

’I’L*}OO

=0,C", with C":=F" —u" — (F —u).

The sequence (C™),en is bounded in L°([0,7T), L?(R?)). In the same way, equicontinuity is obtained from the bounds
on 0" = F™. We therefore apply the lemma observing that, for all m,n € N,

T T
‘ / / Gm’”(t)-PK”(t)d:cdt) < sup ‘ / / GRLU(t) - PE™(t)ddt|.
o JB, klen ' Jo JB,

Lemma 13 therefore ensures that there is IV, 5 € N such that, for n > IV, 5 and for all m € N,

(/ / R” - vm)F") P(u" — u)dmdt‘ <4,

and Lemma 12 is proved. O

We now deal with the term hao (%)
Lemma 14. There holds

Vo >0, dN; € N, Vn > N5, Vm € N, ‘ /OT hom.n(t)dt| < 6+ C’||p(v7”fvim)HL%)w||p(v7” fi)”L?’l. (37)
Proof. The (u™,v™) satisfy (11) and so does their weak limit (u,v). Thus
homan(t) = — /Q P2 —v™) - FPR™(Id — P)(k~' - 1)(v™ — ©)dx
= - /Rs P2 (0" — ™) - FPR™(Id — P)(k* - 1) (v™ — ©)d.
Then we decompose
T T
/0 |Po,m n (t)|dt </0 ] /Rs(v*n—rm) CFP R (Id — P) (s~ - 1) (v — )
— pR™(Id — P)p(k~ - 1)(o7 — @)] dx’dt (38)
/ ( /RB — ™). FPRY(Id — P)p(k~t - 1) (07 — E)dm‘dt.
The second integral in the r.h.s. of (38) is estimated thanks to Holder’s inequality:
| o7 T R R Pyt ) )|t < U T~ )l

where C' depends only on T, F 1, ||vinit|| L. To deal with the first integral in the right-hand side of (38), we use the
following commutation lemma.
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Lemma 15 (Jochmann [22], Lemma 3.5). Let p belong to L2((0,T), L?(R*))NL>((0,T), L>=(R?)), and let (M™),en be
a bounded sequence in W°°((0,T), L*(R3))NL>°((0,T), L>=(R?)) which converges to 0 in L>((0,T), L*(R?)) weak *.
Then

T
/ Ip()2R™(Id — PYM" — p(t) R(Id — P)p(t) M" | s 125y dt. — O, (39)
0 n—oo
T
and [ o (1d ~ PIM" — p(e)(Td ~ P)o()M" |13 sy it — 0 (40)
0 n— o0

We apply Lemma 15, (39) with M™ = (k! -1)(v™ —D): the first integral in the right-hand side of (38) is estimated
by

T
C(T, F, ||vinit| ) / [0 =07 || o2 | P2 R™ (Id — PYM™ — pR™(Id — P)pM" || 11 r2dt,
0
and thus goes to zero as n goes to infinity, uniformly w.r.t. m. Hence, we get (37). O

For all 0 > 0, we also bound hg  n by ¢ for all n > Ns and all m € N thanks to (22). Finally, summing up with
(34) and (37), we have from (33):

V¥§ >0, ANs € N, Vn,m > Ns, Vt € [0, T,
o0 — o™ By ) < C (54 (™ ~ o™ Bagoryeay + 100" — 0) By o) -
Use Gronwall’s Lemma, then let m go to oo, and use Gronwall’s Lemma again to deduce:

¥6>0,3Ns €N, ¥n > N5, ¥t € [0,T),  [|p(t" — v)[|22(0)(t) < C,

which implies that v™ converges towards v strongly in L2((0,T) x Q, p(t, x)?dtdz). Up to a subsequence, convergence
then holds almost everywhere, for the measure p2dtdz, or dtdx, since p is positive almost everywhere in (0,7 x Q.
Thanks to the pointwise estimates (a) from Lemma 10, dominated convergence thus ensures that v™ converges towards
v strongly in L2((0,T) x Q, dtdx). Then, equicontinuity of {v} U {v"},en in C([0,T], L*(2)) implies (by Ascoli’s The-
orem) the strong convergence of v™ in C([0, T], L?(2)). This, together with the uniform bounds on {v} U{v"},en and
with the weak convergence of u", is enough to pass to the limit in (26), (27) to get (13), (14).

Strong convergence of u™. Since u™ and wu satisfy (26) and (13) respectively, their difference is solution to a hy-
perbolic equation with source term in L'((0,T), L?(R?)),

(0 + B)(u™ —u) = (v~ 1)(F™ — F(z,7,u)).
The standard energy estimate then gives
t
" = ullo(®) < € [ 1B~ P m,0) |12 ()t
0

(42)

t

<C/ (IF5" = Foz, 0l () + [F' R " — Fy(x, v)ul| 2 () dt’.
0

Thanks to the growth conditions (9) of F' and to the pointwise bound Lemma 10, (a) of the v™, there holds, for
all n,m € N and (t,z) € [0,T] x R3,

[E (t,2) = Fi(z,o(t,2)] < Cp(e™ vl [v7 (t, 2) — B(t, ). (43)

In particular this yields that for any ¢ € [0, T, |F§ — Fo(z,0)| 2(t") goes to zero as n goes to infinity.
Furthermore,

[FT R "™ = Fy(z, 0)u] < [FT[[R™ (u" —w)| + [FT[|[(R" — Id)u| + [FY" = Fi(x,)|[u].

12



Thanks to the L* bounds on v" (cf. Lemma 10, (a)) and on F* (cf. (29)), and to the property (22) of the operator
R", the first term in the r.h.s. above is bounded by Cr(eX7||vinit|lz)|u™ — u|. In the same way, the second term
goes to zero in L? as n goes to infinity. Finally, up to a subsequence, the third term tends to zero almost everywhere,

and is bounded by C(F, T, ||vinit||zo)|u|. By dominated convergence, it thus goes to zero in L?. Finally, we get from
(42):

t
o =l 2 (0) < OO Joimale=) [ " = ulla () + o(0),
0
and Gronwall’s Lemma shows that u" converges to u in C([0, 7], L?). O

Thanks to a diagonal extraction process (using times T € N*), Proposition 11 produces U € C([0, >), L?), solution
to (11)-(14) with Uy, as initial data. Estimates (i) and (ii) are then straightforward. To prove Theorem 3, there
remains to show its last statement: the stability property. To this end, consider a sequence (U};;)nen, bounded in
Laiv, and converging to Uy, in L2. It generates a (sub)sequence of solutions (U™),ecn, with, from the bounds (i),
(i) in Theorem 3, u” converging to u in L2, ((0,00), L?(R3)) weak * and v converging to v in W,.°((0,00), L*(2))
weakly * and in L ((0,00), L>°(Q)) weak *. Then, define the weight p from (31) and estimate v™ — v™ as in (32),
with R"u" and R™u™ replaced with «™ and u™, respectively. This leads to the analogue to (33), with no hs, , and
h3.nm terms, and no R™ in hy p, n and hg o, . Apply Lemma 13 and Lemma 15, (40) (instead of (39)), to get strong
C([0,T), L?) convergence of v™ towards v (in (41), the term |[v2,,, —v™,, | 12 goes to zero, and contributes to ). Strong
convergence of the fields u™ is then obtained as above , with an initial term ||u?,;; — Winit|/ L2 going to zero added to
the r.h.s. of (42).

