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1. Introduction

At the beginning of the 19th century A. L. Cauchy founded Continuum Me-

chanics by assuming that two parts of a continuum interact by means of surface

densities of contact forces concentrated on their dividing surface. Then, assuming

that these contact forces depend only on the normal to the dividing surface and that

they are balanced by some volume density of force (including inertia), he played

with tetrahedrons and proved the existence of the so-called Cauchy stress tensor.

Many authors consider this point of view as the untouchable basis of Continuum

Mechanics (see for example [27,50], and the criticism raised in [5] and in [15]).

In 1959, W. Noll [34] crystallized this faith by proving that the so-called Cauchy

Postulate, the dependence of contact forces only on the normal of dividing surfaces,

is indeed equivalent to the apparently weaker assumption of uniform boundedness

of contact forces for all dividing surfaces.1 The merit of Noll’s results consists

in pointing out the relationship between the tetrahedron argument and measure

theory (see for example [17]); the drawback is in camouflaging behind a technical

hypothesis the physical assumption that the contact forces depend only on the

normal.

Many other authors (see for example [1,4,6,9,20,23,26,33,39,41,43,48,51])

are accustomed to using second gradient theories to describe various phenomena in

which strong variations of material properties occur. They thus use a theory based

on the principle of virtual work and, at least since Toupin [46,47], they are aware

of the fact that the Cauchy Postulate is not valid in this context. Indeed, in [22],

it is stated that “A central consequence of Toupin’s work is the observation that

Cauchy’s hypothesis that the surface traction at a point x on a surface S depends on

S through its normal field at x is not valid in a theory involving second gradients

of the deformation, because in Toupin’s theory the traction depends also on the

curvature of S at x”. However, and remarkably enough, almost no effort (except,

to our knowledge, the work [11]) has been made to adapt that Postulate and the

tetrahedron construction to encompass theories of higher gradient continua.

All modern mechanicians admit that the introduction of surface contact interac-

tions is the result of some underlying asymptotic process: from discrete atomic net-

works to continuum models, from microscopically non-homogeneous continua to

1 We note here that the fact of calling this hypothesis Postulate has been greatly misleading.
Actually it is not a fundamental Principle of Mechanics as is sometimes believed, but a
constitutive assumption.



macroscopic homogenized effective ones, or from thin three-dimensional structures

to their lower dimensional limits (that is shells, plates, beams). Contact mechanical

interactions, that is, physical entities which act on the kinematics, need not necessar-

ily be forces. They can be, for instance, couples. It is well known that a distribution

of forces, through an asymptotic process, can be transformed into an interaction

of a different type, for instance a couple. We remark that the need of considering

more general contact interactions is universally accepted in the theory of beams,

plates and shells, where the macro-model has a lower dimension when compared

to the corresponding micro-model, whereas it has been regarded as controversial

when considering continuum three-dimensional models whose microscopic coun-

terparts are discrete systems of particles moving in a three-dimensional space or

again three-dimensional continuum models.

The best way of describing a mechanical interaction, be it either a force or

another type of more complex interaction, is to introduce its power expended on

all admissible kinematic fields U . This is a linear form called virtual power. The

fact of describing the interactions through their expended virtual power should not

be confused with the so-called virtual power method. This method, popularized

by Germain [25] consists in making assumptions on the internal virtual power

and deducing properties of contact interactions in a logical order which reverses

the one used by Cauchy [14]. It is remarkable that already Gabrio Piola, in his

pioneering works [16,37,38], raises several important theoretical questions about

this subject. He understood, by means of a micro-macro identification procedure

based on the Principle of Virtual Work, that, in general, one cannot assume that

macroscopic contact interactions reduce simply to contact forces, and he introduced

continuum models which are much more general than the one studied by Cauchy.

Such models have been considered for engineering applications only in the first

decade of the 21st century (see [15]).

Many results are now available (see for example [1,3,36,44,48] or [2]) indicat-

ing that it is physically needed and mathematically consistent to consider macro-

scopic continuum models where contact interactions arise which expend power on

high order velocity gradients calculated on dividing surfaces (see also [13]). An

essential common ingredient of many systems which, after a homogenization pro-

cedure, were found to present non-Cauchy contact interactions is that they show

highly contrasted physical properties at the micro-level (see also [8,9]). On the

purely macroscopic point of view, the necessity of considering such interactions

has been proven in some elegant papers [24,25,28–30], when one wants to con-

sider continuum models in which deformation energy may consistently depend on

second or higher gradients of displacement. The conceptual framework introduced,

for example, by Truesdell and Noll [49], is not suitable for encompassing such

models (see for example the difficulties arising in [18] and clarified in [11,14]).

Moreover, the misunderstood range of validity of Noll’s theorem persuaded many

authors that the dependence of the deformation energy on higher gradients was

forbidden by the second principle of thermodynamics (see for example [27] and

[10]) or that the principles of thermodynamics needed to be modified [18,32].

The present paper adapts the tetrahedron argument to include a class of contin-

uum models which is much wider than the one originally considered by Cauchy.



For our purposes it is needed to reconsider the assumptions on which Cauchy

based his analysis. We explicitly discuss them here because (as is always true for

any theory and model), in order to generalize Cauchy analysis, one has to have a

clear understanding of its limits and to be aware of the fact that often its results are

used outside the correct context. In his paper De la pression ou tension dans un

corps solide, Cauchy wrote ([7] p. 61 lines 3, 15) : “a small element experiences

on its different faces and at each point of them a determined pressure or tension

…which can depend on the orientation of the surface. This being set, …”. Therefore

he was clearly aware that he was accepting the two assumptions:

(H1) Contact interactions reduce to surface forces on the boundary.

(H2) Contact interactions depend only on the normal to the boundary.

Later he added (p. 63 lines 16) : “Equilibrium should hold between inertial force and

the forces to which are reduced all pressures and tensions exerted on the surfaces,

…”. Therefore he accepted the third assumption

(H3) Contact interactions are balanced by volume forces.

In his proof he applied the balance of forces to domains “with a very small volume,

so that every dimension is an infinitesimal quantity of first order the mass being an

infinitesimal quantity of the third order” (p. 62 line 9 and p. 64 line 4), and finally

he stated that pressure and tension on a small face “experience, by moving from one

point to another one on a face, infinitesimal variations of the first order” (p. 62 line

14). Therefore he implicitly accepted the regularity assumption:

(H4) Contact interactions depend continuously on the position.

The key conceptual advancement performed of the present paper consists of

the acceptance of a wider class of contact interactions by weakening assumption

(H1) [and this cannot be done without getting rid also of (H2)]. An attempt of

weakening assumption (H1) in order to model edge forces has been tried in [35]

without introducing contact distributions of an order larger than one, yet it has

been proven in [12] that both types of interactions are intrinsically linked. In a very

relevant paper, Segev and De Botton [42] have considered both the concentration

of contact interactions on singular subsets of the boundary and higher order contact

actions. They have proven, using assumptions which are different from ours, that a

representation of the power of contact interactions in terms of hyperstresses actually

exists. This representation is global and, contrary to Cauchy’s approach, does not

make explicit the relationship between hyperstress tensors and contact interactions,

nor the way in which contact interactions depend on the shape of the boundary.

In this paper, we show, by following as closely as possible the spirit of Cauchy’s

works, how one can indeed consider continuum models in which contact distrib-

utions of order larger than one can arise or can concentrate on the geometrical

singularities of the dividing surfaces (edges and wedges). We assume that, for a

rich enough class of sub-bodies, the contact interactions exerted on a sub-body B

is a distribution concentrated on the dividing surface ∂2 B and on its singularities



of dimension one ∂1 B and of dimension zero ∂0 B.2 We also assume (and this is an

actual restriction on the range of applicability of our theory) that the order of these

distributions is uniformly bounded for all possible sub-bodies.

We take advantage of the fundamental theorem in the theory of distributions

due to Laurent Schwartz, which states that every distribution having support

included in a regular embedded sub-manifold M can be uniquely decomposed as

a finite sum of transverse derivatives of extensions of distributions defined on M

(see [40])

N
∑

k=0

< Fk , ∇k
⊥M

U >
M

.

At this point we need to formulate an assumption which may seem of a purely

technical nature but which indeed has a limiting effect on the described phenomena.

We decide to limit our attention to contact interactions for which the distributions

Fk can be represented by smooth functions.

Note that, already in Cauchy framework where only surface 0-order distribu-

tions on surfaces are considered, a similar assumption is used to prove the Cauchy

representation theorem. Our results, no more than those obtained by Cauchy, can-

not encompass stress states for which there are stress concentrations along lower

dimensional manifolds; models which are needed if one wants to model for instance

a three dimensional elastic body containing a free moving two dimensional plate

or a fluid containing some unknown interfaces endowed with surface tension. It is

remarkable that there is no sound theoretical understanding of these phenomena

which are, on the other hand, commonly studied and considered by physicists since

the formulation of the Laplace and Young formula. Such a theoretical framework

should include the capability of considering distributions on the surface which are

measures but not functions. An interesting step in this direction has been performed

in [4] when the localization of stress is a priori known. In [42], a way for attacking

this problem is also given, but it is not the subject of the present paper.

Thus we write the power of contact interactions S(B, U ) by means of the

representation3

S(B, U ) =

N−1
∑

k=0

∫

∂2 B

F
2
k | ∇k

⊥U +

N−2
∑

k=0

∫

∂1 B

F
1
k | ∇k

⊥U +

N−3
∑

k=0

∫

∂0 B

F
0
k | ∇k

⊥U. (1)

The function S characterizes the stress state of the continuum which is then said

to be in a stress state of order N . The fields
(

F2
k, F1

k, F0
k

)

are functions which depend

on B and on the position. They are dual quantities to the normal gradients ∇k
⊥U

2 We do not post any difference here between the material sub-body and the subset it is
occupying in the physical space. The regularity hypotheses we assume for such a subset will
be precised later.

3 In the formula (1) the chosen summation bounds may seem restrictive. This is not the
case, as one can easily add some extra terms with vanishing densities. We will see later on
in this paper the reason for writing the distribution in this form.



of the virtual velocity field and are called the contact k + 1 -forces. They are, by

definition, orthogonal to the shape where they are applied. Thus F
i
k | ∇k

⊥U = F
i
k |

∇kU and in the sequel it will not be necessary to specify that only the orthogonal

part of ∇kU is involved.

The kinematics of considered continua may here be very general (for example

the one specified in [19]). The configuration field may take values in a manifold

and the velocity field in its tangent bundle, which can be of any tensorial nature.

This tensorial nature is irrelevant in our developments and therefore, for the sake of

efficiency, we operate as if the kinematics were described by a real valued function

U . Therefore the tensor ∇k
⊥U is considered to be of order k, as well as its dual

quantities, and F
i
k | ∇k

⊥U denotes the scalar product of the indicated tensors. It

is straightforward, by applying our results component-wise, to extend them to the

case where U is a tensor, and in particular to the classical case where U is a vector.

The class of sub-bodies that we consider must contain tetrahedrons if we want

to follow the trail of Cauchy. Therefore, it cannot be limited to domains with

smooth boundaries. In the first part of the paper we consider only tetrahedrons.

