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This dissertation addresses the problem of representing and reasoning about com-
monsense knowledge of action domains. Until recently, most such work has sup-
pressed the notion of causality, despite its central role in everyday talking and
reasoning about actions. There is good reason for this. In general, causality is
a difficult notion, both philosophically and mathematically. Nonetheless, it turns
out that action representations can be made not only more expressive but also math-
ematically simpler by representing causality more explicitly. The key is to formalize
only a relatively simple kind of causal knowledge: knowledge of the conditions un-
der which facts are caused. In the first part of the dissertation we do this using
inference rules and rule-based nonmonotonic formalisms. As we show, an inference
rule 3:2 can be understood to represent the knowledge that if ¢ is caused then ¥ is
caused. (Notice that we do not say “¢ causes 1.”) This leads to simple and ex-
pressive action representations in Reiter’s default logic, a rule-based nonmonotonic
formalism. This approach also yields action descriptions in logic programming, thus
raising the possibility, at least in principle, of automated reasoning about actions

and planning. In the second part of the dissertation, we introduce a new modal non-

vi



monotonic logic—the logic of “universal causation” (UCL)—specifically designed for
describing the conditions under which facts are caused. We show that UCL pro-
vides a more traditional semantic account of the mathematically simple approach to
causal knowledge that underlies our causal theories of action. For instance, instead
of the inference rule %, we write the modal formula C¢ D Ct, where C is a modal
operator read as “caused.” In the third part of the dissertation, we show that a
subset of UCL is well-suited for automated reasoning about actions. In particular,
we show that the class of “simple” UCL theories provides an expressive basis for
the computationally challenging task of automated planning. Simple UCL theories
have a concise translation into classical logic, and, as we show, the classical models
of the translation correspond to valid plans. This enables “satisfiability planning”
with causal action theories, with “state of the art” performance on large classical

planning problems.

vii

Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1 Introduction

1.1 The Frame Problem and Nonmonotonicity . . . . . . ... ... ...

1.2 Commonsense Inertia as Minimal Change . . . . . . ... ... ...
1.2.1 The Yale Shooting Problem . . . . . . . ... ... ......
1.2.2 Possible Next States . . . . . ... ... ... ... ......

1.3 State Constraints and Static Causal Laws . . . . . .. .. ... ...

1.4 A Causal Account of Commonsense Inertia . . . . . ... ... ...

1.5 Causally Possible Worlds and Universal Causation . . . . ... ...

1.6 Automated Reasoning about Actions and Satisfiability Planning

1.7 Outline of Dissertation . . . . . ... ... ... ... .........

Chapter 2 Literature Survey
2.1 The Situation Calculus . . . . .. .. ... ... Lo

2.2 Nonmonotonic Formalisms . . . . . .. ... ... ... .. ......

viii

vi

xiii

xiv

o o Tt R W W

14
14
17



2.3 Action Theories in Logical Formalisms . . . . ... ... ... ..., 19
2.4 High-Level Action Languages . . . . .. ... ............. 21
2.5 Possible Next States and Theory Update . . . . .. . ... ... ... 24
2.6 Causal Theories of Action . . . . .. ... ... ... ... ...... 24
Chapter 3 Inference Rules in Causal Action Theories 27
3.1 Introduction. . .. . ... ... ... ... . ... 27
3.2 Four Examples . . . ... ... ... ... ... ... ... ... 28
3.3 A Causal Definition of Possible Next States . . . . . ... ... ... 40
3.3.1 Preliminary Definitions . . . ... ... ... .. ....... 40
3.3.2 Possible Next States: Rule Update . . . .. ... ... ... .. 42
3.3.3 Rule Update and Minimal Change . . . ... ... .. .. .. 43
3.3.4 Explicit Definitions in Rule Update. . . . . . ... ... ... 45

3.4 The Action Language AC . . . . .. ... .. ............. 48
341 Syntaxof AC . . .. ... 49
34.2 Semanticsof AC . . .. ... ... o 51
3.4.3 An Example AC Domain Description. . . . . ... ... ... 53
3.4.4 Remarks on the Action Language AC . . ... ........ 56

3.5 Representing Actions in Default Logic . . . . ... ... ... ..., 65
3.5.1 Review of Default Logic . . . . ... ... ... ... ... .. 66
3.5.2  Embedding Possible Next States in Default Logic . . . . . . . 67
3.5.3 Embedding AC in Default Logic . . . .. ... ... .. ... 69
3.5.4 The Yale Shooting Problem in Default Logic . . ... .. .. 74

3.6 Logic Programs for Representing Actions . . . . .. ... ... ... 79
3.6.1 Review of Logic Programming . . . ... ... ..... ... 79
3.6.2 LP-Simple AC Domain Descriptions . . . . . ... ... ... 80
3.6.3 LP-Simple AC Domain Descriptions as Logic Programs . . . 82
3.6.4 Making Vivid AC Domain Descriptions LP-Simple . . . . . . 85

ix

Chapter 4 Proofs for Preceding Chapter 88
4.1 Splitting a Default Theory . . . . . . ... ... ... ... ...... 88
4.1.1 Splitting Sets . . . . . ... Lo o 89
4.1.2 Splitting Sequences . . . . . ... 92
4.2 Proof of Splitting Set Theorem . . . . . . ... ... ... ...... 93
4.3 Proof of Splitting Sequence Theorem . . . . . . .. ... ... .... 101
4.4 Proof of Correspondence Theorem and Reachability Corollary . . . . 106
4.5 Proof of LP Correspondence Theorem, LP Reachability Corollary,
and Vivid Domains Theorem . . . . ... .. ... ... ..... .. 126
Chapter 5 A Logic of Universal Causation 132
5.1 Introduction. . . . . ... ... ... ... . ... 132
5.2 Propositional UCL . . . . . ... .. ... ... ............ 137
5.2.1 Syntax and Semantics . . . . ... .. ... L. 137
522 Examples . . . ... ... ... 138
5.3 Possible Next States and Inertiain UCL . . . . . .. ... .. ... .. 139
5.3.1 Inference Rulesin UCL . .. ... ............... 139
5.3.2 Two Embeddings of Rule Update in UCL . . . .. ... ... 142
5.3.3 A Third Embedding: Commonsense Inertia in UCL . . . .. 143
5.4 UCL and Default Logic . . .. ... ... ...... ... ...... 146
5.4.1 Review of Disjunctive Default Logic . . . . .. ... ... .. 146
5.4.2 UCL and Disjunctive Default Logic. . . . . . ... ... ... 147
55 Embedding ACin UCL . . .. ..o 148
5.6 Flat and Definite UCL Theories . . . . . . ... ... ......... 155
5.6.1 Flat UCL Theories . . . . .. ... ... ............ 155
5.6.2 Definite UCL Theories . . . . . . ... ... .......... 156
5.7 (More) Causal Theories of Action in UCL . . . .. ... ... ... .. 158
571 L(F,AT)Languages . . . .. ... .. .. .......... 159



5.8
5.9

5.10
5.11
5.12

5.7.2 L (F,A,T) Domain Descriptions . . .. ... .........
5.7.3 Expressive Possibilities. . . . . . ... ... 0L
A Subset of UCL in Circumseription . . . . . .. ... ... .. ...
UCL and Lin’s Circumscriptive Action Theories . . . . . . .. .. ..
5.9.1 Lin’s Circumscriptive Causal Action Theories . . . . . .. ..
5.9.2 Lin’s Circumscriptive Action Theories in UCL . . .. .. ..
5.9.3 Discussion . . . . . ... L
UCL and Autoepistemic Logic . . . . . ... ... ... .......
UCL with Quantifiers . . . .. . .. ... ... .. ... .......
Nonpropositional Causal Theories in UCL . . . . . ... ... ....
5.12.1 Lifschitz’s Nonpropositional Causal Theories . . ... .. ..
5.12.2 Second-Order Causal Theoriesin UCL . . . . ... ... ...

Chapter 6 Satisfiability Planning with Causal Action Theories

6.1
6.2

6.3

6.4
6.5

Introduction . . . . ... ... Lo
Planning with £ (F,A,T) Domain Descriptions . . . . .. ... ...
6.2.1 Causally Possible Plans . . . . .. ... ... .........
6.2.2 Sufficient Plans . . . .. ... ... oo oL
6.2.3 ExecutablePlans . . . . ... ... ... ... ... ... ..
6.24 ValidPlans . . .. ... ... ... ... ... L
6.2.5 Deterministic Plans . . . . ... ... ... .........
Satisfiability Planning with £ (F,A,T) Domain Descriptions . . . . .
6.3.1 Simple Domain Descriptions. . . . . .. ... ... ......
6.3.2 Simple Domain Descriptions Yield Valid Plans . . . . . . ..
Satisfiability Planning Program . . . . . .. ... ... ... ... ..
Large Planning Problems . . . . ... ... ... ... ........
6.5.1 Blocks World Problems . . . . ... ... ... ... .. ...

6.5.2 Logisitics Planning Problems . . . . . . ... ... ... ...

xi

159
165
171
174
174
177
179
183
185
188
188
189

192

197

6.5.3 Experimental Results

6.6 Proof of Main Proposition . .

Chapter 7 Concluding Remarks

Bibliography

Vita

xii



6.1

6.2

6.3

List of Tables

Satisfiability Planning with Causal Action Theories. Sizes are for
clausal theories obtained, via literal completion, from causal action
theories (after simplification). Time in seconds using the satisfiability
solver rel_sat on a Sparcstation 5. . . . . . ... ... L.
Kautz and Selman Problem Descriptions. Here we establish the
benchmarks—the results for the clausal theories used in [KS96], with
solution times obtained in the same manner as in Table 6.1. . . . . .
Proving Plans Optimal: Satisfiability Planning with Causal Action
Theories. Here, in each case, the domain description includes one
time step less than needed for a solution. Time reported is number

of seconds required for solver rel_sat to determine unsatisfiability. . .

xiii

211

212

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

List of Figures

Default theory for Example 1. . . . . . . . . ... .. ... ...... 31
Logic program for Example 1. . . . . . . ... ... ... ....... 33
Default theory for Example 2. . . . . . ... ... ... ........ 35
Logic program for Example 3. . . . . . . ... ... ... ... ... 37
Logic program for Example 4. . . . . . .. ... ... ... ... ... 39
Standard elements of the translation d. . . . . . ... ... .. ... . 71
AC domain description Dy, . . . . ... 72
Translation §(D;) of AC domain description Dy. . . . .. ... ... 73
Default theory Y7. . . . . . . . . 75
Default theory Ya. . . . . . . . .. 75
Default theory Y3. . . . .. ... ... 7
UCL translation of default theory for Example 1. . . . . . .. .. .. 150
Simpler UCL theory for Example 1. . . . ... ... ... ...... 150
UCL theory for Example 2. . . . .. ... ... ... ......... 151
UCL theory for Example 3. . . . .. ... ... ... ......... 151
Another UCL theory for Example 1. . . . .. .. ... ... ..... 153
Another UCL theory for Example 2. . . . .. ... .. ... ..... 153
Another UCL theory for Example 3. . . . .. ... ... .. ... .. 154
L (F,A,T) description D3 of Lin’s Suitcase domain. . . . . . ... .. 164

Xiv



5.9

L (F,A,T) description Dy of Coin Toss domain. . . . . . . ......

5.10 £ (F,A,T) description D5 of Dominos domain. . . . ... ......
5.11 £ (F,A,T) description Dg of Pendulum domain. . . . . . ... .. ..

5.12 Lin’s Suitcase domain in second-order UCL. . . . . . . .. ... ...

6.1
6.2
6.3
6.4
6.5

Example input file for the planning system: the Pendulum domain. .
Planning session with Pendulum domain. . . . ... ... ... ...
Characterization of large blocks world problems from [KS96].

Input file for Blocks World D. . . . . . . .. .. ... ... .. ....

Input file for Logistics C. . . . . .. .. ... ... ... .......

Xv

204

Chapter 1

Introduction

John McCarthy in his 1959 paper “Programs with Common Sense” [McC59] pro-
posed that researchers in artificial intelligence try to formalize and automate com-
monsense reasoning about actions. The challenge is to obtain correct conclusions
about the outcomes of actions on the basis of concise declarative representations of
commonsense knowledge about action domains. This has proved difficult.

It is widely remarked that the notion of causality plays little or no role in
descriptions of the world in the physical sciences. The same has been generally true
of proposed formalizations of reasoning about action, despite the central role played
by causal notions in everyday discourse and thought about actions. This dissertation
belongs to a line of recent work investigating the advantages of considering causality

more explicitly.

1.1 The Frame Problem and Nonmonotonicity

A fundamental difficulty in reasoning about action the so-called “frame problem”
was recognized and named by McCarthy and Hayes in their 1969 paper “Some
Philosophical Problems from the Standpoint of Artifical Intelligence” [MH69]. A



natural strategy for making action representations concise is to focus on describing
the changes caused by an action, while leaving implicit our knowledge of facts un-
affected by the action. About facts unaffected by an action, we assume that they
simply persist, according to a “commonsense law of inertia.” Thus, generally speak-
ing, the frame problem is the problem of making the commonsense law of inertia
mathematically precise.

It is clear that solutions to the frame problem will be nonmonotonic: that is,
in contrast to classical logic, conclusions may be lost when premises are added. For
example, consider an action domain description involving two propositional fluents,
P and @, and a single action A. (A propositional fluent is a proposition whose value
depends on time.) Suppose you are told that P and @ are initially false, and that
A makes P true. You are expected to conclude not only that P would become true
if A were performed, but also that @ would not. Now suppose that you are told
in addition that A makes @ true. You should no longer conclude that @ would be
false after A; instead, @ would be true after A.

Although the previous informal example demonstrates that solutions to the
frame problem will be nonmonotonic, it does little to suggest that such solutions
may be subtle or difficult to find. Nonetheless, this seems so far to be the case,
particularly as we attempt to represent more elaborate kinds of domain knowledge.
For instance, in this dissertation we are interested not only in how to represent the
“direct” effects of actions, but also in how to represent “background knowledge”
concerning relationships between fluents, in order to correctly infer the “indirect”
effects of actions. For example, you might be told not only that A makes P true,
but also that @ can be made true by making P true. You should again conclude

that @ would be true after A.

1.2 Commonsense Inertia as Minimal Change

In most proposals for reasoning about action, the commonsense law of inertia is
understood according to a principle of minimal change. Roughly speaking, the idea
is to capture the assumption that things change as little as possible, while also

reflecting our knowledge of what does change.

1.2.1 The Yale Shooting Problem

In 1986 McCarthy proposed a formalization of commonsense knowledge about ac-
tions in which the commonsense law of inertia is understood according to a principle
of minimal change [McC86]. Essentially, McCarthy said that change is abnormal,
and he used technical means—namely, circumscription (introduced in [McC80])—to
select models of his action theory in which that kind of abnormality is minimal.
That is, he preferred models in which things change as little as possible.

Hanks and McDermott famously exposed a fundamental difficulty with Mc-
Carthy’s proposal, by introducing a counterexample widely known as the “Yale
Shooting” domain [HM87]. The essential elements can be described as follows.
There is a turkey (Fred) and a gun. If the gun is loaded, shooting it kills Fred. The
question is this: If Fred is initially alive and the gun is initially loaded, will Fred
be dead after the actions Wait and Shoot are performed in sequence? Clearly the
answer should be yes. Unfortunately, McCarthy’s formalization could not predict
this.

The fundamental difficulty with McCarthy’s 1986 proposal is that it mini-
mizes change globally (i.e. across all situations). In the intended models of the Yale
Shooting domain, no fluents change as a result of the Wait action—in particular, the
gun remains loaded—and then Fred becomes dead as a result of the Shoot action.
McCarthy calls the death of Fred abnormal, and is in principle willing to trade the

death of Fred for other possible abnormalities. Thus, the global minimization policy



is satisfied by anomalous models in which the gun becomes unloaded as a result of
the Wait action, and then no fluents change as a result of the Shoot action—in
particular, Fred remains alive after the Shoot action.!

This account of the Yale Shooting problem suggests that it is wrong to min-
imize change globally, but does not show that the principle of minimal change will

never do.

1.2.2 Possible Next States

The principle of minimal change can carry us a long way if applied more carefully.
The essence of the frame problem can be formulated as follows. Given an initial
state of the world and a description of the effects of an action when performed in
that state, we must say which states of the world may result—so far as we know—
after the action is performed. We say a definition of this kind identifies “possible
next states.” Winslett [Win88] proposed a definition of possible next states in which
the commonsense law of inertia is captured mathematically as the straightforward
requirement that things change as little as possible (while still satisfying the effects
of the action).

This simple idea (in various guises) has led to considerable progress. In fact,
it seems that a good deal of the widely-remarked technical difficulty in work on
reasoning about action can be attributed to the need to find mathematical means
for capturing this simple definition of possible next states within descriptions that
are more complex primarily because they encompass more than an initial situation,
an action and a resulting situation. (See for example [Bak91], or Chapter 4 of this

dissertation. )2

! According to the informal description given here, there will be another class of models, in which
Fred dies as a result of the Wait action (while the gun remains loaded). As it happens, this kind
of anomalous model is ruled out in McCarthy's style of formalization, which forces an abnormality
with respect to Alive whenever Shoot is performed with a loaded gun, even if Fred is already dead.

?In passing we remark that Winslett also emphasized a second crucial element in the possible
next states setting. Reasoning about action is by its nature a matter of reasoning about complete

1.3 State Constraints and Static Causal Laws

State constraints are formulas of classical logic that are said to hold in every possible
state of an action domain. Traditionally, state constraints have been used to derive
indirect effects, or “ramifications,” of actions. Adapting a widely familiar example
(from [Bak91]), let’s assume that you can make Fred stop walking by making him not
alive. So if shooting Fred kills him, you can make him stop walking by shooting him:
not walking is a ramification of shooting. Traditionally, the background knowledge

used in this example has been expressed by the state constraint
—Alive O ~Walking . (1.1)
This state constraint is equivalent in classical logic to its contrapositive
Walking O Alive .

This is troublesome because it is clear that the causal relation itself is not contra-
positive. That is, roughly speaking, although you can make Fred stop walking by
killing him, it does not follow from this that you can bring Fred back to life by
making him walk.

Recently, a number of researchers have argued that state constraints are
inadequate for representing background knowledge in action domains, because they
do not adequately represent causal relations [Gef90, Elk92, BH93, Bar95, Lin95,
MT95b, Thi95a, Gus96]. In this dissertation we explore the use of “static causal
laws” of the kind introduced by McCain and Turner in [MT95b]: if a fluent formula ¢
is caused to be true, then a fluent formula ¢ is also caused to be true. From such
a causal law it follows that one can make ¢ true by making ¢ true. It also follows

that in every possible state, ¢ is true if ¢ is. That is, the state constraint ¢ D ¢

states of the world. Katsuno and Mendelzon emphasize a similar point in their influential paper “On
the Difference Between Updating a Knowledge Base and Revising It” [KM91]. We will allude to this
point several times in this dissertation, since it also helps explain technical difficulties encountered
in some formalizations of actions.



holds. On the other hand, it does not follow that if =% is caused to be true, then —¢
is also caused to be true. Thus, the static causal law is not contrapositive. In this
dissertation we argue for the usefulness of propositions that represent such static
causal laws, and we show that such propositions are more expressive than traditional
state constraints.

In the example involving Fred, we can express the relevant causal background
knowledge by means of a static causal law: if Fred is caused to be not alive, he is
also caused to be not walking. In the treatment of static causal laws investigated
in the first part of this dissertation (as in [MT95b, Tur97]), the logical properties of
static causal laws are captured mathematically through the use of inference rules.
In particular, the failure of contraposition in static causal laws is reflected in the
noncontrapositive nature of inference rules. Thus, in the first part of the dissertation,

we (essentially) replace the state constraint (1.1) with the inference rule

-Ali
_Awee (1.2)
- Walking
which says that from —Alive you can derive = Walking. The inference rule is non-

contrapositive: it does not say that you can derive Alive from Walking.

1.4 A Causal Account of Commonsense Inertia

In the presence of state constraints it is still possible to solve the frame problem
by applying the principle of minimal change. In fact, Winslett’s classic definition
of possible next states already allows for state constraints, requiring that resulting
states differ as little as possible from the initial state, while satisfying both the direct
effects of the action and all state constraints. But in the presence of static causal
laws, we need an understanding of the commonsense law of inertia that takes causal
notions into account more explicitly.

Recently, Marek and Truszczynski [MT94, MT95a, MT98a] introduced a

formalism they call “revision programming,” which defines possible next states on
the basis of an essentially causal understanding of the commonsense law of inertia:
they call it a principle of “justified change.” Moreover, in revision programming the
causal knowledge is expressed by means of what are essentially inference rules %,
under the restriction that both ¢ and ¢ are simple conjunctions (conjunctions of
literals). Thus, in our terminology, they solve the frame problem in the presence of
a restricted subclass of static causal laws. As evidence of the reasonableness of their
definition, Marek and Truszczynski show that it agrees with Winslett’s where the
two overlap—taking a conjunction ¢ of literals to correspond to the inference rule
True.

In the first part of this dissertation, we employ a causal definition of possible
next states that is applicable in the presence of arbitrary static causal laws, expressed
by means of (arbitrary) inference rules, following [MT95b, PT95, PT97, Tur97]. As
evidence of the reasonableness of our definition, we note that it extends, and unifies,
the definitions of Winslett and of Marek and Truszczynski.

Our solution to the frame problem is based on a fixpoint condition that makes
mathematically precise a causal understanding of the commonsense law of inertia.
Intuitively speaking, we capture the idea that things change only when they’re
made to. But we capture this idea indirectly, roughly as follows. We first impose
the requirement that every fact in the resulting situation have a cause according to
our description. In particular then, since we describe the changes caused by actions,
those changes will have a cause according to our description. On the other hand,
we build in the assumption that every fact that persists is caused. Therefore, facts
that persist need no (additional) explanation. As a result, in effect, it is precisely
the facts that change that must be explained by our description. That is, things
don’t change unless (our description tells us that) they’re made to.

Also in the first part of this dissertation, we show how to express the com-



monsense law of inertia in the rule-based nonmonotonic formalisms of default logic
[Rei80] and logic programming. Here we confront the technical difficulty, previously
discussed, of honoring our causal definition of possible next states while working
with descriptions that encompass more than an initial situation, an action and a
resulting situation. And true to form, we end up expending considerable mathemat-
ical effort verifying that our default theories and logic programs indeed are correct
with respect to our definition of possible next states. Nonetheless, the descriptions
themselves are relatively straightforward. In particular, the default rules expressing
the commonsense law of inertia have a remarkably simple form. Essentially, we write

default rules of the form
F;: Fey (1.3)
Fia
where F; says that a fluent F is true at time ¢t and Fyy says that F is true at
time ¢t+1.> The default rule (1.3) can be understood to say that if F' is caused to
be true at time ¢ and remains true at time ¢+1, then it is caused to be true at

time ¢+1.

1.5 Causally Possible Worlds and Universal Causation

The second part of the dissertation discusses a new modal nonmonotonic logic of
“universal causation,” called UCL, designed specifically for formalizing common-
sense knowledge about actions. This logic was introduced in [Tur98]. UCL extends
the recently introduced causal theories formalism of McCain and Turner [MT97],

which shares its underlying motivations. The fundamental distinction in UCL

SInertia rules of essentially this form have been entertained previously in the literature [Rei80,
MS88], but without substantial success. The specific proposals are not complete enough to analyze
in any detail. We do discuss throughout the first part of the dissertation several interacting factors
that contribute to the success of our approach. One such factor is that, while default logic is
designed to deal with incompleteness its models (“extensions”) are logically closed sets of formulas,
not classical interpretations—it is important in reasoning about action that we focus on complete
worlds, as previously mentioned. Our default theories guarantee this kind of completeness, in
contrast to previous published proposals in default logic.

between facts that are caused and facts that are merely true—is expressed by means
of the modal operator C, read as “caused.” For example, one can write ¢ O Ct to
say that ¢ is caused whenever ¢ is true. These simple linguistic resources make it
possible for a UCL theory to express the conditions under which facts are caused.
It is in this sense that UCL is a logic of causation.

In UCL, we can express the commonsense law of inertia by writing, for in-
stance

CF, A Fy1 S CFy (1.4)

which corresponds closely to the default rule (1.3) for inertia discussed previously.
Formual (1.4) stipulates that F' is caused at time ¢+1 whenever it is caused at time ¢
and persists from time ¢ to time ¢+1.

Typical features of action domain descriptions are easily expressed in UCL.
For instance, in a variant of the Yale Shooting domain [HM87] as extended by Baker

[Bak91], one can write
Shooty D C—Alivey A C—Loaded (1.5)

to describe the direct effects of shooting: whenever Shoot occurs, both —Alive and

—Loaded are caused to hold subsequently. One can write
Shooty O Loadedy (1.6)

to express a precondition of the shoot action: shoot can occur only when the gun is
loaded. To say that Fred is caused to be not walking whenever he is caused to be

not alive, one can write the UCL formula
C—Alive; O C—~Walking, . (1.7)

This formula corresponds closely to the inference rule (1.2) considered previously.

Notice that from (1.5) and (1.7) it follows by propositional logic that whenever



Shoot occurs, — Walking is caused to hold subsequently. Thus (1.7) correctly yields
- Walking as an indirect effect, or ramification, of the Shoot action.

In accordance with common sense, (1.7) does not imply C Walking, > CAlive,.
Intuitively, you cannot bring Fred back to life by getting him to walk. Instead, he
simply can’t walk unless he’s alive. To put it another way, in any causally possible
world, Fred is alive if he is walking. Accordingly, if (1.7) is an axiom of a UCL
theory T, then Walking, D Alive; is true in every interpretation that is causally

explained by T'.

1.6 Automated Reasoning about Actions and Satisfia-
bility Planning

One of the purposes of formalizing commonsense knowledge about actions is to
enable the automation of reasoning about actions. There is a subset of propositional
UCL theories extremely well-suited to this purpose, in which every formula has either
the form

¢DCL

¢

where ¢ is a formula in which the modal operator C does not occur and L is a literal.
Such UCL theories are called “definite.” There is a concise translation of definite
UCL theories into classical propositional logic. Thus, standard automated reasoning
tools for classical logic can be applied to definite UCL theories. This possibility is
notable, but does not constitute a primary contribution of this dissertation. We
focus instead on the problem of automated planning.

Planning is an automated reasoning task associated with action domains

that has been especially well-studied, due to its potential practical utility and its

10

fundamental computational difficulty, even for action domains that can be described
quite simply, as in STRIPS [FN71, Lif87b]. In this dissertation, following [MT98b],
we describe an implemented approach to satisfiability planning [KS92, KS96], in
which a plan is obtained by “extracting” the action occurrences from a suitable
model of a classical propositional theory describing the planning domain. In our
approach, the description in classical logic is obtained by translation from a definite
UCL theory.

This approach to planning is noteworthy for two reasons. First, it is based on
a formalism for describing action domains that is more expressive than the STRIPS-
based formalisms traditionally used in automated planning. Secondly, our experi-
ments suggest that the additional expressiveness of causal theories comes with no
performance penalty in satisfiability planning. Specifically, we show that the large
blocks world and logistics planning problems used by Kautz and Selman [KS96] to
demonstrate the effectiveness of satisfiability planning can be conveniently repre-
sented as UCL theories and solved in times comparable to those that they have

obtained.

1.7 Outline of Dissertation

Chapter 2 consists of a review of the literature, and extends some of the themes
raised thus far.

The first part of the dissertation (Chapters 3 and 4) is devoted to demonstrat-
ing the extent to which inference rules, and rule-based formalisms such as default
logic, can be convenient for formalizing causal aspects of commonsense knowledge
about actions. We introduce, and investigate in detail, an approach to representing
actions in which inference rules play a central role. More specifically, we define a
high-level action language, called AC, and we show how to translate AC into the

rule-based nonmonotonic formalisms of default logic and logic programming. This
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line of investigation is motivated by the simple observation that the noncontraposi-
tive nature of causal relationships is nicely reflected in the noncontrapositive nature

of inference rules. More precisely, we show that an inference rule

% (1.8)

can be understood to represent the corresponding static causal law: if ¢ is caused
then ¢ is caused. In this way we obtain causal theories of action based on familiar
and well-understood mathematical tools.

In the second part of the dissertation (Chapter 5) we introduce a new modal
nonmonotonic logic called UCL  in which the appropriate (mathematically sim-
ple) causal notions can be represented by means of a modal operator C (read as
“caused”) along with standard truth-functional connectives. In this logic, we say
that a formula ¢ is caused to be true by writing the modal formula C¢. Thus, for

instance, instead of the inference rule (1.8), we can write the UCL formula
CoD Cy. (1.9)

We discuss the fact that UCL can be understood to provide a more general, alter-
native account of the causal notions that underlie the work presented in the first
part of the dissertation. We also introduce a different, but closely related, approach
to formalizing commonsense knowledge about actions, directly in UCL. In order to
help clarify the relationship between this new nonmonotonic logic and well-known
general-purpose nonmonotonic formalisms, we present several theorems concerning
translations back and forth from default logic [Rei80], autoepistemic logic [Moo85],
and circumscription [McC80]. We also relate action formalizations in UCL to the
circumscriptive causal action theories of Lin [Lin95, Lin96].