The same process proves Proposition 4.

4 Propagation of smoothness and uniqueness: proof of Theorem 5

It is worth noting that, under the smoothness assumption on ¢ and yu in (16), v € L?(R3, R%) with Pu € H*(R3,R®)
iff u € L?(R3,R®) with curlu; € H*~1(R3,R®) for i = 1,2.

We thus split the proof of Theorem 5 in several steps. In Section 4.1, we isolate a Cauchy problem for the projection
Pu of u. This allows some dispersive estimates that we etablish in Section 4.3, while in Section 4.2, Littlewood-Paley
decompositions are introduced. We consider first the case where 1 is in (0, 1), then we prove the part (a) of Theorem 5
in the case g = 1, which concerns the propagation of smoothness, and finally the part (b), which concerns uniqueness.

”

Remark 6. Let us mention that in the proof of the propagation of H' regularity given in [18], the step “u € (0,1)
is missing, and the resulting estimates (collected here in Lemma 32) are claimed without proof.

4.1 Preliminaries

Lemma 16. For any solution U := (u,v) to (11)-(14) with Uit = (Winit, Vinit) € Laiw as initial data given by
Theorem 3, the part u := Pu solves for x € R3,

(0 + B)u = P(Au)+ Py, (44)
uli—=o = Puinat, (45)
where
Alt,z) = (v 1)F(z,7), (46)
gt,x) = (v '-D)F(x,7,(Id— P)(k *-1)7), (47)
(k71 D) Fy(2,0) + (k1 - D) Fy(2,0)(Id — P) (k™' - 1)D). (48)

Proof. First, apply the projector P to the system (13), observing that P commutes with both d; and B. Then, split
F according to (8), split v into u = u+ (Id — P)u and finally use the constraint (11). O

The projectors P;, i = 1,2, defined on L?(R3 R3), extend to LP(R3,R3) (this result extends the classical one by
Calder6n and Zygmund [11] on singular integrals, in the spirit of the extension by Judovié¢ [44]):
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Lemma 17 (Starynkevitch [41], Lemma 3.13). Under assumption (16), the projectors P;, i = 1,2, extend to LP(R3, R?)
and for all pg > 1, there exists C > 0 such that for all p € [py, 00), their norm from LP(R3 R3) into itself are less than
Chp.

We deduce estimates for the right-hand side of (44):

Lemma 18. As in Theorem 5, assume (8)-(10) and (16). Let Uinit := (Uinit, Vinit) € Ldiv, and let U := (u,v) be any
solution to (11)-(14) with Uinit := (Winit, Vinit) € Laiv as initial data given by Theorem 3. The following holds true for
A and g given by (46)-(48):

A € Li5.((0,00), L™(R%)), (49)

A€ C([0,00), LA(R?)), (50)

A € L5, ((0,00), L*(R?)), (51)

9 € Ni<p<C([0,00), LP(R?)), (52)
0hg € M<g<aLis.((0,00), LP(R?)) (53)

Proof. For all t,¢' > 0, there holds

[A®)] e ®ey < (167" Ul Lo w3y Cr([|vinit || L eXY), (54)
[A®) — At L2 gey < 167" - U] oo 2y Cr (Vi | Loe €™ ) [[0(E) — v(t) ]| 22 (), (55)
10eA®) | L2rey < 167" - Ul oo @) Cr ([[Vinit | L € ) |00 ()| L2 ) (56)

what yields estimates (49)-(51).
Since v € C([0, 00), L2(22)) N L2.((0,00), L>=(£2)), we have v € N1 C([0,00), LP()) — using the boundedness of 2

loc

for p < 2, and by interpolation for p > 2. Lemma 17 then yields (52). Next, using that |F;(z,v)| < Cp(||vinit | L=e%?)|v|
for i = 0,1, we infer from (14) that dyv € N1<4<2 L5, ((0,00), LP(R?)). Since

gt z) = (k1 - {0, Fo(z,0) - 00 + Fi(z,0)(Id — P)(k* - 1) - 0,0 + (0, F1 (,D) - ;0) - (Id — P)(x™* - 1)v},
thanks to Lemma 17, we finally get (53). O

Also, for a given v, the “fields part” u is in fact uniquely determined:

Lemma 19. Let A € L2 ((0,00), L>°(R?)) and g € L}, .((0,00), L*(R?)). For any winix € L*(R3), there exists only

loc loc

one solution u € C([0,00), L?(R3)) to (44)-(45) with Pu;n as initial data. Furthermore, it satisfies u = Pu.

Proof. Existence is given by Lemma 16. To prove uniqueness, consider two solutions u; and uy in C([0, 00), L2(R3?))
o (44)-(45), and T > 0. Then

t
VE>0, (un—us)(t) = / =B P A(u; — uy)(s)ds,
0
so that, using (49), for ¢ € [0, 17,

[(uy —u2)(8) [ L2(rs) < C(&T)/O [(u1 = u2)(s)|p2(re)ds.

Hence, by Gronwall’s Lemma, u; = us on [0,7], for any 7' > 0. Thus, there is only one solution u. Finally, in the
same way, u — Pu simply satisfies:

Vt>0, (8 + B)(u— Pu)(t) =0,

so that u = Pu. 0
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4.2 Technical interlude 2: Fourier analysis
We recall the existence of a smooth dyadic partition of unity: there exist two radial bump functions y and ¢ valued

in the interval [0, 1], supported respectively in the ball B(0,4/3) := {|{| < 4/3} and in the annulus C(3/4,8/3) :=
{3/4 < €] < 8/3}, such that

VEERE, x(§+ g2 =1, VEe R\ {0}, > 62798 =1,
720 JEZ
5 =3 > 2= supp ¢(277) N supp $(277) =0, j>1= supp x(277:) N supp $(277) = 0.
The Fourier transform F is defined on the space of integrable functions f € L*(R?) by (Ff)(&) = [ps e 2™ f(2)dx
and extended to an automorphism of the space S’(R?) of tempered distributions, which is the dual of the Schwartz

space S(R?) of rapidly decreasing functions.
The so-called dyadic blocks A; correspond to the Fourier multipliers A; := ¢(277 D), that is

Aju(z) = 23j/ h(2y)u(z —y)dy for j >0, where h:=F '¢.
R3
We also introduce Sy := x(D), that is
Sou(x) = / h(y)u(z —y)dy, where h:= F'x.
R3

We will use the inhomogeneous Littlewood-Paley decomposition Id = S_1 + > jEN Aj, which holds in the space of
tempered distributions S’(R?), and the homogeneous Littlewood-Paley decomposition Id = A, which holds in

S, (R3), the space of tempered distributions u such that lim;_, o || > ohej Al Lo g3y = 0.