Later on we extend the class of admissible sub-bodies to domains which are locally

diffeormorph to tetrahedrons; their boundaries (which may be considered as Cauchy

dividing surfaces) are piece-wise regular, with normal fields subjected to jumps on

a finite set of regular curves eventually concurring into wedges.

One of the points of Cauchy the approach which is more often discussed (see

for example [34] or [21]) is about the assumptions which are needed concerning the

dependence of the fields F
i
k upon the sub-body B. In this paper, we only suppose

that this dependence is local. We also assume that the densities F
i
k depend in a

sufficiently regular way on the position when a sub-body is translated.

The theory of Cauchy is a particular case of the one that we present here; indeed,

if we make the extra assumption that the stress state is of order one then we are back

to the framework used by Cauchy and our demonstrations and results are identical.

Assuming that the stress state is of order one is indeed a constitutive assumption

so deeply rooted in the mind of many authors that it has been very often accepted un-

consciously and we emphasize that Noll’s theorem [34] cannot be proven without

this assumption.

The generalized contact interactions we previously described are not usually

considered in the literature. One can find two different reasons for this circumstance.

First, the virtual work is not always the preferred tool for some mechanicians while

it gives the conceptual framework in which generalized contact interactions arise

naturally. Secondly, it is a fact that many materials cannot sustain stress states of

order larger than one.

Cauchy’s proof of the existence of a stress tensor is based on the equilibrium

of contact forces with a force which is assumed to be diffuse in the volume. We

also need a similar assumption. We assume that quasi-balance of power holds: for

every virtual velocity field U , there exists a constant KU such that,

|S(B, U )| ≦ KU |B| . (2)

Here |B| denotes the Lebesgue measure of B.



When considering only rigid virtual velocity fields U , one reduces inequality

(2) to the quasi-balance of forces which is a weak form of the equilibrium condition

used by Cauchy. As remarked in [12], quasi-balance of forces is not sufficient to

obtain a description of a stress state of order two or higher and one has to apply the

quasi-balance of power to non-rigid velocity fields.

While inequality (2) could seem a very weak assumption, we emphasize that

it rules out some possible stress states as for instance those occurring in continua

including material surfaces or continua including interfaces with Laplace surface

tension.

This paper is organized as follows. We first fix some notation in Section 2.

Then in Section 3 we state representation results of the highest order terms of the

stress state when the considered domain is a tetrahedron. We define the boundary

operators which will be proven to describe how the shape of the boundary influences

the contact interactions. Then, closely following Cauchy’s argument, we prove the

existence of a unique tensor representing through these boundary operators, the

highest order actions which are applied on the faces, edges and wedges of the

boundary of the domain. Due to the complexity of the considered interactions, the

proof is much more technical than the original one by Cauchy. The technicalities

come also from the fact that we need to use a non-orthogonal tetrahedron in order to

represent not only the surface terms but also the edge and wedge terms. We extend

these results to more general shapes in Section 4 by generalizing Noll’s theorem.

To that end, we define precisely in this latter section what we call the “shape” of a

body. Then we prove that the highest order terms of the stress state depends on the

shape of the domain only through the tangent tetrahedral shape. In Section 5 we

show how, using integration by parts on the different elements of the boundary, the

previous results can be used to obtain representations of all terms is the stress state.

Section 6 illustrates these results. Indeed we show how the first, second or third

gradient theories can easily be recovered. In Appendix we have gathered some very

technical results which are needed for the establishment of the proofs in Section 3

but which can be skipped in a first reading.

2. Notation

2.1. Measures

When M is a smooth embedded compact manifold in the Euclidean space, we

denote |M | as the Hausdorff measure of M : if M is a volume, a surface, a line

or a discrete system of points |M | denotes respectively its volume, area, length or

cardinal number. Integrals over M are integrals with respect to the corresponding

Hausdorff measure without explicitly mentioning it.

2.2. Tetrahedrons

A tetrahedron is the central tool for proving the Cauchy representation theorem

of contact interactions. This is still true in our case. Thus we fix here some useful

notations for geometrical quantities associated to a tetrahedron.



Definition 1. For any point x̂, any unit independent vectors n1, n2, n3 (with nega-

tive determinant), any unit vector n0 satisfying for all j ∈ {1, 2, 3}

n0 · n j < 0 (3)

and for any positive real number h0 we consider the non degenerated tetrahedron

defined by

Δ(x̂, n1, n2, n3, n0, h0) :=
{

x :
(

x − x̂
)

· n j > 0,
(

x − x̂
)

· n0 < h0

}

.

For i ∈ {0, 1, 2, 3}, we denote F i as the face of the tetrahedron having for unit

outward normals ni . For j ∈ {1, 2, 3}, we adopt the following convention : j + 1

denotes the index following j in a circular permutation of {1, 2, 3}. We introduce the

vectors e j :=
n j+1×n j+2

‖n j+1×n j+2‖
which are unit tangent vectors to three edges denoted

respectively L j . The point x̂ is the vertex of the tetrahedron where these three

edges concur. On each edge L j , the unit vectors orthogonal to the line L j , tangent

respectively to the faces F j+1 and F j−1 and external to them are ν
j
j+1 := e j ×n j+1

and ν
j
j−1 := −e j × n j−1.

The height of the tetrahedron corresponding to the face Fi has length hi . By

projecting each edge vector
∣

∣L j

∣

∣ e j onto the direction n0 we get
∣

∣L j

∣

∣ e j · n0 = h0.

By projecting
∣

∣L j

∣

∣ e j onto the normal n j of F j , we obtain h j = −
∣

∣L j

∣

∣ e j · n j .

The volume of the tetrahedron is

|Δ| =
1

6
det (|L1| e1, |L2| e2, |L3| e3) =

dh3
0

6 (e1 · n0) (e2 · n0) (e3 · n0)
=

1

3
|Fi |hi ,

where d := det (e1, e2, e3). Thus we have, for j ∈ {1, 2, 3},

∣

∣F j

∣

∣ = − |F0|
(ei · n0)

(ei · ni )
.

Finally, we remark that, for any x̄ such that
(

x̄ − x̂
)

· n0 = h0,

∫

L j

(x − x̄) · n0 = −

∣

∣L j

∣

∣

2

2

(

e j · n0

)

=
−h2

0

2
(

e j · n0

) = −

(

e j+1 · n0

) (

e j+2 · n0

)

d
|F0| .

2.3. Tensors

The Einstein convention of summation over repeated indices is used throughout

this paper. The subscripts are relative to a three-dimensional basis.

Let X and Y be two tensors of order p and q. We use the standard notation ⊗

for the tensorial product : X ⊗ Y is the p + q tensor defined by

(X ⊗ Y )i1,i2,...i p+q := X i1,i2,...i p Yi p+1,...i p+q

while the product × stands for the cross product of two three dimensional vectors.

We also use the notation X⊗r for denoting the tensor of order r × p defined by



induction by setting X⊗1 := X and X⊗r = X⊗r−1 ⊗ X . We use the standard

notation X · Y for the contraction product : X · Y is the p + q − 2 tensor defined by

(X · Y )i1,i2,...i p+q−2 := X i1,i2,...i p−1, j Y j,i p,...i p+q−2 .

If p ≧ q, we denote by X | Y the p − q tensor defined by

(X | Y )i1,i2,...,i p−q := X i1,i2,...i p−q , j1, j2,..., jq Y j1, j2,..., jq .

Note that, in the particular case p = q, this product coincides with the scalar

product of tensors of order p, while, in the particular case q = 1 (that is, when Y

is a vector), the product X | Y coincides with X · Y .

Given a permutationσ in the symmetric group�p of permutations of {1, . . . , p},

the tensor σ X is defined by

(σ X)i1,i2,...,i p := X iσ(1),iσ(2),...,iσ(p)
.

We say that X is completely symmetric if σ X = X for every permutation σ ∈ �p.

The application which, to any tensor X of order p, associates

K
p(X) :=

1

p!

∑

σ∈�p

σ X, (4)

is the orthogonal projection onto the space of completely symmetric tensors; we

call the completely symmetric part of X its image under this projection. Note that,

as the context always prevents any ambiguity, we omit the superscript p in the

sequel.

When M is a smooth submanifold in the Euclidean space, we denote ΠM as

the orthogonal projector on the tangent subspace of M and ΛM = I d − ΠM

as the projector on its orthogonal subspace. For any tensor X of order p de-

fined on M , we call completely orthogonal part of X the tensor (X⊥M )i1....i p
:=

X j1..... jp (ΛM )
j1
i1

.... (ΛM )
jp

i p
and we say that X is completely orthogonal to M if

X = X⊥M . We also denote KM (X) the completely symmetric part of X⊥M :

KM (X) := K(X⊥M ). (5)

3. Cauchy Tetrahedron Argument

Let us consider a body submitted to a quasi balanced stress state S of grade N ;

every tetrahedral sub-body Δ contained in this domain is submitted to a power of

contact interactions S(Δ, U ) given by

N−1
∑

k=0

∫

∂2Δ

F
2
k | ∇k

⊥U +

N−2
∑

k=0

∫

∂1Δ

F
1
k | ∇k

⊥U +

N−3
∑

k=0

∫

∂0Δ

F
0
k | ∇k

⊥U.

We assume that quasi balance of power holds. The way the fields F
q
k depend on

the considered sub-body will be studied in Section 4. However, this dependence



is simple when a tetrahedron is concerned. As we require this dependence to be

local we have to assume that (1) at any internal point of the four faces of the

tetrahedron the surface actions F2
k depend only on the normal to the face; (2) at any

internal point of its six edges the edge actions F1
k depend only on the dihedral shape

characterized by the two normals concurring there and the tangent to the edge (for

instance, using notation of Section 2.2 the dihedral shape f1 at any internal point

of L1 is characterized by (n2, n3, e1); (3) finally at any vertex of the tetrahedron

the wedge actions F0
k depend only on the trihedral shape characterized by the triple

of normals to the faces concurring in it [for instance the shape w at x̂ depends on

(n1, n2, n3)]. In addition to this dependence upon the geometry of the considered

sub-body, a dependence with respect to the position where the action is applied is

also taken into account. We assume this dependence to be continuous.

We prove in this section, using the famous Cauchy tetrahedron argument, that

the previous assumptions imply the existence of a unique completely symmetric

tensor representing the highest order actions F2
N−1, F1

N−2 and F0
N−3.

3.1. Representation Theorem for Surface Actions

Definition 2. At a regular point of a face F of a tetrahedron with external normal n,

we define the boundary operator as O
p
n := n⊗(2p−1). It is a tensor of order 2p − 1

characterized by the fact that, for any tensor X of order p,

O
p
n | X := X⊥F · n.

Lemma 1. At any point x̄ and for any triplet of unit independent vectors (n1, n2, n3)

(with negative determinant) there exists a continuous tensor field C̃N of order

N such that, for any unit vector n0 satisfying the inequalities n0 · n j < 0 for

j ∈ {1, 2, 3},

F
2
N−1 (x̄, n0) = O

N
n0

| C̃N =
(

C̃N (x̄) | n⊗N
0

)

⊗ n⊗N−1
0 . (6)

Proof. For any positive real number ε, we consider the one-parameter family of

non degenerated homothetic tetrahedrons Δε = Δ(x̄ − εn0, n1, n2, n3, n0, ε) (cf.