In the third and last part of the dissertation (Chapter 6), we develop mathe-

matical results that justify planning on the basis of a restricted class of UCL action
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descriptions, and show that this approach to planning is relatively effective on large
classical planning problems.
Chapter 7 consists of a brief summary of the dissertation and a few remarks

concerning possible directions of future work.
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Chapter 2

Literature Survey

The common knowledge about the world that is possessed by every
schoolchild and the methods for making obvious inferences from this
knowledge are called common sense.

— Ernest Davis [Dav90]

2.1 The Situation Calculus

As mentioned in the previous chapter, McCarthy and Hayes recognized and named
the frame problem in [MHG9]. In that paper they also introduced the “situation
calculus,” which can be understood as both a simple ontology for models of action
domains and a family of convenient notational conventions for representing theories
about action. The essential elements and assumptions of the situation calculus

ontology can be described roughly as follows.
e There are properties of the world that vary with time, called “fluents.”
e A world at a moment in time is called a “situation.”

e Each situation maps each fluent to a value.
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e For each situation S and action A, there is a unique situation, Result(A4,S),

that would result if the action A were performed in situation S.

In addition, it is common to assume that there is a distinguished “initial situation.”
In fact, in situation calculus settings, the model structures of action domains can be
understood essentially as trees in which nodes correspond to situations and edges
correspond to actions, with the initial situation at the root. We can complete our
description of such a situation calculus model structure by associating with each
situation an interpretation of the set of fluents. That is, each situation is mapped to
a state. Notice that in such a model, each situation can be uniquely specified by the
sequence of actions that, when performed in the initial situation, would lead to it.
This lends itself naturally to the following notational conventions. First, we denote
the initial situation by a constant S;. We then denote the situation that would result
from doing, for instance, action A; followed by action Aj, in the initial situation, by
the term Result(Asa, Result(Ay,Sp)). Given this, we say, for instance, that a fluent F'
is true in that situation by writing Holds(F, Result(As, Result(A1,S0))), and we say
that it is false in that situation by writing —Holds(F, Result(As, Result(A1, Sp))).
In the first part of this dissertation, we propose a high-level language for
representing actions that reflects a situation calculus ontology. Furthermore, our
translations of this high-level action language into default logic and logic program-
ming utilize standard syntactic conventions for representing situation calculus theo-
ries in a many-sorted, first-order language. These are convenient choices for several
interrelated reasons. First, the situation calculus ontology is appealing in its sim-
plicity. For instance, it does not address the problem of representing the duration of
actions. In fact, the passage of time is reflected only in the state changes associated
with discrete action occurrences. Second, the syntactic conventions of the situation
calculus are themselves simple and convenient. Third, in light of the first two ob-

servations, it is not surprising that there has been a great deal of previous work on
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representing actions in the situation calculus. Thus, the situation calculus is widely
familiar.

There have been, of course, many other proposals of ontologies and notational
conventions for theories of action. A discussion of such proposals is beyond the scope
of this literature survey. However, because this dissertation includes a proposal for
representing actions in logic programming, we mention that there is a considerable
body of work on formalizing actions in logic programming that is based on the “event
calculus” of Kowalski and Sergot [KS86]. As with the situation calculus, the event
calculus can be understood as both a simple ontology for models of action domains
and a family of convenient notational conventions for representing theories about
action. Recently there have been a number of papers investigating relationships
between the event calculus and situation calculus [PR93, KS94, Mil95, vBDS95].

In the second and third parts of this dissertation, we employ a simple alterna-
tive ontology and notation, in which time has the structure of the natural numbers,
and in which the occurrence of an action at a time becomes a proposition. One
advantage of this approach is that it makes it more convenient to represent and
reason about concurrent actions. Another advantage of this alternative approach
is related to a complication in the situation calculus that has been suppressed to
this point in our discussion in a situation calculus model, there may be situations
that are, intuitively speaking, unreachable. That is, as the tree-like model struc-
ture “unfolds” we may reach a situation in which some action simply cannot be
performed, given what is true in that situation. This renders “unreachable” the
situation that would result from performing the action. Nonetheless, our model will
satisfy sentences that describe the state of the world in that unreachable situation.
For instance, even if S names such an unreachable situation (about which it intu-
itively makes no sense to say that a fluent holds or does not hold), the sentence

Vf(Holds(f,S) V ~Holds(f,S)) is logically valid. This technical, and conceptual,
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difficulty can be dealt with, at the cost of additional complexity.! By contrast, in
the alternative approach utilized in the latter parts of the dissertation, the fact that
a certain action cannot be performed in a certain situation is, roughly speaking,
reflected in the fact that there is simply no model in which that action occurs in

such a situation.

2.2 Nonmonotonic Formalisms

Representational difficulties in commonsense reasoning—such as the need to repre-
sent the nonmonotonicity inherent in the commonsense law of inertia—led in the
1980’s to the introduction of several nonmonotonic formalisms. In 1980, default
logic was defined by Reiter [Rei80], McCarthy introduced cirumscription [McC80],
and a modal nonmonotonic logic was proposed by McDermott and Doyle [MD80]. In
1985, Moore introduced a particularly influential modal nonmonotonic logic, called
autoepistemic logic [Moo85]. Circumscription has undergone a great deal of re-
finement and extension, some of which is reflected in [Lif85, McC86, Lif91, Lif95].
Autoepistemic logic received a particularly elegant, model-theoretic characterization
in [LS93].

Because of the prominent role played by default logic in the first part of this
dissertation, we provide at this point an informal introduction to it.> A default rule

is an expression of the form

a:fi,..., b
v
where all of «, B1,...,3,,7 are formulas (n > 0). Such a rule says, intuitively
speaking, if you know « and each of f,..., 3, are consistent with what you know,

then conclude . A default theory is a set of default rules. Its meaning is formally

"For instance, a portion of the technical challenge in Chapter 4—where we prove the correctness
of a family of situation calculus theories in default logic can be attributed to this feature of the
situation calculus.

2The precise definition appears in Section 3.5.1.
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determined by the set of its “extensions,” which are fixpoints of an equation that
reflects the intuition described above. Each extension is a logically closed set of
formulas which is also “closed under” the rules of the default theory. A formula is
a consequence of a default theory if it belongs to all of its extensions. Default logic
is nonmonotonic: we may lose consequences when we add rules to a default theory.

Logic programming is another nonmonotonic formalism which, along with
default logic, is of special interest in this dissertation. Logic programming was
inspired by Kowalski’s 1974 paper “Predicate Logic as a Programming Language”
[Kow74]. Because of the “closed world assumption” and the “negation as failure”
operator, logic programming has long been recognized as a nonmonotonic formalism,
but the appropriate semantics has been a contentious issue. An early proposal by
Clark [Cla78], known as “Clark’s completion,” remains influential, although it suffers
from well-known anomalies (as a semantics for logic programs). Other much-studied
proposals appear in [Fit85, Kun87, Prz88, VGRS90]. One fruitful line of research
investigated connections between the semantics of logic programming and other
nonmonotonic formalisms. Of particular interest in relation to this dissertation are
the connections to autoepistemic logic [Gel87] and default logic [BF87], which in
1988 led to the proposal by Gelfond and Lifschitz of the “stable model” semantics
for logic programs [GL88], later renamed the “answer set” semantics and extended
to apply to logic programs with “classical” negation and “epistemic” disjunction
[GL90, GLI1].

In the first part of this dissertation, we are concerned with logic programs
with classical negation under the answer set semantics. Such programs correspond
to a simple subset of default logic, as observed in [GL90]. Thus, we will essentially

view a logic program rule of the form

Lo+ Ly,...,Ly,not Lyyy1,...,not Ly,
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(where all the L;’s are literals) as an abbreviation for the corresponding default rule

LiAALm:Imats-... In
Lo

where for each literal L;, L; stands for the literal complementary to L;.® The symbol
not that appears in the bodies of some logic program rules stands for “negation as
failure.” Roughly speaking, the expression not L can be read as “L is not known.”

We introduce in the second part of this dissertation a new nonmonotonic for-
malism, called UCL. The syntax and some of the motivations of UCL are anticipated
in a more ambitious formalism introduced by Geffner [Gef89, Gef90, Gef92]. Geffner
employs a modal language with a single modal operator C, read as “explained,”
and defines “default theories which explicitly accomodate a distinction between ‘ex-
plained’ and ‘unexplained’ propositions” [Gef90]. His proposal is meant to enhance
“the appeal of preferential entailment as a unifying framework for non-monotonic
inference” by contributing to the development of “a general domain-independent
criterion for inferring preferences from theories” [Gef90]. The mathematical com-
plexity of Geffner’s definitions may reflect the generality of his goal. By comparison,
in UCL both aim and means are modest. It appears that UCL can be embedded
in Geffner’s formalism, perhaps with some minor technical modifications, but we
do not pursue this possibility in this dissertation. The rewards would be minimal,

given the differences in emphasis, and in mathematical machinery.

2.3 Action Theories in Logical Formalisms

In 1986 McCarthy published a proposal for reasoning about actions in circumscrip-
tive theories [McC86], discussed in the previous chapter. Partly in response to this
proposal, Hanks and McDermott wrote the landmark paper in which they not only

exposed a difficulty with McCarthy’s proposal, but also showed that an analagous

3The precise definition appears in Section 3.6.1.
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difficulty could arise in default logic. As we have described, their counterexamples
were based on the “Yale Shooting” domain [HM87].# Hanks and McDermott were
not content to reject McCarthy’s specific proposal, but instead went on to argue more
generally against the use of nonmonotonic formalisms for reasoning about action.
Two of their claims are especially relevant to this dissertation: (i) nonmonotonic
formalizations will be too difficult to understand and evaluate, and (ii) nonmono-
tonic formalisms will not directly capture the appropriate commonsense concepts
and patterns of reasoning.

Despite, or perhaps because of, the warnings of Hanks and McDermott, there
is a sizable body of work published in the last decade on logic-based, nonmono-
tonic approaches to representing actions. One such line of work involves propos-
als for representing actions in classical (monotonic) logic. There are a number of
proposals that specify a standard method for generating first-order frame axioms
[Ped89, Sch90, Rei9l]. In these proposals, there is a standard form for first-order
axioms describing the effects of actions and other features specific to a given action
domain. The resulting first-order theory is then augmented by additional standard
axioms. Finally, there is a procedure for generating frame axioms, based on the
domain specific axioms. Because such a procedure depends on the domain specific
axioms, the method as a whole is nonmonotonic, in spite of the fact that the re-
sulting action theories are expressed in monotonic logic. The inescapable fact here
is the underlying, fundamental nonmonotonicity of the frame problem itself. Any
correct solution, taken as a whole, will be nonmonotonic, even if the end product
is expressed in a monotonic formalism. Of course this holds, presumptively, for
less systematic proposals, which discuss frame axioms for some examples without
specifying a general method for generating them [Haa87, EIk92]. Thus the so-called

monotonic approaches are conceptually similar to the more clearly nonmonotonic

4In Chapter 3.5 we discuss in some detail their default theory for the Yale Shooting domain.
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approaches which employ variants of circumscription, autoepistemic logic, default
logic and logic programming. Undoubtedly the greatest concentration of such work
has been in circumscription [Hau87, Lif87a, LR89, Lif90, Bak91, GLR91, Lif91,
LS91, CE92, LR94, KL95, Lin95, Gus96, Lin96]. There were also early published
solutions to the Yale Shooting problem in autoepistemic logic [Gel88], default logic
[Mor88] and logic programming [EK89, Eva89, AB90].

A primary methodological weakness of much of the work cited above is the
fact that it is motivated by, and validated for, only a small set of examples. In many
cases, there is no clear claim about what kinds of action domains can be represented
correctly by a given approach. Moreover, it is often unclear how the technical means

employed are related to the intuitions they are meant to capture.

2.4 High-Level Action Languages

Recently, Gelfond and Lifschitz [GL93] proposed an influential research method-
ology, which involves the introduction of special-purpose, high-level languages for
representing action domains. The advantage of starting with a high-level action
language is that it can utilize a restricted syntax and a relatively simple semantics
which is nonetheless adequate to capture our commonsense intuitions about the
whole family of action domains expressible in the language. Of particular signifi-
cance in obtaining a simple semantics is the fact that such high-level languages can
isolate the problem of defining possible next states, and then deploy such a defini-
tion explicitly, in straightforward fashion, to constrain more general model structures
(encompassing more than an initial situation, action, and resulting situation).

In [GL93], the high-level action language A was introduced. Many of the
subsequent action languages [BG93, KL94, Thi94, BGP95, GKL95, GL95, Thi95b,
Tur96al are essentially extensions of .A. These languages share a situation calculus

ontology. Next we briefly describe some of their main features and differences. In
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A actions are deterministic, always executable, and cannot be performed concur-
rently. Furthermore, fluents are propositional (that is, boolean-valued), and there is
no way to represent background knowledge of any kind. In Ac [BG93], concurrent
actions are allowed and actions are no longer required to be always executable. In
Anp [Thi94], actions may be nondeterministic. In the languages ARy and AR
[KL94, GKL95, GKL97], actions may be nondeterministic and are not required to
be always executable. More importantly, these languages allow the use of state
constraints to express background knowledge. Also, these languages employ the
“frame/nonframe” distinction introduced in [Lif90], which is discussed briefly in
Chapter 3.4 of this dissertation. In addition, AR allows non-boolean fluents. The
language ARD [GLY5] extends AR by adding the notion of “dependent” fluents.
The language AC [Tur96a, Tur97] that is included in the dissertation essentially ex-
tends the propositional portion of AR, but restricts the use of the frame/nonframe
distinction, allowing it only for the purpose of introducing “explicit definitions.”
The main improvement of AC over propositional AR is its adoption of the method
introduced in [MT95b] for representing causal background knowledge. The language
Ly [BGPY5] is an extension of a subset of 4, incorporating the notion of “observa-
tions” about an actual past, which affords £, some of the distinctive expressiveness
of the event calculus. The formalism of “dynamic systems” [Thi95b] is an extension
of A, incorporating concurrent actions and events, “momentary” fluents and delayed
effects of actions.

High-level action languages can be of help in the evaluation of existing pro-
posals for representing commonsense knowledge about actions in general-purpose
formalisms. One can demonstrate the (partial) correctness of such a proposal by
specifying a correct translation of (some portion of) a high-level language into a
general-purpose formalism, using the methods and ideas of the proposal. In [Kar93],

Kartha shows that the “monotonic” proposals due to Pednault [Ped89] and Reiter
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[Rei91] are in fact correct for action domains expressible in A. He also shows that
A can be embedded in Baker’s [Bak91] circumscriptive approach to representing ac-
tions. This is an instructive case. Baker’s proposal is considerably more expressive
than A, allowing the use of state constraints to represent background knowledge.
Moreover, Baker’s approach has been widely admired, although its correctness has
been difficult to assess due to its technical complexity. It turns out, as Kartha
demonstrates in [Kar94], that Baker’s approach can yield intuitively incorrect re-
sults when applied to action domains in which there are nondeterministic actions.
High-level action languages also help generate new proposals for represent-
ing actions in general-purpose formalisms, as new translations are developed. For
instance, the original paper on A [GL93] included a sound translation of a portion
of A into logic programming. Now there are sound and complete translations of
A into abductive logic programming [DD93, Dun93], equational logic programming
[Thi94] and disjunctive logic programming [Tur94]. In [LT95], we show that the
translation from [Tur94] can be transformed into the translation from [DD93] by a
series of simple syntactic transformations, obtaining in the process a family of seven
translations of A into logic programming. In [BG93], the language Ac is given a
sound but incomplete translation into logic programming. In [Tur97], we specify a
sound and complete translation into logic programming of a portion of the language
AC. (This translation is included in the first part of this dissertation.) Subramanian
[Sub93] embeds A in the logic of the Boyer-Moore theorem prover [BM88]. The lan-
guages AR and AR are embedded in circumscriptive theories in [KL94, GKL95].
Finally, in [Tur96a, Tur97] a portion of the language AC is embedded in default

logic. (Again, this translation is included in the first part of this dissertation.)
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2.5 Possible Next States and Theory Update

In addition to all of the previously discussed work on representing action domains,
there is a body of relevant work in the simpler settings of possible next states and
“theory update.” As described previously, work on defining possible next states is
still explicitly directed toward the problem of reasoning about action, but in a setting
where some of the complexities of action domains are ignored in order to focus more
directly on the frame problem itself [GS88, MS88, Win88, BH93, Bar95, MT95b,
Thi95a]. The frame problem is also confronted in the still more abstract setting
of theory update [KM91, MT93b, Bar94, MT94, MT95a, PT95, PT97, MT98a.
Recall that one example is the formalism of revision programming [MT94, MT98a],
which can be understood as a precurser to the causal approaches presented in this
dissertation. As previously mentioned, an extension of the proposal of [MT95b,
PTY5] is used to define possible next states in the action language AC in the first

part of this dissertation.

2.6 Causal Theories of Action

‘We mention separately the ongoing line of recent work on causal theories of action
[Gef90, Elk92, BH93, Bar95, Lin95, MT95b, Thi95a, Gus96, Lin96, San96, Lif97,
MT97, Thi97, Tur97, GL98, MT98b, Tur98], most of which has already been cited
in other contexts.

Recall that Hector Geffner in [Gef89, Gef90] introduced an ambitious non-
monotonic formalism for causal and default reasoning, and discussed how to apply it
to a number of problems in commonsense knowledge representation and nonmono-
tonic reasoning, including the problem of reasoning about action. Although puzzling
in some details, his proposal anticipates several ideas central to the work presented

in the second part of this dissertation. For one thing, the syntax of UCL is essen-
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tially that of his nonmonotonic formalism.> Moreover, the intuitive reading of the
modal operator is really very close in the two formalisms: Geffner reads “explained,”
where we read, essentially, “has a cause.” In fact, Geflner was interested in a similar
notion of causal explanation, and, except for some minor technical complications,
it seems that UCL can be embedded in his formalism. Since Geffner’s formalism is
considerably more ambitious, one way to characterize the relative contribution of
UCL is to say that while its aims are simpler, so are its means.

There is another striking fact. In his example of an action theory, Geffner

includes formulas of the form

¢>Cyp (2.1)

which is exactly the form of formulas in the subset of UCL that corresponds to
the causal theories formalism of McCain and Turner introduced in [MT97]. Such
formulas have one of the crucial properties of static causal laws: they are noncon-
trapositive. That is, (2.1) does not entail the formula —¢ > C—¢. Such causal laws
are of considerable interest for a number of reasons. For one thing, as discussed at
length in the third part of this dissertation, they can lead to effective methods for
automated reasoning about actions when the formula 1 in the consequent of (2.1)
is restricted to be a literal. They also played at least an inspirational role in the
circumscriptive proposal of Lin [Lin95], in which Caused is introduced as a predicate

that is minimized with respect to “causal laws” of roughly the form
Holds(¢,s) D Caused(F,V,s)

where V is a “truth value” and F is the name of a fluent. Again, intuitively at least,

such a sentence corresponds to the special case of (2.1) when 9 is a literal.

5More accurately, Geffner stops short of introducing a modal logic, but considers instead atomic
symbols of the form C¢, where ¢ is a formula of propositional logic. He then imposes closure
conditions on his propositional models which serve to approximate the semantics of propositional
S5 modal logic.
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Elkan [E1k92] argues for the importance of causality in describing the indirect
effects of actions, but his proposal is not fully specified. Instead he illustrates his
ideas by considering examples. It is clear though that his approach involves “pre-
computing” the indirect effects of actions as a preliminary step to formalizing the
action domain. This is counter to the spirit of the work in this dissertation. Elkan
also rejects the notion of static causal laws, arguing that cause always temporally
precedes effect.

Brewka and Hertzberg [BH93] attempt to represent causal background knowl-
edge using inference rules, much as is done in the definition of possible next states
used in this dissertation. Nevertheless, their definition is based on the principle
of minimal change. Rather than attempt to reason directly about what is caused,
they use inference rules to alter the measure of change. This can lead to unsatisfac-
tory results, as discussed in Chapter 3.4 of this dissertation, and also makes their
definition somewhat unwieldy.

As we have said, the action language AC discussed in Chapter 3.4 incorpo-
rates the causal approach introduced in [MT95b]. Further discussion of the recent
work on causality in theories of action in [Bar95, Lin95, Thi95a, Thi97] is post-
poned until Chapter 3.4, where brief comparisons with AC appear. Lin’s proposal

[Lin95, Lin96] is also considered again, in much greater detail, in Chapter 5.
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Chapter 3

Inference Rules in Causal

Action Theories

3.1 Introduction

In the first part of this dissertation, we employ the methodology proposed by Gel-
fond and Lifschitz (discussed in Chapter 2) which involves first defining a high-level
language for representing commonsense knowledge about actions, and then specify-
ing translations from the high-level action language into general-purpose formalisms.
Accordingly, we define a high-level action language AC, and specify sound and com-
plete translations of portions of AC into default logic and logic programming.

Before defining the action language AC, we introduce a definition of possible
next states that reflects a causal understanding of the commonsense law of iner-
tia, as previously discussed, and allows us to take into account static causal laws,
characterized mathematically by means of inference rules.

Our translations of AC take advantage of the fact that default logic and logic
programming are rule-based formalisms. This of course simplifies the translation of

static causal laws, but, as we demonstrate, it also allows convenient representations
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of other causal aspects of action domains. In particular, as previously described, we
represent the commonsense law of inertia with rules of a very simple form.

This chapter is organized as follows. In Section 3.2 we illustrate the range of
applicability of the definitions introduced in this chapter, by considering four exam-
ple action domains. We provide for each a brief informal description, a formalization
in the action language AC, and a corresponding formalization in logic programming,
default logic, or both. In Section 3.3 we introduce the causal definition of possible
next states that is used in AC, and briefly investigate its mathematical properties.
We then define AC in Section 3.4, and compare it to some other recent proposals for
causal theories of action. In Section 3.5 we specify a translation from a subset of AC
into default logic, and state the relevant soundness and completeness theorems. We
also specify a second, simpler translation which is sound and complete for a smaller
subset of AC. Section 3.5 also includes a comparison between the default theory we
obtain for the classic Yale Shooting domain and the default theories considered by
Hanks and McDermott and by Morris [Mor88]. In Section 3.6 we show that, under
simple syntactic restrictions on the form of AC domain descriptions, the translations
into default logic can be adapted to generate logic programs that correctly represent
commonsense knowledge about actions. We defer until Chapter 4 most proofs of

theorems.

3.2 Four Examples

In order to illustrate the range of applicability of the definitions introduced in this
chapter, we next consider four example action domains, providing for each an infor-
mal description, a formalization in the high-level action language AC, and a sound

and complete translation into default logic, logic programming, or both.
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Example 1

‘We begin with yet another variant of the Yale Shooting domain. There is a pilgrim
and a turkey. The pilgrim has two guns. If the pilgrim fires a loaded gun, the
turkey will be caused to be not alive in the resulting situation. Furthermore, one
can make the turkey be not trotting by making it not alive, because whenever there
is a cause for the turkey being not alive there is also a cause for the turkey not
trotting. Initially the turkey is trotting and at least one of the two guns is loaded.

Based on this informal description, we can conclude, for instance, that the
turkey is not trotting in the situation that would result if the pilgrim were to shoot
his two guns, one after the other, in the initial situation.

This is an example of a “temporal projection” action domain, in which we
are told only about the values of fluents in the initial situation. Furthermore, this
is an “incomplete” temporal projection domain, since the information we are given
about the initial situation does not completely describe it.

This action domain includes a static causal law: whenever not alive is caused,
not trotting is also caused. It follows from this static causal law that one can make
the turkey be not trotting by making it be not alive. Therefore, shooting a loaded
gun when the turkey is trotting has not only the direct effect of killing the turkey,
but also the indirect effect, or ramification, of making it stop trotting.

In the action language AC, this action domain can be formalized as follows.!

initially Trotting
initially Loaded(Guni) V Loaded(Guns)
—Alive suffices for — Trotting

Shoot(z) causes —Alive if Loaded(z)

! Although AC domain descriptions do not include variables, we sometimes use metavariables
in our representations of them. For instance, the metavariable z in the fourth expression in the
domain description ranges over { Guni, Guna}.
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This AC domain description entails, for instance, the AC proposition
—Trotting after Shoot(Gun); Shoot(Guns)

which says that — Trotting holds in the situation that would result from performing
the action sequence Shoot(Guny); Shoot(Guns) in the initial situation.

The domain description includes the proposition
—Alive suffices for —Trotting

which describes the static causal law: it says that, in the action domain we are
describing, whenever —Alive is caused, — Trotting is also caused. Because of this
static causal law, it is impossible in this action domain for Trotting to be true when
Alive is false. Intuitively, this can be explained as follows. In every situation, (we
require that) every fact is caused. In particular then, whenever Alive is false in a
situation, the fact that Alive is false must be caused. And since —Alive is caused,
it follows by the static causal law that —Trotting is also caused; and consequently
— Trotting must be true as well. Accordingly, the semantics of AC guarantees that
no model of the domain description includes a situation in which both Trotting and
—Alive hold. On the other hand, we emphasize that in the semantics of AC it does
not follow from this proposition that Alive can be made true by making Trotting
true! This failure of contraposition reflects the fact that one cannot make a turkey
be alive just by making it trot. (On the contrary, common sense tells us that a
turkey simply cannot trot unless it is alive.)

We display in Figure 3.1 a correct formalization in default logic of this ex-
ample. It can be obtained from the above AC domain description by a translation
defined in Section 3.5 of this dissertation.

The first rule in this default theory reflects the assertion that the turkey is
initially trotting, by ensuring that there can be no consistent extension of the default

theory in which the turkey is initially not trotting. In a similar fashion, the second
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—Holds(Trotting, Sy) —(Holds(Loaded(Gun,), Sp) V Holds(Loaded(Guns), Sp))
Fualse Fulse
—Holds(Alive, s) Holds(Loaded(z), s)
—Holds(Trotting, s) —Holds(Alive, Result(Shoot(z), s))
: Holds(f,Sp) :—~Holds(f,So)
Holds(f,So) —Holds(f,So)
Holds(f,s) : Holds(f, Result(a,s)) —Holds(f,s):—Holds(f, Result(a,s))
Holds(f, Result(a, s)) —Holds(f, Result(a, s))

Figure 3.1: Default theory for Example 1.

rule says that at least one of the pilgrim’s guns is initially loaded. The form of these

two rules may be surprising. For instance, one may wonder why the first rule is not

_ True
Holds( Trotting, So)

instead. This can be explained as follows.
Consider the following AC domain description, obtained by deleting the first

two propositions from the above domain description.

—Alive suffices for —Trotting

Shoot(z) causes —Alive if Loaded(x)

This reduced domain description has exactly twelve models, one for each possible
initial situation. (Recall that the AC proposition —Alive suffices for — Trotting
rules out any situation in which Alive is false and Trotting is true.) In the semantics

of AC, the role of the proposition
initially Trotting

is simply to eliminate those models in which trotting is initially false. Similarly, the
AC proposition
initially Loaded(Gun) V Loaded (Guns)
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simply eliminates those models in which both guns are initially unloaded. Thus the
full domain description has exactly three models.

Now, the translation into default logic has the property that there is a one-
to-one correspondence between AC models of the domain description and consistent
extensions of the corresponding default theory. Thus, the default theory for the
reduced domain description has twelve consistent extensions. In general, adding a

default rule of the form

¢
False

simply eliminates all consistent extensions to which ¢ belongs. Therefore, adding

the rule
—Holds( Trotting, Sy)
False

simply eliminates those extensions that include the literal —Holds( Trotting, Sp).

Similarly, adding the rule

—(Holds(Loaded(Guny), Sy) V Holds(Loaded(Guns), Sg))
False

simply eliminates those extensions in which, roughly speaking, both guns are initially
unloaded. Adding both of these rules eliminates nine extensions in all, and leaves us
with exactly the three extensions that correspond to the three models of the original
domain description. Because of the simple, monotonic behavior of such default rules,
the correctness of this aspect of the translation is relatively transparent.

The third rule in the default theory can be understood to say that the turkey
can be made to stop trotting by making it not alive. Notice that this default rule
does not allow one to derive Holds(Alive, Sy) from Holds(Trotting, Sp), for instance.
This reflects the fact that the static causal law is noncontrapositive. Nonetheless,
in the context of the default theory as a whole, this default rule guarantees that no
consistent extension includes both Holds( Trotting, So) and = Holds(Alive, Sp).

The fourth rule in the default theory can be understood to say that the
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False < not Holds( Trotting, Sp)

False < not Holds(Loaded (Guny), Sp), not Holds(Loaded(Guns), Sp)
—Holds( Trotting, s) < —Holds(Alive, s)

—Holds(Alive, Result(Shoot(z), s)) < Holds(Loaded(z), s)

Holds(f, So) < not—Holds(f,So)

—Holds(f, Sp) < not Holds(f, Sp)

Holds(f, Result(a, s)) < Holds(f,s), not=Holds(f, Result(a, s))

—Holds(f, Result(a, s)) < —Holds(f, s), not Holds(f, Result(a, s))

*® NSO W

Figure 3.2: Logic program for Example 1.

turkey is not alive after the pilgrim fires a gun, if that gun is loaded.? Notice that
this default rule does not allow one to derive the literal —Holds(Loaded (Guny), Sp)
from the literal Holds(Alive, Result(Shoot(Guny),Sp)), for instance. This reflects
the commonsense intuition that facts in the future cannot cause facts in the past.’