JEZ

We now recall the definition of the inhomogeneous (respectively homogeneous) Besov spaces B;q (resp. B; ) on R3
which are, for A € R (the smoothness index), p, g € [1, +0o0] (respectively the integral-exponent and the sum-exponent),
the spaces of tempered distributions u in &’ (R3) (resp. S, (R?)) such that

1£115y s = 150l o) + 171D fllzo@e)iliagy  (esp. [1Fllgy gy = 1A fllzo@s))ilhiac))
is finite. These Banach spaces do not depend on the choice of the dyadic partition above (cf. for instance the book

[31)-

4.3 Dispersion
Propagation of smoothness or singularities for solutions to hyperbolic Cauchy problems, such as
= (0r + B)u = f, with uli—o = Uint, (57)

obeys the laws of geometrical optics. Let us refer here to the survey [19] by Garding for an introduction to the subject.
The characteristic variety of the operator L is defined as

Char(L) := {(t,z,7,&) €ERxR>x C x (R*\ {0}) | det L(t,z,7,&) = 0},
where L(t, z, 7,£) denotes the (principal) symbol of the operator L, which is the 6 x 6 matrix

0 k() LEN -
ko(x) LEN - 0

For all (z,£) € R? x (R%\ {0}), the matrix B(z,¢) admits three eigenvalues: A\ (z,&) := +(k1r2(x))~2|¢| and 0,
each one with multiplicity 2. The eigenspace associated with the eigenvalue 0 is precisely ran (Id — P). We introduce

L(t,z,7,¢) = L(z,7,§) = 7lId+ B(x,§), where B(z,§):=

1

L('Ta —Z g)*ld'%
211 J)exs (o) =

Pi(z,8) =
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where r is chosen small enough for Ay(z,£) being the only eigenvalue inside the circle of integration. The matrix
Py(z,€) is the spectral projection associated with the eigenvalue Ay (z, &), that is the projection onto the kernel of
L(x, —Ax(z,8), 5) along its range. These spectral projections are homogeneous of degree 0 w.r.t. £, and the associated
pseudo-differential operators Py satisfy P, + P_ = Id — P. In addition, Id — P, P, and P_ are orthogonal projectors
(in the weighted L? space introduced in Section 2.1) commuting with B, and acting on Besov spaces.

Now the point is that considering the Cauchy problem (57) for solutions u satisfying (Id — P)u = 0, we select the
branch of the characteristic variety which are curved, what generates dispersion. We shall need the following indices

P1, 1, q1, S1, f4, 0 and p:

p1L€[2,00) and 1/ri+1/p1=1/2 (58)
g1 € (1,2] and 1/s;+1/q1 =3/2; (59)
HER, o:=p—14+2/py and p:=p—1+2/q. (60)

Proposition 20. Letpy, r1, q1, 51, j1, 0 and p be given by (58)-(60). Under assumption (6), there is a non-decreasing
function C': (0,00) — (0,00) such that, for any T >0, for any initial data wini in H* such that (Id — P)uipnis = 0,
and for any source term f in L**((0,T), Bf 5(R®)) such that (Id — P)f = 0, any (weak) solution u to the Cauchy

problem (57) belongs to L™ ((0,T), thQ(Rg’)) and satisfies u = Pu, as well as

1Pl 007,85, yw97) < OO (1Ptinitll e + 1P s (0.2, cx0))- (61)

In the case p; = 2 (hence 11 = o0, 0 = 1), the function u = Pu is even in C([0,T], H*(R3)).

The result of Proposition 20 is false for r1 =2, p;1 =00, s1 =1, ¢1 =2 and g = p =1, 0 = 0. However, it is true
when truncating frequencies. We use, for A > 0, the low frequency cut-off operator S*, which is the Fourier multiplier
with symbol y» := x(-/\), where the cut-off function y € C°(R%, [0,1]) takes value 1 when [¢| < 1/2, and 0 when
|¢€] > 1. Then, we have:

Proposition 21. Under assumption (6), there is a non-decreasing function C : (0,00) — (0,00) such that, for all
AT >0 and for any u € C([0,T), H (R?)) solution to (57),

HS)\PUHLz((O,T),L”(R?’)) < C(T) ln(l + )\T) (||81PumitHLz(R3) + ||awPf||L1((O’T)’Lz(RS))) . (62)

Estimate (62) is proved in the case where the operator P is P := —A in [23] Proposition 6.3. Even in this case
Estimate (62) without the cut-off S* is false [24], [28]. Proposition 21 extends [23]’s result to (smooth) variable
coefficients.

Let us mention that one can deduce from these results some similar estimates for the R"-valued solutions u of
wave equations of the form:

(02 + Au=finR3 0Ouli—o=u, forv=0,1,

where A = —a(x)A + 22‘;1 Bj(2)d; + C(z), when a — 1 € C¥(R?), a(z) > ¢y > 0 and the B; and C are in
CE(R3, Mpyxn(R)). These equations stand for the propagation of waves in an inhomogeneous isotropic compact
medium K C R? surrounded by vacuum.

To prove Proposition 20 and Proposition 21 we use the Lax method, that is an explicit representation of the
solution which allows to take advantage of oscillations via the method of stationary phase, for each dyadic block, to
get a pointwise dispersive estimate. The final step relies on the TT* argument and the summation over the dyadic
blocks.

This kind of strategy is now very classical and we refer here to the book [3] by Bahouri, Chemin and Danchin for
a larger overview of its use and of its consequences. However we did not find Proposition 21 in the literature so that
we now detail a little bit its proof.

Proof of Proposition 20. Let us first remark that it is sufficient to prove Estimate (61) for smooth data (by the usual
regularization process) and locally in time. More precisely, it suffices to prove that there is a constant C' > 0 and
Ty > 0 such that, for all A > 0 and for all u € C([0,T1], H'(R?)) solution to (57),

(63)

||Pu||Lr1((07T1),B;1Y2(R3)) < C(”P“init”Hu +[IPf] L51((0,T1)735112(R3))>~
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Indeed, apply several times Estimate (63) on time intervals of the form (kT7y, (k+1)T1), with &k an integer ranging from

zero to the integral part K of T//T} (plus the interval (KT1,T)): on the right hand side, ||Pu(kTh)|| . is estimated
lnfC(HPu«k——UTﬂHHM—FHPfHDn«“FlﬂLMn%Baﬂﬂwn).Sunmﬁngupghms(6n.