Definition 1) and we add a superscript ε to all quantities associated to Δε according

to the notation stated in Section 2.2. We apply the quasi-balance of contact power

for this family and for the fixed test field

U : x −→ ((x − x̄) · n0)
N−1 U0

where U0 is generic in the space E which describes the kinematics of the continuum.

We recall that, everywhere in the sequel, the tensorial nature of U0 is overlooked.

Without loss of generality U0 is considered as a scalar quantity. Quasi-balance

|S(Δε, U )| ≦ KU |Δε| reads

∣

∣

∣

∣

∣

N−1
∑

k=0

∫

∂2Δε

F
2
k | ∇kU +

N−2
∑

k=0

∫

∂1Δε

F
1
k | ∇kU +

N−3
∑

k=0

∫

∂0Δε

F
0
k | ∇kU

∣

∣

∣

∣

∣

≦ KU

∣

∣Δε
∣

∣ .

(7)



In the sequel we draw conclusions from the fact that
∣

∣F
ε
0

∣

∣

−1
|S(Δε, U )| has a

vanishing limit when ε tends to zero. We start by remarking that the field U together

with all its derivatives up to order N −2 vanish on the plane (x − x̄) ·n0 = 0 which

includes the face F
ε
0 and the edges and wedges which border it. Indeed:

∇kU =
(N − 1)!

(N − 1 − k)!
((x − x̄) · n0)

N−1−k U0 ⊗ n⊗k
0 .

This last equation also shows that, when ε tends to zero, the asymptotic order

of magnitude of ∇kU in Δε is O(εN−1−k). Therefore, recalling the assumption

according to which the stress state depends regularly on the space variables (18),

(19), we get the estimates

∣

∣

∣

∣

∫

∂2Δε

F
2
k | ∇kU

∣

∣

∣

∣

=
∣

∣∂2Δ
ε
∣

∣ O(εN−1−k) = O(εN+1−k),

∣

∣

∣

∣

∫

∂1Δε

F
1
k | ∇kU

∣

∣

∣

∣

=
∣

∣∂1Δ
ε
∣

∣ O(εN−1−k) = O(εN−k),

∣

∣

∣

∣

∫

∂0Δε

F
0
k | ∇kU

∣

∣

∣

∣

= O(εN−1−k)

Thus, keeping only those terms which are not plainly vanishing in the limit of
∣

∣F
ε
0

∣

∣

−1
|S(Δε, U )|, we get

lim
ε→0

∣

∣F
ε
0

∣

∣

−1
( 3

∑

i=0

∫

Fε
i

(N − 1)! F
2
N−1 |

(

U0 ⊗ n⊗N−1
0

)

+

3
∑

j=1

∫

Lε
j

(N − 1)! ((x − x̄) · n0) F
1
N−2 |

(

U0 ⊗ n⊗N−2
0

)

+
(N − 1)! ε2

2
F

0
N−3(x̄ − εn0, w) |

(

U0 ⊗ n⊗N−3
0

)

)

= 0.

Making explicit the arguments of the functions F and applying the mean value

theorem, we get

lim
ε→0

∣

∣F
ε
0

∣

∣

−1
( 3

∑

i=0

∣

∣F
ε
i

∣

∣ F
2
N−1(xε

i , ni ) |
(

U0 ⊗ n⊗N−1
0

)

+

3
∑

j=1

(

F
1
N−2

(

x̃ε
j , f j

)

|
(

U0 ⊗ n⊗N−2
0

)

∫

Lε
j

((x − x̄) · n0)

)

+
ε2

2
F

0
N−3(x̄ − εn0, w) |

(

U0 ⊗ n⊗N−3
0

)

)

= 0

for some points xε
i ∈ F

ε
i and x̃ε

j ∈ L
ε
j . Using the geometrical identities we have

established in Section 2.2, we obtain



lim
ε→0

(

F
2
N−1(xε, n0) |

(

U0 ⊗ n⊗N−1
0

)

−

3
∑

j=1

(

e j · n0

)

(

e j · n j

)F
2
N−1(xε

j , n j ) |
(

U0 ⊗ n⊗N−1
0

)

+

3
∑

j=1

(

−d−1
) (e1 · n0) (e2 · n) (e3 · n)

(

e j · n0

) F
1
N−2

(

x̃ε
j , f j

)

|
(

U0 ⊗ n⊗N−2
0

)

+ d−1 (e1 · n0) (e2 · n0) (e3 · n0) F
0
N−3(x̄ − εn0, w) |

(

U0 ⊗ n⊗N−3
0

)

)

= 0.

Passing to the limit is now easy. Further using the arbitrariness of U0, and intro-

ducing the second order tensors Ei := ei+1 ⊗ ei+2, we get

F
2
N−1(x̄, n0) |n⊗N−1

0 −

3
∑

j=1

(

e j · n0

)

(

e j · n j

)F
2
N−1(x̄, n j ) | n⊗N−1

0

−

3
∑

j=1

(

d−1
)

(

E j · (n0 ⊗ n0)
)

F
1
N−2

(

x̄, f j

)

| n⊗N−2

+ d−1 (e2 · n0) (e1 · n0) (e3 · n0) F
0
N−3(x̄, w) | n⊗N−3

0 = 0,

or equivalently,

F
2
N−1(x̄, n0) |n⊗N−1

0 −

3
∑

j=1

1
(

e j · n j

)

(

F
2
N−1(x̄, n j ) ⊗ e j

)

| n⊗N
0

−

3
∑

j=1

(

d−1
) (

F
1
N−2

(

x̄, f j

)

⊗ E j

)

| n⊗N
0

+ d−1
(

F
0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3

)

| n⊗N
0 = 0.

Thus, defining the tensor field C̃N (x̄) by

C̃N (x̄) :=

3
∑

j=1

1
(

e j · n j

)

(

F
2
N−1(x̄, n j ) ⊗ e j

)

+

3
∑

j=1

d−1
(

F
1
N−2

(

x̄, f j

)

⊗ E j

)

− d−1
(

F
0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3

)

, (8)

we obtain F2
N−1(x̄, n0) | n⊗N−1

0 = C̃N (x̄) | n⊗N
0 . As F2

N−1(x̄, n0) is completely

orthogonal to F
ε
0 , the previous equation implies

F
2
N−1(x̄, n0) =

(

C̃N (x̄) | n⊗N
0

)

⊗ n⊗N−1
0 , (9)

which concludes the proof. ⊓⊔

Let us remark that formula (6) is a partial representation result. Indeed, as C̃N

depends on x̄ , e1, e2, e3, n1, n2, n3 (that is on x̄, n1, n2, n3) but does not depend on



n0, this formula describes the way F2
N−1 (x̄, n) depends on n0. However, it is not

valid for any unit vector n0 in the sphere S2 but only for those which belong to the

cone defined by inequalities n0 · ni < 0; i ∈ {1, 2, 3}. This is a common feature

of all classical proofs based on the Cauchy tetrahedron argument, and the results

are generally extended by using an action-reaction argument. Instead, we will use

the purely topological Lemma 3 which states that an operator which, locally on

the sphere, coincides with multilinear completely symmetric operators, coincides

globally on the sphere with a completely symmetric operator.4 Let us begin by

remarking that a multilinear completely symmetric operator is entirely defined

when defined on some open subset of the sphere.

Lemma 2. Assume that two completely symmetric p−tensors C and C′ satisfy

C | n⊗p = C
′ | n⊗p

for any n in some open subset O of the unit sphere S2. Then C = C′.

Proof. The completely symmetric p−tensor C′′ := C − C′ satisfies C′′ | n⊗p = 0
for all n ∈ O and therefore for all n in the cone D := {rn; r ∈ R, n ∈ O}. We use
the polarization formula valid for any completely symmetric p−tensor (see [45]
and references there cited):

C
′′ |

(

u1 ⊗ u2 ⊗ · · · ⊗ u p

)

=
1

2p p!

∑

ξ∈{−1,1}p

ξ1ξ2 · · · ξpC
′′ |

⎛

⎝

p
∑

i=1

ξi ui

⎞

⎠

⊗p

=
1

2p p!

∑

ξ∈{−1,1}p

(

ξp

)2p ξ1

ξp
· · ·

ξp

ξp
C

′′ |

⎛

⎝

p
∑

i=1

ξi

ξp
ui

⎞

⎠

⊗p

=
1

2p−1 p!

∑

ξ̃∈{−1,1}p−1

ξ̃1 · · · ξ̃p−1C
′′ |

⎛

⎝

p−1
∑

i=1

ξ̃i ui + u p

⎞

⎠

⊗p

.

Let y ∈ O and r > 0 such that B(y, pr) ⊂ D and let us consider the open subset

O ′ of
(

R3
)p

defined by O ′ := (0, 0, . . . , 0, y)+ B(0, r)p. For any ξ ∈ {−1, 1}p−1

and any
(

u1, u2, . . . , u p

)

∈ O ′

p−1
∑

i=1

ξi ui + u p ∈ D.

As a consequence

C
′′ |

⎛

⎝

p−1
∑

i=1

ξi ui + u p

⎞

⎠

⊗p

= 0,

4 It is remarkable that in the particular case of linear operators, Lemma 3 allows us to skip
the classical Cauchy Action-Reaction lemma. Indeed, as soon as the Cauchy representation

is proven to be valid in any trihedron, the linearity of F2
2 (n) with respect to n is assured on

the whole sphere.



and from the polarization formula we get C′′ |
(

u1 ⊗ u2 ⊗ · · · ⊗ u p

)

= 0. Then the

multilinear application C′′ vanishes in the open set O ′ and therefore is identically

null. ⊓⊔

Lemma 3. Let ϕ be a function defined on the unit sphere S2. Assume that, for

any n̄ ∈ S2, there exists an open neighborhood On̄ of n̄ in S2 and a completely

symmetric p−tensor Cn̄ , such that, for any n ∈ On̄ ,

ϕ(n) = Cn̄ | n⊗p.

Then there exists a unique completely symmetric p−tensor C such that, for any

n ∈ S2,

ϕ(n) = C | n⊗p.

Moreover, all tensors Cn̄ coincide with C.

Proof. Let us fix n̄ ∈ S2 and consider the largest open subset O of S2 such that

ϕ(n) = Cn̄ | n⊗p for all n ∈ O . Clearly O is a non-empty subset of S2 as it contains

On̄ . Let ñ ∈ S2 belong to the closure of O . On the non-empty open set Oñ ∩ O ,

we have ϕ(n) = Cn̄ | n⊗p = Cñ | n⊗p. From the previous lemma we know that

Cn̄ = Cñ and so ñ ∈ O . The set O is closed. The connectedness of S2 implies that

O = S2, which concludes the proof. ⊓⊔

The previous lemmas enable us to state the first representation theorem:

Theorem 1. There exists a unique continuous completely symmetric tensor field

CN of order N such that, at any point x̄ and for any unit vector n,

F
2
N−1 (x̄, n) = O

N
n | CN =

(

CN (x̄) | n⊗N
)

⊗ n⊗N−1. (10)

Proof. Let us apply Lemma 1 for x̄ and any triplet (n1, n2, n3) with negative

determinant. As n⊗N
0 is a completely symmetric tensor, it is clear that Equation (6)

remains valid if we replace C̃N by its completely symmetric part CN . Note that

the way we constructed CN (x̄) shows that this tensor depends continuously on x̄ .