The remaining rules in the default theory are standard elements of the trans-
lation we are considering. The fifth and sixth rules reflect the obvious, and crucial,
fact that each fluent is either true or false in the initial situation, by forcing each con-
sistent extension of the default theory to include, for each fluent F, either the literal
Holds(F, Sg) or the literal ~Holds(F, Sy). Furthermore, these two rules interact to
guarantee that the default theory takes into account every possible initial situation.
The seventh and eighth rules express the commonsense law of inertia, as previously
discussed. For instance, since we have the literal Holds(Trotting, Sp), one of the in-
ertia rules allows us to derive the literal Holds(Trotting, Result(Shoot(Guni), So)),
so long as it is consistent to do so (which, roughly speaking, it will be if and only if
the first gun is initially unloaded). Notice that these inertia rules again reflect the

commonsense belief that facts in the future do not cause facts in the past.

?Here, as earlier, z appears as a metavariable ranging over {Guni, Guna}.
3This point is discussed further in Section 3.5, when we compare our translation for the Yale
Shooting domain to previously published defanlt logic formalizations.
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This action domain can also be correctly formalized in logic programming,
under the answer set semantics of Gelfond and Lifschitz. Because of the equivalence
of logic programming under the answer set semantics and the appropriate subset
of default logic, the logic program in Figure 3.2 can be understood as a direct
translation of the previous default theory, except for the first and second rules,
which are handled in a slightly more complex fashion (to be explained in Section 3.6
of this dissertation).

Recall that one consequence of the action domain in this example is that the
turkey would not be trotting if the pilgrim were to shoot his two guns, one after the

other, in the initial situation. Accordingly, the literal
—Holds( Trotting, Result(Shoot(Guns), Result(Shoot(Gun1), Sp)))

is a consequence of both the default theory and the logic program.

Example 2

Let us consider a second action domain, adapted from [Lin95], in which there is a
spring-loaded briefcase with two clasps. We have actions that unfasten the clasps,
one at a time. If both clasps are unfastened, the briefcase pops open. Initially the
briefcase is not open. We can conclude in this case that the briefcase would be open
after we unfastened the first clasp in the initial situation if and only if the second
clasp is initially not fastened.

As in the previous example, this is an incomplete temporal projection domain
in which there is a static causal law. Once again, we are interested in ramifications.

This action domain can be described in AC as follows.

initially —Open
Unfasten(z) causes — Fastened(x)

—Fastened(Clasp,) N\ ~Fastened(Clasp,) suffices for Open

34

Holds(Open, Sp) True
False —Holds(Fastened(z), Result(Unfasten(z), s))
—Holds(Fastened(Clasp,), s) N = Holds(Fastened(Clasp,), s)
Holds(Open, s)
: Holds(f,So) : —Holds(f,So)
Holds(f,So)  —Holds(f,So)
Holds(f, s) : Holds(f, Result(a,s))  —Holds(f,s): ~Holds(f, Result(a,s))

Holds(f, Result(a, s)) —Holds(f, Result(a, s))

Figure 3.3: Default theory for Example 2.

The corresponding default theory is shown in Figure 3.3. The first three rules
of the default theory correspond to the three propositions in the domain description.
The last four rules again encode the completeness of the initial situation and the
commonsense law of inertia. (As in the previous example, this domain description
can also be translated into a logic program.)

The domain description entails the AC proposition
( Open after Unfasten(Clasp,)) = (initially —Fastened(Clasp,))
and, accordingly, the formula
Holds(Open, Result( Unfasten(Clasp,), So)) = —Holds(Fastened( Clasp,), So)

is a consequence of the default theory. In contrast with the previous example, we are
concerned in this case with a consequence of a more complex kind, relating fluent
values at two different time points.

As we have said, background knowledge in action domains has traditionally
been represented in the form of state constraints, which are, intuitively speaking,
formulas of classical logic that are said to hold in every possible state of the world.
Thus, for example, in a more traditional description of this action domain, one might

write a state constraint
always —Fastened(Clasp,) N\ —Fastened(Clasp,) O Open
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in place of the proposition
—Fastened(Clasp,) N\ —Fastened(Clasp,) suffices for Open

which represents a static causal law. It would in fact be a mistake to do this. While
both propositions correctly rule out states in which the briefcase is closed and yet
neither clasp is fastened, the two propositions do not agree on the indirect effects, or
ramifications, of actions. For instance, consider a situation in which the first clasp
is fastened, the second one isn’t, and the briefcase is closed. According to the state
constraint, it is possible that, after unfastening the first clasp, the briefcase would
remain closed and the second clasp would (mysteriously) become fastened.* This
outcome—sanctioned by the state constraint—is contrary to expectation, and is in
fact not sanctioned by the static causal law.

In general, static causal laws are more expressive than state constraints, as
the previous example suggests. In fact, as we show in Section 3.3, state constraints,
as they have been traditionally understood, constitute a simple special case of static
causal laws. In Section 3.4 we will discuss these issues at greater length in light of

this and other examples.

Example 3

A third action domain, loosely adapted from [KL94, GKL95], involves flipping a
coin and betting on the outcome.’ After each toss the coin either lies heads or it
doesn’t. (Intuitively, the outcome of the toss action is nondeterministic.) If you bet
heads when the coin lies heads, you become a winner. If you bet heads when the
coin doesn’t lie heads, you cease being a winner. Now, suppose that you toss and

bet heads, after which you are a winner. In this case we can conclude that the coin

“The reader may notice the similarity to the “Two Ducts” domain of Ginsberg and Smith [GS88],
as well as to the “Two Switches” domain of [Lif90]. As we’ll explain in Section 3.4, the current
example is more telling for our purposes.

5This action domain also resembles Sandewall’s “Russian Turkey Shoot” domain [San94].
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False < not Holds( Winner, Result(BetHeads, Result(Toss, Sp)))
Holds(Heads, Result(Toss, s)) < not—Holds(Heads, Result(Toss, s))
—Holds(Heads, Result(Toss, s)) < not Holds(Heads, Result(Toss, s))
Holds( Winner, Result(BetHeads, s)) < Holds(Heads, s)

—Holds( Winner, Result(BetHeads, s)) < —~Holds(Heads, s)

Holds(f, So) < not—Holds(f, So)

—Holds(f, So) < not Holds(f, Sy)

Holds(f, Result(a, s)) < Holds(f, s), not—~Holds(f, Result(a, s))
—Holds(f, Result(a, s)) < —Holds(f,s), not Holds(f, Result(a,s))

© ® NS W N

Figure 3.4: Logic program for Example 3.

was heads after the toss.

This is an action domain in which there is a nondeterministic action. Notice
also that this is not a temporal projection domain, since we are told about the value
of a fluent in a non-initial situation. In this case, we are interested in reasoning from
a later to an earlier time.

This action domain can be formalized in AC as follows.

Winner after Toss; BetHeads
Toss possibly changes Heads
BetHeads causes Winner if Heads

BetHeads causes — Winner if —Heads
This domain description entails the AC proposition
Heads after Toss
and, accordingly, the literal
Holds(Heads, Result(Toss, Sp))
is entailed by the corresponding logic program, listed in Figure 3.4.
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The first rule of this program corresponds to the first proposition in the
domain description. The next two rules correspond to the second proposition in
the domain description: the nondeterministic effect of the Toss action is captured
through the interaction of these rules. The fourth and fifth rules correspond to the
third and fourth propositions in the domain description. Again, the last four rules

encode the completeness of the initial situation and the commonsense law of inertia.

Example 4

Finally, consider a fourth action domain, adapted from [KL94]. The door to your
hotel room is closed. It can be opened by inserting the keycard, but that is not
possible when you do not have the keycard.

In AC we write the following.

initially —DoorOpen
InsertCard causes DoorOpen

impossible InsertCard if —HasCard

Since it is not known whether or not you initially have your keycard, this domain

description does not entail the AC proposition

DoorOpen after InsertCard
but it does entail the following weaker AC proposition.

( DoorOpen after InsertCard ) = (initially HasCard )
Accordingly, the corresponding logic program (Figure 3.5) does not entail the literal
Holds(DoorOpen, Result(InsertCard, Sy))
but each answer set for the program includes exactly one of the following two literals:
Holds(DoorOpen, Result(InsertCard, Sy)) , = Holds(HasCard, Sp) .
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False < not—Holds(DoorOpen, Sy)
Holds(DoorOpen, Result(InsertCard, s)) < Reachable(Result(InsertCard, s))
—Reachable(Result(InsertCard, s)) < —Holds(HasCard, s)
Reachable(s) < not—Reachable(s)
—Reachable(Result(a, s)) < —Reachable(s)
Holds(f, So) < not—Holds(f, So)
—Holds(f, So) < not Holds(f, Sp)
Holds(f, Result(a, s)) < Holds(f, s), Reachable(Result(a, s)),
not—Holds(f, Result(a, s))
9. —Holds(f, Result(a, s)) < —Holds(f,s), Reachable(Result(a, s)),
not Holds(f, Result(a, s))

® NS W N

Figure 3.5: Logic program for Example 4.

This domain description, unlike those considered in the previous examples,
describes an “action precondition” for one of its actions: the action InsertCard
can be performed only in situations where HasCard holds. Thus, for instance, the

domain description fails to entail the proposition
True after InsertCard

which says, roughly speaking, that the action of inserting the keycard can be per-
formed in the initial situation.

The action language AC handles action preconditions in a flexible and robust
manner. By contrast we note that the sole restriction placed in this dissertation on
the AC domain descriptions translated into default logic will be a requirement that
action preconditions be expressed in a particular explicit form. The domain descrip-
tion above satisfies this requirement. There are additional, syntactic restrictions on
the domains that we translate into logic programming. This domain satisfies these
additional restrictions as well, and therefore we are able to formalize it in logic pro-

gramming, as shown in Figure 3.5, using a translation defined in Section 3.6 of this
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dissertation.

The first three rules of this program correspond to the three propositions
in the domain description. Notice that the translation in this case is complicated
by the fact that in this action domain, unlike the domains considered previously,
there is an action that is sometimes impossible to perform. This additional diffi-
culty is accommodated in the translation through the use of an additional predicate
Reachable, which says of a sequence of actions that it can be performed in the ini-
tial situation. (Recall the related discussion in Chapter 2.) For instance, the third
rule says, roughly speaking, that if you are in a situation in which you do not have
your keycard, there is no “reachable” situation that can result from inserting your
keycard—since you in fact cannot insert it. Rule 2 says that if it is indeed possible
to insert your keycard in the current situation, then the door will be open after you
have done so. Rule 4 expresses the assumption that situations are reachable unless
we say otherwise. This assumption is based on the more fundamental assumption
in AC that actions are performable unless we say otherwise (either explicitly or im-
plicitly). Rule 5 says that if a given situation is not reachable, then it does not have
any reachable successors. Notice that in this translation the assumption of inertia

(in the last two rules) is also predicated on reachability.

3.3 A Causal Definition of Possible Next States

In this section we introduce and briefly investigate the causal definition of possi-
ble next states that is used in the action language AC. As mentioned previously,
(essentially) this definition was first introduced in [MT95b, PT95].

3.3.1 Preliminary Definitions

Given a set U of propositional symbols, we denote by L£(U) the language of propo-

sitional logic with exactly the atoms U. We assume here and throughout the dis-
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sertation that the language includes a zero-place logical connective True such that
True is a tautology. False stands for —True. (Notice that U can be empty.) For
any literal L, let L denote the literal complementary to L. For any set X of literals,
let X = {L: L € X}. By Lit(U) we denote the set consisting of all literals in the
language £(U). In this description we say nothing about the form of the atoms in U,
but of course an important special case is when U is the set of all ground atoms of
a many-sorted first-order language.

We identify each interpretation of £(U) with the set of literals from Lit(U)
that are true in it. We say that a set of formulas from L(U) is logically closed if it
is closed under propositional logic (with respect to the language L£(U)). Inference

rules over £(U) will be written as expressions of the form

¢

¥
where ¢ and 1 are formulas from L(U).
Let R be a set of inference rules, and let T be a set of formulas. We say that
T is closed under R if for every rule % in R, if ¢ belongs to I' then ¢ does too. By
Cny(R) we denote the least logically closed set of formulas from £(U) that is closed
under R. We often find it convenient to identify a formula ¢ with the inference rule

True
el

Under this convention, Cny(T') denotes the least logically closed set of formulas

from L(U) that contains T'. Similarly, Cny (T U R) is the least logically closed set
of formulas from £(U) that contains T and is also closed under R. We usnally omit
the subscript to Cn when there is no danger of confusion.

Although the definitions in this section are stated for the propositional case,
they are taken, in the standard way, to apply in the (quantifier-free) non-propositional
case as well, by taking each non-ground expression to stand for all of its ground in-

stances.
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3.3.2 Possible Next States: Rule Update

We are now ready to introduce the causal definition of possible next states from
[MT95b, PT95], which is applicable in the presence of arbitrary inference rules.
Following [PT95], we call this definition “rule update.” In the last subsection of this
section we will discuss a slight extension of this definition that corresponds precisely
to the definition of possible next states used in the action language AC.

Let R be a set of inference rules over £(U).5 Let I and I' be interpretations

of L(U). We say I' is a rule update of I by R if
CnU(I') = Cny ((I n I’) 0] R) .

The literals in I N I' can be understood as the facts that are “preserved by
inertia” as we move from interpretation I to interpretation I'. In accordance with
a causal understanding of the commonsense law of inertia, the definition of rule
update does not require any additional “causal explanation” for the truth of these
literals in I’. The definition does require though that all new facts in I'—that is, the
literals in I' \ I—be “causally explained” by the rules in R, along with the literals
in I'NI'. Accordingly, it follows from the definition of rule update that I’ is a rule

update of I by R if and only if the following two conditions are met:
e Cn(I') is closed under R ;
o for all literals Lin I'\I, L€ Cn((INI')UR) .

That is, roughly speaking, in order for I' to be a rule update of I by R, I' must be
“consistent with” the rules in R, and furthermore every literal in I’ must be causally

explained either it held in I or it was forced to become true according to R.

SIn applications to reasoning about action, the set R will normally consist of two parts—a set £
of formulas whose truth is “directly” caused by an action, and a set R of inference rules that
represent static causal laws. For present purposes, it is convenient to suppress these details.
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Consider the following example.

a
=bV —e

I = {a,b,c} R1:{ } I ={a, b, c}

First we will show that I is a rule update of I; by R;. Notice that
LNI={a,c}

and that
b€ Cn((I1NI)URy) .

So for all literals L € Iy \ I1, L € Cn ((I; N Is) UR4). And since Cn(Iy) is closed
under Ry, we have shown that I5 is an update of I; by Ry. A symmetric argument
shows that the interpretation {a,b,—c} is also a rule update of I by R;. On
the other hand, if we take I3 = {=a,b,c}, then Iy N I3 = {b,c}; and we see that
—a ¢ Cn ((Iy NI3) URy). So I3 is not a rule update of I; by Ry. One can similarly

show that {a, b, —c} is not a rule update of I by R;.

3.3.3 Rule Update and Minimal Change

Next we briefly investigate mathematical properties of rule update. For instance,
we show that rule update does not violate the principle of minimal change, even
though it is based on a causal understanding of the commonsense law of inertia.
We also show that rule update includes as a special case Winslett’s classic minimal-
change definition of update by means of formulas. We do not include a proof that
rule update also generalizes Marek and Truszczyniski’s revision programming [MT94,
MT98a], as mentioned previously in Chapter 1. This fact is proved in [PT95, PT97].

Given interpretations I, I’ and I", we say that I' is closer to I than I" is if
I" N is a proper subset of I' N 1.

Let I' be a set of formulas. Let I and I’ be interpretations. We say that I’

is a formula update of I by T if I' is a model of T such that no model of T is closer
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to I than T’ is.”
In order to compare formula update and rule update, we introduce the follow-
ing additional definition. Given a set R of inference rules, we define a corresponding

set of formulas Theory(R) as follows.

Theory(R) = {4) D % [S 'R}

Thus, for example, Theory(Ri) = {a D =bV —c}.

Let R be a set of inference rules and I an interpretation. Notice that Cn(I)
is closed under R if and only if T is a model of Theory(R). Thus, every rule update
of I by R is a model of Theory(R). In fact, we have the following stronger result,

which shows that rule update satisfies the principle of minimal change.

Proposition 3.1 Let R be a set of inference rules and I an interpretation. Every

rule update of I by R is a formula update of I by Theory(R).

Proof. Assume that I’ is a rule update of I by R. So I' is a model of Theory(R).
Let I"” be a model of Theory(R) such that I' NI C I" N I. We need to show
that I" = I'. Since I' and I" are both interpretations, it’s enough to show that

Cn(I') C On(I").

Cn(I') = Cn((INI'YUR) ( I' is an update of I by R )
C Cn(INI"YUR) (I'nICI"nI)
C Cn(I"UR) (I"nIcr)
= Cn(I") ( Cn(I") is closed under R )

[m}

The converse of Proposition 3.1 doesn’t hold in general. For instance, we
have seen in the example in the previous section that I3 is not a rule update of Iy

by R1, and yet it is easy to verify that I3 is a formula update of Iy by Theory(R1).

"The definition given here is equivalent, and almost identical, to the definition in [Win88].
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On the other hand, the following proposition shows that if every inference
rule in R has the form % then the rule updates of I by R will be exactly the
formula updates of I by Theory(R). Thus, rule update includes formula update as

a special case.

Proposition 3.2 Let R be a set of inference rules, each of the form %.

Any
formula update of an interpretation I by Theory(R) is a rule update of I by R.

Proof.  Assume I’ is a formula update of I by Theory(R). Let I” be a model
of (I N1I")U Theory(R). So I" is a model of Theory(R). Also I' NI C I" so
I'nI C I"NI. Since no model of Theory(R) is closer to I than I' is, we can
conclude that I” = I'. Thus, I' is the only model of (I NI')U Theory(R). It follows
that Cn(I') = Cn((I NI')U Theory(R)). Due to the special form of the rules in R,
Cn((INI')U Theory(R)) = Cn((INI')UR). So I' is a rule update of I by R. O

We will find that inference rules of the form E% constitute another simple
case of special interest. Adding such a rule simply eliminates all rule updates that

satisfy ¢.

Proposition 3.3 Let R be a set of inference rules, and I an interpretation. An
intepretation I' is a rule update of I by RU { %} if and only if I' is a rule update
of I by R and I | ¢.

The proof is straightforward.

3.3.4 Explicit Definitions in Rule Update

The definition of possible next states in AC is actually a slight extension of rule
update, in which “explicit definitions” are accomodated. This will require a little

explanation.
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In classical propositional logic, given a theory T' in a language L£(U \ {p}),
we can obtain a definitional extension IV of T, in the language £(U), by adding to T’
an explicit definition of the form p = ¢, where ¢ is a formula of £(U \ {p}). There
is a one-to-one correspondence between models of I' and models of I/, which can
be characterized as follows. For any interpretation I of L(U \ {p}), let p(I) denote
the interpretation of £(U) such that I C p(I) and p(I) |= p = ¢. Every model of T’
can be written in the form p(I) for some interpretation I of L(U \ {p}). Moreover,
for all interpretations I of L(U \ {p}), I = T if and only if p(I) = I". Notice that
it follows that I’ is a conservative extension of I'. Finally, it is clear that we can
then replace with p any occurrence of ¢ in any formula of I, except in the explicit
definition of p, and obtain an equivalent theory.

We wish to obtain a similar “definitional extension” result for rule update.
Here explicit definitions will be inference rules of the form pTT?"%. (Recall that we
often identify such a rule with the formula p = ¢.)

Let R be a set of inference rules in a language L(U \ {p}). Let R’ be the set

True
pP=¢
where ¢ is a formula of £(U\{p}). In this case what we can say is that there is a one-

of inference rules over £(U) obtained by adding to R the explicit definition

to-one correspondence between models of Cny\ (3(R) and models of Cny7(R'). The
characterization is the same as before. Every model of Cny(R') can be written in the
form p(I) for some interpretation I of L(U \ {p}). Moreover, for all interpretations I
of L(U \p), I = Cnyp\py(R) if and only if p(7) |= Cny(R'). Finally, it is clear that
if R"” can be obtained from R’ by replacing with p any or all occurrences of ¢ in any
or all rules in R’, except in the explicit definition of p, then Cny(R’) = Cny(R").
This is almost the result we want, except that it does not refer to rule update.
So, is there a one-to-one correspondence between updates by R and updates by R'?
More precisely, is it the case that, for any interpretations I and I' of L(U \ p), I' is

an update of I by R if and only if p(I’) is an update of p(I) by R'? The answer is
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no. To see why this may be so, observe that our previous observations imply that
Cnp\gpy(I') = Crggy (INT)UR) iff Cny(p(I')) = Cny((INT)UR').
Therefore, I' is an update of I by R if and only if
Cnu(p(I')) = Cny (INT)UR) .
But p(I') is an update of p(I) by R’ if and only if
Cny(p(I')) = Cny ((p(I) NpI')) UR') .

We see that update by R and update by R’ may diverge because, in general, I NI’

can be a proper subset of p(I) N p(I").

Here’s such an example. Take U = {p,q,7}, R = { 7&1&6 }, and consider
R'=RU {&}
p=(qVvr)

The interpretation I' = {—=q,—r} is the only rule update of I = {g,—r} by R. As
expected, p(I') = {-p, —~¢q, —r} is a rule update of p(I) = {p, g, -7} by R'. But there
is a second, unintended rule update of p(I) by R'. The interpretation I" = {—q,r}
is not a rule update of I by R, but p(I") = {p, —q, 7} is a rule update of p(I) by R'.

This second rule update of p(I) by R’ makes no sense if we are to understand the

True
p=(qVr
in computing rule updates by R', we inappropriately take the fluent p to be inertial.

inference rule ) as a definition of p. Intuitively, the problem here is that
Thus I NI" =0 while p(I) Np(I") = {p}. Since we mean for p to be a defined
fluent, it should not be inertial in itself instead its inertial characteristics should
be obtained indirectly from the fluents in terms of which it is defined.

The following proposition justifies the definition of possible next states in the
presence of explicit definitions that is used in the following section in defining the

semantics of AC.

47



Proposition 3.4 Let R' be a set of inference rules over L(U) that includes a

rule pTrEu;), where ¢ is a formula of L(U \ {p}). Let R be the set of inference

rules over L(U \ {p}) obtained from R'\ {I]TTT"%} by replacing all occurrences of p

with ¢. Every interpretation of L(U\{p}) can be written in the form INLit(U\{p}),
where I is an interpretation of L(U) that satisfies p = ¢. Moreover, for all inter-
pretations I and I' of L(U) that satisfy p= ¢, I' N Lit(U \ {p}) is a rule update of
INLit(U\ {p}) by R if and only if

Cnp(I') = Cng [(IN T N Lit(U \ {p})) UR'] .

The proof of this proposition is straightforward based on the observations
we’ve already made.
The formulation used here brings us close to the precise statement of the

fixpoint condition in the definition of possible next states in AC.

3.4 The Action Language AC

In the high-level action language AC, a description of an action domain is a set of

propositions of the following five kinds:

1. value propositions, which restrict the values of fluents in situations that would

result from the performance of sequences of actions;

2. sufficiency propositions, which say that whenever one fluent formula is caused

to be true, a second fluent formula is also caused to be true;

3. effect propositions, which say that under certain conditions a fluent formula

would be caused to hold as a result of the performance of an action;

4. influence propositions, which say that under certain conditions the perfor-

mance of an action would “nondeterministically” change the value of a fluent;
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5. executability propositions, which say that under certain conditions an action

would be impossible to perform.

In this section, we specify the syntax and semantics of AC, and illustrate the
definitions with an example. We then discuss properties of .AC and consider some

related work.

3.4.1 Syntax of AC

We begin with two disjoint nonempty sets of symbols, a set F of fluent names and
a set A of action names. We designate a subset Fy of F as the frame fluents and
we call the members of F \ Fy the nonframe fluents. A fluent formula is a formula
from L(F). A frame fluent formula is a formula from L(Fy).

An atomic value proposition is an expression of the form
¢ after 4

where ¢ is a fluent formula, and 4 is a string of action names. Such an expression
says that the actions A can be performed in sequence, beginning in the initial situ-
ation, and if they were, the fluent formula ¢ would hold in the resulting situation.

If A is the empty string, we may write instead
initially ¢.

A value proposition is a propositional combination of atomic value propositions.

A sufficiency proposition is an expression of the form
¢ suffices for ¢

where ¢ and ¢ are fluent formulas. Sufficiency propositions represent static causal
laws. Thus, such a proposition says that, in the action domain being described,

whenever ¢ is caused, v is caused. We write
always ¢
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as an abbreviation for the proposition True suffices for ¢ and we write
never ¢

as an abbreviation for the proposition ¢ suffices for False. Given a nonframe

fluent F', an expression of the form
always F = ¢

where ¢ is a frame fluent formula, is called an ezplicit definition of F. We require
that AC domain descriptions include an explicit definition of every nonframe fluent.

An effect proposition is an expression of the form
A causes ¢ if ¢

where A is an action name, and ¢ and ¢ are fluent formulas. Such an expression
says that, if the action A were to be performed in a situation in which 1 holds,
the fluent formula ¢ would be caused to hold in the resulting situation. If ¢ is the
formula True, we may simply write A causes ¢.

An influence proposition is an expression of the form
A possibly changes F if ¢

where A is an action name, F' is a fluent name, and v is a fluent formula. Such an
expression says that, if the action A were to be performed in a situation in which ¢
holds, the fluent F' would be caused to be true or caused to be false in the resulting
situation. If ¢ is the formula True, we may simply write A possibly changes F'.

An ezecutability proposition is an expression of the form
impossible A if ¥

where A is an action name and 9 is a fluent formula. Such an expression says that

the action A cannot be performed in any situation in which ¢ holds. One easily
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checks that, in the semantics of AC, such a proposition has essentially the same
meaning as the effect proposition A causes False if 9, but the syntactic distinction
becomes convenient in Sections 3.5 and 3.6 when we specify translations of AC
domain descriptions into default logic and logic programming.

An AC domain description is a set of AC propositions that includes an ex-

plicit definition for each nonframe fluent.

3.4.2 Semantics of AC

Let D be an AC domain description, with fluents F and frame fluents Fy. A structure
for D is a partial function from action strings to interpretations of L£(F), whose
domain is nonempty and prefix-closed.® By Dom(¥) we denote the domain of a
structure ¥. Notice that for every structure ¥, Dom(¥) includes the empty string
(denoted by ).

Let R be the set of inference rules % such that the sufficiency proposition
¢ suffices for

is in D. An interpretation S of L(F) is called a state if Cnp(S) is closed under R.
Let A be action name and S a state. We say that A is prohibited in S if

there is an executability proposition
impossible A4 if ¥

in D such that S satisfies 9. Let E(A,S) be the set of all fluent formulas ¢ for

which there is an effect proposition
A causes ¢ if ¥

in D such that S satisfies ¢. Similarly, let F(A,S) be the set of all fluent names F

for which there is an influence proposition

A possibly changes F' if ¢

8A set X of strings is prefiz-closed if, for every string o € %2, every prefix of o is also in 3.
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in D such that S satisfies 1.
A set E of fluent formulas is called an explicit effect of A in S if:

1. A is not prohibited in S, and
2. there is an interpretation I of L(F(A,S)) such that E =TU E(A, S).

We define possible next states for domain description D as follows, using the
fixpoint condition described in Section 3.3.4. We say that a state S’ may result from

doing A in S if there is an explicit effect E of A in S such that
Cng(S") = Cnr [(SNS'NLit(F;) JUEUR] .

As discussed in the previous section, this definition guarantees that S’ may result
from doing A in S if and only if the value of every frame fluent in S’ is suitably
explained—either it held the same value in S and was not made to change, or its
value was changed (directly or indirectly) by the action. Let Res(A, S) denote the
set of states that may result from doing A in S.

Given a structure ¥, we say that an atomic value proposition ¢ after 4 is
true in U if A € Dom(¥) and ¥(A) satisfies ¢. The general truth definition for value
propositions is then given by the standard recursion over the logical connectives.

A structure ¥ for D is a model of D if it satisfies the following four conditions.
1. ¥(e) is a state.

2. For all A € Dom(¥) and all action names A, if Res(A, ¥(4)) is nonempty
then A; A € Dom(¥).

3. For all 4; A € Dom(¥), ¥(4; A) € Res(A, ¥(A)).
4. Every value proposition in D is true in W.

A value proposition is entailed by D if it is true in every model of D.
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Let us briefly, and somewhat informally, describe two easily verified proper-
ties of such models. First, all “reachable” situations are mapped to states. That is,
for all A € Dom(¥), ¥(A) is a state. Second, if an action string A corresponds to
a reachable situation, then according to our definition of possible next states it is
possible to achieve the state ¥(A4) by performing the actions 4 in sequence starting

in the initial state U(e).

3.4.3 An Example AC Domain Description

As an example illustrating the use of the preceding definitions, consider the following
AC domain description Di—another variant of the Yale Shooting domain. In this

domain description, Dead is the only nonframe fluent.

always Dead = —Alive
initially Walking

- Walking after Shoot

—Alive suffices for = Walking
Shoot causes Dead N\ —Loaded

impaossible Shoot if —Loaded

Notice that we are describing here a different shoot action than in Example 1 (Sec-
tion 3.2), where shooting was always possible. There, the direct effect —Alive of the
shoot action had a “fluent precondition” Loaded. Here, Loaded becomes instead an
action precondition of Shoot.

Domain description Dy has a unique model ¥y, as follows.