Now, consider the operator S(t) := e~*Z P. It admits a parametrix, and thus is given by a sum S(t) = I (t)+I_(t)
of operators on the dispersive eigenspaces, which are Fourier Integral Operators: for any smooth function w(x),

(e = [ ) e

and we drop the subscript + in the sequel. The phase U (¢, x, ) is real, positively homogeneous of degree one in &, C*°
for £ # 0, and satisfies the eikonal equation:

V(L x,8) = £(k1k2(x)) "2 | WL (¢, 2,8, (64)
with
U|imo(2,€) = 272 - €. (65)

The amplitude a is in Hérmander’s class S°, and admits an asymptotic expansion whose successive orders satisfy a
sequence of linear hyperbolic equations. Such a method was initiated by Lax in his pioneering paper [27]. Because of
the caustic phenomenon, the lifespan of smooth solutions to Equation (64) is limited. However, since ¥ is homogeneous
in ¢ and the set K x S? is compact, there exists T3 > 0 such that the solution to (64)-(65) remains smooth on [~T1,T}].
Let us mention here that Ludwig [31] succeeded in extending Lax’ analysis into a global-in-time result. The arguments
have been refined thanks to Hérmander’s theory of Fourier Integral Operators [21], [17]. But we use the parametrices
(and the solution operators I(¢)) only locally in time and we refer for their construction to the work of Chazarain [15],
Nirenberg and Treves [35] and [34], Kumano-go [25] and Brenner [9]. In particular we refer to the last one for the
following precious informations about the phase ([9] Lemma 2.1): there exist ¢, C > 0 such that

(i). cl¢] <[P < Clg] on [T, T1] x R? x (R*\ {0});
(ii). eld < £V}, < CId, ¥, being real symmetric, on [—17, T3] x R3 x (R3\ {0});

(iii). Wg, is semi-definite with rank 2 for [£] # 0, ¢ # 0; and for || =1, 2 € K, there is a constant ¢y > 0 such that
the moduli of the non-zero eigenvalues of \I/'g’g are bounded from below by c¢glt[;

(iv). for z ¢ K, the above results are consequence of the exact formula: U(t,z,&) = 2mx - € + 2m (k1 ko (2)) "1/ 2t]€].

Note that these results imply that the kernel of I(¢) is a Lagrangian distribution.
We use the TT* method for the frequency localized operators

Ty(t) :== AI(t), j € Z.

The composed operator T;(t)T;(t')* is then

Here is the TT* result.
Lemma 22. There exist 0 < ¢ < C such that for all j € Z, u € L*(R3), p,r € [1,00] and f € L™ ((0,T), L? (R3)),

Nl

T3 ()ullLr (0,1, 0 ®3)) < ullL2®s)y sup (b;(g,9))2, (66)
9geB]

= Ssup |b](fvg)|a (67)

and | .
L7((0,T),LP(R3)) geB;. ,,

T
| momey e
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with
bi(frg) = / (T (0T () £(£), 9(8)) L2 gy dtdt’,
(0,7)x(0,T)

Bﬁ’p the space of functions g(t,x) in B, whose Fourier transform is supported in c29 < |¢| < C27, and B, the space
of smooth functions g(t,x) satisfying ||g| ) <L

L™ ((0,T),L?" (R3

Proof. Begin with

|75 (t)ull L 0,1y, L0r3)) = SUpP / T;(t)u(z) - g(t, x)dtdz
(0,T) xR3

9EBrp

Then, use the Plancherel identity plus the properties of the support of the Fourier transform of Tj(¢)u to get

/(0 . T;(t)u - gdtdx
T %

Using Fubini’s principle, transposition and Cauchy-Schwarz inequality, observe that

|75 () ull e 0,1, L (®s)) = sup
9EBL

T
T30l 00wy < Nl sup | [ 7500 gde (68)
geBl, |[V0 L2(R3)
Using again Fubini’s principle and transposition, get
- 2
|/ T;(t)"g(t)dt = bi(9,9)- (69)
0 L2(R?)
This leads to (66). Moreover,
T T
| non ey s = s | [ ([ oney ) g
0 L7 ((0,7),L» (B9)) 9€BLp |7 ()>RS 2J0
= sup [b;(f,9)l-
geBLp
O

Now, we need to estimate b;(f,g). We start with a pointwise estimate.

Lemma 23. There exists C > 0 such that for all j € Z, (t,t') € (0,T) x (0,T) and u € L*(R?),
T3 () (T5) () ull poo oy < C2% (1427t = ¢/) 7 |ual| 1 ey -

Proof. Since A; is a bounded operator on LP(R3) for all p € [1,00], it is sufficient to prove that for all t € (=7, T)
and u € L'(R3), 4 4
11(t)Aju]| oo ey < C27 (1 + 27 [t) 7 [l £ o) (70)

Writing down I()Aju, we get, for all z € R3:

o= [ (ve020e) o 07 Dy

= / el‘I’(t,w,ﬁ)a(t’x’g)w(ijg)ﬁ(g)df
R3

— 93 / e VT g (4, 20 (n)a(20n) dy,
RS
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so that

[(I(H)Aju) ()| < 2% sup
yER3

/ & Vv o1 2 2N o(md]| o1 o).
RB

To get (70), simply apply the following lemma of stationary phase.

Lemma 24 (Littman [29]). Let ¥() be a real function C> such that the rank of its Hessian matriz W, is at least p
and let v(§) be a function supported in a ring. Then there exists M € N and C > 0 (which depends only on a finite
number of derivatives of VU, of a lower bound of the mazimum of the abolute values of the minors of order p of \Il'é’g,
on supp v) such that, for all A € R,

1F (€ 0) || oo sy < C(1+]A]) 72 - Z [D%v]| 1 (gs).-
la|<M

To use this lemma, distinguish between short times, for which the eikonal equation (64) implies that the phase ¥
admits the expansion

W(t,,€) = 2m (v € + tmana(a) V2] + O(F),

(thus p = 2, A = 27 (k1 ko (2)) 1/t is suitable), and subsequent times, for which Estimate (ii) on the phase gives p = 2
(and A = 27). This yields

sup
yEeR3

/ ein(‘I’(tvxvn)_y'”)a(t,x,2jn)cp(77)d17‘ <C(1+ 27t~ (71)
R3

O

Since T} (¢)T;(#')* is also bounded on L?(R?), from the above result and the Riesz-Thorin Interpolation Theorem,
we infer the following.