We get representation formulas for F2
N−1 (x̄, n) valid in the open cones defined by

inequalities (3). Then Lemma 3 establishes that this representation actually holds

on the whole sphere S2. It also establishes that, despite the way we defined it, the

tensor CN does not depend on the triplet (n1, n2, n3). Moreover the uniqueness of

the representation is assured. ⊓⊔

3.2. Representation Theorem for Edge Actions

The dependence of the line actions upon the shape of the edge is more intri-

cate. In order to define the appropriated boundary operator, we must first fix some

notation. For any manifold M and 1 ≦ q ≦ p, we introduce the tensors P
p

M,q and



P
p
M of order 2p by setting,5 for any tensors X , v, Y of order respectively q − 1, 1

and p − q,

P
p
M,q | (X ⊗ v ⊗ Y ) := X ⊗ Y⊥M ⊗ (ΠM · v). (11)

P
p
M :=

p
∑

q=1

P
p
M,q . (12)

Definition 3. We denote [L j ] as the pair of subscripts of the faces concurring on

the edge L j . The shape f j of L j is determined by the vectors e j , nk, ν
j

k (k ∈ [L j ]).

At a regular point of L j , the boundary operator O
p
f j

is the tensor of order 2p − 2

defined by setting, for any tensor X of order p,

O
p
f j

| X :=
∑

k∈[L j ]

(

P
p−1

Fk
| (X · nk)

)

· ν
j
k .

Lemma 4. The tensor C̃N introduced by Lemma 2 also satisfies

F
1
N−2 (x̄, f1) = KL1

(

O
N
f1

| C̃N

)

, (13)

where, following the notation fixed in Section 2.2, f1 denotes the shape of the edge

L1 of a tetrahedron Δ(x̂, n1, n2, n3, n0, h0).

Proof. Let us now compute K f1

(

O
N
f1

| (C̃N )
)

by considering the different terms

of formula (8). The term

O
N
f1

| (F2
N−1(x̄, n j ) ⊗ e j ) =

∑

k =1

(

P
N−1
Fk

| (
(

F
2
N−1(x̄, n j ) ⊗ e j

)

· nk)
)

· ν1
k

=
∑

k =1

(

e j · nk

)

(

P
N−1
Fk

| (F2
N−1(x̄, n j )

)

· ν1
k

vanishes as
(

e j · nk

)

= 0 if k = j and P
N−1
Fk

| (F2
N−1(x̄, n j )) = 0 if k = j . We

have also, using the fact that (e2)⊥F3
= 0,

O
N
f1

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3)

=
∑

k =1

(

P
N−1
Fk

|
(

(F0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3) · nk

)

· ν1
k

)

= (e3 · n3)
(

P
N−1
F3

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2)

)

· ν1
3

= (e3 · n3)

N−1
∑

q=1

(

P
N−1
F3,q

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2)

)

· ν1
3

5 Note that this formula simply reads P
p
M,p

| (X ⊗ v) := X ⊗ (ΠM · v) when q = p.



= (e3 · n3)

( N−2
∑

q=1

(

P
N−1
F3,q

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2)

)

· ν1
3

+
(

P
N−1
F3,N−1

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2)

)

· ν1
3

)

= (e3 · n3)

( N−2
∑

q=1

(

P
N−2
F3,q

| (F0
N−3(x̄, w) ⊗ e1)

)

· ν1
3 ⊗ (e2)⊥F3

+ (F0
N−3(x̄, w) ⊗ e1 ⊗ e2) · ν1

3

)

= (e3 · n3)
(

P
N−1
F3,N−1

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2)

)

· ν1
3

= (e3 · n3)(F
0
N−3(x̄, w) ⊗ e1 ⊗ e2) · ν1

3

= (e3 · n3)(e2 · ν1
3)F0

N−3(x̄, w) ⊗ e1.

Hence, as (e1)⊥L1
= 0, the term K f1

(

O
N
f1

| (F0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3)

)

van-

ishes. We continue our evaluations:

O
N
f1

|
(

F
1
N−2(x̄, f j ) ⊗ E j

)

=
∑

k =1

(

P
N−1
Fk

|(
(

F
1
N−2

(

x̄, f j

)

⊗ e j+1 ⊗ e j+2

)

· nk)
)

· ν1
k .

The terms in this sum vanish unless k = j + 2. As also k = 1 the sum vanishes if

j = 2. Otherwise, using the fact that e j is tangential to F j+2, it reads

O
N
f1

| (F1
N−2(x̄, f j ) ⊗ E j )

= (e j+2 · n j+2)
(

P
N−1
F j+2

| (F1
N−2(x̄, f j ) ⊗ e j+1)

)

· ν1
j+2

=
(

e j+2 · n j+2

)

N−1
∑

q=1

(

P
N−1
F j+2,q

| (F1
N−2

(

x̄, f j

)

⊗ e j+1)
)

· ν1
j+2

=
(

e j+2 · n j+2

) (

P
N−1
F j+2,N−1

| (F1
N−2

(

x̄, f j

)

⊗ e j+1)
)

· ν1
j+2

=
(

e j+2 · n j+2

)

(

e j+1 · ν1
j+2

)

F
1
N−2

(

x̄, f j

)

.

If j = 3 the term vanishes, as e j+1 ·ν1
j+2 = e1 ·ν1

2 = 0. Thus the only non-vanishing

term is for j = 1:

K f1

(

O
N
f1
(F1

N−2 (x̄, f1) ⊗ E1)
)

= (e3 · n3)

(

e2 · ν1
3

)

K f1

(

F
1
N−2 (x̄, f1)

)

= (e3 · n3) (e2 · (n3 × e1)) F
1
N−2 (x̄, f1)

= dF
1
N−2 (x̄, f1) .

In this way we have proven formula (13). ⊓⊔



The formula (13) is not, at this point, an actual representation result. Indeed, it

is valid only for the particular shape f1 and the way we introduced C̃N explicitly

involves F1
N−2 (x̄, f1). However, if f is the shape of the edge of some tetrahedron,

we can with no loss of generality consider that f = f1 with the notation of Section

2.2. From Lemma 4 we know that F1
N−2 (x̄, f ) = KL

(

O
N
f | C̃N

)

and the technical

Lemma 7, which for the sake of clarity we present in Appendix, establishes that

this identity remains valid when we replace C̃N by its totally symmetric part CN .

As CN does not depend on any geometrical quantity, the following representation

theorem holds:

Theorem 2. The tensor CN defined by Theorem 1 satisfies, for any edge L with

shape f of some non degenerated tetrahedron,

F
1
N−2 (x̄, f ) = KL

(

O
N
f | CN

)

. (14)

3.3. Representation Theorem for Wedge Actions

In order to describe the dependence of the wedge actions upon the shape of the

wedge let us define the appropriated boundary operator.

Definition 4. We denote [x̂] the set of the subscripts of the three edges concurring

on the wedge x̂ . Its shape w is determined by the vectors e j ( j ∈ [x̂]), which are

the unit tangents to these edges pointing outward of x̂ . At x̂ , the boundary operator

Ow is the tensor of order 2p − 3 defined by setting, for any tensor X of order p,

O
p
w | X :=

∑

j∈[x̂]

(

P
p−2

L j
|
(

O
p
f j

| X
)

)

· e j ,

where P
p−2

L j
and O

p
f j

have been defined in the previous subsection.

Lemma 5. The tensor C̃N introduced by Lemma 2 also satisfies

F
0
N−3(x̄, w) = K

(

O
N
w | C̃N

)

, (15)

w denoting the shape of the wedge x̂ of a tetrahedron Δ(x̂, n1, n2, n3, n0, h0).

Proof. We prove formula (15) by computing ON
w | C̃N in a way similar to the one

we followed for edge actions. The term

O
N
w | (F2

N−1(x̄, ni ) ⊗ ei )

=

3
∑

j=1

⎛

⎝P
N−2
L j

|

⎛

⎝

∑

k = j

(

P
N−1
Fk

|
((

F
2
N−1(x̄, ni )⊗ ei

)

· nk

)

· ν
j
k

)

⎞

⎠

⎞

⎠· (−e j )

= − (ei · ni )
∑

j =i

(

P
N−2
L j

|
(

P
N−1
Fi

|
(

F
2
N−1(x̄, ni )

)

· ν
j

i

))

· e j



vanishes, as F2
N−1(x̄, ni ) is completely orthogonal to Fi . On the other hand, the

term

O
N
w | (F1

N−2(x̄, fi ) ⊗ Ei )

=

3
∑

j=1

⎛

⎝P
N−2
L j

|

⎛

⎝

∑

k = j

(

P
N−1
Fk

|
(

(F1
N−2(x̄, fi ) ⊗ ei+1 ⊗ ei+2) · nk

)

· ν
j
k

)

⎞

⎠

⎞

⎠·(−e j)

= −(ei+2 · ni+2)
∑

j =i+2

(

P
N−2
L j

|
(

P
N−1
Fi+2

|
(

F
1
N−2(x̄, fi ) ⊗ ei+1

)

· ν
j
i+2

)

· e j

)

= −(ei+2 · ni+2)
∑

j =i+2

(ei+1 · ν
j

i+2)
(

P
N−2
L j

|
(

F
1
N−2(x̄, fi )

)

· e j

)

= −(ei+2 · ni+2)(ei+1 · νi
i+2)

(

P
N−2
Li

|
(

F
1
N−2(x̄, fi )

)

· ei

)

also vanishes, as F1
N−2(x̄, fi ) is completely orthogonal to Li . Finally we have

O
N
w | (F0

N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3)

=

3
∑

j=1

⎛

⎝P
N−2
L j

|

⎛

⎝

∑

k = j

(

P
N−1
Fk

|
((

F
0
N−3(x̄, w) ⊗ e1 ⊗ e2 ⊗ e3

)

· nk

)

·ν
j
k

)

⎞

⎠

⎞

⎠·(−e j )

= −(e3 · n3)

2
∑

j=1

(

P
N−2
L j

|
((

P
N−1
F3

|
((

F
0
N−3(x̄, w) ⊗ e1 ⊗ e2

))

· ν
j
3

)))

· e j

= −(e3 · n3)

2
∑

j=1

(

P
N−2
L j

|
((

F
0
N−3(x̄, w) ⊗ e1 ⊗ e2

)

· ν
j
3

))

· e j

= −(e3 · n3)(e2 · ν1
3)

((

P
N−2
L1

|
((

F
0
N−3(x̄, w) ⊗ e1

)))

· e1

)

= −(e3 · n3)(e2 · ν1
3)F0

N−3(x̄, w)

= −(e3 · n3)(e2 · (n3 × e1))F
0
N−3(x̄, w)

= −d F
0
N−3(x̄, w),

which concludes the proof. ⊓⊔

Again, formula (15) cannot be considered as a representation result. Indeed, it

is valid only for the particular shape w and the definition of C̃N explicitly involves

F0
N−3(x̄, w). However, any wedge shape w can be considered as the wedge at the

vertex x̄ of a tetrahedron with the notation defined in Section 2.2. Applying Lemma

5, we know that formula (15) holds. The technical Lemma 8 which we present in

Appendix allows us to replace C̃N by CN . We thus get the representation result:

Theorem 3. The tensor CN defined by Theorem 1 satisfies, for any wedge shape w

of some non degenerated tetrahedron,

F
0
N−3(x̄, w) = K

(

O
N
w | CN

)

. (16)



4. Extension to More General Shapes

4.1. Domains and Shapes

At this point we have obtained representation theorems valid only for tetrahe-

drons. We have to extend them to a larger class of domains if we want to use the

theory in the practical cases considered by mechanicians. We do not intend to search

for the largest class which could be treated. Indeed, this is already a very difficult

problem for the classical Cauchy theory. For instance we do not treat non-convex

polyhedral domains or vertex where more than three edges concur. However the

class of domains to which our results can apply may likely be considerably enlarged

by playing with unions and intersections of domains. More precisely:

Definition 5. the domains which we consider as admissible are those domains D

such that, for any x ∈ D, there exist a tetrahedron Δ, a C1 diffeomorphism Φ and

a neighborhood Ox of x such that

Φ(Δ) ∩ Ox = D ∩ Ox .