Dom(¥1) = {e, Shoot}

Wi(e) = {Loaded, Alive,~Dead, Walking}
Wy (Shoot) = {—Loaded,—Alive, Dead, ~ Walking}
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It is easy to check, for instance, that the following value proposition is true in ¥;.
(initially Loaded) A (Dead A —Loaded after Shoot)

To exercise the definitions, we will verify that ¥y is the unique model of D;.
It is clear that Uy is a structure for D1, so we begin by showing that ¥y is a model.
First, we must check that Wy(e) is a state. We see that domain description

Ds includes the sufficiency propositions
always Dead = — Alive

and

—Alive suffices for — Walking

from which we obtain the associated set of inference rules

R_ { True —Alive }
| Dead = = Alive’ = Walking | ~

It follows that there are exactly six states in this action domain: namely, the six

interpretations of L(F) that satisfy the fluent formulas
Dead = —Alive

and

—Alive D — Walking .

We see that Uy (e) is indeed one of these six states.
Second, we must check that Res(Shoot, U;(Shoot)) is empty. Since Di in-

cludes the executability proposition
impossible Shoot if —Loaded

we see that Shoot is prohibited in ¥;(Shoot). Therefore there can be no explicit
effect E of Shoot in ¥y (Shoot), which shows that Res(Shoot, ¥1(Shoot)) = 0.
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Third, we must verify that ¥, (Shoot) belongs to Res(Shoot, ¥ (€)). That is,
we must show that ¥q(Shoot) may result from doing Shoot in ¥q(e). This requires

that we check that
Cn(W1(Shoot)) = Cn((W1(e) N Wi (Shoot) N L(Fy)) U EUR)

where E is an explicit effect of Shoot in ¥y(e). We first observe that Shoot is
not prohibited in ¥y(e). Since D; includes no influence propositions, we have
F(Shoot,¥1(e)) = 0. Thus the only interpretation of L(F(Shoot,¥(e))) is also

0. Since Dy includes the effect proposition
Shoot causes Dead N —Loaded

we have

E(Shoot, ¥y (€)) = {Dead N —~Loaded} .
Given these observations, we can conclude that the unique explicit effect E of Shoot
in W (e) is { Dead A= Loaded}. It remains to observe that ¥, (e)N ¥4 (Shoot) is empty,
so Wy (e) N Wy (Shoot) N L(Fy) is also. Thus what we are to verify is that

Cn(¥1(Shoot)) = Cn({Dead A ~Loaded} U R)
which is clearly true. In fact, what we have shown is that
Res(Shoot, ¥1(e)) = {¥1(Shoot)}

since Wy (Shoot) is the only state that satisfies Dead A —Loaded.

Fourth, we must check that ¥; satisfies the two value propositions in Dy,
which it clearly does.

So we've shown that ¥y is indeed a model of domain description D;. Now
let us verify that it is the only model.

Assume that U is a model of D;. By model condition 1 we know that ¥(e)

is a state, and by model condition 4, we know that the value proposition
initially Walking
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is true in . That is, ¥(e) must satisfy the fluent formula Walking. It follows that
U(e) also satisfies Alive and —Dead. Thus at this point we know everything about
¥(e) except whether or not it satisfies Loaded, so there are two states to consider.
Consider the state S = {—Loaded, Alive, ~Dead, Walking}. We will show
that ¥(e) cannot be S, which will be sufficient to show that ¥(e) = ¥y(e). Since
D; includes the executability proposition impossible Shoot if —Loaded we know
that Shoot is prohibited in S. It follows that there can be no explicit effect E of
Shoot in S, which allows us to conclude that Res(Shoot, S) is empty. Now, by model

condition 4 we know that D; must satisfy the value proposition
- Walking after Shoot

so we can conclude that Shoot € Dom(¥). It follows by model condition 3 that
W(Shoot) € Res(Shoot, ¥(e)). Since Res(Shoot,S) = 0, we have ¥(e) # S. So
W(e) = Uy(e). And since we've already seen that Res(Shoot, ¥y (e)) = {¥1(Shoot)},
we can conclude by model conditions 2 and 3 that ¥(Shoot) = ¥;(Shoot), which is
sufficient to establish the fact that ¥ = ;. So ¥, is the unique model of D;.

3.4.4 Remarks on the Action Language AC

As we have said, the action language AC closely resembles the language AR of
Giunchiglia, Kartha and Lifschitz [GKL95, GKL97] and its predecessor AR [KL94].
Unlike the language AC, AR allows non-boolean fluents; but if we consider only the
propositional portion of AR, we find that the model structures for the languages
are essentially identical.

Syntactically, the langnages AC and AR are also very similar. One difference
is that AR does not include sufficiency propositions for representing background
knowledge, which is instead represented by state constraints of the form always ¢,
where ¢ is a fluent formula. In AC we understand such an expression as an ab-

breviation of the corresponding sufficiency proposition True suffices for ¢. Thus
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AR state constraints are well-formed AC propositions. Another significant syntactic
difference between AC and AR is that AR includes only atomic value propositions,
whereas AC allows propositional combinations of atomic value propositions. A third
difference is that in AR the expression impossible A if 1 is simply an abbrevia-
tion for the effect proposition A causes False if i) whereas in AC these are distinct
propositions.?

As the preceding observations suggest, the set of well-formed propositional
AR expressions is a proper subset of the set of well-formed AC expressions. Given
this, the relationship between high-level action languages AR and .AC is captured

in the following theorem.!?

Theorem 3.5 (AR Theorem) Let D be a propositional AR domain description
such that every mnonframe fluent in D has an ezplicit definition in terms of frame
fluents. D is an AC domain description, and the AC models of D are exactly the
AR models of D.

The statement of the AR Theorem reflects the fact that some propositional
AR domain descriptions are not AC domain descriptions. These are the propo-
sitional AR domain descriptions in which there is a nonframe fluent that is not
explicitly defined in terms of frame fluents. On the other hand, we have observed
that some AC domain descriptions are not AR domain descriptions. For example,

consider the following AC formalization of the Two-Switches domain, adapted from

9As noted earlier, we will see that this distinction becomes convenient when we specify the
translations from AC into default logic and logic programming in Sections 3.5 and 3.6. Otherwise
the distinction is unnecessary.

"OWe omit the proof of this theorem, which would be long and mostly unilluminating, involving
the full definition of both AR and AC. The idea of the main lemma though is interesting: it
shows that, under the restrictions in the statement of the theorem, the two high-level languages
have equivalent definitions of possible next states. We have already seen two closely related re-
sults: Proposition 3.2, which shows that rule update subsumes Winslett’s classic minimal-change
definition; and Proposition 3.4, which shows that our causal definition of possible next states is a
suitable extension of rule update in the presence of explicit definitions.
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[KL94] (and originally introduced in [Lif90]).

Up(Switchy) = Up(Switchy) suffices for On
Up(Switchy) # Up(Switchy) suffices for —On
Toggle(x) causes Up(z) if = Up(z)

Toggle(z) causes —Up(z) if Up(x)

The Two-Switches domain can be formalized in AR by declaring the fluent
On to be nonframe and replacing the two sufficiency propositions by a single state
constraint

always On = ( Up(Switch,) = Up(Switchs) ).

In modifying the domain description in this manner, we seem to be replacing causal
information the fact that the state of the switches causally determines the state
of the light with a “non-causal” explicit definition. But in doing so, we do not
change the set of models.!!

Let us consider a slight elaboration of the AC domain description from Exam-
ple 2 (Section 3.2), adapted from [Lin95], which demonstrates that it is not always
possible to obtain intuitively correct results using state constraints augmented by
the frame/nonframe distinction. Recall that in this action domain, there is a spring-
loaded briefcase with two clasps. We have actions that unfasten the clasps, one at
a time. If both clasps are unfastened, the briefcase pops open. We will assume that

initially the briefcase is not open and the second clasp is not fastened.

initially —Open A —Fastened(Clasp,)
Unfasten(z) causes - Fastened(z)

—Fastened(Clasp,) N —Fastened(Clasp,) suffices for Open

"Notice that in this case, the domain description we obtain is in fact a “legal” AC domain
description, since the nonframe fluent On is explicitly defined in terms of the frame fluent formula
Up(Switchy) = Up(Switchs).
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This domain description entails the value proposition
Open after Unfasten(Clasp,).
As discussed in Section 3.2, one might think of writing the state constraint
always (—Fastened(Clasp;) A —Fastened(Clasp,)) D Open
in place of
—Fastened(Clasp,) N —Fastened(Clasp,) suffices for Open .

But it seems that there is no way of designating frame and nonframe fluents that
will allow the resulting AR domain description to capture the intended models of
the domain. For instance, if we declare Open nonframe, then the briefcase can open
spontaneously, as it were, at any time. On the other hand, if we leave all fluents
“in the frame,” we find that unfastening the first clasp can sometimes have the
unintended ramification of fastening the second clasp.

Lin and Reiter [LR94] have suggested the name “ramification constraints”
for state constraints that are used to derive indirect effects. One thing the AR

Theorem shows is that AC expressions of the form
always ¢

correspond precisely to state constraints in AR, assuming that all nonframe fluents
are explicitly defined in terms of frame fluents. Recall that in AC such an expression

stands for the sufficiency proposition
True suffices for ¢.

It is natural to call such .AC propositions ramification constraints.
Lin and Reiter [LR94] describe another use of state constraints: as so-called
“qualification constraints.” Qualification constraints are state constraints that sim-

ply restrict the state space; they do not themselves lead to any indirect effects.
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Qualification constraints are so-named because they can lead to “derived action
preconditions,” or “qualifications.”!? Tt is straightforward to verify that AC suffi-

ciency propositions of the form
¢ suffices for False

in fact function as qualification constraints, since such propositions simply rule out
any state in which ¢ holds, without leading to any indirect effects.'® Recall that we

abbreviate such sufficiency propositions as
never ¢.

It is natural to call such AC propositions qualification constraints.

As an example of an AC domain description involving a qualification con-
straint, consider the following formalization of the Emperor Domain of Lin and
Reiter [LR94], in which, so the story goes, at most one block at a time can be

yellow, by decree of the emperor.

never Yellow(Block) A Yellow(Blocks)

Paint(z) causes Yellow(z)
This domain description does not entail the AC value proposition
Yellow(Blocks) after Paint(Block,)
but it does entail the following weaker proposition.
( Yellow(Blocks) after Paint(Blocks)) = (initially — Yellow(Blocky))

This reflects the fact that it is possible to paint the second block yellow if and only

if the first block is not already yellow. Observe that in this case, in order to obtain

"> This idea was anticipated by Ginsberg and Smith [GS88].
3This is essentially what Proposition 3.3 showed.
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an equivalent AR domain description we replace the sufficiency proposition with

the state constraint
always —( Yellow(Block1) A Yellow(Blocks) )
and also explictly describe the action preconditions, as follows.

impossible Paint(Blocky) if Yellow(Blocks)

impossible Paint(Blocks) if Yellow(Blocky)

Up to now we have not presented an example in which it is natural to use
a ramification constraint (except to introduce an explicit definition). So consider a
blocks world in which there are two blocks (A,B) and four locations (1,2,3,4). Each
block is always in exactly one location. There are never two blocks in the same
location. For each block, there is a move action that changes its location. We can

describe this action domain in AC as follows.
always Loc(z,1) V Loc(z,2) V Loc(z,3) V Loc(z,4)
always —Loc(z,m) V —Loc(z,n) (m #n)
never Loc(A,n) A Loc(B,n)
Move(z) causes —Loc(z,n) if Loc(z,n)
This domain description entails, for instance, the value propositions
(initially Loc(A,1) A Loc(B,2)) O (Loc(A,3) # Loc(A,4) after Move(A))
and
(Loc(A,1) after Move(A)) D initially —Loc(B,1).

Sufficiency propositions are closely related to inference rules, as is apparent
from the definition of Res in the semantics of AC. As we mentioned in Chapter 2,

Brewka and Hertzberg [BH93] also use inference rules to encode causal background
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knowledge for reasoning about action. Their definition differs markedly from ours
though. For instance, as we point out in [MT95b], their approach cannot capture
the notion of qualification constraints. In fact, it sometimes yields different results
even when derived action preconditions are not involved. For example, consider the

following AC domain description.

initially ~Have Wine A = WineOnTable N =~ Water OnTable
—~HaveWine suffices for — WineOnTable

ServeBeverage causes WaterOnTable V WineOnTable
This domain entails
WaterOnTable N —Have Wine A = WineOnTable after ServeBeverage

while the corresponding question is resolved differently under the definition of Brewka
and Hertzberg, according to which it is possible that wine will appear on the table,
and, as an indirect effect, you will somewhat miraculously have wine. Intuitively,
the weakness of their definition is that it still relies on a principle of minimal change,
and thus fails to capture adequately the causal nature of the commonsense law of
inertia. Consequently, in some cases, intuitively uncaused changes are sanctioned
simply because they are minimal.

In other recent related work, Baral [Bar95] proposes an action description
language based closely upon revision programming, which, as we have already men-
tioned, can be seen as a special case of the definition of possible next states used
in AC. Unfortunately, the semantics of Baral’s action language is given directly in
terms of a translation into disjunctive logic programs, which in general are relatively
difficult to reason about. Nonetheless, it is possible to show that where his proposal
overlaps with ours, it agrees.

Lin [Lin95] introduces a circumscriptive approach to causal theories of action

that is closely related to his previous work with Reiter [LR94]. Lin shows that for
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a special class of action descriptions—those he calls “stratified”—the meaning of
a description can be obtained by a straightforward completion process. In the
general case though, the semantics of Lin’s action descriptions is given in terms of
a multi-step minimization process. In the special case of Lin's “stratified” action
descriptions, it is again possible to show that his proposal will agree with ours.'

Thielscher [Thi95a, Thi97] extends previous work, by himself and his col-
leagues, on reasoning about action in the formalism of equational logic program-
ming. His proposal involves the use of state constraints accompanied by auxiliary
information about directional, causal relationships between pairs of fluent atoms.
The semantics of his action description language is given by a definition that is
essentially procedural, and in fact seems motivated by computational (rather than
declarative) concerns. Tt is unclear to what extent his proposal is related to ours.'

One clear advantage of the action description language AC over those of
[Bar95, Lin95, Thi95a] is that it allows the use of arbitrary propositional formulas
in the description of static causal laws and effects of actions. This makes it pos-
sible to express traditional ramification constraints, for instance. Also, recall that
such formulas are used when explicit definitions are introduced. Another advantage
is that AC has a relatively transparent semantics, specially tailored for action do-
mains, in which there is a simple definition of possible next states that is used in a
straightforward manner to constrain a situation calculus model structure.

We conclude this section with three results concerning general mathematical

properties of AC, modeled on similar results for the language AR in [GKL95].

Theorem 3.6 (Replacement Theorem) Let D be an AC domain description.

Let T be a subset of the sufficiency propositions in D. Take

RT:{%:qﬁsuﬂicesford)ET}.

"“We will consider Lin’s work more closely in the second part of this dissertation.
15 A weak result along these lines appears in [Thi97].

63



Let ¢, @' be fluent formulas such that (¢ = ¢') € Cn(Rr). Let D' be an AC domain
description obtained from D by replacing some or all occurrences of ¢ with @' in
some or all propositions that do not belong to T. Domain descriptions D and D’

have the same models.

Proof Sketch. Let R be the set of inference rules corresponding to the sufficiency
propositions in domain description D, and let R' be the analagous set for D’. The

key to this theorem is the observation that for any sets I', I of formulas, if
Cn(F @] RT) = CTL(FI @] RT)

then
Cn(TUR) = Cn(I"UR')

which is not hard to prove. This implies, for instance, that the two domains have
the same set of states. Furthermore, this observation can be used to show that the
two domains agree on possible next states (that is, on Res). From these facts it
follows that a structure ¥ satisfies the first three model conditions for domain D if
and only if it satisfies them for domain D’. Consider such a structure ¥. Since all
states in the two domains satisfy ¢ = ¢', it is clear that all of the value propositions
in D are true in ¥ if and only if all of the value propositions in D’ are true in V.

So D and D’ indeed have the same models. O

Recall that in Section 3.3.4 we showed that (a slight simplification of) the
definition of possible next states in .AC handles explicit definitions in an appropriate
manner (Proposition 3.4). Here we present a similar result for the language AC as

a whole.

Theorem 3.7 (Explicit Definitions Theorem) Let D be an AC domain de-
scription, with fluents F, in which there is an explicit definition always F = ¢ and

furthermore there is no influence proposition A possibly changes F if 1. Let D’

64

be the domain description with fluents F\{F} that can obtained from D by deleting
the explicit definition always F = ¢ and replacing all remaining occurrences of F
with ¢. For every value proposition V in which F does not occur, V is true in D if

and only if V is true in D'.

by adding only the explicit definition always F = ¢. We know from the Replace-
ment Theorem that domains D and D" have the same models. The proof can be
completed by showing that the desired result holds between domains D" and D', as
follows.

For any interpretation I of L(F\{F}), let F(I) be the interpretation of L(F)
such that I C F(I) and F(I) = F = ¢. It is clear that this establishes a one-to-one
correspondence between the states of D' and D". Moreover, it is straightforward
to show, along the lines of Proposition 3.4, that there is a similar one-to-one corre-
spondence between the definitions of Res in the two domains. From these facts it
follows that there is also a similar one-to-one correspondence between the models of
D' and D", which is sufficient to show that for every value proposition V in which

F does not occur, V is true in D” if and only if V is true in D'. O

Theorem 3.8 (Restricted Monotonicity Theorem)' Let D be an AC domain
description. If D' can be obtained by adding value propositions to D, then every

value proposition entailed by D is also entailed by D'.

Proof. Immediate, since adding value propositions can only rule out models. 0

3.5 Representing Actions in Default Logic

‘We begin this section by reviewing the definition of default logic. Next, as a prelim-

inary step, we show how to embed the AC definition of possible next states—that is,

10See [Lif93b] for a general account of restricted monotonicity.
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the function Res—in default logic. We then define a class of AC domain descriptions
called “qualification-free.” Roughly speaking, in qualification-free domain descrip-
tions, all action preconditions are stated “explicitly,” in the form of executability
propositions. We specify a sound and complete translation of qualification-free AC
domain descriptions into default theories. We also specify a second, simpler trans-
lation for those AC domain descriptions in which there are no action preconditions
whatsoever. Finally, we compare the formalization of the Yale Shooting domain
obtained by our translation with the default theories discussed by Hanks and Mec-

Dermott and by Morris.

3.5.1 Review of Default Logic

A default rule over L(U) is an expression of the form
a:fi,...,Bn
Y
where all of a, f1,. .., 3,7y are formulas from L£(U) (n > 0). Let r be a default rule

(3.1)

of the form (3.1). We call a the prerequisite of r, and denote it by pre(r). We call
the formulas fi,..., 3, the justifications of r, and write just(r) to denote the set
{B1,....Bn}. We call v the consequent of r, and denote it by cons(r). If just(r) is
empty, we say r is justification-free. If r is justification-free, we often identify r with
the corresponding inference rule

a

o
If pre(r) = True we often omit it and write M instead. If just(r) =
{cons(r)}, we say that r is normal.

A default theory over L(U) is a set of default rules over L(U). Let D be a

default theory over L(U) and let E be a set of formulas from L£(U). We define the
reduct of D by E, denoted by DE| as follows.

DF = { 5)::;(8) : r €D and for all B € just(r), -3¢ E }
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We say that E is an eztension of D if
E = Cny(DE).

We say D is consistent if it has at least one consistent extension. We say that a
formula is a consequence of D if it belongs to every extension of D. Default logic is
due to Reiter [Rei80]. The definition of an extension given above follows [GLPT91],

and is equivalent to Reiter’s definition.

3.5.2 Embedding Possible Next States in Default Logic

The embedding in this section is not directly used in specifying the more general
embedding of AC into default logic in the next section, and thus this section can
safely be skipped. On the other hand, embedding in default logic the function Res
which defines the possible next states in AC is a clearly related, smaller problem,
and some of the ideas used here are also applied in the next section. Moreover,
the fact that this embedding is correct is a fundamental theorem used in the proof
(presented in Chapter 4) of the correctness of the AC embedding .

Let D be an AC domain description. For any state S and action name A, let
A(A, S) be the default theory obtained by taking the union of the following four sets
of rules. (Recall that, roughly speaking, E(A,S) is the set of direct, deterministic
effects of action A in state S. Similarly, F/(A,S) is the set of fluents that may be
nondeterministically affected by action A in state S. R is the set of inference rules

corresponding to the static causal laws of the domain.)
1. All rules of the form TL where L is a frame fluent literal in S.
2. E(A,S)
3. All rules of the forms TF and %If where F € F(A,S).
4. R
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Notice that A(A,S) is a default theory over L£(F). The following theorem shows
that A(A4,S) characterizes the possible next states as defined in Res(4, S).

Theorem 3.9 Let S be a state and A an action that is not prohibited in S. The
following hold.

1. A state S’ belongs to Res(A, S) if and only if Cnx(S') is a consistent extension
of A(4,8S).

2. Every consistent extension of A(A,S) can be written in the form Cng(S'),

where S’ is a state.
Proof. For the first part, let S’ be a state, and let
E=E(AS)U(S' N Lit(F(A,S))).
Observe that E is an explicit effect of A in S. It is not difficult to verify that
A(A,8)C"(8) = (SN S' N Lit(Fy)) UEUR.

Thus we see that Cn(S') is a consistent extension of A(A4, S) if and only if Cn(S’") =
Cn[(SNS'N Lit(Ff)) UE U RJ.

Since E is an explicit effect of 4 in S, we have shown that if Cn(S') is a
consistent extension of A(4,S) then S’ € Res(A,S). To see the other direction,
assume that S’ € Res(A, S). Thus there is an explicit effect E' of A in S such that
Cn(S") = Cn[(S NS N Lit(Fy)) U E'UR]. It is clear that E' = E(A,5)U(S'N
Lit(F(A, S))), which is to say that E' = E. Thus we can conclude that Cn(S’) is a
consistent extension of A(A, S).

For the second part, assume that X is a consistent extension of A(A4,S).
Suppose there is a fluent name F such that F ¢ X and —-F ¢ X. Since every

nonframe fluent in an AC domain description must have a definition in terms of
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frame fluents, we can assume without loss of generality that F' is a frame fluent.
But in this case, since S is a state, A(4, S) includes one of the following two rules.
Foior
F -F
From this we can conclude that Cn(A(A4, S)X) includes either F or —F. This shows
that Cn(A(A,S)Y) # X. Contradiction. So we have shown that for every fluent
name F, either F € X or =F € X. And since X is consistent, it follows that there
is an interpretation S’ of £(F) such that X = Cn(S'). Now, since A(4, S) contains

the inference rules R, we know that Cn(S’) is closed under R. So S’ is a state. O

This embedding of possible next states in default logic is closely related to
the embeddings of rule update in default logic in [PT95, PT97]. As previously
mentioned, this theorem is useful in proving the AC embedding correct, and it also

demonstrates (in slightly different form) some of the ideas behind that embedding.

3.5.3 Embedding AC in Default Logic

We say that an AC domain description is qualification-free if for all action names A
and states S, A is prohibited in S whenever Res(A4, S) is empty.

Our default theories for reasoning about action use the situation calculus.
For any fluent formula ¢, we write Holds(#, S) to stand for the formula obtained by
replacing each fluent atom F in ¢ by Holds(F, S). Given an action string Ay;--+; Am,
we write

[A1§ e Am]
to stand for the term
Result(Ap, Result(Am_1, ... Result(Ay,Sp)--)).
Given an atomic value proposition ¢ after A4, we write

[¢ after 4]
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to stand for the formula

( Holds(¢, [A]) A Reachable([A])).

Given a (non-atomic) value proposition V, we write [V] to stand for the formula
obtained by simultaneously replacing each atomic value proposition V' that occurs
in V by the formula [V'].

The translation § takes an AC domain description D to a default theory §(D)
over the language £(U), where U is the least set of atoms such that, for every action
string A: (i) Reachable([A]) € U; (ii) for every fluent name F, Holds(F,[A]) € U.

For each value proposition V in D, §(D) includes the rule

v
False
For each sufficiency proposition ¢ suffices for ¢ in D, §(D) includes the rule

Holds(¢, s) A\ Reachable(s)
Holds(¢, s)

For each effect proposition A causes ¢ if ¢ in D, §(D) includes the rule

Holds (v, s) N\ Reachable(Result(A, s))
Holds(¢, Result(A,s)) ’

For each influence proposition A possibly changes F if ¢ in D, §(D) includes the
pair of rules

Holds(v, s) \ Reachable(Result(A, s)) : Holds(F, Result(A, s))
Holds(F, Result(A, s))

and

Holds(v, s) A Reachable(Result(A, s)) : = Holds(F, Result(A, s))
—Holds(F, Result(A, s)) '

For each executability proposition impossible 4 if ¢ in D, §(D) includes the rule

Holds(¢, s)
—Reachable(Result(A, s))

Default theory §(D) also includes the additional, standard rules shown in Figure 3.6.
The following theorem shows that the translation ¢ is indeed sound and

complete for qualification-free AC domain descriptions.
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Reachability axioms. Default theory §(D) includes the rules

: Reachable(s) an —Reachable(s)
Reachable(s) —Reachable(Result(a, s))

Initial situation axioms. For each fluent literal L, §(D) includes the rule

. Holds(L, Sy)
Holds(L, Sp) ~

Inertia axioms. For each frame fluent literal L, §(D) includes the rule

Holds(L, s) A Reachable(Result(a, s)) : Holds(L, Result(a, s))
Holds(L, Result(a, s)) '

Figure 3.6: Standard elements of the translation 4.

Theorem 3.10 (Embedding Theorem) Let D be a qualification-free AC domain
description. A value proposition V is entailed by D if and only if the formula [V] is
entailed by the default theory 6(D).

The Embedding Theorem is an immediate consequence of the following stronger

theorem, which is proved in Chapter 4.

Theorem 3.11 (Correspondence Theorem) Let D be a qualification-free AC
domain description. There is a one-to-one correspondence between models of D and
consistent extensions of §(D) such that, for every model ¥ of D and its corresponding

extension E, a value proposition V is true in U if and only if [V] € E.

For example, recall domain description Dy from Section 3.4, which is repro-
duced here in Figure 3.7. In this AC domain description, Dead is the only nonframe

fluent. Domain description D; entails, for instance, the value proposition

initially Loaded
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always Dead = —Alive
initially Walking

— Walking after Shoot

—Alive suffices for — Walking
Shoot causes Dead N\ —Loaded
impossible Shoot if —Loaded

Figure 3.7: AC domain description Dj.

and the Embedding Theorem guarantees that the corresponding formula
Holds(Loaded, Sp) N\ Reachable(Sy)

is entailed by the corresponding default theory &(Dy), listed in Figure 3.8.

If a domain description includes no executability propositions, we can elim-
inate the Reachable atoms in the corresponding default theory, thus obtaining a
simpler translation, as follows. Let D be an AC domain description. By &'(D) we
denote the default theory obtained from §(D) by first eliminating the reachabil-
ity axioms and then replacing each Reachable atom in the remaining rules by the
special atom True. Of course it is then straightforward to eliminate the resulting
occurrences of True in the resulting default theory. Notice that the default theories
in Examples 1 and 2 (Section 3.2) can be obtained by translation &'

For each atomic value proposition ¢ after 4, let
[¢ after A]

denote the formula

Holds(¢,[A])

and for each (non-atomic) value proposition V, let [V] be the formula obtained from
V by simultaneously replacing each atomic value proposition V' that occurs in V

by the formula [V'].
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True N\ Reachable(s) —(Holds( Walking, So) N Reachable(Sp))
Holds(Dead, s) = —Holds(Alive, s) False
—(=Holds( Walking, Result(Shoot, Sg)) A Reachable(Result(Shoot, Sp)))
False
—Holds(Alive, s) A\ Reachable(s) —Holds(Loaded, s)
—Holds( Walking, s) —Reachable (Result(Shoot, s))
True A\ Reachable(Result(Shoot, s))
Holds(Dead, Result(Shoot, s)) A —=Holds(Loaded, Result(Shoot, s))

: Holds(f,So) :—Holds(f,So) : Reachable(s) —Reachable(s)
Holds(f,So) —Holds(f,So) Reachable(s) —Reachable(Result(a,s))
Holds(Alive, s) N\ Reachable(Result(a, s)) : Holds(Alive, Result(a, s))
Holds(Alive, Result(a, s))

—Holds(Alive, s) N Reachable(Result(a, s)) : ~Holds(Alive, Result(a, s))
—Holds(Alive, Result(a, s))
Holds(Loaded, s) A\ Reachable(Result(a, s)) : Holds(Loaded, Result(a, s))
Holds(Loaded, Result(a, s))
—Holds(Loaded, s) \ Reachable(Result(a, s)) : ~Holds(Loaded, Result(a, s))
—Holds(Loaded, Result(a, s))
Holds(Walking, s) \ Reachable(Result(a, s)) : Holds( Walking, Result(a, s))
Holds(Walking, Result(a, s))
—Holds( Walking, s) A\ Reachable(Result(a, s)) : ~Holds( Walking, Result(a, s))

—Holds( Walking, Result(a, s))

Figure 3.8: Translation §(D;) of AC domain description D;.
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Corollary 3.12 (Reachability Corollary) Let D be a qualification-free AC do-
main description with no executability propositions. There is a one-to-one corre-
spondence between models of D and consistent extensions of §'(D) such that, for
every model ¥ of D and its corresponding extension E, a value proposition V is

true in ¥ if and only if [V] € E.