Lemma 25. There exists C > 0 such that for all j € Z, (t,t') € (0,T) x (0,T), p € [2,00] and u € L”' (R?),
I ()T ()l ooy < C29O2/PN (L4 27|t — 1)~ ]| (- (72)

Lemma 26. For any p1,p2 € [2,00), definery andre by 1/r1+1/p1 = 1/2 and 1/ro+1/py = 1/2. Then, there exists
C > 0 such that for all j € Z, f € L"1((0,T), L' (R®)) and g € L"2((0,T), LP2(R3)),

27(1/r1+1/r
o34, 9)1 < CHRITEZNEN ot (10 14 o) 190 (.00 208 ) ()
Proof. Using (72), we apply Holder’s inequality to get
. 65/r1 Jl| . 2/r1 ’ ’ ,
T I e L (R R e Py Ol PICOI PR |
Using again Holder’s inequality, we get
. 65 /7 il 2/r /
s(F 9l < €2 ([ 2 D7 W gt sy ) )]y g 190t (00 o)
Thus, the Hardy-Littlewood-Sobolev inequality implies
‘bﬂ(f, g)| CQ4J/T1 Hf”LT ( O T) Lpl (RB)) ||g||L7‘ ( O T) LP1 (RB)) (74)
Moreover, (69) yields
T
/ T;(t)* £ (t)dt b;(f, f)? < €2%/m £, < o), LP1(1R3)) (75)
0 L2(R3)
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Now, we observe that

by(f.g) = / < / Ty ()" F(t)dt!, Ty (1)* 9(1)) 2 ot

We use the Cauchy-Schwarz and the uniform boundedness of the Tj(t)*, for ¢ in (0,T), in L*(R3) to get

165 (£, 9) < by (f, 1) 29l 0.1y, 22 (89))- (76)

Using now Eq. (75) yields
0491 < OFI A (0 )t o) N9 2 0 22 - (77)
Interpolating between (74) and (77), we find (73). O

To complete the proof of Proposition 20, we need to sum over all frequencies. Apply Duhamel’s principle to get

t
Pu(t) = =B Pugyiy + / W =DB P ()t (78)
0
The first term in A;Pu(t) is thus
Ajl(t)uim-t = Z A]I(t)Aku””t
kez

An important fact in order to estimate A;I(¢)u;p;, is that the quasi-orthogonality of the dyadic blocks is not destroyed
by the parametrix I(t). Actually, according to [9, Proposition 1.1 and Lemma 1.4], there exists L € N* such that for
all j € Z,

NIt = > AJIDAL+ Ry(1),

li—kI<L

where R(t) := ),z R;(t) satisfies
[1R(t)v]

L7 (01,87, ,(B%) S Cllvll g (79)
This shows that there is C' > 0 such that
AT () winitl| r1 (m3y < CllAGT(E)Ajinit|| Lo w3y + 1R (8)Uinitl| Lo (r3),
so that
[(#)tinie |

Lr1((0,1),B5, ,(R?))

C I AIE) A jtinit || Ler v2)) 2 (2) |

ClI27 | AGT(#) A jtsiniel| 7 (0,7, 201 @) 2@y + 1 (2771 R; (8)timit | L (0,7),01 ®3)))s1li2 (2)
by Minkowski’s inequality

< O Ajuinicll e wey)j lizzy + 1277 IR () winiell o1 (0,7), 171 22 )i 22y

by (66) and (73)

< Cl|tinit|| g for some new constant C, using p = o + 2/ and (79).

oz + @7 IR Oinsell o )il | o 0.0

<
<

t
The estimate for / e(t,_t)BPf(t')dt’ follows the same lines, using (67) instead of (66).

To conclude thoe proof of Proposition 20, consider the case p; = 2. As (61) holds, it is easy to see that u is
continuous w.r.t. time: using a smooth approximation fi € le((O,T),H“) of f, we get Lug = fi, and since s; > 1,
the usual energy estimates show that (uy)s is a Cauchy sequence in C([0,T], H*). By (61), as f, tends to f in
le((O,T),Bgl’Q), ug tends to u in C([0,T], H*). O
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Proof of Proposition 21. Now, in order to prove Proposition 21, it suffices to come back to the proof of Lemma 26,
taking p; = oo (and 1 = 2). Using the standard Young inequality instead of the Hardy-Littlewood-Sobolev inequality
leads to

[b;(f,9)| < C2% (1 + 27T) || fl| 2 ((0,1), L1 o)) |9l 2 (0,7 £ (R - (80)
In particular for any g in L2((0,T), L*(R?)), this yields

1b;(9.9)'"? < C2\/In(1+27T) g 2((0,1), L1 (r2))-

Then we apply Lemma 22 with (p,r) = (2,00) and use (76), where we commute f and g, to estimate the right hand
side of (67). We find that for any u € L?(R?), for any f € L*((0,T), L*(R?)),

|75 () ull 20,7y, 1o (R2)) < C27v/In(1 4 29T ||u| L2 (rs),
||/ *FENA || 20,1y, 1o v2)) < C20\/In(1 + 20T) | fll 11 (0.7), 12 (R3)) -

Then we proceed as in the proof of Proposition 20 to sum over the dyadic blocks whose frequencies are below the
cut-off parameter A, with an extra factor y/In(1 + AT") (and (79) holds for r = 2, p; = 00). O

4.4 Propagation of smoothness: proof of Theorem 5, case where p € (0,1)
In the case where p € (0,1), Theorem 5 is a consequence of the following proposition:

Proposition 27. Suppose that A and g satisfy the estimates (49)-(53), that p € (0,1) and wimi € L*(R3,RS) with
Pujniy € H*(R3,R%). Then the unique solution u € C([0,00), L*(R?)) of (44)-(45) given by Lemma 19 belongs to
C([0,00), H"(R?)).

In order to prove Proposition 27 we introduce, for T > 0, the space
YH(T) == C([0,T], H*(R®)) N C*([0,T], H*~H(R%)) N L"((0,T), By »(R?)), (81)

where p := 2/(1—p) and r := 2/p. These indices belong to (2, 00). We shall also use the space Z#(T') := Z}'(T)+Z4(T),
where

ZH(T) = L'((0,T),H"(R*)NC([0,T], L*(R?)), (82)
ZY(T) = {feC(0,7),L*®R*)NL((0,T), B, 3(R?)) | (83)
3 f € LM((0,7), H*"Y(R%)) + L*((0,T), BY ,(R%))}, (84)

where ¢ =2/(2 — p) and s = 2/(1 + p). These indices belong to (1,2).

Lemma 28. Suppose that u, T € (0,1), and f € Z*(T). Then there exists C > 0 such that for any Wi in H*(R3, R®)
such that PUni; = Wi, the unique corresponding solution u € C([0,00), L2(R?)) to Lu = f, with uli—g = Wint,
belongs to Y*(T) and

llallyury < C([Winitll e sy + 1f | z0c))- (85)
Proof. By definition f splits into f = fi + fo, with f; € Z/(T), and u into u = ug + u1 + uz, where the u; solve the
following hyperbolic Cauchy problems:
Lug = Sof with g li=0 = SoWinit,
LU1 = (Id — S())fl With u1|t:0 = (Id — So)uimt,
L'LLQ (Id S())f2 with U2|t:0 =0.
We already have by energy estimates that the u; are in C([0,00), L?(R?)). Then one gets the estimates of the u;

in C*([0,T), H*~Y(R3)) by using the equations. To get the estimates in Y*(T) it therefore only remains to get the
estimates in L"((0,T), B) ,(R?)).
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For ug this just follows the energy estimate thanks to Bernstein lemma.