As we are interested in the dependence of contact interactions on the shape of

the domain, we need to define precisely what we mean by shape. We first say that

the shape of a domain D at the point x is the same as the shape of the domain D′

at the point x ′ if and only if there exists a neighborhood Ox of x and a translation

tx−x ′ such that

tx−x ′(x ′) = x, and tx−x ′(D′) ∩ Ox = D ∩ Ox . (17)

This makes an equivalence relation. Thus we can set:

Definition 6. We call shape of D at the point x the equivalence class with respect to

the above defined equivalence relation. We denote this equivalence class by means

of the symbol (̃D, x).

This notion of shape is local and, according to the definition, when a surface

is rotated its shape changes. We assume that the densities F
q
k in S(B, U ) depend

on the sub-body B only through its shape at point x : F
q

k = F
q

k (x, (̃B, x)). Note

that this assumption is coherent with the assumptions made in the previous section

where the considered sub-bodies were limited to tetrahedrons.

Definition 7. Let D and D′ two admissible domains. We say that the two shapes

(̃D, x) and (D̃′, x ′) are tangent if there exists a C1 diffeomorphism Φ satisfying

φ(x) = x ′, DΦ(x) = I d and a neighborhood Ox ′ of x ′ such that

Φ(D) ∩ Ox ′ = D′ ∩ Ox ′ .

This is clearly an equivalence relation and the shapes of the admissible domains

are, by definition, tangent to some shape of a tetrahedron. This enables us to divide

the boundary ∂ D of an admissible domain in the sets ∂2 D of points x where (̃D, x)

is tangent to a face shape, ∂1 D where (̃D, x) is tangent to a edge shape and ∂0 D

where (̃D, x) is tangent to a wedge shape of some tetrahedron.



4.2. Regularity Assumptions

Unlike Noll [34], we do not assume the uniform boundedness of the densi-

ties with respect to all possible shapes. Such a strong assumption would kill all

possibilities of describing stress states of order larger than one.

In order to weaken this assumption we need to define what we call a set of

prescribed set of shapes. We first remark that the shape at x of the domain D ∩

{y, (y − x) · u < 0} depends only on the shape at x of the domain D and on u. We

denote it cut ((̃D, x), u).

Definition 8. We say that E is prescribed set of shapes if there exists a finite se-

quence (Di ) of admissible domains and a finite sequence (u j ) of unit vectors

such that any shape f in E satisfies f = (̃Di , x) or f = cut ((̃Di , x), u j ) or

f = cut (cut ((̃Di , x), u j ), uk) for some point x and some i , j , k. 6

For any domain D and any unit vectors u, v, we assume the continuity : ∀ξ > 0,

∀x̄ ∈ ∂i D, ∃η > 0 such that ∀x ∈ ∂i D satisfying || x − x̄ ||< η

|| F
i
q(x, (̃D, x)) − F

i
q(x̄, (̃D, x̄)) ||< ξ,

|| F
i
q(x, Cut ((̃D, x), u) − F

i
q(x̄, Cut ((̃D, x̄), u) ||< ξ,

|| F
i
q(x, Cut (Cut ((̃D, x), u), v) − F

i
q(x̄, Cut (Cut ((̃D, x̄), u), v) ||< ξ, (18)

and the equicontinuity on a prescribed set of shapes E : ∀ξ > 0, ∀x̄ , ∃η > 0 such

that ∀x , ∀ f ∈ E ,

|| x − x̄ ||< η ⇒|| F
i
q(x, f ) − F

i
q(x̄, f ) ||< ξ (19)

where i = 2, 1 or 0 depending on if f is a regular shape, an edge or a wedge shape.

4.3. Generalization of Noll’s Theorem

We prove here a theorem analogous to Noll’s theorem [34] which states that

the highest order terms of the stress state depend on the shape of the domain

only through the tangent shape. Assumption (19), and therefore our definition of

prescribed shapes, play an essential role here.

Theorem 4. If an admissible domain D is tangential at some point x̄ ∈ ∂q D for

some q ∈ {0, 1, 2} to a tetrahedron Δ, then

F
q
N+1−q

(

x̄, (̃D, x̄)

)

= F
q
N+1−q

(

x̄, (̃Δ, x̄)

)

. (20)

6 For example, the shapes of the family of cubes Ct := [0, t]3, for t ∈ (0, 1], constitute
a prescribed set of shapes as any of these shapes is identical to some shape of the unit cube

C1. On the contrary, the shapes of the family of cubes C ′
t which are the images of [0, 1]3

under a rotation of angle t , for t ∈ (0, 1], around an axis u, do not constitute a prescribed
set of shapes. Analogously, the shapes of the family of spheres St of center 0 and radius t
do not constitute a prescribed set of shapes.



Proof. We start by considering the case when x̄ is a regular point of a face of D

(q = 2). We denote n̄ as the outward unit normal to the boundary at x̄ . As Δ is

tangential to D at x̄ , the shape of Δ at x̄ is the plane shape n̄. Let us temporarily

use an orthonormal coordinate system (x̄, b1, b2, n̄) and consider the family of

parallelepipeds:

�ε = [0, ε] × [0, ε] × [−ξε, ξε].

Let us define the sets:

Dε := D ∩ �ε, Fε := ∂ D ∩ �ε and F− := {x ∈ �ε; x3 = −ξε}.

As Δ is tangential to D at x̄ , a ξε of order o(ε) can be found such that, for ε

sufficiently small, Fε does not intersect the face F−. Clearly, the shapes of the

boundary of Dε for all ε make a set of prescribed shapes.

We apply to the family of domains Dε the quasi-balance inequality with the

fixed test field U (x) = (x · n̄)N−1 U0. It implies that the limit

lim
ε−→0

ε−2

(∫

Fε

F
2
N−1

(

x, (̃D, x)

)

|n̄⊗N−1U0 +

∫

F−

F
2
N−1 (x,−n̄) |n̄⊗N−1U0

)

vanishes. Indeed: (1) all other surface terms in the expression of the stress state are

negligible as the areas of the lateral faces of Dε are of order o(ε2), (2) the edge

terms are negligible as the lengths of the edges are of order ε and the fields ∇qU

are of order o(εN−1−q), (3) this order of magnitude of the fields ∇qU also makes

the wedge terms negligible. This leads to

F
2
N−1

(

x̄, (̃D, x̄)

)

|n̄⊗N−1 = −F
2
N−1 (x̄,−n̄) |n̄⊗N−1

= −(CN (x̄) | (−n̄)⊗N )(−1)N−1,

and so

F
2
N−1

(

x̄, (̃D, x̄)

)

= (CN (x̄) | n̄⊗N ) ⊗ n̄⊗N−1 = F
2
N−1 (x̄, n̄) . (21)

Now we consider the case when x̄ ∈ ∂1(D). Consider Δ tangential to D at x̄

and Φ the diffeomorphism given by Definition 7. The point x̄ is an internal point

of an edge L1 of Δ where two faces F2, F3 join. We denote ē1 as a unit vector

tangential to the edge and n̄2, n̄3 the normals to the faces. We introduce a vector e

orthogonal to ē1 and satisfying

e · n̄2 > 0, e · n̄3 > 0. (22)

We temporarily use the orthonormal coordinate system (ē1, b, e) and use in this

system of coordinates the same notation for �ε. We introduce tε as the translation

of vector ξεe, and we redefine

Dε := tε (D ∩ �ε) , Fε := tε (∂ D ∩ �ε)

and

F− := tε ({x ∈ �ε; x3 = −ξε}) .



We moreover introduce the sets

Lε := tε (Φ(L1) ∩ �ε) , F2,ε := tε (Φ(F2) ∩ �ε) , F3,ε := tε (Φ(F3) ∩ �ε) .

(23)

As Δ is tangential to D at x̄ , a ξε = o(ε) can be found such that, for ε sufficiently

small, the line Lε does not intersect the face F−. The shapes of Dε for all ε still

belong to a set of prescribed shapes. Quasi-balance Inequality, when applied with

the fixed test field U (x) = ((x − x̄) · e)N−1 U0 to the family of domains Dε, implies

lim
ε−→0

(ξεε)
−1

(∫

Fε

F
2
N−1

(

x̄, ˜(Dε, x̄)

)

| e⊗N−1U0 +

∫

F−

F
2
N−1 (x̄,−e) | e⊗N−1U0

+

∫

Lε

F
1
N−2

(

x̄, ˜(Dε, x)

)

|e⊗N−2 ((x − x̄) · e) U0

)

= 0.

Indeed: (1) all the other surface terms in the stress state expression are negligible

as the areas of the faces {x1 = ±ε} are of order ξ2
ε ; (2) the other edge terms are

negligible as either their lengths are of the order ξε and the field ∇kU with k < N −1

is of order smaller or equal to ξε or they lay in the plane (x − x̄) · e = 0; (3) the

wedge terms are also negligible as ∇kU with k < N − 2 is of order smaller or

equal to ξ2
ε . We get

lim
ε−→0

(
∣

∣F2,ε

∣

∣

ξεε

)

F
2
N−1 (x̄, n̄2) | e⊗N−1 + lim

ε−→0

(
∣

∣F3,ε

∣

∣

ξεε

)

F
2
N−1 (x̄, n̄3) | e⊗N−1

+ lim
ε−→0

(

|F−|

ξεε

)

F
2
N−1 (x̄,−e) | e⊗N−1

+ lim
ε−→0

(

|Lε| ξε

ξεε

)

F
1
N−2

(

x̄, (̃D, x̄)

)

|e⊗N−2 = 0.