3.5.4 The Yale Shooting Problem in Default Logic

At this point it may be interesting to briefly consider some of the ways in which
our default theory for the Yale Shooting domain differs from the one proposed and
found inadequate by Hanks and McDermott [HM87], and from the more adequate
solution later proposed by Morris [Mor88].

We can represent the origial Yale Shooting domain in AC as follows.!”

initially Alive
Load causes Loaded

Shoot causes —Alive if Loaded
Of course this domain description entails the AC value proposition
—Alive after Load; Wait; Shoot

and accordingly, we know by the Reachability Corollary that the corresponding
literal

—Holds(Alive, Result(Shoot, Result( Wait, Result(Load, Sy))))

is a consequence of the corresponding default theory Y7, which appears in Figure 3.9.
By comparison, the default theory that was introduced and rejected by Hanks

and McDermott is (essentially) the default theory Y that appears in Figure 3.10.

" This version of the Yale Shooting domain, which is more elaborate than the one discussed in
Chapter 1, is faithful to the description given by Hanks and McDermott.
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—Holds(Alive, Sp)
False
True Holds(Loaded, s)
Holds(Loaded, Result(Load, s))  —Holds(Alive, Result(Shoot, s))
: Holds(f,So) : —~Holds(f,So)
Holds(f, So) —Holds(f, So)
Holds(f, s) : Holds(f, Result(a,s))  —Holds(f,s): ~Holds(f, Result(a,s))

Holds(f, Result(a, s)) —Holds(f, Result(a, s))

Figure 3.9: Default theory Y;.

True True
Holds(Alive, Sy)  Ab(Loaded, Load, s) A Holds(Loaded, Result(Load, s))

True
Holds(Loaded, s) D (Ab(Alive, Shoot, s) A —Holds(Alive, Result(Shoot, s)))
True
(Holds(f,s) A —=Ab(f,a,s)) D Holds(f, Result(a, s))
True
(—=Holds(f,s) N—=Ab(f,a,s)) D —Holds(f, Result(a, s))
 ~Ab(f.a,5)
—4b(f.a,s)

Figure 3.10: Default theory Ys.
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As suggested by the discussion in Section 1.2.1, the well-known difficulty in default

. 1 ~Ab(f,a,8)
theory Y5 can be attributed to the fact that the default rule W

minimizes the extent of Ab. We can observe that the two inertia rules together

effectively

guarantee that all ground instances of the standard circumscriptive frame axiom
—Ab(f,a,s) D (Holds(f,s) = Holds(f, Result(a, s))

belong to every extension of Y;. These three default rules together then can be

understood to minimize the instances of
Holds(f,s) # Holds(f, Result(a, s))

in the extensions of Y5. In this way Y> minimizes global change.
But there is another way to describe what goes wrong here, which brings
into relief a second point of interest (from our point of view). The default rule that

minimizes Ab allows the default “supposition”
—Ab(Alive, Shoot, Result( Wait, Result(Load, Sp))) .

We can then reason “backward in time,” using the rule describing the effect of Shoot,
to derive

—Holds(Loaded, Result( Wait, Result(Load, Sp))) .

And from this fact, we can again reason “backward,” using the inertia rule, to obtain
Ab(Loaded, Wait, Result(Load, Sp)) .

It is this combination of “supposing” that certain changes do not occur and reasoning
backward in time that allows us to obtain the extensions of Y5 that correspond to the
famous anomaly according to which the gun may become mysteriously unloaded
during the wait action.

There is another peculiarity to be noted here, related to the fact that in

the Yale Shooting domain (as originally described by Hanks and McDermott) we
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e

True Tru
Holds(Alive, So)  Ab(Loaded, Load, s) \ Holds(Loaded, Result(Load, s))

True
Holds(Loaded, s) D (Ab(Alive, Shoot, s) A —Holds(Alive, Result(Shoot, s)))
Holds(f,s) : ~Ab(f,a,s) —Holds(f,s): Ab(f,a,s)
Holds(f, Result(a, s)) —Holds(f, Result(a, s))

Figure 3.11: Default theory Y3.

are not told whether or not the gun is initially loaded. Accordingly, the AC do-
main description entails neither initially Loaded nor initially —Loaded. From the
Reachability Corollary it follows, for instance, that our default theory Y7 does not
entail the literal ~Holds(Loaded, Sy).

By comparison, in the default theory Y> of Hanks and McDermott, we can
“suppose”

—Ab(Alive, Shoot, Sy)

and from this default supposition we can derive
—Holds(Loaded, Sp)

again by reasoning “backwards in time,” using the rule describing the effect of the
shoot action. This observation suggests that —Holds(Loaded, Sp) may belong to
some extension of the default theory. This is not unexpected, since the AC domain
description itself has a model in which Loaded is initially false. But as it turns out,
—Holds(Loaded, Sy) belongs to every extension of the default theory of Hanks and
McDermott, which is therefore not only incomplete for the Yale Shooting domain,
but also unsound.

The default theory proposed by Morris for the Yale Shooting domain is (es-
sentially) the default theory Y3 shown in Figure 3.11. In Morris’ default theory we
can again reason “backwards in time,” using the rule describing the effect of the

action Shoot. But notice that there is now no default rule allowing us to “suppose”
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literals of the form —Ab(f,a, s). Moreover, there is no opportunity for “inappropri-
ately” deriving atoms of the form Ab(f,a, s) by reasoning backwards in time. Thus
the famous anomaly is eliminated. On the other hand, it turns out that the formula
—Holds(Loaded, Sy) is once again inappropriately entailed. To see this, notice first

that we cannot derive the literal
Ab(Alive, Shoot, Sp)
in default theory Y3. Because of this, we are able to derive
Holds(Alive, Result(Shoot, So))

using one of the default rules expressing the commonsense law of inertia. And, from
this, we can derive

—Holds(Loaded, Sy)

by reasoning backwards in time, using the rule describing the effect of the shoot
action. Thus, Morris’ default theory for the Yale Shooting domain is, apparently,
complete but unsound.

In our translations of AC into default logic, as emphasized in the discussion
in Section 3.2, we never write default rules making past facts derivable from future
facts. Such rules would not, in general, make sense for us, since we think of these
rules as expressing a simple kind of causal relation. Moreover, our discussion of
the Hanks and McDermott and Morris default theories (correctly) suggests that our
practice is technically useful. In fact, our use of the directional properties of default
rules is essential to the proof of the Correspondence Theorem. Roughly speaking,
it allows us to show that our general default theories correctly embed our causal
definition of possible next states, by guaranteeing that in our default theories future
facts cannot affect past facts.

It may or may not be helpful to point out also that the observed unsoundness

of default theories Y, and Y3 can be overcome simply by adding to them the following
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rules enforcing completeness of the initial situation.

: Holds(f,Sy) :—Holds(f,Sp)
Holds(f,So)  —Holds(f,Sp)

Recall that these rules are standard elements of our translations from AC into default
logic. In a manner of speaking, they interact to force a default theory to take into

account every possible (complete!) initial situation.

3.6 Logic Programs for Representing Actions

We begin this section by reviewing the relevant definitions in logic programming. We
then identify a syntactically restricted class of AC domain descriptions for which the
translation into logic programming is particularly convenient. We call such domain
descriptions “LP-simple.” After specifying a sound and complete translation of LP-
simple, qualification-free domain descriptions into logic programming, we introduce
the somewhat broader class of “vivid”.AC domain descriptions, and show how vivid,
qualification-free domain descriptions can be transformed into equivalent LP-simple,
qualification-free domain descriptions. Thus we obtain a correct embedding in logic
programming for all vivid, qualification-free AC domain descriptions.

In the case of value propositions, the translation into logic program rules is
more complicated than the translation into default rules specified in the previous

section. For all other AC propositions, the translation is essentially the same.

3.6.1 Review of Logic Programming

For the purposes of this dissertation, a logic program rule over L(U) is an expression

of the form
Ly < Ly,...,Lp,notLyyq,...,no0tLy, (3.2)

with 0 < m < n, where Ly € Lit(U) U{False} and for all i (1 < i < n), L; € Lit(U).

A logic program over L(U) is a set of logic program rules over L(U).
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Under the answer set semantics of Gelfond and Lifschitz [GL90], logic pro-
gramming corresponds to a subset of default logic.!® Because it is convenient for the
purposes of this dissertation, we will define the notions of “answer sets” and “en-
tailment” for logic programs indirectly, in terms of the related notions for default
logic.

For each logic program P there is a corresponding default theory dt(P),
defined as follows. For each logic program rule r € P of form (3.2), dt(P) includes

the corresponding default rule

LyA-ALpm: Lmits. - Im
Lo :

A subset X of Lit(U) is an answer set for P if there is an extension E of dt(P)
such that X = E N Lit(U). Tt follows that X is a consistent answer set for P if and
only if Cn(X) is a consistent extension of dt(P). For any L € Lit(U), we say that
P entails L if L belongs to all answer sets for P. It follows that P entails L if and
only if dt(P) does.

3.6.2 LP-Simple AC Domain Descriptions

An atomic value proposition is LP-simple if it has the form
L after 4

where L is a fluent literal, and a (non-atomic) value proposition is LP-simple if it

has the form
ViV VVip VAV Voo V=V, (0<m<n,n>0)

where each V; (1 <4 < n) is an LP-simple atomic value proposition.

A sufficiency proposition is LP-simple if it has either the form

"®Logic programs of this kind are also reducible (as shown in [GL90]) to normal logic programs
under the stable model semantics [GL88].
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LiA--- A L, suffices for Ly (n>0)
where each L; (0 < i < n) is a fluent literal, or the form
always L
where L is a fluent literal, or the form
never L4 A--- AL, (n>0)

where each L; (1 <i < n) is again a fluent literal.

An effect proposition is LP-simple if it has either the form
A causes Ly if Ly A--- ALy (n>0)
where each L; (0 < i < n) is a fluent literal, or the form
A causes L

where L is a fluent literal.

An influence proposition is LP-simple if it has either the form
A possibly changes F if Ly A--- A L, (n>0)
where each L; (1 <i < n) is a fluent literal, or the form
A possibly changes F'.
Finally, an executability proposition is LP-simple if it has the form
impossible A if Ly A---A Ly (n>0)

where each L; (1 <i < n) is a fluent literal.
We say that an AC domain description is LP-simple if all of its propositions

are. Perhaps the most severe restriction on LP-simple domain descriptions is that
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they cannot include explicit definitions, due to the restricted form of sufficiency
propositions. Notice that three of the four example domain descriptions considered

in Section 3.2 are in fact LP-simple domain descriptions.

3.6.3 LP-Simple AC Domain Descriptions as Logic Programs

Let D be an LP-simple AC domain description. We define its translation into a
logic program 7(D) as follows.
For each value proposition Vi V-V V; V =V V -+ - V=V, in D, include

the rule
False <+ Vsl ..., [Val, not[Vi], ..., not[Vy] .

For each sufficiency proposition in D of the form L; A- - - A L,, suffices for Lg include

the rule
Holds(Lg,s) < Holds(L1,s),...,Holds(Ly,s), Reachable(s) .
For each sufficiency proposition in D of the form always L include the rule
Holds(L,s) <« Reachable(s).

For each sufficiency proposition in D of the form never L; A -+ A Ly include the

rule
False < Holds(L1,Ss),...,Holds(L,, s), Reachable(s) .

For each effect proposition in D of the form A causes Lg if Ly A --- A L, include

the rule

Holds(Lg, Result(A,s)) <« Holds(L1,s),..., Holds(Ly,s),

Reachable(Result(A, s)).
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For each effect proposition in D of the form A causes L include the rule
Holds(L, Result(A,s)) < Reachable(Result(A,s)).
For each influence proposition in D of the form
A possibly changes F if Ly A--- ALy
include the following two rules.

Holds(F, Result(A,s)) <« Holds(Ly,s),..., Holds(Ly, s),
Reachable(Result(A, s)), not ~Holds(F, Result(A, s))
—Holds(F, Result(A,s)) <« Holds(L,s),...,Holds(Ly,s),

Reachable(Result(A, s)), not Holds(F, Result(A, s))

For each influence proposition in D of the form A possibly changes F include the

following two rules.

Holds(F, Result(A,s)) <« Reachable(Result(A,s)), not—Holds(F, Result(A, s))

—Holds(F, Result(A,s)) <« Reachable(Result(A,s)), not Holds(F, Result(A, s))

Finally, for each executability proposition impossible A if Ly A --- A L, in D,

include the rule
—Reachable(s) < Holds(Li,s),...,Holds(Ly,s).

Also include the following six standard rules for reachability, completeness of the

initial situation, and the commonsense law of inertia.

Reachable(s) <+« mnot—Reachable(s)
—Reachable(Result(a,s)) < —Reachable(s)

Holds(f,So) < mnot—-Holds(f,So)
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—Holds(f,So) < notHolds(f,So)
Holds(f, Result(a,s)) <« Holds(f,s), Reachable(Result(a, s)),
not—Holds(f, Result(a, s))
—Holds(f, Result(a,s)) < —Holds(f,s), Reachable(Result(a,s)),

not Holds(f, Result(a, s))

Notice that the logic program in the fourth example in Section 3.2 can be

obtained by the translation .

Theorem 3.13 (LP Embedding Theorem).

Let D be an LP-simple, qualification-free AC domain description. an LP-simple
atomic value proposition L after A is entailed by D if and only if Holds(L,[A]) is
entailed by the logic program w(D).

The LP Embedding Theorem is an immediate consequence of the following
stronger theorem, which is proved in Chapter 4 using the Correspondence Theorem

for default logic.

Theorem 3.14 (LP Correspondence Theorem)
Let D be an LP-simple, qualification-free AC domain description. There is a one-
to-one correspondence between models of D and consistent answer sets of (D) such
that, for every model U of D and corresponding answer set X, an LP-simple value
proposition

VIV VNV VaVisr Voo VAV,
is true in ¥ if and only if at least one of the sets {[Vi],...,[Vm]} N X and

{ Vi1l - - [Va] } \ X is nonempty.

If an LP-simple domain description includes no executability propositions, we
can eliminate the Reachable atoms in the corresponding logic program, thus obtain-

ing a simpler translation. So let D be an LP-simple AC domain description without
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executability propositions. By 7/(D) we denote the logic program obtained from
w(D) by first eliminating the reachability axioms and then deleting all Reachable
atoms from the remaining rules. Notice that the logic program in the third example

in Section 3.2 can be obtained by the translation 7.

Corollary 3.15 (LP Reachability Corollary)

Let D be an LP-simple, qualification-free AC domain description without ezecutabil-
ity propositions. There is a one-to-one correspondence between models of D and
consistent answer sets of ©'(D) such that, for every model ¥ of D and correspond-
ing answer set X, an LP-simple value proposition ViV -VVyp V=V V- V=V, s

true in U if and only if the set {[Vi],...,[Vil, [Vint1l,-- -, [Val } N X is nonempty.

3.6.4 Making Vivid AC Domain Descriptions LP-Simple

The syntactic restrictions which define the class of LP-simple domain descriptions
are, fortunately, more strict than necessary. In this section we show that a much
broader class of AC domain descriptions can be embedded into logic programming.

We say that a sufficiency proposition is vivid if it has the form
¢ suffices for ¢

where 9 is a conjunction of fluent literals. Similarly, we say that an effect proposition
is vivid if it has the form

A causes ¢ if ¥

where ¢ is a nonempty conjunction of fluent literals.

We say that a domain description is wivid if all of its sufficiency propositions
and effect propositions are. Any vivid domain description can be transformed into
an equivalent LP-simple domain description, in the manner described below.

We begin by assuming a function CNF that takes every fluent formula ¢ to

an equivalent fluent formula CNF(¢) in conjunctive normal form. We also assume
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a function DNF' that takes every fluent formula ¢ to an equivalent fluent formula
DNF(¢) in disjunctive normal form.

For any atomic value proposition ¢ after A, let CNF(¢ after A) be the
result of simultaneously replacing each disjunct L of each conjunct of CNF(¢) with
the LP-simple atomic value proposition L after A. Notice that ¢ after A4 is true in
a structure ¥ if and only if CNF(¢ after A) is.

Next we describe a three-step transformation that takes any value proposition

V to a corresponding family of LP-simple value propositions.

1. Let V; be the result of simultaneously replacing each atomic value proposition
V' that occurs in V with the value proposition CNF(V'). Notice that V; is
a propositional combination of LP-simple atomic value propositions. Notice

also that V is true in a structure ¥ if and only if V is.

2. Let C be the set of conjuncts of the conjunctive normal form of V,. Notice
that each member of C is a disjunction of LP-simple atomic value propositions
or their negations. Notice also that V; is true in a structure ¥ if and only if

every member of C is.

3. Take the set of value propositions obtained by reordering the literals of each
member of C so that each of the resulting expressions is an LP-simple value

proposition.

Observe that V' is true in a structure ¥ if and only if all of the corresponding
LP-simple value propositions are.

For any vivid sufficiency proposition ¢ suffices for i, take the family of
LP-simple sufficiency propositions ¢’ suffices for L such that ¢' is a disjunct of
DNF(¢) and L is a conjunct of 9.

For any vivid effect proposition A causes ¢ if i, take the family of LP-

simple effect propositions A causes L if ¢’ such that L is a conjunct of ¢ and ¥’ is
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a disjunct of DNF ().

For any influence proposition A possibly changes F' if 1, take the family
of LP-simple influence propositions A possibly changes F if 1’ such that ¢’ is a
disjunct of DNF(¢).

Finally, for each executability proposition impossible A if v, take the fam-
ily of LP-simple executability propositions impossible A if 1)’ such that ¢’ is a
disjunct of DNF(¢)).

Let LP-Simple be a function that takes every vivid domain description to
an LP-simple domain description that can be obtained by transforming each of its

propositions in the manner described above.

Theorem 3.16 (Vivid Domains Theorem) Let D be a vivid AC domain de-
scription. The domain descriptions D and LP-Simple(D) have the same models.

Moreover, D is qualification-free if and only if LP-Simple(D) is.

Since we have already specified a correct embedding of LP-simple, qualification-
free domain descriptions into logic programming, the Vivid Domains Theorem estab-
lishes the more general fact that every vivid, qualification-free domain description
can be correctly embedded in logic programming, by first transforming it into an
equivalent LP-simple, qualification-free domain description. For instance, the logic
program in the first example in Section 3.2 can be obtained in this manner.

Finally, it is clear from the previous discussion that any value proposition
V can be transformed into a family @ of LP-simple value propositions such that
V is true in a structure ¥ if and only if every member of @ is. Thus we have
shown that the LP Correspondence Theorem can be applied to any value proposi-
tion, for any vivid qualification-free AC domain description. In this way we obtain
correct formalizations of action domains that include non-atomic value propositions,

nondeterministic actions, causal background information and action preconditions.
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Chapter 4

Proofs for Preceding Chapter

We begin with the statement of the Splitting Set and Splitting Sequence Theorems
[Tur96b], and their proofs.

We then prove the Correspondence Theorem and Reachability Corollary,
showing that the translations from AC into default logic are sound and complete.

On the basis of these results, we go on to prove the LP Correspondence The-
orem and LP Reachability Corollary, showing the correctness of our translations
of LP-simple, qualification-free AC domain descriptions into logic programming.
Finally we prove the Vivid Domains Theorem, which shows that every vivid AC
domain description can be transformed into an equivalent LP-simple domain de-

scription.

4.1 Splitting a Default Theory

In this section we briefly turn our attention from the specific problem of representing
actions in default logic and logic programming, in order to present technical results
concerning default theories in general. These results—the Splitting Set Theorem

and Splitting Sequence Theorem for default logic from [Tur96b]—are needed for the
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proof of the Correspondence Theorem.

The Splitting Theorems for default logic can sometimes be used to simplify
the task of reasoning about a default theory, by “splitting it into parts.” These
Splitting Theorems are related somewhat, in spirit, to “partial evaluation” in logic
programming, in which results obtained from one part of a program are used to
simplify the remainder of the program.! In fact, the Splitting Theorems for default
logic closely resemble the Splitting Theorems for logic programming introduced in
[LT94], despite complications due to the presence of arbitrary formulas in default

theories.?

Similar results for autoepistemic logic can be found in [GP92]. Very
closely related, but independently obtained, results for default logic can be found in
[Cho94, Cho95]. The relationship of that work to the splitting theorems presented

here is examined in [Ant97].

4.1.1 Splitting Sets

Let D be a default theory over £(U) such that, for every rule r € D, pre(r) is in
conjunctive normal form. (Of course any default theory can be easily transformed
into an equivalent default theory, over the same language, satisfying this condition.)
For any rule r € D, a formula ¢ is a constituent of r if at least one of the following
conditions holds: (z) ¢ is a conjunct of pre(r); (1) ¢ € just(r); (iii) ¢ = cons(r).
A splitting set for D is a subset A of U such that for every rule r € D the

following two conditions hold.
1. Every constituent of r belongs to £L(A) U L(U \ A).

2. If cons(r) does not belong to £(U \ A), then r is a default rule over £(A).

!See, for example, [Kom90].

’In [L.T94] we presented without proof Splitting Theorems for logic programs with classical
negation and disjunction, under the answer set semantics [GL91]. The results for nondisjunctive
logic programs follow from the Splitting Theorems for default logic. The definitions and proofs
presented here can be adapted to the more general case of disjunctive default logic [GLPT91], from
which the Splitting Theorems for disjunctive logic programs would follow as well.
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If A is a splitting set for D, we say that A splits D. The base of D relative to A,
denoted by ba(D), is the default theory over £(A) that consists of all members of
D that are default rules over £(A).

Let Uz = {a,b,c,d}. Consider the following default theory Ds over L£(Us).

:=b :-a aVbiab aA(eVd):-d bA(cVd):-ec

a b cVd —d -c

Take Ay = {a,b}. Tt’s easy to verify that A, splits Do, with
:=b -a
ba, (D) = § —, — ¢ .
a(on) = {250
Notice that the default theory ba,(D2) over L(Az) has two consistent extensions:
Cna,({a}) and Cna,({b}).

Given a splitting set A for D, and a set X of formulas from £(A), the partial
evaluation of D by X with respect to A, denoted by e4 (D, X), is the default theory
over L(U \ A) obtained from D in the following manner. For each rule r € D\ ba(D)
such that

1. every conjunct of pre(r) that belongs to £L(A) also belongs to Cn 4(X), and
2. no member of just(r) has its complement in Cn4(X)
there is a rule r' € e4 (D, X) such that

1. pre(r') is obtained from pre(r) by replacing each conjunct of pre(r) that be-
longs to L(A) by True, and

2. just(r') = just(r) N L(U \ A), and
3. cons(r') = cons(r).

For example, it is easy to verify that

True True A (cVd):—d }

e4,(D2, Cna,({a})) = { cvd’ -d
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and that

True True A (cVd): —c }

e4,(Da, Cna,({b})) = { cvd’ -c

Let A be a splitting set for D. A solution to D with respect to A is a pair

(X,Y) of sets of formulas satisfying the following two properties.
1. X is a consistent extension of the default theory ba(D) over L(A).
2. Y is a consistent extension of the default theory e4 (D, X) over L(U \ A).

For example, given our previous observations, it is easy to verify that Dy has

two solutions with respect to As:

(Cna,({a}), Cnyy\a,({e,~d})) and (Cna,({8}), Cryya,({-cd})) .

Theorem 4.1 (Splitting Set Theorem) Let A be a splitting set for a default
theory D over L(U). A set E of formulas is a consistent extension of D if and only
if E= Cny(X UY) for some solution (X,Y) to D with respect to A.

Thus, for example, it follows from the Splitting Set Theorem that the default

theory D5 has exactly two consistent extensions:
Cny,({a,c,~d}) and Cny,({b,—c,d}).

Corollary 4.2 (Splitting Set Corollary) Let A be a splitting set for a default

theory D over L(U). If E is a consistent extension of D, then the pair
(ENL(A),ENL{U\A))

is a solution to D with respect to A.
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4.1.2 Splitting Sequences

A (transfinite) sequence is a family whose index set is an initial segment of ordinals
{a : a < p}. We say that a sequence (Ay)a<y of sets is monotone if A, C Ag
whenever a < 3, and continuous if, for each limit ordinal a < p, Ay = U,Y<,1 A,
A splitting sequence for a default theory D over £(U) is a nonempty, mono-
tone, continuous sequence (Aq)a<y of splitting sets for D such that Uy, Aa = U.
The definition of a solution with respect to a splitting set is extended to
splitting sequences as follows. Let A = (Ay)a<y, be a splitting sequence for D.

A solution to D with respect to A is a sequence (Eq)q<, of sets of formulas that

satisfies the following three conditions.
1. Ej is a consistent extension of the default theory ba,(D) over L(Ag).

2. For any a such that a + 1 < u, E441 is a consistent extension of the default

theory

€A, (bAu+1(D)v U E‘r)

7<a
over L(Aq41 \ Aa)-
3. For any limit ordinal a < u, B, = Cng(0).

We generalize the Splitting Set Theorem as follows.

Theorem 4.3 (Splitting Sequence Theorem) Let A = (Aq)a<y be a splitting
sequence for a default theory D over L(U). A set E of formulas is a consistent

extension of D if and only if

E:CnU(U EQ)

a<p

for some solution (Eq)a<, to D with respect to A.
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The proof of this theorem relies on the Splitting Set Theorem. We also have

the following counterpart to the Splitting Set Corollary.

Corollary 4.4 (Splitting Sequence Corollary) Let A = (Aq)a<, be a splitting
sequence for a default theory D over L(U). Let (Uy)a<y be the sequence of pairwise
disjoint subsets of U such that for all oo < pi

Uy = Aa\ UA7.

y<a
If E is a consistent extension of D, then the sequence (ENL(Uy) )a<y is a solution
to D with respect to A.

4.2 Proof of Splitting Set Theorem
The proof begins with three auxiliary lemmas.

Lemma 4.5 Let U, U’ be disjoint sets of atoms. Let R be a set of inference rules

over L(U). Let R' be a set of inference rules over L(U'). Let X = Cnyyy/(RUR').
o If X is consistent, then X N L(U) = Cny(R).
e X = Cnyuy (Cny(R)UR').

Proof. Straightforward. O

Lemma 4.6 Let U, U’ be disjoint sets of atoms. Let D be a default theory over
L(U), and let D' be a default theory over L(U'). Let E be a consistent, logically
closed set of formulas from L(U) and let E' be a consistent, logically closed set of
formulas from L(U'). Let X = Cnyupr(EUE'). X = Cngup((D U DY) if and
only if E = Cny (D) and E' = Cnyi((D')®').
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Proof. By Lemma 4.5, we have X N L(U) = Cny(E) and X N L(U') = Cnyi (E").

And because F and E' are logically closed, we have
XNLWU)=E and XNLU)=E'. (4.1)

The fact that (DU D')X = DXNEWU) y (D) XNEW") js easily checked. Hence by (4.1)

we have
(DuDY = DFuU(D)H. (4.2)

(=) Assume that X = Cnyypr (D U D')X). Tt follows by (4.2) that X =
Cnyuy(DP U (D')P'). By Lemma 4.5 and (4.1), we have E = Cny(DF) and
E' = Onn(D)F),

(<) Assume E = Cny(DP) and E' = Cng((D')?'). Thus we have

X = Cnyop(Cng(DP) U Crgn (D))

By Lemma 4.5 we conclude that X = Cnyp(DF U (D)®'). By (4.2) we have
X = Cnyup (D U DHYX). o

Lemma 4.7 Let D be a default theory over L(U), and let E be a set of formulas
from L(U). Let D' be a default theory over L(U) such that every rule r € D'
satisfies at least one of the following conditions: (i) cons(r) is equivalent to True;
(i1) pre(r) ¢ E; (ii) some member of just(r) has its complement in E. E is an

extension of D if and only if E is an extension of D U D'.
Proof. Straightforward. O

In proving the Splitting Set Theorem it is convenient to introduce a set of
alternative definitions, differing very slightly from those used in stating the theorem.
(We nonetheless prefer the original definitions, because they are more convenient in
applications of the Splitting Theorems.)

Let D be a default theory over £(U) split by A. We define the following.
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e t%(D)={reD : cons(r) € LU\ A) }
o 1,(D) = D\ t5(D)

The advantage of these alternative definitions is captured in the following

key lemma, which fails to hold for their counterparts b (D) and D \ b4 (D).

Lemma 4.8 Let D be a default theory over L(U) with splitting set A. For any set
X of formulas from L(U), b (D)X = b%(DX) and t*(D)* = t*(D¥).

Proof. Tt is enough to show that t% (D)X = t%(D¥).

(=) Assume r € t%(D)¥. Clearly we have r € DX. We need to show that
cons(r) € L(U \ A). Since r € t%(D)¥, there must be an r' € t%(D) such that
{r'}¥ = {r}. We know that cons(r') € L(U \ A); and since cons(r) = cons(r'),

we're done. Proof in the other direction is similar. O

The proof also makes use of the following additional alternative definitions.

Given a set X of formulas from L(A), let €% (D, X) be the default theory
over L(U \ A) obtained from D in the following manner. For each rule r € t%(D)
such that

o every conjunct of pre(r) that belongs to £(A) also belongs to Cn 4(X), and
e no member of just(r) has its complement in Cn 4(X)
there is a rule ' € €% (D, X) such that

o pre(r') is obtained from pre(r) by replacing each conjunct of pre(r) that be-
longs to L(A) by True, and

o just(r') = just(r) N L(U \ A), and

o cons(r') = cons(r).
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Notice that e% differs from e4 only in starting with the rules in ¢% (D) instead
of the rules in D \ bs(D).
Finally, let s*(D) be the set of all pairs (X,Y) such that

e X is a consistent extension of b% (D), and
e Y is a consistent extension of e* (D, X).