In order to estimate u; we apply Proposition 20 with p; =p, ri1 =7, g1 =2, s1 =1, 0 =0, p = pu. This gives the
estimate of uy in L™((0,T), BY ,(R*)) by the right-hand side of (85).

In order to estimate us we observe that d;ug satisfies Loyua = (Id — Sp)0: f2, with Opusli—o = (Id — Sp) f2|t=0-
By assumption there exists g, € L'((0,T), H*~'(R%)) and g, € L*((0,T), B 5(R?)) such that d;fa = g + go. We
split accordingly Ojus into Jpus = u, + up, where u, solves Lu, = ¢q, With ug|i=g = (Id — So) falt=0, and wuy
solves Luy = gp, with upli=0 = 0. In order to estimate u, (respectively wu;) we apply Proposition 20 with p; = p,
rm=nr,qqg =28 =1 0=—-1,p=p—1 (respectively with p; = p, 1 =7, ¢1 = ¢, 51 =5s,0=—-1, p=20
and p — 1 instead of p). This yields the estimate of dsus in L"((O,T),B;% (R?)) by || fallze(r). As a consequence
Bug = —0pug + (Id — So) f2 € L™((0,T), B;é (R?)). Since Pug = us this entails that uy € L"((0,T), By 5(R?)).

O

The proof of Proposition 27 follows by induction of the following lemma:

Lemma 29. Suppose that A and g satisfy the estimates (49)-(53), and p € (0,1). Then there exists Ty > 0 and
C > 0 such that for any win;; € L?*(R3,RY) with Puj,;; € H*(R3,R%), the unique corresponding solution u €
C([0,00), L2(R?)) to (44)-(45) given by Lemma 19 belongs to Y*(Ty) and

lallye(r) < CUPumitll e s + |9l z0(1y))- (86)

Proof. In order to prove Lemma 29 we recall the following estimate:
Lemma 30 (Joly-Métivier-Rauch [23], Lemma 5.3). There is a constant C, which depends only on || Al| Lo (0,1, L0 (R3))
10t Al oo ((0,1),22(3Y) and p, such that for all T € (0,1) and u € Y*(T'), Au belongs to Z"(T'), and

1Aull 2y < CT2||ullynery + Cllull o= 0,7, 12 (89 - (87)

Let us warn the reader that there is a small misprint in the right hand side in Lemma 5.3 of [23], which is corrected
above. We also have:

Lemma 31. If g satisfies (52)-(53), then for any T > 0, g belongs to Z*(T).

Proof. Since 1 < ¢ < 2 < p < oo there hold continuous embeddings LY C Bg2 and LP C 3272 - Bpj; so that, using

(52)-(53), we get, for any T > 0, that g is in Z§(T') C Z*(T). O

According to Lemma 30 and Lemma 31 there is a constant C' such that for all T € (0,1), if u € Y#(T') then
f:=P(Au) + Pg € Z"(T) and

£l ze () < CT”/zHUHYﬂ(T) + Cllull Lo (0,1),22(r2))- (88)

Therefore applying Lemma 28 and choosing 77 small enough we get Lemma 29. O

4.5 Propagation of smoothness: proof of Theorem 5 (a), case where =1

We now consider Ujp;; in Laiy with curluin;; € L2(R3), for i = 1,2, and we consider U solution to (11)-(14) with
Uinit as initial data given by Theorem 3. The idea is to estimate B(Pu) = P(Au) + Pg — 0;Pu from (44).

Lemma 32. Define A and g by (46)-(48). The following holds true:

atA € L?:c((ov OO), LS(Rd))v (89)
g € Li5((0, 00), L*(R?)). (90)

Proof. We apply Theorem 5 in the case i = 1/2. This yields that u belongs to C([0,00), H'/?(R?)) and thus also to
L% ((0,00), L3(R?)). We then infer that d,v € L£.((0,00), L3(R3)) and then we get the estimates (89) and (89). O

loc loc
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Lemma 33. Define A and g by (46)-(48). If u € Li2,((0,00), HY(R?)) N W,°((0, 00), L2(R?)) then f := P(Au + g)

loc

satisfies Opf € L2 ((0,00), L%(R?)), and for any T > 0, there exists C > 0, which only depends on T, A and g, such
that

102 fll Lo (0.7, 2 (R3)) < Cl[llLoe (0,1, 51 (R2)) + 106l Loc ((0,1),22(R2)) + 1)- (91)

Proof. We have 0;f = P(0;Au+ Ad;u + 0;g), so that using Hélder’s inequality, the continuous embedding L°(R3) C

H(R3) and the estimates (89)-(90), we get (91). O
Now we observe that d;u solves for € R3,

(0 + B)Oyu = G(P(Au) + Pg), (92)

Opult=0 = —Buinit + P(Ali=0init) + Pgli=o- (93)

((0,00), L?(R?)), and using (44)-(45), of Bu in L{°

This provides an estimate of dyu in L2 7.((0,00), L*(R?)), hence of

win L ((0,00), H'(R?)). e

loc

4.6 Uniqueness: proof of Theorem 5 (b)

Let us recall that in this section we assume that there exists j € {1, 2} such that {3_;F = 0 and such that F' depends
only on (z,v,u;). Let Ujnit € Lasv with curl wing; € L?(R3), for i = 1,2. Let U and U’ be two solutions to (11)-(14),
given by Theorem 3, both with Uj,;; as initial data. The difference U := U’ — U = (du, év) between U = (u,v) and
U’ = (u',v") is solution to the following hyperbolic system

M(SU) := ((0y + B)du, 0y6v) = (k= - 1)0F,0F), where O0F = F(x,v,u}) — F(z,v,u;). (94)

» U
Thanks to (8) we have
OF = Fo(z,v',uf) — Fo(x,v,u;) + (Fi(z,v") = Fi(z,v)) - uj + Fi(z,0') - (u; — uf). (95)

The first and last terms in (95) are easily estimated in L2(R®) by Cp(|lvo|| 1o )€™ ") ||6U || 2(r2). To deal with the
second one we construct a L approximation of the field u; (analogous to the ones of [23], Lemma 6.2, and [20],
Lemma 2.7).