Computing the limits in the previous equality is straightforward. We have

1

ν1
2 · e

F
2
N−1 (x̄, n̄2) | e⊗N−1 +

1

ν1
3 · e

F
2
N−1 (x̄, n̄3) | e⊗N−1

+

(

n2 · e

ν1
2 · e

+
n3 · e

ν1
3 · e

)

F
2
N−1 (x̄,−e) | e⊗N−1 + F

1
N−2

(

x̄, (̃D, x̄)

)

|e⊗N−2 = 0.

Therefore, the quantity F1
N−2

(

x̄, (̃D, x̄)

)

| e⊗N−2 depends on the shape of D only

through vectors e, n̄2 and n̄3. The vector e is generic in the plane cone defined

by (22), we invoke Lemma 2 in the case d = 2 to conclude that the plane tensor

F1
N−2

(

x̄, (̃D, x̄)

)

depends only on n̄2 and n̄3, that is, on the geometry of the tangent

tetrahedron.

The case when x̄ is a wedge point of D (q = 0) is treated in a very similar way.

Now three faces of D and three edges are joining at x̄ . The tetrahedron Δ is tangent

to D at a wedge point x̄ where three faces of normals n̄1, n̄2, n̄3 join. We introduce

a vector e satisfying

e · n̄1 > 0, e · n̄2 > 0, e · n̄3 > 0 (24)



and use notations compatible with the previous ones in an orthonormal coordinate

system (x̄, b1, b2, e). Applying the quasi balance of power for the same test field

and with the family of domains defined in (23). We get

3
∑

j=1

lim
ε−→0

(
∣

∣F j,ε

∣

∣

ξ2
ε

)

(

F
2
N−1

(

x̄, n̄ j

)

| e⊗N−1
)

+ lim
ε−→0

(

|F−|

ξ2
ε

)

(

F
2
N−1 (x̄,−e) | e⊗N−1

)

+

3
∑

k=1

lim
ε−→0

(
∣

∣Lk,ε

∣

∣

)

F
1
N−2

(

x̄, (̃D, x̄)

)

| e⊗N−2

+
(

F
0
N−3

(

x̄, (̃D, x̄)

)

| e⊗N−3
)

= 0.

Computing the previous limits is again straightforward. They depend only on the

vectors e, n̄1, n̄2 and n̄3. Therefore the quantity F0
N−3

(

x̄, (̃D, x̄)

)

| e⊗N−3 depends

only on these vectors. As the vector e is generic in the cone defined by (24), we in-

voke Lemma 2 in the case d = 3 to conclude that the plane tensor F0
N−3

(

x̄, (̃D, x̄)

)

depends only on n̄1 n̄2 and n̄3, that is, on the geometry of the tangent tetrahedron.

⊓⊔

5. An Algorithm for the Representation of Lower Order Contact Interactions

In order to represent lower order contact interactions in a body submitted to a

stress state of order N , we need the domains and action fields to satisfy stronger

regularity assumptions.

From now on, we restrict our attention to domains which are locally diffeo-

morphic to a tetrahedron through a diffeomorphism of class C N and such that,

for q ∈ {0, 1, 2}, ∂q D is a finite union of q-dimensional C N compact manifolds.

Therefore, I0(D), I1(D) and I2(D), denoting respectively the sets of labels of

the elements of dimension 0, 1, 2 (wedges, edges, faces), which are parts of the

boundary of D, we write

∂0 D := ∪ℓ∈I0(D){xℓ}, ∂1 D := ∪ℓ∈I1(D){Lℓ}, ∂2 D := ∪ℓ∈I2(D){Fℓ}.

We also assume that the stress state of order N is smooth. More precisely the

fields F
i
k are Ck fields on the manifolds where they are defined.

These assumptions are needed as we will repeatedly use on each element of

the boundary of D the following divergence theorem: for any C2 manifold with

boundary M , and any C1 tensor fields X and Y (X having an order greater than Y )

defined on M we have

∫

M

(X · ΠM ) | ∇Y = −

∫

M

(divM (X · ΠM )) | Y +

∫

∂ M

(X · ν) | Y



where divM (X) stands for the standard divergence operator on the manifold M and

ν denotes the unit vector orthogonal to ∂ M , tangent to M and external to it.7

The algorithm for the representation of lower order contact interactions is based

on the following remark:

Lemma 6. Let CN denote the completely symmetric tensor which represents the

highest order contact interactions F2
N−1, F1

N−2 and F0
N−3 of some smooth stress

state of order N. Then the quantity

∫

D

(

CN | ∇N U + div(CN ) | ∇N−1U
)

−

∫

∂2 D

F
2
N−1 | ∇N−1U

−

∫

∂1 D

F
1
N−2 | ∇N−2U −

∫

∂0 D

F
0
N−3 | ∇N−3U

is a smooth stress state of order N − 1.

Proof. The way we have constructed CN , shows that it is of class C N−1. The

divergence theorem states that

∫

D

(

CN | ∇N U + div(CN ) | ∇N−1U
)

=

∫

∂2 D

(CN · n) | ∇N−1U.

The right hand side of this identity can be decomposed using formula (33) and the

representation formula (10). It reads

∫

∂2 D

F
2
N−1 | ∇N−1U +

∫

∂2 D

(

P
N−1
∂2 D | (CN · n)

)

| ∇N−1U.

Owing to (32) we can compute the last addend of this sum by using the surface

divergence theorem on each face of D. Defining

G
2
N−2 := div∂2 D

(

P
N−1
∂2 D | (CN · n)

)

(which is of class C N−2), it becomes

−

∫

∂2 D

G
2
N−2 | ∇N−2U +

∑

j∈I1(D)

∫

L j

(

O
N
f j

| CN

)

| ∇N−2U.

Using formula (33) and the representation formula (14), the last addend in the

previous sum can be decomposed in

∑

j∈I1(D)

∫

L j

F
1
N−2 | ∇N−2U +

∑

j∈I1(D)

∫

L j

(

P
N−2
L j

|
(

O
N
f j

| CN

))

| ∇N−2U.

7 A quick way for defining divM (X) is to use any smooth extension of X in the vicinity
of the manifold and set divM (X) := ∇ X | ΠM and to remark thereafter that the result of
this operation depends only on the values of X on the manifold.



Owing again to (32), we finally apply the divergence theorem along each line L j .

Setting on each line L j , G1
N−3 := divL j

(

P
N−2
L j

|
(

O
N
f j

| CN

))

, we write the last

quantity as the sum

−
∑

j∈I1(D)

∫

L j

G
1
N−3 | ∇N−3U +

∑

x̂∈I0(D)

F
0
N−3 | ∇N−3U.

Collecting all these results, we obtain that the quantity defined in Lemma 6 can be

written in the form

−

∫

∂2 D

G
2
N−2 | ∇N−2U −

∫

∂1 D

G
1
N−3 | ∇N−3U, (25)

which corresponds to a new smooth stress state of order N − 1. ⊓⊔

As G2
N−2 and G1

N−3 are not necessarily orthogonal to the shape where they are

applied, the stress state of order N − 1 given by this lemma has to be rewritten in

the canonical form

N−2
∑

k=0

∫

∂2 D

F̃
2
k | ∇k

⊥U +

N−3
∑

k=0

∫

∂1 D

F̃
1
k | ∇k

⊥U +

N−4
∑

k=0

∫

∂0 D

F̃
0
k | ∇kU,

where the k-forces F̃ i
k can be made explicit in terms of G2

N−2 and G1
N−3.

The quantity
∫

D

(

CN | ∇N U + div(CN ) | ∇N−1U
)

, being a volume integral,

is by itself clearly quasi-balanced. Therefore, by summation, the new stress state

defined by

S
′(D, U ) :=

N−2
∑

k=0

∫

∂2 D

(F2
k + F̃

2
k) | ∇kU +

N−3
∑

k=0

∫

∂1 D

(F1
k + F̃

1
k) | ∇kU

+

N−4
∑

k=0

∫

∂0 D

(F0
k + F̃

0
k) | ∇kU,

which is of order N − 1 is also smooth and quasi-balanced. The representation

theorems can be applied to the highest order terms of this new stress state: there

exists a completely symmetric tensor CN−1 of order N − 1 such that

F
2
N−2 + F̃

2
N−2 = O

N−1
n | CN−1, F

1
N−3 + F̃

1
N−3 = KL

(

O
N−1
f | CN−1

)

,

F
0
N−4 + F̃

0
N−4 = K

(

O
N−1
w | CN−1

)

.

As the interactions G and therefore F̃ can be made explicit, we have obtained a

representation for F2
N−2, F1

N−3 and F0
N−4. Clearly, this operation can be repeated

in order to get a representation of all terms in the stress state through a chain of N

completely symmetric tensors with decreasing orders and regularity.



We warn the reader that the chain of tensors (C1, . . . , CN ) obtained in this way

is equivalent but not identical to the one used in [13,31,38] and denoted (
1
τ , . . . ,

N
τ )

by Mindlin. This last one is more natural when one starts from the principle of virtual

work. We have the relation
N
τ = CN and, for 1 ≦ q < N ,

q
τ = Cq − div(Cq+1).

It happens that, even when following Mindlin, the boundary conditions are written

in a more compact form when using (C1, . . . , CN ).

We do not try to be explicit about the representation of all terms. Indeed, such

a task needs the introduction of a very heavy notation. We restrict ourselves in

Section 6 to the illustration of this algorithm by describing the representation of

stress states of order one, two or three.

6. First, Second and Third Gradient Theories

The fact that our results enable us to recover the classical Cauchy theory is an

evidence as we have closely followed the path of Cauchy. After quickly checking

it, we verify here that they also enable us to recover the now widely used second

gradient theory or the third gradient theory described in [31].

6.1. Cauchy First Gradient Theory

When N=1, the stress state is reduced to

S(D, U ) =

∫

∂2 D

F
2
0 | U.

This corresponds to the Cauchy postulate that contact interactions can be described

by a surface density of forces distributed along the regular part of the boundary.

Our theorem reduces to the theorem established by Cauchy. Indeed, as O1
n = n,

our theorem states that there exists a tensor C1 (the Cauchy stress tensor) of order 1

such that F2
0(x, n) = C1(x) · n. The reader should not feel outraged by the fact that

the Cauchy stress tensor is of order one. We recall that we have made no assumption

on the tensorial nature of U and considered it in our calculation as a scalar. So are

the dual quantities F2
0. If U is a vector in the physical space, the theorem can be

applied component-wise and the Cauchy stress tensor becomes a tensor of order

two. Note that the complete symmetry stated in our theorem is irrelevant in the case

N = 1 and that such a symmetry is of quite different nature from the well known

symmetry of the Cauchy stress tensor. This latter is a consequence of assumptions

(physical nature of the kinematic descriptor and Galilean invariance) which are out

of the scope of our considerations.

6.2. Second Gradient Theory

When N=2, the stress state reads

S(D, U ) =

∫

∂2 D

F
2
0 | U + F

2
1 | ∇⊥U +

∫

∂1 D

F
1
0 | U.