The following lemma shows that these alternative definitions are indeed suit-

able for our purpose.

Lemma 4.9 If a default theory D over L(U) is split by A, then s%(D) is precisely

the set of solutions to D with respect to A.

Proof. (<) Assume that (X,Y) is a solution to D with respect to A. Thus X is a
consistent extension of b4(D) and Y is a consistent extension of e4 (D, X). Let r be
arule in b (D) \ b% (D). Notice that bs(D)\ b% (D) C t% (D). So r € ba(D)Nt%(D).
It follows that r is a rule over £(A) such that cons(r) € L(U \ A). Thus, either
cons(r) is equivalent to True or cons(r) is equivalent to False. Assume that cons(r)
is equivalent to False. Since r € bs(D) and X is a consistent extension of b4(D), we
can conclude that either pre(r) ¢ X or some member of just(r) has its complement in
X. So we’ve shown that for every rule r € bs(D)\b% (D), either cons(r) is equivalent
to True or pre(r) ¢ X or some member of just(r) has its complement in X. Since
b% (D) C ba(D), it follows by Lemma 4.7 that X is a consistent extension of b% (D).
It remains to show that Y is a consistent extension of €% (D, X). The reasoning here
is much the same. Since D \ bs(D) C % (D), we know that e4 (D, X) C €% (D, X).
Furthermore, it is not difficult to show, by the definitions of e4 and €%, along with
some of the previous observations, that if a rule r belongs to e% (D, X) \ e4 (D, X),
then cons(r) is equivalent to True. From this it follows by Lemma 4.7 that Y is a

consistent extension of e* (D, X).
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Proof in the other direction is similar. O

The next three lemmas are used in the proof of Lemma 4.13, which is one of

the main lemmas in the proof of the Splitting Set Theorem.

Lemma 4.10 Let R be a set of inference rules over L(U) with splitting set A. Let
E be a consistent set of formulas. If E = Cny;(R), then EN L(A) = Cna(b(R)).

Proof. Let r be a rule from b%(R). Since E is closed under R and r is a rule over
L(A), we know that either pre(r) ¢ E N L(A) or cons(r) € EN L(A). This shows
that £ N L(A) is closed under b% (R). Since E is logically closed, so is E N L(A). Tt
follows that Cn 4(b%(R)) C E N L(A).

Let E' = Cny[Cna(b%(R))U(ENL(U\ A))]. Notice that E' is a consistent,
logically closed subset of E. Also notice that by Lemma 4.5 we can conclude that
E'NL(U\A)=ENL(U\A). Again by Lemma 4.5 we also know that E' N L(A4) =
Cna(b%(R)). So we will complete the proof by showing that E' = E.

Let r be a rule in #%(R). We know that either pre(r) ¢ E or cons(r) € E.
Since E' C E, we have pre(r) ¢ E' if pre(r) ¢ E. On the other hand, since
E'NLU\A) =ENLU\ A) and cons(r) € L(U \ A), we have cons(r) € E' if
cons(r) € E. Thus, either pre(r) ¢ E' or cons(r) € E'. That is, E' is closed under
t%(R). Of course E' is also closed under b% (R). So we've shown that E' is a logically
closed subset of E that is closed under R. And since E is the least logically closed

set of formulas closed under R, E' = E. m|

Lemma 4.11 Let R be a set of inference rules over L(U) with splitting set A. Let E
be a consistent set of formulas. If E = Cny(R), then E = Cny[(ENL(A))Ut%(R)].

Proof.  Let E' = Cny[(E N L(A)) Ut (R)]. We'll show that E = E'. By the
previous lemma we can conclude that E' N L(A) = EN L(A). Also by the previous
lemma, we know that E N L(A) = Cn(b%(R)). It follows that E' N L(A) is closed
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under b% (R), and since b% (R) is a set of rules over L(A), E' is closed under b%(R).
Since E' is also closed under t%(R), E' is closed under R. Since E is the least
logically closed set that is closed under R, E C E’. On the other hand, we can see
that E is closed under (E N L(A)) Ut%(R). It follows that E' C E. So E=E'. O

Lemma 4.12 Let R be a set of inference rules over L(U) with splitting set A. Let
E be a consistent set of formulas. If EN L(A) = Cna(b%(R)) and E = Cny[(EN
L(A))Ut%(R)], then E = Cny(R).

Proof. Let E' = Cny(R). It’s easy to see that E is closed under R. Thus E' C E.
Since E' is closed under b%(R) and E N L(A) is the least set closed under b%(R),
we have EN L(A) C E'. So E' is closed under E N L(A). Since E' is also closed
under t%(R), E' is closed under (E N L(A)) U t%(R). Since E' is a logically closed
subset of E and E is the least logically closed set closed under (E N L(A)) Ut (R),

we have E' = E. O

Lemma 4.13 Let D be a default theory over L(U) with splitting set A. Let E be a
consistent set of formulas from L(U). E = Cny (D) if and only if

o ENL(A) = Cnylb,(D)PTEA)] and
o E= Cnp[(ENL(A) Ut (D).

Proof. (=) Assume that E = Cny (D). Notice that A splits D¥. By Lemma 4.10,
ENL(A) = Cna(b4(DE)). By Lemma 4.8, b% (D¥) = b%(D)E. Since b%(D) is a de-
fault theory over L(A), b% (D)F = b%(D)PN4(4). So ENL(A) = Cna(b%y(D)FOEA).
By Lemma 4.11, E = Cny[(ENL(A))Ut%(D®)]. By Lemma 4.8, t%(D®) = t,(D)".
So E = Cny[(EN L(A)) Ut4(D)"].

(<) Assume that E = Cny[(EN L(A)) Uty (D)E]. Recall that A splits DZ.
Since b%(D) is a default theory over L£(A), we have b%(D)®"¢(4) = % (D)?. By
Lemma 4.8, t%(D)E = ¢ (DF) and b (D)F = b (DF). Thus we have E N L(A) =
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Cna(b%(DF)) and E = Cny[(ENL(A))Ut, (DF)]. By Lemma 4.12, E = Cny(DF).
O

The next three lemmas are used in the proof of Lemma 4.17, which is another

of the main lemmas in the proof of the Splitting Set Theorem.

Lemma 4.14 Let R,R' be sets of inference rules over L(U). If Cny(R) is closed
under R' and Cny(R') is closed under R, then Cny(R) = Cny(R').

Proof. Straightforward. O

Lemma 4.15 Let D be a default theory over L(U) split by A. Let E be a logically
closed set of formulas from L(U), with X = ENL(A) and Y = ENL(U \ A). The
set Cny[X Ue’y (D, X)Y] is closed under X Ut (D)".

Proof. Let E' = Cny[X U ey (D,X)"]. Of course E' is closed under X. We
must show that E’ is also closed under t%(D)®. Let r be a rule from #%(D)® such
that pre(r) € E'. We must show that cons(r) € E'. Let r’ be a rule in t}(D)
such that {r'}¥ = {r}. Tt follows that no member of just(r') has its complement
in E. Hence no member of just(r') has its complement in X. Notice also that
pre(r’) = pre(r). Since pre(r) € E' and E’ is logically closed, we can conclude
that every conjunct of pre(r') that belongs to L£(A) also belongs to X. Given these
observations, we know there is a rule r, such that e* ({r'}, X) = {r.}. Notice that
Just(rl) = just(r')N L(U \ A). Since no member of just(r') has its complement in E,
it’s clear that no member of just(r}) has its complement in Y. Given this observation
we know that there is a rule re such that {r.}Y = {r.}. Since pre(re) = pre(r.), we
know that pre(re) is the result of replacing each conjunct of pre(r’) that belongs to
L(A) by True. And since pre(r') = pre(r), we can conclude that pre(re) € E'. It
follows that cons(r.) € E'. And since cons(r.) = cons(rl) = cons(r') = cons(r), we

have cons(r) € E'. 0
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Lemma 4.16 Let D be a default theory over L(U) split by A. Let E be a logically
closed set of formulas from L(U), with X = EN L(A) and Y = ENL(U \ A). The
set Cny(X Ut (D)F) is closed under X Ue (D, X)".

Proof. Let E' = Cny(X Ut (D)F). Of course E' is closed under X. We must show
that E' is also closed under % (D, X)¥ . Let . be a rule from e* (D, X)" such that
pre(re) € E'. We must show that cons(re) € E’. Let r' be a rule in t%(D) such
that €% ({r'}, X)¥ = {r.}. Notice that no member of just(r') has its complement
in X. Furthermore, no member of just(r') N L(U \ A) has its complement in Y.
We can conclude that no member of just(r') has its complement in E. Given this
observation we know that there is a rule 7 in % (D)% such that {r'}¥ = {r}. Notice
that pre(r) = pre(r’). We know that every conjunct of pre(r') that belongs to L£(A)
also belongs to X, which is a subset of E’. Moreover, since pre(r.) € E’, we know
that every conjunct of pre(r’) that does not belong to £(A) belongs to E'. It follows
that pre(r') € E'. Thus pre(r) € E', from which it follows that cons(r) € E'. And

since cons(r) = cons(r') = cons(re), cons(re) € E'. O

Lemma 4.17 Let D be a default theory over L(U) split by A. Let E be a logically
closed set of formulas from L(U), with X = ENL(A) and Y = ENL(U \ 4). We
have Cny[X Uel (D, X)¥] = Cny[X U t%(D)7].

Proof. Immediate from the previous three lemmas. O

Proof of Splitting Set Theorem. Given a default theory D over L£(U) with splitting
set A, we know by Lemma 4.9 that s% (D) is precisely the set of solutions to D with
respect to A. We will show that E is a consistent extension of D if and only if
E = Cny(X UY) for some (X,Y) € s%(D).

(=) Assume E is a consistent extension of D. Let X = E N L(A) and
Y = ENL(U\ A). By Lemma 4.13, X = Cna(b% (D)%) and E = Cny(X Ut} (D)%).
By Lemma 4.17, E = Cny(X U e (D, X)Y). By Lemma 4.5, we can conclude that
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Y = Cny\alel (D,X)Y). So we have established that (X,Y) € s%(D). We can
also conclude by Lemma 4.5 that E = Cny[X U Cny\ a(e} (D, X)Y)]. And since
Y = Cnypa(e’y (D, X)Y), we have E = Cny(X UY).

(<) Assume E = Cny(X UY) for some (X,Y) € s%(D). Since (X,Y) €
s%(D), wehave Y = Cng a(ely (D, X)Y). Hence E = Cny[XU Cnyaley (D, X)¥)].
By Lemma 4.5, we can conclude that E = Cny(X U e} (D, X)¥). Thus, by
Lemma 4.17, E = Cny(X U t%(D)F). By Lemma 4.5, EN L(A) = Cns(X), and
since X is logically closed, Cna(X) = X. So ENL(A) = X. Since (X,Y) € s%(D),
we have X = Cna(b%(D)X). It follows by Lemma 4.13 that E = Cny(D¥). O

Proof of Splitting Set Corollary. Assume that E is a consistent extension of D. By
the Splitting Set Theorem, there is a solution (X,Y) to D with respect to A such
that E = Cny(X UY). Since X C L(A) and Y C L(U \ A), we can conclude by
Lemma 4.5 that ENL(A) = Cna(X). And since X is logically closed, Cn4(X) = X.
So ENL(A) = X. A symmetric argument shows that ENL(U\ A) =Y. O

4.3 Proof of Splitting Sequence Theorem

Lemma 4.18 Let D be a default theory over L(U) with splitting sequence A =
(Aa)a<yu- Let E be a set of formulas from L(U). Let X = (X45)a<yu be a sequence
of sets of formulas from L(U) such that

o Xog=ENL(Ay),
o foralla s.t. a+1<p, Xor1=ENL(Ax+1\ 4a),
o for any limit ordinal o < p, X, = Cng(0).
If E is a consistent extension of D, then X is a solution to D with respect to A.

Proof. There are three things to check.
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First, by the Splitting Set Corollary, we can conclude that E N L(Ap) is a
consistent extension of by, (D).
Second, choose «a such that @ +1 < p. We must show that X,41 is a
consistent extension of
ea, (bAa+,(D), U X7> . (4.3)
7<a
Let § = a+1. By the Splitting Set Corollary, ENL(Ag) is a consistent extension of
bay (D). Let D' = bay (D) and let E' = EN L(Ag). By the Splitting Set Corollary,
since A, splits D', E'N L(Ag\ Ay ) is a consistent extension of e, (D', E' N L(A,))-
It is easy to verify that X,y1 = E' N L(Ag \ Aq). It is not difficult to verify also
that e4, (D', E' N L(Ay)) is the same as (4.3).
Third, for any limit ordinal @ < p, X, = Cng(0). O

Lemma 4.19 Let D be a default theory over L(U) with splitting sequence A =
(Aa)a<pu- Let (Eq)a<y be a solution to D with respect to A. For all a < p

Cna, U E,
r<a

is a consistent extension of ba, (D).

Proof. For all o < p, let

Xo = Cna, (U E7> .
<a
Proof is by induction on a. Assume that for all ¥ < a, X, is a consistent extension
of by, (D). We'll show that X, is a consistent extension of by, (D). There are two
cases to consider.
Case 1: « is not a limit ordinal. Choose v such that v+ 1 = a. By the

inductive hypothesis, X, is a consistent extension of ba, (D). We also know that

E, is a consistent extension of ea, (ba, (D), Ug<, Ep). Let D' =ba, (D). Tt is clear
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that ba, (D) = ba,(D'). It is not difficult to verify that e, (ba,(D),Ug<, Ep) is the
same as ea, (D', X,). So we've shown that X, is a consistent extension of by, (D')
and that E, is a consistent extension of e4, (D', X,,). By the Splitting Set Theorem,
it follows that Cna, (X, U E,) is a consistent extension of D'. And since it’s easy
to check that Cng, (X, U E,) = Xo, we're done with the first case.

Case 2: ais a limit ordinal. First we show that X, is closed under b, (D)%".
So suppose the contrary. Thus there is an r € ba, (D)X~ such that pre(r) € X, and
cons(r) ¢ X,. Since A is continuous and « is a limit ordinal, we know there must
be a y < a such that r € ba, (D)*=. Since by, (D) is a default theory over L£(A,),
we have ba, (D)X = ba, (D)¥. So r € ba, (D)*". Furthermore, it follows that
pre(r) € X, and cons(r) ¢ X,. This shows that X, is not closed under I;AW(D)X77
which contradicts the fact that, by the inductive hypothesis, X, is a consistent
extension of ba, (D). So we have shown that X, is closed under b4, (D)¥".

Now, let E = Cna, (ba,(D)X). We will show that E = X, from which it
follows that X, is a consistent extension of ba, (D). Since X, is logically closed and
closed under b4, (D)%, we know that £ C X,. Suppose F # X,, and consider any
formula ¢ € X, \ E. Since A is continuous and « is a limit ordinal, there must be a
7y < asuch that ¢ is from £(A,) and therefore ¢ € X,,. Thus, X, is a proper superset
of ENL(A,). By the inductive hypothesis, we know that X, is a consistent exten-
sion of by, (D). Thus, X, = Cnya, (ba,(D)%7). And since ba,(D)X7 = by, (D)%,
we have X, = CnAW(bAW(D)X”). Since £ = Cna, (ba,(D)%*) and bAW(D)X“ C
ba, (D), we know that E is closed under by, (D)*~. Moreover, since by, (D)*
is a default theory over L(A,), EN L(A,) is closed under by (D)¥e. But X, is
the least logically closed set closed under ba, (D)*~, so X, C EN L(A,), which
contradicts the fact that X, is a proper superset of £ N L(A,). We can conclude

that E = X,, which completes the second case. O
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Let D be a default theory over £(U) with splitting sequence A = (Aq)acp-

The standard extension of A is the sequence B = (By)a<pu+1 such that
o for all @ < p, By = A, , and
e B,=U.
Notice that the standard extension of A is itself a splitting sequence for D.

Lemma 4.20 Let D be a default theory over L(U) with splitting sequence A =
(Aa)acu- Let B = (Ba)a<pu+t1 be the standard extension of A. Let X = (Xq)a<y be
a sequence of sets of formulas from L(U). Let Y = (Ya)a<pu+1 be defined as follows.

o Foralla<p, Yo =X,.
o Y, = Cng(0).

If X is a solution to D with respect to A, then'Y is a solution to D with respect to
B.

Proof. First, it’s clear that Yj is a consistent extension of bg, (D), since Yy = X,
bpy(D) = ba,(D), and X is a consistent extension of by, (D). Similarly, it’s clear
that for any a such that a+ 1 < p, Y, is a consistent extension of
e, (b,;w D), U Yy) .
r<a

We also know that for any limit ordinal a < p, Y, = Cng(0). It remains to show
that we handle u correctly. There are two cases to consider.

Case 1: p is a limit ordinal. In this case we must show that Y, = Cng(0),
which it does.

Case 2: p is not a limit ordinal. In this case, choose a such that a +1 = p.
We must show that Y, is a consistent extension of the default theory

e, (bBM(D), U YA,) (4.4)

7<a
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over L(B, \ B,). Since A is a splitting sequence for a default theory over L(U),

we know that U,., A, = U. Moreover, since A is monotone and p is not a limit

y<p
ordinal, it follows that A, = U. And since B, = A,, we know that bg, (D) = D. It
follows that default theory (4.4) is empty. It also follows that B, \ Bq = 0, so the
language of (4.4) is £(0). Since Y, = Cny(0), we have shown that Y}, is a consistent

extension of (4.4). O

Proof of Splitting Sequence Theorem. (=) Assume that F is a consistent extension
of D. By Lemma 4.18, there is a solution (E,)q<, to D with respect to (Aq)a<u

for which it is not difficult to verify that

E_cnU(UEH)_

a<p

(<) Assume that X = (X4)a<y is a solution to D with respect to (Aa)a<p-

E=0Cny| U Xa) -
a<p

Let B = (Bg)a<ut1 be the standard extension of (Aq)a<y. By Lemma 4.20, we

Let

know there is a solution (Y,)a<yut1 to D with respect to B such that

E = Cny U Yo -
a<p+l

Moreover, we know there is an a < p+ 1 such that B, = U. Thus b, (D) = D and

E = Cnpg, (U Y7> .

y<a

It follows by Lemma 4.19 that F is a consistent extension of D. O

Proof of Splitting Sequence Corollary. Assume that E is a consistent extension of
D. By the Splitting Sequence Theorem, there is a solution (Xs)a<, to D with
respect to A such that E = Cny (Unq‘ Xa). We will show that for all a < p,
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EnL(U,) = X4 Let X = Ua<y Xa- Consider any a < pu. We have X, C L(Uy),
X\ Xq C LU\ U,), and E = Cny(X, U X \ Xa). Thus, by Lemma 4.5 we can
conclude that E N L(Uy) = Cny,(X,). And since X, is logically closed, we have
Cny, (Xa) = Xa- O

4.4 Proof of Correspondence Theorem and Reachabil-

ity Corollary

Our primary task is to prove the special case of the Correspondence Theorem in
which the domain description has no value propositions. We’ll call this intermediate
result the Correspondence Lemma. Most of the work in this section is devoted to
its proof.

Let D be a qualification-free domain description without value propositions,
with fluents F, and frame fluents F;. We will show that there is a one-to-one
correspondence between models of D and consistent extensions of §(D) such that a
value proposition V is true in a model of D if and only if the formula [V] belongs
to the corresponding extension of §(D).

We begin with a fundamental lemma, used to show that our default theory
4(D) correctly characterizes the possible initial situations.

Let Ag be the default theory
: L ) .
RU {T : L is a fluent lzteml} .
Notice that Ay is default theory over L(F).

Lemma 4.21 A consistent set X of fluent formulas is an extension of Ay if and

only if there is a state S such that X = Cng(S).

Proof. Recall that an interpretation S is a state if and only if Cng(S) is closed

under R. (Recall also that interpretations are maximal consistent sets of literals.)
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(Left-to-right) Assume that X is a consistent extension of Ag. It is easy
to verify that, for every fluent F, either F' or —F belongs to X. So there is an
interpretation S such that X = Cng(S). Moreover, since R C A¥, we know that
X is closed under R; so S is a state.

(Right-to-left) Assume that S is a state, and take X = Cnp(S). It is easy
to verify that

Af =SUR
from which it follows that X C Cnp(AL). Of course X is closed under S, and since
S is a state, we know that X is also closed under R. And since X is logically closed,

we can conclude that X = Cng(AY). 0

The second fundamental lemma is actually Theorem 3.9 from Section 3.5. It
will be used to show that in the consistent extensions of §(D), non-initial situations
respect the transition function Res.

Recall that for any state S and action name A4, A(4, S) is the default theory

obtained by taking the union of the following four sets of rules.
1. All rules of the form IL_ where L is a frame fluent literal in S.
2. E(A,S)
3. All rules of the forms TF and %FF where F € F(A,S).
4. R

Notice that A(A4,S) is a default theory over L(F).
We showed in Theorem 3.9 that, for any state S and any action A that is
not prohibited in S, The following hold.

1. A state S’ belongs to Res(A, S) if and only if Cng(S’) is a consistent extension
of A(A4,S).

107



2. If X is a consistent extension of A(A4,S), then there is a state S’ such that
X = Cnp(S).

Next we prepare to move these results into the language of default theory
d(D). This will require three preliminary lemmas.

Let U be the set of atoms such that £(U) is the language of the default
theory (D). We can view L(U) as including a tree of copies of the language L(F):
one copy for each action string A. For any set T of rules (that is, any combination
of default rules, inference rules and formulas) over £(F) and any action string 4,
let X(T, A) denote the set of rules over £(U) obtained by replacing each occurrence
of each fluent atom F in T by the atom Holds(F,[A]). Observe that for each action
string 4, the language L£(Z(F,4)) is a subset of £(U) such that the rules over

L(X(F,A)) and the rules over £(F) are in one-to-one correspondence.

Lemma 4.22 For every set T of inference rules over L(F) and every action string
A, a set X of formulas from L(F) is closed under T if and only if (X, A) is closed
under X(T, 4).

Proof. (Left-to-right) Assume X is closed under T'. Let 7’ be a rule from %(T, 4)
such that pre(r') € X(X,A). We must show that cons(r') € (X, A4). We know
there is a rule r € I such that 7’ can be obtained from r by replacing each occurrence
of each fluent atom F in r by the atom Holds(F,[A]). Since pre(r') € B(X, A), we
know that pre(r) € X. Since X is closed under T, cons(r) € X, from which it

follows that cons(r’) € (X, A). Proof in the other direction is similar. 0

Notice that the previous lemma is sufficient to establish also that X is logi-

cally closed if and only if ¥(X, 4) is.

Lemma 4.23 For every set ' of inference rules over L(F) and every action string

A, we have X(Cnp(T'), A) = C"):(F,Z)(E(Flz))'
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Proof. Follows easily from the previous lemma. O

Lemma 4.24 For every default theory D over L(F) and every action string A, a
set X of formulas from L(F) is an extension of D if and only if £(X,A) is an
extension of £(D, A4).

Proof By Lemma 4.22 we know that X = Cnp(D?) if and only if o(X,4) =
S(Cnp(DX), 4). By Lemma 4.23 we have X(Cng(DX), 4) = CnE(F,Z)(Z(DX,Z)).
Finally, it is not difficult to verify that X(DX, ) = X(D, A)%(XA) which suffices to

establish the lemma. O

In order to apply the two fundamental lemmas, Lemma 4.21 & Theorem 3.9,
to the default theory 6(D), we will split §(D) into simpler parts, using the Splitting
Sequence Theorem. To this end, we introduce a partial mapping o from an initial
segment of ordinals {o: a < p} to action strings, which satisfies the following three

conditions.
1. For each action string A there is a non-limit ordinal @ < p such that o(a) = A.

2. For each non-limit ordinal a < y there is an action string 4 such that o(a) =
A
3. For all non-limit ordinals a and 3 such that a < 3 < y, o(a) # o(8) and the

length of o(a) is no greater than the length of o(/3).

Notice that o(0) =e.
Let (Ua)a<pu be the sequence of pairwise disjoint subsets of U with the fol-

lowing two properties.
1. For each limit ordinal a < p, U, = 0.

2. For each non-limit ordinal o < p, U, consists of all atoms from U with the

situation argument [o(a)].
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Let (Aq)a<u be the sequence of subsets of U such that for all a < p
A= U T,.
r<a
It is not difficult to verify that (Ag)a<y is a splitting sequence for (D).
Now we can prove that default theory §(D) is correct with respect to the
initial situation Sy, which we can also write as [¢] and as [0(0)]. We do this by

showing that the default theory b4, (8(D)) behaves correctly, as follows.

Lemma 4.25 A set X of formulas from L(Up) is a consistent extension of ba,(6(D))

if and only if there is a state S such that
X = Cny,[{Reachable(Sp)} U(S,€)].
Proof. Tt is easy to verify that

ba,(6(D)) = £(Ag,€) U {: Reachable(SO)} .

Reachable(Sp)

The lemma follows in a straightforward fashion from this observation, by Lem-

mas 4.21 and 4.24. O

We next show that default theory §(D) uses the structure of the situation
calculus to build what is essentially a tree of embeddings of the definition of Res.

For each av+ 1 < p, let

Dayr = a1 (6(D)) \ ba, (6(D)).

So D1 is the default theory over £(Aq+1) which can be described as follows. Let
A be the action string and A the action name such that o(a + 1) = 4; A. For each

sufficiency proposition ¢ suffices for ¢ in D, we have the rule

Holds (¢, [A; A]) A Reachable([4; A])
Holds (1, [4; A])
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For each effect proposition A causes ¢ if ¢ in D, we have the rule

Holds (1, [A]) A Reachable([A; A])
Holds (¢, [ 4])

For each influence proposition A possibly changes F if v in D, we have the rules

Holds(, [A]) A Reachable([4; A)) : Holds(F,[4; A])
Holds(F,[4; A])

and
Holds(¢, [A]) A Reachable([A; A]) : ~Holds(F, [4; A))
—Holds(F,[4; A]) '

For each executability proposition impossible A if ¢ in D, we have the rule

—Reachable([4; A])

We also have a number of additional rules, as specified below.

Reachability axioms.

: Reachable([4; A)) and = Reachable([A])
Reachable([4; A]) —Reachable([4; A])

)

Inertia axioms. For each frame fluent literal L,

Holds(L, [A]) A Reachable([4; A)) : Holds(L,[4; A])
Holds(L,[4; A])

For any set Y of formulas from L£(A,), let
Eas1(Y) = €4, (Da+1,Y).
Notice that E411(Y) is a default theory over £(Ug+1).

Lemma 4.26 Let a be such that a + 1 < p. Let A be the action string and A the
action name such that o(a+ 1) = A; A. Let v be such that o(y) = A. For any

logically closed set'Y of formulas from L(Aa), we have
Bai1(Y) = Basa(Y 0 L(T,)).
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Proof. Follows easily from the fact that every constituent of every rule in Dy

belongs to L(Uy) U L(Ua1)- O

Lemma 4.27 Let o be such that a +1 < u. Let A be the action string and A
the action name such that o(a + 1) = A; A. Let y be such that o(y) = A. Let
Y = Cny, ({~Reachable([A])}). Let S be a state. Let Z = Cny, [{Reachable ([A])} U

(S, 4)]. The following hold.
1. The unique extension of Ea11(Y) is Cny,,,({~Reachable([4; A])}).
2. If A is prohibited in S, then the unique extension of Eq41(7Z) is

Cny, ({ﬁReachable([X; ADY).

3. If A is not prohibited in S, then X is an extension of Eq11(Z) if and only if
there is a state S' € Res(A,S) such that

X = Cny,,,[{Reachable([4; A])} US(S', 4; A)].

Proof.  For this lemma we will use the Splitting Set Theorem, with splitting set
B = {Reachable([4; A])}. Notice that B splits both E,11(Y) and E,11(Z).

For the first part, it’s not hard to verify that the unique extension of default
theory bp(Ea+1(Y)) is Cnp({—Reachable([4; A])}). Moreover, it is easy to verify
that

eB(Eat1(Y), Cnp({-Reachable([4; A))})) = 0.

Thus
( C’nB({ﬁReachable([Z; ADY, C"E(F,Z;A)(m) )

is a solution to E,11(Y) with respect to B, and by the Splitting Set Theorem it
follows that Cny,,,({~Reachable([4; A])) is the unique extension of Eq41(Y).
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For part two, assume that A is prohibited in S. Thus there is fluent formula

¢ such that the rule

Holds(¢, [A])
—Reachable(A; A)
belongs to D41 and ¢ is satisfied in S. Since ¢ is satisfied in S, ¢ € Cng(S).
Thus we have Holds(¢,[A]) € Z(Cnp(S),A), and it follows by Lemma 4.23 that
Holds(¢,[4]) € CnE(FJ)(E(S,Z)). And since C’nE(F’Z)(E(S,Z)) C Z, we have
Holds(¢,[A]) € Z. It follows easily that the unique extension of bg(Est1(Z)) is

Cnp({—Reachable([4; A])}). Again, it is easy to verify that
eB(Eat1(Z), Cnp({—Reachable([4; A))})) = 0.

Thus, by essentially the same reasoning as in the previous case, we can conclude
that the unique extension of E,11(Z) is Cny, ., ({~Reachable([4; A])}).
For the third part, assume that A is not prohibited in S. Reasoning much

as before, we see that unique extension of bg(Eqs+1(Z)) is Cnp(B). Now take
D' = ep(Eaa(2), Cp(B)).
The key step is to recognize that
D' =%(A(4,9),4; A).