Lemma 34. There is a non-decreasing function C : (0,00) — (0,00) and for all T > 0, there exists (“ﬁ\,j)A% C
L>((0,T) x R3) such that for all X > e

[uif ;)=o) xke) < C(T)In A, and  |[((Id — Pj)uj —uq ;) (1)l 22 gs)
||S)\Pjuj‘HLZ((O’T)’LOO(RS)) < C(T)\/ ln )\, and || ((Id — S/\)Pjuj )HL2(R3)

C(T)/\, forallte[0,T], (96)
C(T)/A,  forallte[0,T]. (97)

N //\

Let us admit for a while Lemma 34 in order to finish the proof of Theorem 5. Fix T' > 0 and consider ¢ € (0,T). I
the second term on the right-hand side of (95), decompose u; = uH g ((Id Pj)u; —uj j) +S*Pjuj+ (Id— S)‘)P uj.
We infer from Lemma 34 that

c(T
191225 < C (il = eye™) (100 sy + (CEV A + 15 Prgl=ao) 9olasy + 2552 ol mas )

A
(98)
The energy estimate, together with Gronwall’s Lemma, gives

" t
50 0) ey < 20k CT)5 exp (Cr [ (14 CIMA+ IS Py et )
Since fot(l + C(T)In X + [|S*Pju;(t')|| oo (rey)dt’ < C(T)In X with C(T ) — 0, we choose Ty small enough (in order

to have C(Tp) < 1), and let A go to infinity. This shows that §U(t) vamshes on [0,7p]. Repeat this procedure on
intervals of size Ty to get the desired conclusion.
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Proof of Lemma 34. We define uﬁ\,j by setting u"‘\j(t,x) = (Id — Pj)u;(t,z) if |(Id — Pj)u;(t,z)| < ClnA, and
uﬁ‘j(t,:r) := 0 otherwise, where the constant C is chosen below (independently of (¢,z) € [0,T] x R3). Therefore,

for p € [2,00),
1((Id = Py)u; —uf ))()|Z: = / |(Id — Py)u;(t)|*dz < (ClaX)*7P|[(Id — Py)uj(t)|[7,.  (99)
[(Id—Pj)u;|>Cln X

Now, according to Lemma 17, the projection Id— P acts continously in any L? with a norm less than Cyp. Furthermore,
we have

lVinit e < NVinitll 7o |21,

so that ([[vinit[ 1), <pcn 18 bounded. Thus, using Equation (11) and the bound from Theorem 3 (iii), we infer from
(99) that

(Co p €57 |Jvinit| )P

(C'In \)P—2 — (CIln \)2A2(2 e supicocon vinitllLa)

7

1= Py)us =t O <

choosing p = 2In A. With C big enough, we obtain (96) (C(T') = 2Coe® T+ sup; ¢, <o |Vinit|| e is suitable).
We are now concerned with the first inequality in (97). Coming back to (44)-(45), the idea is to use the Strichartz
estimate (62). However, since we are not able to bound 9, f in L ((0, o), L?(R?)), we cannot apply (62) directly. To

loc
overcome this difficulty we introduce some potential vectors. Since Pu;,;; € H'(R?) (respectively since f = (f1, f2) €

Wl’oo((O,oo),Lz(Rg’)) (cf. (88) and (91)) and Pf = f), for i = 1,2, there exists ¢init := (Pinit.1, Pinit.2) € H*(R?)

loc

(resp. ¥ == (1h1,12) € W;5°((0, 00), H'(R?))) such that
div(K3—iPinit,i) =0, curtl(Piniti) = Kiinie,i  (resp. div(kg—;0;) =0, curl(yy) = ki fs).
We consider the operator B defined by
B(¢1,¢2) = (k3 curl g, —ky " curl ¢y)  for ¢ := (¢1,¢2) € D(B) := D(B) = Heyn X Heun.

The operator B is simply deduced from B by switching x1 and ks. It therefore shares the same properties and
estimates. In addition it satisfies the identity:

rytcurl 0 ] B_p [/@1_1 curl 0 (100)

0 Kyt curl 0 Ky turl|
Let ¢ := (¢1, ¢2) be the solution (for z € R3) of
0+ B)p =1,  with ¢li=o = binir- (101)
Using the identity (100) and Lemma 19 we obtain
curl(¢;) = kyu;, fori=1,2. (102)

Now observe that ;¢ verifies (9, + B)dyp = Oy1p , with Ord|t—0 = Ylt=0 — Boinit. Applying the Strichartz estimate
(62) we obtain

1522l L2 ((0,1), L= m9)) < C(T)y/In(1 + )\T)(||5wat¢|t:0“L2(R3) + ||5t8x¢||L1((o,T),LZ(RS)))- (103)
From the definitions of ¢ and ¢ and from the estimates (88) and (91) of the previous sections we get :

1020cd|i=oll 23y + [|0:02]| L1 ((0,1),2(R3)) < C(T)||Pthinit|| 2 (m3)- (104)

Using now (101), observing that f3;_; and therefore ¢3_; vanish because of Assumption 17, and using (102), we obtain
the first inequality in (97). The second one follows by applying Bernstein lemma. O
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5 Generic uniqueness: proof of Theorem 6

We apply the following general result of generic uniqueness for evolution equations by Saint-Raymond.

Theorem 35 (Saint-Raymond [38], Theorem 1). Let £t be a topological space and € a metric space. Let (S) be an
evolution equation admitting a solution in € for any initial data in ;. Consider the following hypotheses.

(H1) For any initial data Uspir € Einit, for any (UL,;,)e tending to Uinir in Einit, for any (U®). in € respective solutions
to (S) with US,,;, as initial data,

(i) there exists a limit point of (U®) in E;
(i) any limit point of (U%). in & is solution to (S) with Uinie as initial data.
ere exists D, dense subset of &, such that for any U;nie tn D, there exists only one solution to m & wil
H2) Th ists D, d bset of £ h that f Uinit in D, th ) l luti S) in € with

U;nit as tnitial data.

Under these two hypotheses, there exists a Gs dense S/L;t of Einit such that for any Uspie € é;;t, there exists only one
solution to (S) in & with Uiy as initial data.

Recall that we denote by 7, and 7, respectively the strong and weak topologies of L?(R3 RY), and by 7, the strong
topology of L2(Q, R?). We consider the product topology 7ss (resp. 7,) on L? obtained from 7, (resp. 7,,) and 7.
For any Cjpi: > 0, consider
Einit = {Uinit € Laiv | [Vinitll (@) < Cinit},

endowed with the topology 7ss (resp. T,s) inherited from L2, and
£ :={U € C([0,0),L?), satisfying (12) and the estimates (i), (ii), (iii) of Theorem 3},

endowed with the strong topology (resp. the weak * topology relative to 7,s) of C([0,00),L?). Hypothesis (H1) is a
direct consequence of the stability property stated in Theorem 3 (resp. Proposition 4). Now, set

D := {Uinit € Laiy with curlug,ic; € L*(R?), for i = 1,2},

which is dense in &;,;; for the topology 7 inherited from L2. Moreover Theorem 5 yields that Hypothesis (H2) is
satisfied. We can therefore apply Theorem 35, what proves Theorem 6.