Let us make explicit the boundary operators when N = 2. We have O2
n = n⊗3 and

O2
f j

=
∑

k∈[L j ]
ν

j
k ⊗ nk . Indeed,

(

O
2
f j

)

i1,i2

:=
∑

k∈[L j ]

(

ν
j
k

)

ℓ

(

P
1
Fk

)

ℓ,i1

(

nk

)

i2

=
∑

k∈[L j ]

(

ν
j
k

)

ℓ

(

ΠFk

)

ℓ,i1

(

nk

)

i2

.

Theorem 2 and the procedure described in the previous section establish the

existence of tensors C2 and C1 such that, at every regular point x of a face with

normal n and every regular point y of an edge L j ,

F
2
1(x, n) = (C2 | n⊗2) n, F

1
0(y, f j ) =

⎛

⎝C2 |
∑

k∈[L j ]

ν
j
k ⊗ nk

⎞

⎠ ,

F
2
0(x, n) = C1 · n − div∂2 D((C2 · n) · Π∂2 D).

We recover here the expressions stated in [24,25,31,46] or [12].

6.3. Third Gradient Theory

Let us now consider the case N = 3 of third gradient models. The stress state

reads

S(D, U ) =

∫

∂2 D

F
2
0 | U + F

2
1 | ∇U + F

2
2 | ∇2U

+

∫

∂1 D

F
1
0 | U + F

1
1 | ∇U +

∫

∂0 D

F
0
0 | U.

We have O3
n = n⊗5. Moreover definition (11) implies

(

P
2
Fk

)

i1,ℓ,i2,i3

= δ
i2

i1

(

ΠFk

)i3

ℓ
+

(

ΠFk

)i2

ℓ

(

ΛFk

)i3

i1

and

(

P
1
L j

)

ℓ1,ℓ2

=
(

e j

)

ℓ1

(

e j

)

ℓ2

.

Thus,

(

O
3
f j

)

i1,i2,i3,i4

=
∑

k∈[L j ]

(

ν
j
k

)

ℓ

(

P
2
Fk

)

i1,ℓ,i2,i3

(

nk

)

i4

=
∑

k∈[L j ]

δ
i2

i1

(

ν
j
k

)

i3

(

nk

)

i4

+
(

nk

)

i1

(

ν
j
k

)

i2

(

nk

)

i3

(

nk

)

i4



and

(

O
3
w

)

i1,i2,i3

=
∑

j∈[x̂]

(

e j

)

ℓ1

(

P
1
L j

)

ℓ1,ℓ2

(

O
3
f j

)

ℓ2,i1,i2,i3

=
∑

j∈[x̂]

(

e j

)

ℓ2

(

O
3
f j

)

ℓ2,i1,i2,i3

=
∑

j∈[x̂]

∑

k∈[L j ]

(

e j

)

i1

(

ν
j
k

)

i2

(

nk

)

i3

.

Theorem 2 establishes the existence of a completely symmetric tensor C3 such

that, at every regular point x of a face with normal n, every regular point y of an

edge L j with shape f j , and every wedge point z with shape w,

F
2
2(x, n)= (C3 | n⊗3) n ⊗ n (26)

F
1
1(y, f j )=

∑

k∈[L j ]

(

(C3 | (ν
j
k ⊗ ν

j
k ⊗ nk)) ν

j
k + 2 (C3 | (ν

j
k ⊗ nk ⊗ nk)) nk

)

(27)

F
0
0(z, w)=

∑

j∈[x̂]

∑

k∈[L j ]

C3 | (e j ⊗ ν
j

k ⊗ nk). (28)

Lower order terms can then be computed using the procedure described in Section

5. We have

P
2
Fk

| (C3 · n) =
(

I d + nk ⊗ nk

)

· (C3 · n) · ΠFk
.

Therefore, on each face Fk , we define G2
1 as the surface divergence:

G
2
1 = divFk

(

(

I d + nk ⊗ nk

)

· (C3 · n) · ΠFk

)

and, on each line L j , G1
0 as the line divergence

G
1
0 = divL j

⎛

⎝

∑

k∈[L j ]

(

C3 | (nk ⊗ ν
j
k ⊗ e j )

)

e j

⎞

⎠ .

We then rewrite the stress state
∫

∂2 D
G2

1 | ∇U +
∫

∂1 D
G1

0 | U in the canonical form
∫

∂2 D
F̃2

0 | U + F̃2
1 | ∇U +

∫

∂1 D
F̃1

0 | U by using the surface divergence theorem,

setting on each face Fk

F̃
2
1 = (G2

1 · nk) nk, F̃
2
0 = −divFk

(G2
1 · ΠFk

)

and, on each line L j ,

F̃
1
0 = G

1
0 +

∑

k∈[L j ]

G
2
1 · ν

j
k .



As shown in Section 5, the new stress state

S̃(D, U ) =

∫

∂2 D

(F2
0 + F̃

2
0) | U + (F2

1 + F̃
2
1) | ∇⊥U +

∫

∂1 D

(F1
0 + F̃

1
0) | U

is a quasi-balanced stress state of order two. We can apply to it the results obtained

in the case N = 2 : two tensors C2 and C1 represent F2
1 + F̃2

1, F1
0 + F̃1

0 and

F2
0 + F̃2

0. In [31] Mindlin introduced the operator which, to any tensor X , associates

L∂2 D(X) := −div∂2 D(X · Π∂2 D). Let us write our final results using this operator:

F
2
1(x, n) =

(

(C2 | n⊗2) + L∂2 D

(

(

I d + n ⊗ n
)

· (C3 · n)
)

· n

)

n (29)

F
2
0(x, n) = C1 · n + L∂2 D

(

C2 · n + L∂2 D

(

(

I d + n ⊗ n
)

· (C3 · n)
)

)

(30)

F
1
0(x, f j ) =

⎛

⎝C2 |
∑

k∈[L j ]

ν
j
k ⊗ nk

⎞

⎠ − divL j

(

(

C3 |
∑

k∈[L j ]

(nk ⊗ ν
j
k ⊗ e j )

)

e j

)

+
∑

k∈[L j ]

LFk

(

(

I d + nk ⊗ nk

)

· (C3 · nk)
)

· ν
j
k . (31)

The equations labeled (18a), (18b) and (18c) by Mindlin [31] correspond, respec-

tively, to our equations (30), (29), (26), while the expressions for the quantities

called F and (N1, N2, T1, T2) and G page 436 in [31] correspond, respectively, to

our equations (31), (27) and (28). However, the reader should be aware that, in [31],

the decomposition of the plane vector F1
1 in four components (N1, N2, T1, T2) is

unfounded.

7. Conclusions

We have established representation results for contact actions using as closely

as possible the way followed by Cauchy for establishing the existence of the stress

tensor in the first gradient theory. Our approach is based on a quasi-balance as-

sumption which can be easily accepted for many materials. Our results have been

established by applying the quasi balance inequality to some specific test fields. It

is easy to check, following the algorithm described in Section 5, that the power of

contact interaction can entirely be rewritten in terms of the tensors Cq as a volume

integral. Therefore the quasi-balance inequality is actually satisfied for all test fields.

This means that we have drawn all possible consequences from the quasi-balance

assumption.

We hope that the results stated in this paper will be considered sufficient to give

an end to the controversy about the soundness of N -th gradient theories. The method

we have presented here is not the simplest way for establishing the relationship

between hyperstress tensors and generalized contact interactions. However, as it

follows Cauchy’s path closely, it should persuade those who consider it as the only

physically based one.



In a previous paper [13], the same results were obtained by following the

D’Alembertian approach. This approach, first conceived by Lagrange for fluids

and by Piola [16] for more general continuous systems, consists in postulating

the form of internal virtual power (represented by a sequence of hyperstress ten-

sors) and in computing the contact interactions which are compatible with it. As

expected, the results of both approaches are the same. A careful reader could notice

a difference between the boundary operators defined in the present paper and in the

reference [13]. Cumbersome tensorial computations can show that they actually

give the same representation of contact interactions.

It has to be emphasized again that we are far from having treated either all

possible shapes for bodies (for instance, wedges where more (or less !) than three

edges concur or reentrant wedges are not treated) or all possible stress states (the

presented results cannot encompass stress states for which there are stress concen-

trations along lower dimensional manifolds, models which are needed if one wants

to model for instance a fluid containing some unknown interfaces endowed with

surface tension). We believe that it is a real challenge to obtain a theory à la Cauchy

describing bodies in which there are concentrations of energy on lower dimensional

submanifolds.

It would also be interesting, at least from a theoretical point of view, to under-

stand what happens in a body where the order of the stress state varies from point

to point, being unbounded.

Appendix: Properties of Boundary Tensors

This appendix is devoted to the proof of two lemmas which establish that the

boundary tensors are completely symmetric with respect to their p last subscripts.

We need first to study some properties of the tensors P
p

M,q and P
p

M .

The tensors P
p
M,q have been defined in such a way that, for any tensor X of

order p and for any 1 ≦ q ≦ p,

(

P
p
M,q | X

)

· ΠM = P
p
M,q | X.

Hence, by summation,
(

P
p

M | X
)

· ΠM = P
p

M | X. (32)

Extending definition (11) to the case p = 0 by setting

P
p
M,0 | X := X⊥M ,

we obtain, by a simple induction argument that, for any tensor X of order p, any

completely symmetric tensor Y of order p and for any 0 ≦ r ≦ p,

⎛

⎝

r
∑

q=0

(

P
p
M,q | X

)

⎞

⎠ | Y = X i1...ir jr+1... jpΛ
jr+1

ir+1
....Λ

jp

i p
Yi1....i p



and, in particular,
(

∑p
q=0

(

P
p
M,q | X

))

| Y = X | Y which can be written

(

X⊥M + (P
p
M | X)

)

| Y = X | Y. (33)

The tensor P∗
M :=

∑p
q=1P

p∗
M,q where

(

P
p∗
M,q

)

i1···i2p

:= δ
i p+1

i1
. . . δ

i p+q−1

iq−1
(ΠM )

i2p

iq
(ΛM )

i p+q+1

iq+1
· · · (ΛM )

i2p−1

i p−1
(ΛM )

i p+q

i p

is the adjoint of P
p
M : for any pair (X, Y ) of tensors of order p,

(

X | (P
p
M | Y )

)

=
(

(P
p∗
M | X) | Y

)

.

When M is a surface with normal n, then ΛM = n ⊗ n and thus, for any tensor

Y of order p − 1 and any vector ν tangent to M ,

P
p∗
M | (Y ⊗ ν) =

p
∑

q=1

(

Y | n⊗p−q
)

⊗ ν ⊗ n⊗p−q . (34)

We are now in position to prove the following lemma.

Lemma 7. The tensor KL j
(O

p
f j

| X) depends only on the completely symmetric

part of X.