Thus, we can apply Theorem 3.9 relating Res(4, S) and A(A4,S), as follows.

(Left-to-right) Assume that X is an extension of E,y1(Z). By the Split-
ting Set Corollary, (X N L(B), X N L(X(F, 4; A))) is a solution to E,11(Z) with
respect to B, and it follows immediately that X N £(B) is a consistent exten-
sion of bg(Est1(Z)) and that X N L(Z(F, 4; A)) is a consistent extension of D'.
Let X' = X N L(X(F, 4; A)). Notice that X = Cng,,,(BU X'). Since D' =
$(A(4, S),4; A), we know by Theorem 3.9 and Lemma 4.24 that there is a state
S' € Res(A,S) such that we have X' = CnE(F,Z;A)[E(S’,Z; A)]. Tt follows that
X = Cny,,,(BUX(S',4; A)).

a+1(
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(Right-to-left) Assume there is a state S’ € Res(A,S) such that we have
X = Cny,,,(BUX(S',4; A)). We know that Cnp(B) is a consistent extension of
bg(Eat1(Z)). Let X' = C"E(F,Z;A)[E(Slsz A)]. Since D' = £(A(4,5),4;A). we
know by Theorem 3.9 and Lemma 4.24 that X' is a consistent extension of D'. It

follows by the Splitting Set Theorem that X is an extension of E,y1(Z). O

At this point we have applied the fundamental lemmas, Lemma 4.21 & The-
orem 3.9, to the parts of §(D) that we obtain using the splitting sequence (Aq)a<p-
The resulting lemmas (4.25 & 4.27) capture essential properties of §(D) in a form
that will be convenient for our proof of the Correspondence Lemma.

In what follows, we will first show that for any model ¥ of D we can con-
struct a corresponding extension of §(D) (Lemma 4.33). It will then remain to
show that each consistent extension of §(D) corresponds to a unique model of D
(Lemma 4.40). These results together will establish that there is indeed a one-to-one
correspondence between models of D and consistent extensions of §(D). Moreover,
we’'ll show that each model and its corresponding extension agree on the truth of
all value propositions, which will suffice to establish the Correspondence Lemma.

At this point we associate with each structure for D a unique set of literals
from L(U). It will be our goal to show that, for any model of D, the associated set
of literals is a consistent extension of §(D).

For any structure ¥ for D, let §(¥) be the least set of literals from L(U)

such that for every action string A:
1. if A ¢ Dom(®), then ~Reachable([A]) € §(¥); and
2. if A € Dom(¥), then Reachable([A]) € §(¥) and (¥ (4), A) C §(T).

In Lemma 4.29 below, we will show that §(¥) has the following crucial prop-

erty: a value proposition V is true in ¥ if and only if [V] € Cny(6(¥)).
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Lemma 4.28 Let U be a structure for D. For all action strings A, we have
Cny(8(¥)) N L(Z(F,A)) = C"E(F,Z)(‘;(\I/) N L(X(F,4))).
Proof. Straightforward. O

Lemma 4.29 A value proposition V is true in a structure ¥ for D if and only if

[V] € Cny(5(%)).

Proof. Notice that it is sufficient to prove that the lemma holds for all atomic value
propositions. So consider any value proposition ¢ after 4.

(Left-to-right) Assume that ¢ after 4 is true in ¥. Thus, A € Dom(¥) and
¢ is satisfied in ¥(4). Since ¢ is satisfied in ¥(A), we know that ¢ € Cng(¥(4)).
Thus, Holds(¢,[A]) € $[Cng(¥(A)),A]. We can conclude by Lemma 4.23 that
Holds(¢,[A]) € Cny(Z(¥(A), A)). By the definition of §(¥), Reachable([A]) € §(T)

and X(¥(A4),A) C §(TF). So we've shown that Reachable([A]) A Holds(¢,[A]) €

Cny(6(P)). That is, [¢ after 4] € Cny (6(D)).

(Right-to-left) Assume that [¢ after A] € Cny(6(¥)). That is just to say

that Reachable([A]) A Holds(¢,[A]) € Cny(6(¥)). Thus Holds(¢, [A]) € Cny (6(P))
and Reachable([A]) € Cny(5(T¥)). By the definition of §(¥), it follows that A €
Dom(¥). Again by the definition of §(¥), we can conclude that %(¥(4), 4) =
5() N L(Z(F, A)). Thus, CnZ(FYZ)(E(\IJ(Z),Z)) = Cnyp7)(8(2) N L(X(F, A))).
By Lemmas 4.23 and 4.28 it follows that

S[Cnr(¥(A)),A] = Cny(3()) N L(Z(F, A)).

And since we know that Holds(¢,[A]) € Cny(6(¥)) N L(S(F, A)), it follows that
Holds(,[A]) € X[Cnr(¥(A)),A]. So ¢ € Cnp(¥(A)). That is, ¥(A) satisfies ¢
and thus ¢ after 4 is true in . O

Now we begin the main part of the proof of the left-to-right direction of the

Correspondence Lemma.
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Let ¥ be a model of D. We will show that Cny(d(¥)) is an extension of
d(D). We begin by putting Cny(5(¥)) in a form more suitable for application of
the Splitting Sequence Theorem.

Let (X4)a<p be defined as follows.

1. Xo = Cny, (8(T) N L(Ty)).
2. For all a such that a +1 < p, Xa11 = Cny,, (6(¥) N L(Uas1))-
3. For all limit ordinals a < u, Xo = Cng(0).

Lemma 4.30 We have

a<

Cny(6(¥)) = Cny (U Xa) .
Proof. Tt is straightforward to verify that

8(7) = J (6() N LT)) -

a<p
Tt is clear from the definitions that for all a < p, X, = Cny, (6(¥) N L(U,)). The

lemma follows easily from these observations. o
We will show that (X4)a<, is a solution to §(D) with respect to (Aq)a<p-

Lemma 4.31 Let a be a non-limit ordinal such that o < p. Let A be the action

string such that A = o(a). The following hold.
1. If A € Dom(V) then X, = Cny, [{ Reachable([A])} U S(V(4), 4)].
2. If A ¢ Dom(¥) then X, = Cny, ({—~Reachable([A])}).

Proof. By the definition of (X4)a<, we know that X, = Cny, (6(¥) N L(U,)). For
part one, assume that A € Dom(¥). From the definition of §(¥) we can conclude
that 6(¥) N L(U,) = {Reachable([A])} U X(¥(A),A). For part two, assume that
A ¢ Dom(¥). From the definition of 6(¥) we can conclude that §(¥) N L(U,) =
{—Reachable([A])}. O

116

Lemma 4.32 For each a such that a + 1 < p, Xa41 s a consistent estension of

Ea+1 U X,B
B<a

the default theory

over L(Uat1).-

Proof. Tet A be the action string and A the action name such that o(a+1) = 4; A.

Let vy be such that o(y) = 4. By the definition of E,,; we know that

Eat1 (U Xﬁ) = Eos1 (CnAa (U Xﬁ)) .
f<a f<a

It is easy to verify that
Cna, | U X | nL(,) = X,.
B<a
Thus, by Lemma 4.26 we can conclude that
Eat1 | U X3 | = Bas1(X,)
B<a
So we will show that X441 is an extension of E,41(X,). Consider three cases.
Case 1: A; A € Dom(¥). Since the domain of ¥ is prefix-closed, we have

A € Dom(¥). Let S = U(A) and S’ = ¥(4; A). By the previous lemma we have

the following.

X, = Cny,[{Reachable([A])} US(S, 4)]

Xat1 = Cny,,,[{Reachable([4; A])} US(S', 4; A)]

Since A; A € Dom(¥), we know that A is not prohibited in S. Furthermore, since
¥ is a model of D, we have S’ € Res(A,S). Thus, by part three of Lemma 4.27,

Xa41 is a consistent extension of Eq1q(X,).
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Case 2: A; A ¢ Dom(¥) and A € Dom(¥). Let S = U(A). In this case, X,

is the same as in the previous case. By the previous lemma
Xay1 = CnUn+1({ﬂReachable([Z; AD}).

Since D is a qualification-free domain, and A; A ¢ Dom(¥) while A € Dom(¥), we
can conclude that A is prohibited in S. Thus, by part two of Lemma 4.27, X, is
a consistent extension of E,q1(X,).

Case 3: A; A ¢ Dom(¥) and A ¢ Dom(¥). In this case, Xoy1 is the same

as in the previous case. By the previous lemma

X, = Cny,({~Reachable([A])}) .
By part one of Lemma 4.27, X1 is a consistent extension of E,11(X,). O

Lemma 4.33 Let D be a qualification-free domain theory without value proposi-

tions. If ¥ is a model of D, then Cny(6(¥)) is a consistent extension of §(D).

Proof. First, the fact that X is a consistent extension of b4,(6(D)) follows easily
from Lemma 4.25. Second, the previous lemma shows that for each a such that

a+1< pu, Xo41 is a consistent extension of

Eay1 (U Xy) .
1<

Finally, by the definition of (X4)a<y, we know that for all limit ordinals o < p,
Xo = Cng(0). These observations are sufficient to establish that (X)a<y is a

solution to §(D) with respect to (Ag)a<y. By Lemma 4.30
Cny(6(¥)) = Cny U Xa
a<p
so we can conclude by the Splitting Sequence Theorem that Cng (6(¥)) is a consis-

tent extension of §(D). O
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We have essentially established the left-to-right direction of the Correspon-
dence Lemma. Now we turn our attention to the other direction.

Let X be a consistent extension of 6(D). We will show that there is a (unique)
model ¥ of D such that X = Cny(6(¥)) (Lemma 4.40). To this end, we specify a
construction that, as we will show, yields a unique model of D for each consistent
extension of §(D).

Let Ux be the partial function from actions strings to sets of fluent literals

that satisfies the following two conditions.
1. Dom(¥x) = {A : Reachable([4]) € X}.

2. For all non-limit ordinals o < p, if o(a) € Dom(¥x), then ¥x(o(a)) is the
greatest set of fluent literals such that (¥ x(o(a)),o(a)) € X N L(U,).

Thus, for every action string 4 € Dom(¥x), Ux(A) is the greatest set S of
fluent literals such that (S, A) is a subset of X. One thing we will show is that
such sets S are in fact states (Lemma 4.36). More generally, we will establish the

fact that Uy is a structure for D such that X = Cny(6(¥x)) (Lemma 4.37).
Lemma 4.34 The domain of Ux is nonempty and prefiz-closed.

Proof. By Lemma 4.25 (and the Splitting Sequence Corollary), we can conclude
that Reachable(Sp) € X. Thus the domain of ¥x is nonempty.

For every action string 4, §(D) includes the rule

: Reachable([A))

Reachable([A])

from which it follows that for every action string 4, either Reachable([4]) € X or
—Reachable([A]) € X. Furthermore, for every action string A and action name A,

d(D) includes the rule

—Reachable([A])
—Reachable([4; A])
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which guarantees that if —Reachable([A]) € X then —Reachable([4; A]) € X. Thus
we can conclude that if A ¢ Dom(¥x) then A; A ¢ Dom(¥x), which is just to say

that the domain of ¥y is prefix-closed. O

Once again we will be looking to apply Lemmas 4.25 and 4.27. In order to
do this, we need an appropriate sequence, which is defined next.

Let (Xa)a<u be the sequence such that for every o < p, Xo = X N L(U,).
We know by the Splitting Sequence Corollary that (X4)a<, is a solution to §(D)

with respect to (Ay)a<y. Moreover, it is not hard to verify that

chU<UXa).

a<p

Lemma 4.35 Let a be such that a +1 < p. Let A be the action string and A the
action name such that o(a + 1) = A; A. The following hold.

1. If Reachable([A; A]) € Xq41, then there is a state S such that
Xa41 = Cny,_,[{Reachable([4; A])} UX(S, 4; A)].
2. If Reachable(A; A]) ¢ Xay1, then

Xot1 = Cny, ., ({~Reachable([4; A])}).

Proof. Proof is by induction on a. Let vy be such that o(y) = A. By the definition

of Eq41 we know that

Eo1 (ﬁLJQXﬁ) = Fap1 (cn,;a (ﬂgﬂxﬂ» )

It is not difficult to verify that

B<a

Cna, (U Xﬁ) NnLU,) = X,.
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Thus, by Lemma 4.26 we can conclude that

Eat1 (U Xﬂ) = Eot1(Xy) .

B<a

So Xq41 is an extension of Eq41(X,). Now consider three cases.

Case 1: ¥ =0. Thus A = e. By Lemma 4.25 there is a state S such that
X, = Cny, [{Reachable([A])} U (S, A)].

To show part one for this case, assume that Reachable([4; A]) € Xoi1. By part
two of Lemma 4.27 we can conclude that A is not prohibited in S and the desired
conclusion then follows from part three of Lemma 4.27. Part two for this case can
be proved similarly.

Case 2: v # 0 and Reachable([A]) € X,. In this case we use the inductive

hypothesis, which guarantees that there is a state S such that
X, = Cny,[{Reachable([A])} U £(S, 4)].

From this point the proof proceeds as in the previous case.
Case 3: v # 0 and Reachable([A]) ¢ X,. In this case we again use the

inductive hypothesis, which guarantees that X, = Cny, ({—Reachable([A])}). We

reach the desired conclusion by applying part one of Lemma 4.27. O
Lemma 4.36 Ux is a partial function from action strings to states.

Proof. ~ We show that for all non-limit ordinals & < p, if o(a) € Dom(¥x),
then ¥x(o(a)) is a state. First, if @ = 0, we can conclude by Lemma 4.25 (and
the Splitting Sequence Corollary), along with the definition of ¥y, that o(a) €
Dom(¥x) and that ¥x(o(a)) is a state. Let a be such that a+1 < u. If o(a+1) €
Dom (¥ x), then Reachable([o(a+1)]) € X441, and we can conclude by the previous

lemma that ¥x(o(a + 1)) is a state. O
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Lemma 4.37 Ux is a structure for D such that X = Cny(8(¥x)).

Proof. By Lemma 4.34 and the previous lemma, ¥y is partial function from action
strings to states whose domain is nonempty and prefix-closed, which shows that W x
is a structure for D. Thus, §(¥x) is defined. We must show that X = Cny (6(¥x)).
To begin, it is easy to verify that
C’nU(IS(‘I’x)) = Cny (U CnUn(LS(\I’x) n L(Ua))> .
a<p

Recall that

X:CnU(U Xa).

a<p
Given these observations, we see that it will be sufficient to show that for every
a<p, Xo=Cnp, (0(¥x)NL(Uy)).
If & is a limit ordinal, this is trivially true; so assume that « is a non-limit
ordinal and let 4 be the action string such that 4 = (). Now consider two cases.
Case 1: A ¢ Dom(¥x). In this case, by the definition of §, we have (¥ x)N

L(Us) = {—Reachable([A])}. Similarly, by the definition of ¥y, we know that
Reachable([A]) ¢ Xa. It follows by Lemma 4.25 that a # 0. Thus, by part two of
Lemma 4.35 we can conclude that X, = Cny, (6(Zx) N L(Ua))-

Case 2: A € Dom(¥x). By the definition of ¥x, we have Reachable([A]) €

X,. Now, if A = € we know by Lemma 4.25 that there is a state S such that
Xo = Cny,, ({Reachable([A])} U £(S, 4)).

On the other hand, if 4 # ¢, the same thing follows from part one of Lemma 4.35.
By the definition of ¥ x we know that $(¥x(4), 4) C X,. Since X, is consistent,

we can conclude that Uy (A) = S. It follows by the definition of § that
3(¥x) N L(U,) = {Reachable([A])} U X(S, 4).
Thus X, = Cnpa(6(¥x) N L(Uy)). O
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Now that we know ¥y is a structure for D, we’ll need just two more lemmas

in order to establish that ¥y is in fact a model for D (Lemma 4.40).

Lemma 4.38 For all A € Dom(¥x) and all action names A, if Res(A, Ux(A)) is
nonempty, then A; A € Dom(¥x).

Proof. Let S = Ux(A). By Lemma 4.36, S is a state. Let a and v be such that
o(a+1) = 4; A and o(y) = A. By the construction of ¥x from X, we know that
%(S,4) C X, and also that Reachable([4]) € X,,. Ify = 0 it follows by Lemma 4.25
that

X, = Cny, [{Reachable([A])} UL(S, 4)]

since X, is consistent. On the other hand, if y # 0, the same thing follows from part
one of Lemma 4.35. Since Res(A, S) is nonempty, we know that A is not prohibited
in S. Tt follows by part three of Lemma 4.27 that Reachable([A; A]) € X441. Thus,
by the construction of Ux from X, 4; A € Dom(¥x). O

Lemma 4.39 For all A;A € Dom(¥x), Ux(4; A) € Res(A, Tx(A)).

Proof. By Lemma 4.34, A € Dom(¥y), since 4;A is. Let S = Ux(A) and
S' = Ux(4;A). Let a and v be such that o(a + 1) = 4;A and o(y) = 4. By
Lemma 4.36, S and S’ are states. By essentially the same reasoning used in the

proof of the previous lemma, we can show each of the following.

X, Cny, [{Reachable([A])} U (S, 4)]

Xo41 = Cny,,,[{Reachable([4; A])} US(S', 4; A)]

It follows from part two of Lemma 4.27 that A is not prohibited in S. We can
conclude by part three of Lemma 4.27 that S' € Res(A,S). That is, Ux(4; A) €

Res(A, U x(A)). O
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Lemma 4.40 Let D be a qualification-free domain theory without value proposi-
tions. If X is a consistent extension of §(D), then Ux is a (unique) model of D

such that X = Cny (6(¥x)).

Proof. By Lemma 4.37, ¥x is a structure for D such that X = Cny(6(¥x)).
Moreover, it is clear that Ux is the only such structure. Lemma 4.36 shows that
U (€) is a state. Given this, Lemmas 4.38 and 4.39 establish the fact that Tx is a
model of D. O

Lemma 4.41 (Correspondence Lemma) Let D be a qualification-free AC do-
main description without value propositions. There is a one-to-one correspondence
between models of D and consistent extensions of §(D) such that a value proposition
V is true in a model of D if and only if the formula [V] belongs to the corresponding

extension of §(D).

Proof. We have defined a total function from models ¥ of D to consistent extensions
Cny(6(¥)) of §(D) (Lemma 4.33). Notice that this function is injective. To see that
it is also surjective, notice that we have also defined a total function from consistent
extensions X of §(D) to models ¥ x of D such that X = Cny(6(¥x)) (Lemma 4.40).
Thus § can be used to define a one-to-one correspondence between models of D and
consistent extensions of §(D). Finally, we've shown that a value proposition V is
true in a model W of D if and only if the formula [V] belongs to the corresponding
extension Cny(6(¥)) of §(D) (Lemma 4.29). 0

We require one more lemma for the proof of the Correspondence Theorem.

Lemma 4.42 Let D be a qualification-free domain description. Let D' be the do-
main description obtained by deleting all value propositions from D. Let E be
a consistent set of formulas from L(U). E = Cny(6(D)E) if and only if E =
Cny(8(D")F) and for every value proposition V € D, [V] € E.
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Proof.  (Left-to-right) Assume that E = Cny(d(D)E). Tt is clear that E =
Cny(8(D")E), since every rule in §(D) \ §(D') has the form

)
False By the Corre-
spondence Lemma, there is a model ¥ of D’ such that for every value proposition

V, V is true in ¥ if and only if [V] € E. Consider any value proposition V € D.

Since ﬁ(EKl € §(D), we know that =[V] ¢ E. It follows that =V is not true in ¥,
and thus that V is true in ¥. So we can conclude that [V] € E.

Proof in the other direction is similar, but slightly simpler. O

Proof of Correspondence Theorem. Let D be a qualification-free domain descrip-
tion. Let D' be the domain description obtained by deleting all value propositions
from D. By the Correspondence Lemma, we know that there is a one-to-one cor-
respondence between models of D’ and consistent extensions of §(D’) such that a
value proposition V is true in a model of D' if and only if the formula [V] belongs
to the corresponding extension of §(D').

Let C be the set of pairs (¥, E) such that ¥ is a model of D' and E is the
corresponding extension of §(D’). Since every model of D is a model of D' and
similarly every consistent extension of §(D) is a consistent extension of §(D'), we
can complete our proof by showing that, for each pair (¥, E) that belongs to C, ¥
is a model of D if and only if E is a consistent extension of §(D). So consider any
(¥, E)eC.

(Left-to-right) Assume that ¥ is a model of D. We can conclude by the
Correspondence Lemma that for every value proposition V € D, [V] € E. Since
E is a consistent extension of §(D’), it follows by the previous lemma that E is a
consistent extension of §(D).

(Right-to-left) Assume that E is a consistent extension of §(D). It follows
by the previous lemma that E is a consistent extension of §(D’) such that for every
value proposition V € D, [V] € E. We can conclude by the Correspondence Lemma

that ¥ is a model of D’ that satisfies every value proposition in D. That is, ¥ is a
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model of D. O

Proof of Reachability Corollary. Let A be the set of all Reachable atoms in U. Since
D includes no executability propositions, A is a splitting set for §(D). Furthermore,

it is clear that Cn4(A) is the unique extension of b4(d(D)). Notice that
5(D) = ea(3(D), Ona(4)).

1t follows by the Splitting Set Theorem that there is a one-to-one correspondence
between the consistent extensions of §(D) and the consistent extensions of §'(D)
such that for every value proposition V, [V] belongs to a consistent extension of
d(D) if and only if [V] belongs to the corresponding extension of §'(D). Given this

fact, the corollary follows immediately from the Correspondence Theorem. O

4.5 Proof of LP Correspondence Theorem, LP Reach-

ability Corollary, and Vivid Domains Theorem

Proof of the LP Correspondence Theorem is based on the following lemma, which

is shown to follow from the Correspondence Theorem for default logic.

Lemma 4.43 (LP Correspondence Lemma)

Let D be an LP-simple, qualification-free AC domain description without value
propositions. There is a one-to-one correspondence between models of D and consis-
tent answer sets of w(D) such that, for every model ¥ of D and corresponding answer
set X, an LP-simple value proposition Vi V- - -V Vi V=V VeV =V, is true in ¥ if
and only if at least one of the sets {[Vi],...,[Vm] }NX and { [Vin1], ..., [Va] }\ X

is nonempty.

Proof. To begin, because D includes no value propositions, it is straightfor-

ward to determine that the default theories dt(w(D)) and §(D) have precisely the
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same extensions. By the Correspondence Theorem, we know there is a one-to-
one correspondence between models of D and consistent extensions of §(D) such
that, for every model ¥ of D and corresponding extension E, a value proposi-
tion V is true in ¥ if and only if [V] € E. Let C be the set of pairs (¥, E)
such that ¥ is a model of D and E is the corresponding consistent extension of
d(D). Since §(D) and dt(w(D)) have the same extensions, we know that the set
{ENLit(U): E is a consistent extension of §(D) } is precisely the set of consistent
answer sets for w(D). Take A = {(¥,EN Lit(U)) : (¥,E) e C}.

Consider any (¥,E) € C, along with the corresponding pair (¥, X) € A.
It is clear from the construction of (D) that for any LP-simple atomic value
proposition L after A, [L after A] € X if and only if both [L after A] € X

and Reachable([A]) € X. We can conclude that [L after A] € X if and only if
[L after 4] € E. Tt follows by the Correspondence Theorem that for any LP-simple
atomic value proposition V, V is true in ¥ if and only if [V] € X.

Assume that (¥, X) and (¥, X') are distinct members of A. It follows that ¥
and W’ are distinct, and so must differ on the truth of some LP-simple atomic value
proposition V. We can conclude that exactly one of the two sets X, X’ includes [V].
Thus X # X'. This shows that A captures a one-to-one correspondence between
models of D and consistent answer sets of 7(D).

Now consider any LP-simple value proposition V.=V, V-V Vp, V=Vt V

-V =V, and any (¥, X) € A. We know that V is true in ¥ if and only if at
least one of V1,...,Vy, is true in ¥ or at least one of Vj,41,...,V, is not true in W.
Since each of Vi, ..., V,, is an LP-simple atomic value proposition, we can conclude

that at least one of Vi,...,Vy, is true in ¥ if and only if {[V4],...,[Vi]} N X

is nonempty. Similarly, since each of Vj,11,...,V, is an LP-simple atomic value
proposition, we can conclude that at least one of Vi, 41,...,V, is not true in ¥ iff

{[Vint1l,---,[Va] } \ X is nonempty. Summing up, we have shown that V; v .-V
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Vi V=Vimi1 V- V=V, is true in W iff at least one of the sets { [Vi],...,[Vim] } N X
and {[Viy1],---,[Va] }\ X is nonempty. O

Proof of LP Correspondence Theorem. Let D be an LP-simple, qualification-free
domain description. Let D’ be the domain description obtained from D by deleting
all value propositions. By the LP Correspondence Lemma, we know that there is a
one-to-one correspondence between models of D' and consistent answer sets of 7(D')
such that, for every model ¥ of D’ and corresponding answer set X, an LP-simple
value proposition Vi V-V Vy V=Vpiq V- - V=V, is true in U if and only if either
{l-- - V] 3N X # 0 or { [Vengals- -, [Val 3\ X # 0.
Notice that 7(D) \ m(D') consists of all rules of the form

False < [Vipil, .., [Val], not[Vi], ..., not[Vy]

where Vi V-V Vi V=Vipiy Voo V 2V, is an LP-simple value proposition in D.
It is a consequence of this observation that, for any set X, X is an answer set
for w(D) if and only if X is an answer set for m(D’') such that, for every value
proposition Vi V-V V,, V=V, 11 V- V=V, in D, either { [V1],...,[Vi] }NX # 0
or { [Ving1l,---,[Va] } \ X # 0. We will rely on this result below.

Let A be the set of pairs (¥, X) such that ¥ is a model of D' and X is the
corresponding answer set for 7(D'). Since every model of D is a model of D' and
similarly every consistent answer set for 7(D) is a consistent answer set for 7(D'),
we can complete our proof by showing that, for each pair (¥, X) that belongs to A,
¥ is a model of D if and only if X is a consistent answer set for 7(D). So consider
any (¥, X) € A.

(Left-to-right) Assume that ¥ is a model of D. Thus, every value proposition
in D is true in ¥. It follows by the LP Correspondence Lemma that for every value
proposition V4 V-V V;y V=Vpi1 V-V =V, in D, either {[V4],...,[Vim] }NX # 0
or { [Ving1ls-- ., [Va] } \ X # 0. We can conclude that X is an answer set for (D).
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Proof in the other direction is similar. O
Next we sketch a proof of the LP Reachability Corollary. A complete proof
would use the Splitting Set Theorem for logic programs [LT94].

Proof of LP Reachability Corollary (Sketch).

Let B = {Reachable([4]) : A is an action string}. Since D is qualification-free, we
can show that for every consistent answer set X for w(D), X N Lit(B) = B. Given
this, show that for any subset X of Lit(U \ B), X U B is a consistent answer set
for (D) if and only if X is a consistent answer set for 7'(D). Finally, since every
action string 4 belongs to Dom (¥), we know that for every LP-simple atomic value

proposition V| V is true in ¥ if and only if -V is not true in ¥. We can conclude that

{ls- - [Vial: Vgl - -, TVal } 1 X # 0 if and only if either { [V4],..., [Vin] } N
X #0o0r {[Vamsals-.. [Va] }\ X # 0. o

Finally we begin the proof of the Vivid Domains Theorem.

For any domain description D, let
Rules(D) = { g : ¢ suffices for ¢ € D} .
We will need the following lemma.

Lemma 4.44 (Vivid Domains Lemma) Let D be a vivid AC domain description.

For any set X of fluent literals,
Cn(X U Rules(D)) = Cn(X U Rules(LP-Simple(D))).
Proof. Tt is easy to verify that for any set X of fluent formulas we have
Cn(X U Rules(LP-Simple(D))) C Cn(X U Rules(D)).
For the other direction, let X be a set of fluent literals, and take
Y = Cn(X U Rules(LP-Simple(D))).
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We will show that Y is closed under X U Rules(D). We begin by observing that
because X is a set of fluent literals and every rule in Rules(LP-Simple(D)) has either
the form % where L is a fluent literal or the form %.’ we can conclude that there
is a set Y of fluent literals such that Y = Cn(Y"). It’s clear that Y is closed under
X, so consider any rule % € Rules(D) such that ¢ € Y. We must show that ¢ also
belongs to Y. Since ¢ € Y and Y = Cn(Y") for some set Y’ of fluent literals, we
can conclude that some disjunct ¢’ of DNF(¢) belongs to Y. Since ¢ suffices for v
is vivid, we know that 1 is either a nonempty conjunction of fluent literals or the
formula False. If ¢ is False, then Y is inconsistent and we’re done; so assume that ¢
is a nonempty conjunction of fluent literals. Consider any conjunct L of 1. The rule
¢' suffices for L belongs to LP-Simple(D), and since ¢' € Y, we have L € Y. We

can conclude that each conjunct of ¢ belongs to Y; and since Y is logically closed,

we have p € Y. O

Notice that the preceding lemma establishes the fact that domain descrip-
tions D and LP-Simple(D) have the same set of states.