6 Quasi-stationary limits: proof of Theorem 7, Proposition 8 and The-
orem 9

Proof of Theorem 7. We first observe that the bounds (i), (ii) given by Theorem 3 for U" are uniform in n € (0,1).
Therefore, up to a subsequence, U" converges to U := (u,v) in Wllo’coo((()7 00), L2(2)) weak * and v" converges to v in
L ((0,00), L>=(92)) weak *. In addition, there holds Bu” = §;D", with D" := —n(u" — (k= - 1)v7). Passing to the

limit already yields that U satisfies the (linear) equations (11) and Bu = 0. Using Proposition 4, we also get that U
satisfies (14), which means that v solves (20). O

Proof of Proposition 8. The proof is very similar to the uniqueness proof in Theorem 5 (b): it relies on some L™
approximation of (Id — P)(k~! - l)v. Consider v1,v2 € C([0,00), L2(£2)) N L2 ((0,00), L>(2)), solutions to (20) with

loc

the same initial data v, and define dv := v; —vy. Fix T' > 0. From the properties (8)-(10) of F', we get the pointwise
estimate

9 (|6v*) < Cp ((|(Id — P)(k™" - Dv1| + 1)|0v]® + [(Id — P)(k~" - 1)dv| [6v])  on [0,T] x Q, (105)
for some constant Cr = Cr (”U»L‘niteKT”Loo(Q)). Now, defining for M > 0

wii' = 1)(1a—p)(r-1y0r ) <r (Td = P) (k™1 - Dy,
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we get from Lemma 34 that there is C'(T') > 0 such that
VM > 1, ”wﬁwHLO‘J((O,T)xQ) <M, ||(Id - P)("f_l ’ Z)U1 - w‘]l‘/[HLOC((O,T)’[ﬂ(Q)) < C(T)e_M/C(T).

Integrating (105) over 2, using the Cauchy-Schwarz inequality and increasing the constant C' (which is still independent
of M), we obtain

00 (1601320 ) < Cr (M + D602y + C(T)e MM,

Then, Gronwall’s lemma yields

c(T
vt e[0,T), [[6v(t)]F20) < M(iJr)leCF(M-H)T—M/C(T).

Now, choose T so small that CepMT — M/C(T) < 0 (which is possible, since C is a non-decreasing function of T'),
and let M go to infinity. This shows that dv vanishes on [0, T]. Repeating the argument on successive time intervals
yields v; = vs. O

Proof of Theorem 9. For each n € (0,1), consider a solution U" (given by Theorem 3) to (11), (14) and (18). Conver-
gence of v (and (Id — P)u") is obtained as in the proof of Theorem 7 above. Now, drop the index 7 for simplicity.
Then, symmetrizing the system by the change of dependent variables

ﬁ:i = ’%3/21141'7
we get in the distributional sense:
. ~  1\3—i ~ =1/2 5 4 =

fori=1,2, natul + ( 1) Rz _juz_; = nkK; -1;0,,

and therefore, applying 9; and combining,
. 202 ~ * ~ i —1/2 _ 2 —1/2 2 _
fori=1,2, n°0;u; + R;R;u; = (—1)'mR3_ik4_; I3_;0:0 + 1"k, 1,070, (106)

where we have set

i=1,2, R;:= H;EZ/Q curl 551/2(: Rj_,, for the duality in L*(R?, dx)).

System (106) shall be understood as a system of wave equations for the “divergence free” parts m;u;, when

fori=1,2, m:= H;/mei—ug

Then, 7 = (1, 72) is an orthogonal projector in the space L?(R3,dx) x L?(R3, dz). Furthermore, from the description
of ran P; and ran (1 — F;) in (7), we deduce that

fori=1,2, R;ym =R; (and mR;=R; by transposition).
Thus, we have finally:
for i =1,2, n202mi; — Qimitl; = (—1)'nRa_srg | ls_;040 + nmir; 21,020, (107)

with

—1

fori=1,2, Q;,:=—-RR;+ Hi/zv (n;Qﬁagl- div(n;/z-)) .

From [41, Lemma 3.10], we know that for ¢ = 1,2, the differential second-order operator (—@Q);) is a self-adjoint,
positive, and elliptic. Thus, with v € L{° ((0, 00), L>®(€2)) N W2 ((0, 00), L2(2)) given, and for given initial data,

loc loc

~ 1/2 ~ —-1/2 _ i 1/2
Tili|,_g = Tiky Uinit,e and n(0smit;)|,_, = nmik; "~ LiF (Vinit, Winit) + (= 1) R3 iRz 3 Winit 34,
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the solution (m1u1,mous) to the linear wave equation system (107) is uniquely determined. We recover it via vector
potentials: defining
fori=1,2, n202¢; — Qi = nmir; " *L:0y0,
Dilieo = 0, (108)
N0 Pi|,_y = Tilli|,_y»

we have '
fori=1,2, mu; =n0p; + (—1)"'Ra_ip3_;. (109)

The problem (108) also determines uniquely the vector potentials ¢;. Since m;¢; also satisfies the problem (108) we
infer that m;¢; = ¢;. Furthermore, [41, Lemma 3.10] ensures that for ¢ = 1,2, @; does not admit 0 as a resonance.
One then needs to assume the following:

for i = 1,2, @; is non-trapping. (110)

This is enough to apply

Theorem 36 (Starynkevitch [41], Theorem 3.2). Let Q be a non-trapping, (L?-)self-adjoint, negative, and elliptic
differential second-order operator, for which 0 is not a resonance. Let s > 1/2, v € (=3/2,1/2) and R > 0. Then,
there exists C > 0 such that: for all (ug,uy) € H%H(Rs’) x H%(]R?’), and f such that (z)*(—Q)"/?f € L?((0,00) x R?),
the solution u to

O2u—Qu=f on (0,00) x R, with U,_, = Uo, Opu),_, = u,

satisfies
| (u, atu)”L?((O,oo),Hngl(BR)XH;*)(BR)) <C (HUOHI—'I%JA(R-‘S) +llunll gy sy + ||<$>S(*Q)W2f|\L2((o,oo)xRS)) ~
For all u € R, the space Hg (R3) is defined by the norm
HU||H5(R3) = [[(=Q)""*v]| L2(rs).-

We apply the result above to ¢;(nt, z), whith v = 0 and s = 1. This leads to:

/2
Winit,i|| L2 (®3)

1
VR >0,3Cr >0, [[(¢i,10:0i)l 12((0,00), 11 (Br)x L2(Br)) S Cr(n'/?|mis;
il (@ min 21000 L2 (0,000, 22w5)))-

The right-hand side is controlled thanks to

Lemma 37 (Starynkevitch [41], Lemma 3.11). For all R > 0, there exists Cr > 0 such that, if m € L*(R3) and
supp(m) C Bg, then
for i=1,2, |mm(z)| < Cr(z) ?||m| 2ms) for ae.x € R®.

Since 7;¢; = ¢;, by the usual TT* argument, |[R;¢i|z2(pr) < [9il g1(5,). and we deduce from (109):

for i = 1,2, mu; =0(yn) in L?((0,00), L},.(R?)),

loc

which yields the convergence of Pu” to zero in L?((0,0), L% (R?)). O

loc
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