Proof. Let us start by noticing that, for any tensors X and Y of order respectively

p and p − 2,

(O
p−1
f j

| X) | Y =

⎛

⎝

∑

k∈[L j ]

(P
p−1

Fk
| (X · nk)) · ν

j

k

⎞

⎠ | Y

=
∑

k∈[L j ]

(P
p−1

Fk
| (X · nk)) | (Y ⊗ ν

j
k )

=
∑

k∈[L j ]

(X · nk) | (P
(p−1)⋆

Fk
| (Y ⊗ ν

j

k ))

= X |

⎛

⎝

∑

k∈[L j ]

(P
(p−1)⋆

Fk
| (Y ⊗ ν

j
k )) ⊗ nk

⎞

⎠ .

We have to prove that, for any tensors X and Y ,

KL j
(O

p−1
f j

| X) | Y = KL j
(O

p−1
f j

| K(X)) | Y.

As the operator KL j
is self adjoint, it is equivalent to prove that for any tensor X

and any tensor Y completely symmetric and orthogonal to L j ,

(O
p−1
f j

| X) | Y = (O
p−1
f j

| K(X)) | Y.



Owing to our preliminary remark and using identity (34), we are reduced to proving

that, for any tensor Y , completely symmetric and orthogonal to L j , the tensor

∑

k∈[L j ]

(P
(p−1)⋆

Fk
| (Y ⊗ ν

j

k )) ⊗ nk =
∑

k∈[L j ]

⎛

⎝

p−1
∑

q=1

(Y | n
⊗p−q−1
k ) ⊗ ν

j

k ⊗ n
⊗p−q

k

⎞

⎠

is completely symmetric. To that end, we check the invariance of this tensor with

respect to the transposition of subscripts (i, i + 1) for all i ∈ {1, . . . , p − 1}.

All terms in the sum satisfying q > i + 1 are clearly invariant owing to the

complete symmetry of Y . The terms for which q < i are also clearly invariant

owing to the complete symmetry of n
⊗p−q
k . So, for any i ∈ {1, . . . p − 2}, the only

two terms in the sum which are not clearly invariant are those for which q = i + 1

or q = i . The sum of these two addends reads

(Y | n
⊗p−i−1
k ) ⊗ ν

j
k ⊗ n

⊗p−i
k + (Y | n

⊗p−i−2
k ) ⊗ ν

j
k ⊗ n

⊗p−i−1
k . (35)

Using the fact that Y is totally orthogonal to L j , we have the equality (Y | n
⊗p−i−2
k )·

e j = 0 so that we can decompose the second of these terms in

(Y | n
⊗p−i−1
k ) ⊗ nk ⊗ ν

j
k ⊗ n

⊗p−i−1
k + (Y | n

⊗p−i−2
k ) · ν

j
k ) ⊗ ν

j
k ⊗ ν

j
k ⊗ n

⊗p−i−1
k .

Therefore the sum (35) can be rewritten

(Y | n
⊗p−i−2
k ) ·

(

nk ⊗ (ν
j
k ⊗ nk + nk ⊗ ν

j
k ) + ν

j
k ⊗ ν

j
k ⊗ ν

j
k

)

⊗ n
⊗p−i−1
k .

The invariance of it is now clear.

We still have to deal with the case i = p − 1. In that case there is only one

term, Y ⊗ ν
j
k ⊗ nk , which is not clearly invariant with respect to the transposition

of subscripts p − 1 and p. Indeed, it is not, and we have to remind the reader that

we deal with a sum over all k ∈ [L j ]. Actually, the sum

∑

k∈[L j ]

(

Y ⊗ ν
j

k ⊗ nk

)

= Y ⊗

⎛

⎝

∑

k∈[L j ]

ν
j

k ⊗ nk

⎞

⎠

is invariant as the matrix
∑

k∈[L j ]
ν

j

k ⊗ nk is symmetric. Indeed, let us compute its

skew-symmetric part : up to a factor 2 it reads

∑

k∈[L j ]

(

ν
j
k ⊗ nk − nk ⊗ ν

j
k

)

= Re j
− Re j

= 0,

where Re j
means the rotation of angle π/2 about the axis e j and where we have used

that the two bases
(

e j , nk, ν
j
k

)

for k ∈ [L j ] have opposite orientations. The proof is

completed as the transpositions of successive subscripts generate all permutations.

⊓⊔



Now let us remark that, when Y is a tensor of order p−3, e a unit vector tangential

to a line L and 1 ≦ i ≦ p − 3, then the quantity (P
p−2

L,i
+ P

p−2

L,i+1
) | (Y ⊗ e) is

invariant with respect to transposition of the subscripts i and i + 1. Indeed, as the

subscripts different from i and i + 1 play no role, we can assume, without loss

of generality, that p − 3 = i = 1. In this case, the matrix e ⊗ Y⊥L + Y ⊗ e =

e ⊗ Y⊥L + Y⊥L ⊗ e + (Y · e) ⊗ e ⊗ e is clearly symmetric.

This remark is useful to prove the following lemma.

Lemma 8. The tensor K(O
p
w | X) depends only on the completely symmetric part

of X.

Proof. The proof is similar to the proof of Lemma 7. We start by noticing that, for

any tensors X and Y of order respectively p and p − 3,

(O p
w | X) |Y =

⎛

⎝

∑

j∈[x̂]

⎛

⎝P
p−2

L j
|

⎛

⎝

∑

k∈[L j ]

((

P
p−1

Fk
| (X · nk)

)

· ν
j
k

)

⎞

⎠

⎞

⎠ · e j

⎞

⎠ | Y

= X |

⎛

⎝

∑

j∈[x̂]

∑

k∈[L j ]

(P
(p−1)⋆

Fk
| ((P

(p−2)⋆

L j
| (Y ⊗ e j )) ⊗ ν

j
k )) ⊗ nk

⎞

⎠.

We have to prove that, for any completely symmetric tensor Y of order p − 3, the

tensor

Z :=
∑

j∈[x̂]

∑

k∈[L j ]

(P
(p−1)⋆

Fk
| ((P

(p−2)⋆

L j
| (Y ⊗ e j )) ⊗ ν

j
k )) ⊗ nk

is completely symmetric. Using (34), we get

(P
(p−1)⋆

Fk
|((P

(p−2)⋆

L j
| (Y ⊗ e j )) ⊗ ν

j
k )) ⊗ nk

=

p−1
∑

q=1

((

P
(p−2)∗
L j

| (Y ⊗ e j )
)

| n
⊗p−q−1
k

)

⊗ ν
j
k ⊗ n

⊗p−q
k

=

p−1
∑

q=1

⎛

⎝

p−2
∑

r=1

P
(p−2)⋆

L j ,r
|
((

Y ⊗ e j

))

| n
⊗p−q−1
k

⎞

⎠ ⊗ ν
j
k ⊗ n

⊗p−q
k .

When q ≦ r ,
(

P
(p−2)⋆

L j ,r
|
(

Y ⊗ e j

)

)

| n
⊗p−q−1
k = 0, otherwise, after some com-

putation and using the complete symmetry of Y ,

(P
(p−2)⋆

L j ,r
|
(

Y ⊗ e j

)

) | n
⊗p−q−1
k = P

(q−1)⋆

L j ,r
| ((Y | n

⊗p−q−1
k ⊗ e j )).

Thus we get

Z =
∑

j∈[x̂]

∑

k∈[L j ]

p−1
∑

q=1

⎛

⎝

q−1
∑

r=1

P
(q−1)⋆

L j ,r
| ((Y | n

⊗p−q−1
k ) ⊗ e j )

⎞

⎠⊗ν
j
k ⊗n

⊗p−q
k . (36)



We now check the invariance of Z with respect to all transpositions of subscripts

i and i + 1 for 1 ≦ i < p. This is clear, owing to the complete symmetry of Y ,

for every term in the sum (36) satisfying r > i + 1 or r < i < q − 1. This is

also evident if q < i . The remark we made previously shows that the sum of a pair

of terms corresponding to r = i and r = i + 1 with the same q > i + 1 is also

invariant.

When i < p−1 the sum of a pair of terms corresponding to q = i and q = i +1

with the same r < i is also symmetric with respect to the considered transposition.

Indeed, it reads

P
(i−1)⋆

L j ,r
|((Y | n

⊗p−i−1
k ) ⊗ e j ) ⊗ ν

j
k ⊗ n

⊗p−i
k

+ P
i⋆
L j ,r

| ((Y | n
⊗p−i−2
k ) ⊗ e j ) ⊗ ν

j
k ⊗ n

⊗p−i−1
k .

However as r < i implies P
i⋆
L j ,r

| ((Y | n
⊗p−i−2
k ) ⊗ e j ) · e j = 0, we have

P
i⋆
L j ,r

| ((Y | n
⊗p−i−2
k ) ⊗ e j ) =

(

P
(i−1)⋆

L j ,r
| ((Y | n

⊗p−i−1
k ) ⊗ e j )

)

⊗ nk

+
(

P
i⋆
L j ,r

| ((Y | n
⊗p−i−2
k ) ⊗ e j ) · ν

j
k

)

⊗ ν
j
k .

So the sum of a pair of terms corresponding to q = i and q = i + 1 becomes

P
i⋆
L j ,r

| ((Y | n⊗n−i−1
k ) ⊗ e j ) ⊗

(

ν
j
k ⊗ nk + nk ⊗ ν

j
k

)

⊗ n⊗n−i−1
k

+
(

P
(i−1)⋆

L j ,r
| ((Y | n⊗n−i−2

k ) ⊗ e j ) · ν
j
k

)

⊗ ν
j
k ⊗ ν

j
k ⊗ n⊗n−i−1

k ,

which is now clearly invariant under the considered transposition.

From now on we must consider the whole sum defining Z . Indeed, we are

left with some terms whose symmetry cannot be established for a fixed pair of

subscripts ( j, k).

When i = p − 1 the terms corresponding to q = i and r < i can be treated for

a fixed j . Indeed, we have already noticed in the proof of Lemma 7 that the matrix
∑

k∈[L j ]
ν

j

k ⊗ nk is symmetric. Thus each sum

∑

k∈[L j ]

(

P
(p−2)⋆

L j ,r
|
(

Y ⊗ e j

)

)

⊗ ν
j
k ⊗ nk

is invariant with respect to the considered transposition.

The only remaining term corresponds to r = i , q = i + 1. It can be treated for

a fixed k. Indeed, consider the two edges (denoted j ∈ [x̂, k]) which concur in the

wedge [x̂] and border the face Fk . We have



∑

j∈[x̂,k]

((

P
(p−2)⋆

L j ,i
|
(

Y ⊗ e j

)

)

| n
⊗p−i−2
k

)

⊗ ν
j
k ⊗ n

⊗p−i−1
k

=
∑

j∈[x̂,k]

(

Y | n
⊗p−i−2
k ⊗ e j ⊗ ν

j
k ⊗ n

⊗p−i−1
k

)

= Y | n
⊗p−i−2
k ⊗

⎛

⎝

∑

j∈[x̂,k]

e j ⊗ ν
j
k

⎞

⎠ ⊗ n
⊗p−i−1
k ,

which is invariant with respect to the considered transposition, as the matrix
∑

j∈[x̂,k]

e j ⊗ ν
j
k is symmetric (it skew symmetric part is Rnk

− Rnk
= 0).

The proof is completed as we have explored all of the terms in the sum (36). ⊓⊔
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