Proof of Vivid Domains Theorem. We have already observed that, for any structure
U, all of the value propositions in D are true in ¥ if and only all of the value
propositions in LP-Simple(D) are true in ¥. By the Vivid Domains Lemma, we
know that domains D and LP-Simple(D) have the same set of states. Consider any
action A and state S. We complete the first part of the proof by showing that a
state S’ may result from doing A4 in S in domain D if and only if S’ may result from
doing A in S in domain LP-Simple(D).

It is easy to verify that A is prohibited in S in domain D if and only if A
is prohibited in S in domain LP-Simple(D). If A is prohibited in S in the two
domains, we're done. So assume otherwise. It is also easy to see that the two
domains agree on the set F(A,S). Furthermore, although the two domains may not

agree precisely on the set E(A, S), it is clear that they do agree on Cn(E(4, S)). It
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follows that E’ is an explicit effect of A in S in domain LP-Simple(D) if and only if
there is an explicit effect E of A in S in domain D such that E' = Cn(E) N Lit(F).
Moreover, for any such E and E', it is clear that, for any set I' of inference rules,
Cn(TUE)= Cn(CUE").

(Left-to-right) Assume that S’ may result from doing A in S in domain D.
So there is an explicit effect E of A in S in domain D such that

Cn(S") = Cn[(SN S NLit(Fs)) UE U Rules(D)].

We have already observed that there must be an explicit effect E’ of 4 in S in domain
LP-Simple(D) such that E' = Cn(E) N Lit(F) and, for any set T' of inference rules,
Cn(T'UE) = Cn(l'UE'). Thus

Cn(S') = Cn[ (SN S’ N Lit(Fy) ) U E' U Rules(D)].

Furthermore, because (S N S’ N Lit(Ff)) U E' is a set of fluent literals, we can

conclude by the Vivid Domains Lemma that
Cn(S') = Cn[(SNS'N Lit(Fy)) U E' U Rules(LP-Simple(D))] .

That is, S’ may result from doing A in S in domain LP-Simple(D).

Proof in the other direction is similar. Thus we have shown that the two
domains agree on Res, which is sufficient to establish the fact that they have the
same models, given the earlier observation that they have equivalent sets of value
propositions (Section 3.6). Moreover, since they also agree, for each action 4 and
state S, on the question of whether or not A is prohibited in S, we can conclude

that either both domain descriptions are qualification-free or neither is. m|
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Chapter 5

A Logic of Universal Causation

This chapter discusses a modal nonmonotonic logic of “universal causation,” called
UCL, designed for formalizing commonsense knowledge about actions. It was intro-
duced in [Tur98]. UCL extends the recently introduced causal theories formalism of
McCain and Turner [MT97], which shares its underlying motivations.

The mathematical ideas underlying UCL, and the approach to formalizing
actions in it, can also be understood as an outgrowth of the work described in the

first part of the dissertation.

5.1 Introduction

The fundamental distinction in UCL  between facts that are caused and facts that
are merely true—is expressed by means of the modal operator C, read as “caused.”
For example, one can write ¢ O Ct to say that 1 is caused whenever ¢ is true.
These simple linguistic resources make it possible for a UCL theory to express the
conditions under which facts are caused. It is in this sense that UCL is a logic of
causation.

As usual for nonmonotonic logics, the main semantic definition in UCL—of
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a “causally explained” interpretation—is given by a fixpoint condition. Intuitively,
an interpretation is causally explained by a UCL theory T if it represents the facts
true in a world that is “causally possible” according to T. The focus in UCL on

causally possible worlds is motivated by the following pair of observations.

e Knowledge of the causally possible worlds is sufficient for many commonsense
reasoning tasks associated with action domains, such as prediction and plan-

ning.

e In order to determine the causally possible worlds, it is sufficient to know the

conditions under which facts are caused.

The first observation suggests that UCL can be useful. The second observation
helps explain why UCL can be simple: it formalizes causal knowledge of a relatively
simple kind, and does not attempt the notoriously difficult task of formalizing causal
relations of the form “¢ causes ¢.” Happily, one can describe and reason about the
conditions under which facts are caused without settling the question of what causes
what.

In UCL, the notion of a causally possible world is made precise on the basis

of the following pair of assumptions.
e In a causally possible world, every fact that is caused obtains.
e In a causally possible world, every fact that obtains is caused.

The first assumption is unremarkable. The second is not. As in [MT97], we call it
the principle of universal causation. This simplifying assumption is the key to the
main semantic definition of the logic, which is therefore named for it. We take these
two assumptions together to define what it is for a world to be causally possible:
what obtains in the world is exactly what is caused in it. Accordingly, the main
semantic definition in UCL says that an interpretation I is causally explained by a

UCL theory T if what is true in I is exactly what is caused in I according to 7.
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The principle of universal causation is easily relaxed in practice. For instance,
when describing action domains, we generally have little or nothing to say about the
“actual” conditions under which facts in the initial situation are caused. Instead,
our UCL action theories typically stipulate that facts in the initial situation are
caused. Such stipulations are straightforward in UCL, where one can say that ¢ is

caused whenever it is true simply by writing

¢>Co. (5.1)

In the same way, we typically stipulate that facts about the occurrence and non-
occurrence of actions are caused.

More interesting are those facts that, roughly speaking, are true simply be-
cause they were true before and haven’t been made false since. It is facts of this
kind that give rise to the frame problem [MH69]. Solutions to the frame problem
typically appeal to the “commonsense law of inertia,” according to which the value
of an inertial fluent persists unless it is caused to change. The principle of univer-
sal causation makes possible a simple, robust encoding of the commonsense law of
inertia. Take f; to stand for the proposition that a fluent f holds at a time ¢. One
can write

Cfe A fi1 O Cfen (5.2)

to stipulate that f is caused at time ¢+1 whenever it is caused at time ¢ and
continues to hold at time #41. Thus, axioms of form (5.2) can, in effect, suspend
the principle of universal causation with respect to persistent inertial fluents. Of
course, universal causation still requires that if f does not persist, the new value
of f must be caused. That is, the UCL theory must describe conditions sufficient for
it to be caused. In this way, inertia axioms of form (5.2) interact with the principle
of universal causation to solve the frame problem, guaranteeing that inertial fluents

persist unless they are caused to change.
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UCL differs in fundamental ways from nonmonotonic formalisms such as
default logic [Rei80] and autoepistemic logic [Moo85]. First, UCL is not motivated
by the problem of general default reasoning and knowledge representation. It is
designed for a more specific purpose. Second, in UCL one describes the conditions
under which facts are caused, rather than the conditions under which facts are
believed or known. Third, the fixpoint condition in UCL characterizes complete
worlds, in the form of classical interpretations, rather than incomplete, logically
closed belief sets. Nonetheless, we will see that UCL is closely related to default
logic, in the special case when we consider only the “complete,” consistent extensions
of default theories. We will also consider briefly a rather striking similarity between
the main semantic definitions of UCL and autoepistemic logic.

UCL can be understood as an extension of nonmonotonic formalism of causal
theories introduced in [MT97], in which there are so-called “causal laws” of the form
¢ = 1, with the intended reading “whenever ¢ is true, @ is caused to be true.” Here

we show that such causal laws can be translated in UCL as

6> Cy (5.3)

thus providing a more adequate semantic account of them. We go on to develop in
some detail the close relationship between such causal laws and the circumscriptive
approach to “causal laws” of Lin [Lin95]. Along the same lines, we show that the

“static causal laws” of [MT95b] correspond to UCL formulas of the form
CopDCop. (5.4)

The contributions of this chapter can be summarized as follows. It introduces
UCL, a mathematically simple modal nonmonotonic logic designed for representing
commonsense knowledge about actions. By establishing relationships with previ-
ous proposals, including the proposal studied in the first part of this dissertation,

it shows how a variety of causal theories of action can be expressed in UCL. By
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relating these proposals to a single logical framework, it contributes to the ongo-
ing investigation of the relationships between various approaches. Finally, it relates
UCL to some well-known nonmonotonic formalisms.

We proceed as follows. Section 5.2 defines propositional UCL, the fragment
primarily investigated in this dissertation. Section 5.3 shows how the inference rules
used in the first part of the dissertation are captured in UCL, and also embeds rule
update (Section 3.3.2) in UCL. In doing so, we see how the commonsense law of
inertia can be expressed in UCL. Section 5.4 relates UCL to default logic, and in
Section 5.5 we observe that the embedding of AC in default logic from Chapter 3
yields a similar embedding in UCL. We also consider how to simplify the embedding
somewhat, in anticipation of subsequent work. Section 5.6 introduces subclasses of
UCL for which simpler semantic characterizations can be given. Flat UCL theories
correspond to the causal theories formalism of [MT97], and definite UCL theories
correspond to the definite causal theories of [MT97, MT98b]. Definite theories are
particularly important from a computational perspective, since they have a concise
translation into classical logic, called “literal completion.” Section 5.7 describes a
general method of formalizing action domains based on the approach from [MT97].
Here we leave behind the situation calculus and move to natural number time.
Section 5.8 shows that a subset of UCL can be nicely reduced to circumscriptive
theories, and Section 5.9 explores the relationship between UCL and the circum-
scriptive action theories of Lin [Lin95, Lin96]. In Section 5.10, we briefly consider
the relationship of UCL to autoepistemic logic. In Section 5.11, we extend UCL
to allow first and second-order quantifiers. In Section 5.12, we show that (second-
order) UCL extends the second-order subset of the nonpropositional causal theories
of Lifschitz [Lif97], which, in turn, extend the flat propositional UCL theories of

Section 5.6.
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5.2 Propositional UCL

5.2.1 Syntax and Semantics

Begin with a set of propositional symbols (atoms) the signature of our language.
For convenience, we assume that the language includes a zero-place logical connec-
tive True such that True is a tautology. Let False stand for —True. A literal is an
atom or its negation. We identify each interpretation with the set of literals true
in it. UCL formulas are defined as usual for a modal propositional language with
single unary modal operator C. A formula is nonmodal if C does not occur in it. A
UCL theory is a set of UCL formulas.

The main semantic definition (of a “causally explained” interpretation) is
obtained by imposing a fixpoint condition on S5 modal logic. Thus, a UCL structure
is a pair (I, S) such that I is an interpretation, and S is a set of interpretations to
which T belongs. The truth of a UCL sentence in a UCL structure is defined by
the standard recursions over the propositional connectives, plus the following two

conditions.
(I,S)=p iff Tl=p (for any atom p)

(I,S)|=Co iff forall '€ S, (I',S) |= ¢
Given a UCL theory T, we write (I,S) =T to mean that (I,S) |= ¢, for every
¢ € T. In this case, we say that (I, S) is a model of T. We also say that (I, S) is an

I-model of T, emphasizing the distinguished interpretation I.

Main Definition. Let T be a UCL theory. An interpretation I is causally ezplained
by T if (I,{I}) is the unique I-model of T'.

We distinguish three entailment relations. The first two—classical proposi-
tional entailment and propositional S5 entailment—are standard, monotonic rela-
tions. The third—UCL entailment—is defined as follows. For any UCL theory T'

and nonmodal formula ¢, we write T' |~ ¢ to say that ¢ is true in every interpretation
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causally explained by T'.

Here is an alternative characterization of causally explained interpretations.

Proposition 5.1 For any UCL theory T, an interpretation I is causally explained
by T if and only if (I,{I}) is the unique model of TUI.

Proof. Clearly T and T U I have the same I-models. It remains only to observe

that all models of T'U I are I-models. O

5.2.2 Examples

Let T} be the UCL theory with one formula
pDCp (5.5)

in the language with a single atom p. Let I; be the interpretation {p}. The struc-
ture (Iy,{I;}) is the unique I;-model of T}, so I; is causally explained by 7. The
only other interpretation is I = {—p}. Since (Io,{I1,I>}) = T4, I is not causally
explained by Tj. Therefore, Ty |~ p.

Notice that it is essential that the language of T} include only the atom p.
If it were extended to include a second atom, there would no longer be any causally
explained interpretations.

Let T be the UCL theory obtained by adding to T the formula
-p D C—p. (5.6)

Both I; and I, are causally explained by Ty. Therefore, T £ p, which illustrates
the nonmonotonicity of UCL.
Let T3 be the UCL theory obtained from 75 by adding a single atom ¢ to the

language, and also adding the formula

Clg=p). (5.7)

The interpretations {p, ¢} and {-p, —q} are both causally explained by T5. No others
are.

This last example illustrates the following general phenomenon. We obtain a
definitional extension T' of a UCL theory T by adding a new atom p to the signature

and also adding an ezplicit definition of p—a formula of the form
Clr=9) (5.8)

where ¢ is a nonmodal formula in which p does not occur. Clearly, one can replace
any formula equivalent to ¢ by p anywhere in 7", except in (5.8), without affecting
the models of T", or, therefore, the causally explained interpretations. Moreover, it
is not difficult to verify that 7" is a conservative extension of T: that is, T and T"
have the same UCL-consequences (and, in fact, the same S5-consequences) in the

language of T'.

5.3 Possible Next States and Inertia in UCL

In this chapter we embed rule update, defined in Section 3.3.2, in UCL. In this man-
ner we obtain a more traditional semantic account of the use of inference rules both

in rule update and in the definition of possible next states in the action language AC.

5.3.1 Inference Rules in UCL

We first make precise the simple relationship between an inference rule

¢

¥

and the corresponding UCL formula
Cop D Co.
We begin with three preliminary definitions and an easy lemma.
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Given a set R of inference rules, let
_ ¢
CE(R) = C¢)C¢.EER .

Given a set S of interpretations, let Th(S) denote the set of nonmodal formulas true
in all members of S. Given a set I of nonmodal formulas, let Mod(T') denote the

set of interpretations that satisfy all members of T".

Lemma 5.2 Let R be a set of inference rules, S a set of interpretations, and I an

interpretation in S. Th(S) is closed under R if and only if (I,S) = CE(R).

Proof. Assume Th(S) is closed under R. Consider any formula C¢ O Ct¢ from
CE(R) such that (I,S) |= C¢. It follows that ¢ € Th(S). By the definition of
CE(R), we know that % € R; and since Th(S) is closed under R, we can conclude
that ¢ € Th(S). It follows that (I, S) = Ce.

Proof in the other direction is similar. O

This lemma yields the following characterization of the relationship between

a set R of inference rules and the corresponding set CE(R) of UCL formulas.

Proposition 5.3 For any set R of inference rules and any nonmodal formula ¢,

¢ € Cn(R) if and only if Co is an S5-consequence of CE(R).

Proof. In this proof we use the fact that ¢ € Cn(R) iff ¢ belongs to every set of
formulas that is both closed under propositional logic and closed under R.

(Left-to-right) Assume that ¢ € Cn(R). Consider any model (I,S) of
CE(R). By the previous lemma, Th(S) is closed under R. It follows that ¢ € Th(S),
and thus that (I, S) |- Co.

(Right-to-left) Assume that ¢ ¢ Cn(R). Thus there is a nonempty set S of
interpretations such that Th(S) is closed under R and ¢ ¢ Th(S). Consider any
I € S. By the previous lemma, (I, S) = CE(R). Since ¢ ¢ Th(S), (I,S) = C¢. O
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The causally explained interpretations of a UCL theory CE(R) can be char-

acterized as follows, simplifying the more general, similar result of Proposition 5.1.

Proposition 5.4 For any set R of inference rules, an interpretation I is causally

ezplained by CE(R) if and only if (I,{I}) is the unique model of CE(R).
P Y Y B q

The proof begins with an observation about inference rules. If sets X and Y’
of formulas are both closed under a set R of inference rules, then X NY is also

closed under R. This fact, along with Lemma 5.2, yields the following.

Lemma 5.5 For any set R of inference rules, if (I,S) = CE(R) and
(I',S") = CE(R), then (I,SUS") E CE(R).

Proof By Lemma 5.2, both Th(S) and Th(S') are closed under R. It fol-
lows, as observed above, that Th(S) N Th(S') is also closed under R. Since I be-
longs to S and Th(S)N Th(S') = Th(SUS’), we conclude by Lemma 5.5 that
(I,SUS") = CE(R). O

Proof of Proposition 5.4. The right-to-left direction is trivial. For the other direc-
tion, assume I is causally explained by CE(R). So (I,{I}) is the unique I-model
of CE(R). Assume that (I',S) = CE(R). By Lemma 5.5, (I,{I} US) = CE(R).
Since (I, {I}) is the unique I-model of CE(R), S ={I} and I' = I. 0

If a UCL theory T has a unique model (I,{I}), then, for every nonmodal
formula ¢, C¢ is among the S5-consequences of T' if and only if I |= ¢. Given this

observation, the previous proposition yields the following corollary.

Corollary 5.6 For any set R of inference rules, an interpretation I is causally ex-
plained by CE(R) if and only if Cn(I) = {¢ : C¢ is an S5-consequence of CE(R)},

where ¢ ranges over nonmodal formulas.

The fixpoint condition in Corollary 5.6 is very similar to that used in the

definition of rule update, which we consider next.
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5.3.2 Two Embeddings of Rule Update in UCL

First we recall the definition of rule update from Section 3.3.2.
Let R be a set of inference rules, and I an interpretation. An interpretation I’

is a rule update of I by R if and only if
Cn(I'y = Cn((INT')UR).
Here is a first, easy embedding of rule update in UCL.

Proposition 5.7 Let R be a set of inference rules, and I and I' interpretations.
Take

T(R,I,I')= CE(R) U{CL : LeInI'}.
I’ is a rule update of I by R if and only if I' is causally explained by T(R,I,1').

Proof. I' is a rule update of I by R iff Cn(I') = Cn((INI') UR), which, b
p Yy ) > DY

Proposition 5.3, is equivalent to
Cn(I') = {¢ : Co is an S5-consequence of CE((I NI') UR)}

which, by Corollary 5.6, is true iff I’ is causally explained by CE((INI')UR). It
remains only to notice that T(R, I, I") is S5-equivalent to CE((I NI') UR). m

We can improve the embedding of rule update in UCL by writing formulas
that capture the commonsense law of inertia, which is built into the definition of rule
update. We establish one way to do this in the following theorem. This embedding
is similar to the embedding into default logic of the definition of possible next states

from AC that was presented in Chapter 3.5.2.

Proposition 5.8 Let R be a set of inference rules, and I an interpretation. Take
T(R,I)= CE(R) U{L>CL:Lel}.

An interpretation I' is a rule update of I by R iff I' is causally explained by T'(R, I).
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Proof. In light of Proposition 5.7, it is enough to show that I’ is causally explained
by T'(R,I) iff I' is causally explained by T(R,I,I"). This follows easily from the

observation that, for every superset S of I’
(I',S) FT(R,I,I') iff (I',S)|=T(R,I)
which, in turn, follows from the easily verified observation that

(I'S)E{CL:LeInI'} iff (I'S)={L>CL:LeI}.
O

For example, recalling the rule update example from Section 3.3.2, we see

that T'(Rq, I1) is the following UCL theory.

Ca D C(=bV —c)
a D Ca
b>Ch

¢DCe

It is easy to check that T"(R1, I1) has exactly two causally explained interpretations—
{a, b, c} and {a,b, ~c}—which are the two rule updates of I; by R;.

In anticipation of our interest in UCL theories for commonsense reasoning
about action, it will be helpful to consider a third, somewhat more complex em-
bedding of rule update in UCL, which features a more explicit representation of the

commonsense law of inertia.

5.3.3 A Third Embedding: Commonsense Inertia in UCL

In order to obtain a more explicit embedding of rule update in UCL, we first extend
the language by adding a fresh atom Ag for every atom A. For any literal L in

the original language, let Lo be the formula obtained by replacing the atom A that

143



occurs in L with the atom Ay. Given an interpretation I of the original language,
let Ip = {Lo: L € T}.
Given a set R of inference rules, the UCL theory T"(R) is the union of the

following three sets of UCL formulas.

CE(R) (5.9)
{CLo AL>DCL : Lis a literal in the original language } (5.10)
{Ly > CLy : L is a literal in the original language } (5.11)

Proposition 5.9 Let R be a set of inference rules, and I an interpretation. An
interpretation I' is a rule update of I by R if and only if InUT" is causally explained
by T"(R).

Proof Sketch. By Proposition 5.8, it is enough to show that I’ is causally ex-
plained by T'(R,I) iff Iy UI' is causally explained by T"(R). The key observa-
tion is that I’ is causally explained by T'(R,I) iff Iy U I' is causally explained
by {CLg : L € I}UT'(R,I). Thus, we need to show that

(IyuI',S) ={CLy: Le I}UCE(R)U{L S CL:LeT}

(lour'.8) = T"(R),
which follows from the fact that (Ip U I', S) satisfies the formulas in (5.10) and (5.11)

iff (IhUI',S) |- {CLo: LeI}U{LDCL:Lel}. o

In this alternative embedding, unlike the previous one, we do not include an
implicit encoding of any particular initial interpretation I. Instead we say of every
literal L that it is caused initially if it is true initially (5.11). That is roughly to say

that we require no additional causal explanation for literals in the initial situation
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beyond the fact that they are true. (Or, more accurately, we simply say that they
are caused whenever they are true.)

Given this, we can understand the formulas in (5.10) as an explicit represen-
tation of the causal understanding of the commonsense law of inertia that motivates
the definition of rule update. Each rule in (5.10) says of a literal L that if it is
caused initially, then it is also caused after the update whenever it is true after the
update. And since every fact in a causally possible world must be caused accord-
ing to our theory, we know that whenever a fluent changes its value in a causally
possible world, the new value must have a causal explanation other than inertia.
That is, the formulas CE(R), in concert with the formulas (5.10), must describe
conditions sufficient for it to be caused. We have often described the commonsense
law of inertia in terms of this second observation—saying “things change only when
made to.”

The UCL formula for inertia in this second embedding of rule update is very
similar to the default rules for inertia used in the translation of AC into default
logic. It is interesting to note that Proposition 5.9 continues to hold if we replace

the inertia formulas (5.10) with the stronger UCL formulas
{LoALDCL : Lis aliteral in the original language } . (5.12)

We will find this sort of fact quite useful. Formula (5.12) is what we will eventually
call a “definite” formula, while formula (5.10) is not. We will see that theories
in which all formulas are definite have nice mathematical properties, leading to

convenient methods for automated reasoning.

"Recall that essentially the same idea was used in the translations of .AC in the first part of the
dissertation.
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5.4 UCL and Default Logic

In this section, we establish the close mathematical relationship between UCL and
default logic [Rei80]. More precisely, to be more general, we consider an elaboration
of default logic, called disjunctive default logic [GLPT91], which includes Reiter’s
default logic as a special case. The semantics of a disjunctive default theory is given
in terms of its extensions, which are logically closed sets of (nonmodal) formulas that
satisfy a certain fixpoint condition. Although an extension may be inconsistent, or
incomplete (that is, there may be an atom p such that neither p nor —p belong to
it), we will be interested in the special case of extensions that are both consistent
and complete, since it is these extensions that correspond to interpretations.

We will specify a translation from disjunctive default logic to UCL such that
the complete, consistent extensions correspond to the causally explained interpre-
tations. The translation is invertible, so there is a strong sense in which UCL is
equivalent to disjunctive default logic, restricted to the special case of complete,

consistent extensions.

5.4.1 Review of Disjunctive Default Logic

Here we recall definitions from [GLPT91].
A disjunctive default rule is an expression of the form

a: B, Pm

5.13
"l (519

where all of a, 31, ..., Bm,¥1,--.,7n are (nonmodal) formulas (m > 0,n > 1).
A disjunctive default theory is a set of disjunctive default rules. Let D be a

disjunctive default theory and E a set of formulas. Define D as follows.

DF = { o L aibyBm eDandforalli(lgigm),ﬁﬂigéE}
nlchm ol b

A set E' of formulas is closed under D if, for every member of D¥ | if a € E' then

at least one of y1,...,v, € E'. We say E is an extension for D if F is a minimal set
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closed under propositional logic and closed under DE. We say E is complete if, for
every atom p, either p € E or -p € E. Notice that, for the purpose of computing
complete extensions, the prerequisites (i, ..., By of a disjunctive default rule can
be safely replaced with their conjunction.

Reiter’s default logic corresponds to the special case when n = 1.

5.4.2 UCL and Disjunctive Default Logic

Given a disjunctive default theory D, let ucl(D) be the UCL theory obtained from D

by replacing each disjunctive default rule (5.13) with the UCL formula
CaNBiN--ABp DCy V-V Cyy,. (5.14)

It is a fact of propositional S5 modal logic that every theory is equivalent to
one in which every formula has the form (5.14), with m = 1.2 Thus, every UCL
theory is equivalent to one that can be obtained by this translation from disjunctive

default logic.

Theorem 5.10 For any disjunctive default theory D and interpretation I, Th({I})

is an eztension for D if and only if I is causally ezplained by ucl(D).

Lemma 5.11 For any disjunctive default theory D and any UCL structure (I, S),
(I,S) = ucl(D) if and only if Th(S) is closed under DTHAID).

Proof. Assume (I,S) |= ucl(D). Consider any rule + in DThUIY gych that

"l bm

a € Th(S). We must show that at least one of 41, ..., 7, isin Th(S). We know there

% in D such that I satisfies all of f31,...,Bn. It follows that
1

CaNBi N ABp DCy V-V Cy, is in ucl(D), and that (I,S) = Bi A« A B

Since a € Th(S), (I,S) = Ca. And since (7,S) |= ucl(D), we can conclude that

is a rule

“This follows, for instance, from the MCNF Theorem in [HC68].

147



(I,S) = Cy1 V- V Cyp. Thus, for at least one of v; (1<i<n), (I,S) = Cy;, and

consequently v; € Th(S). Proof in the other direction is similar. O

Proof of Theorem 5.10. (=>) Assume that Th({I}) is an extension for D. We
know by Lemma 5.11 that (I, {I}) = ucl(D). Let S be a superset of {I} such that
(I,8) = ucl(D). By Lemma 5.11, Th(S) is closed under DT"({I))_ Since Th({I})
is a minimal among sets closed under DTPI}) | and Th(S) C Th({I}), we have
Th(S) = Th({I}). It follows that S = {I}. So (I,{I}) is the unique I-model
of ucl(D). That is, I is causally explained by ucl(D).

(«<=) Assume I is causally explained by ucl(D). So (I,{I}) |= ucl(D). By
Lemma 5.11, Th({I}) is closed under DT"(I}). Let E be a subset of Th({I}) closed
under propositional logic and under DTh(I}). By Lemma 5.11, (I, Mod (E)) | ucl(D).
Since (I,{I}) is the unique I-model of ucl(D), we have Mod(E) = {I}. It follows
that E = Th({I}). We can conclude that Th({I}) is a minimal set closed under

propositional logic and under DTV That is, Th({I}) is an extension for D. O

In the statement of Theorem 5.10, we restrict attention to extensions that can
be expressed in the form Th(I), where I is an interpretation. That is, we consider
only complete, consistent extensions. The restriction to complete extensions can of
course be expressed in the default theory itself, simply by adding the default rule

PP
False

for each atom p in the language.

5.5 Embedding AC in UCL

Recall that the Reachability Corollary in the first part of the dissertation shows that
qualification-free AC domain descriptions that do not include executability propo-

sitions can be embedded in default logic (via the translation §’). This embedding
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yields a one-to-one correspondence between AC models and consistent default ex-
tensions, and, moreover, one can easily verify that all such default extensions are
complete. In light of these observations, we obtain the following embedding theo-
rem as an immediate consequence of Theorem 5.10 and the Reachability Corollary

(Corollary 3.12).

Theorem 5.12 Let D be a qualification-free AC domain description with no eze-
cutability propositions. There is a one-to-one correspondence between models of D
and the interpretations causally explained by ucl(d' (D)) such that, for every model ¥
of D and its corresponding causally explained interpretation I, a value proposition V

is true in U if and only if I |=[V].

In this manner we obtain the UCL formalization of Example 1 (from Sec-
tion 3.2) that appears in Figure 5.1 simply by translating the default theory from
Figure 3.1. The first two UCL formulas in this translation are unnecessarily awk-
ward. They are easily simplified though, in light of the following two facts. First,
the formula C¢ D CFalse is S5-equivalent to =~C¢. Second, the following proposition
holds.

Proposition 5.13 For any UCL theory T and nonmodal formula ¢, adding -C¢

to T simply eliminates the causally explained interpretations that satisfy ¢

Proof. Consider two cases.

Case 1: I [ ¢. Thus, for any superset S of {I}, (I, S) = —=Cé¢. So (1,S5) =T
iff (1,S) ETU{-C¢}. Hence, adding —C¢ to T does not affect the causally ex-
plained interpretations that don’t satisfy ¢.

Case 2: I }= ¢. Thus, (I,{I}) £ —C¢, and so (I,{I}) = T U {~C¢}, which
shows that adding =C¢ to T' eliminates any causally explained interpretations that

satisfy ¢. O
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CHolds( Trotting, So) D CFalse
C(—(Holds(Loaded (Guny), So) V Holds(Loaded (Guns), Sy))) O CFalse
C—Holds(Alive, s) > C=Holds(Trotting, s)

CHolds(Loaded(x),s) D C—Holds(Alive, Result(Shoot(z), s)) —Holds(Open, So)
Holds(f,So) > Holds(f, So) ~Holds(f, Sy) > —Holds(f, So) C—Holds(Fastened(z), Result(Unfasten(z), s))
CHolds(f,s) A Holds(f, Result(a, s)) O CHolds(f, Result(a, s)) C—Holds(Fastened(Clasp,),s) A C—Holds(Fastened(Clasp,), s)
C—Holds(f,s) A —Holds(f, Result(a,s)) D C—Holds(f, Result(a, s)) > CHolds(Open, s)
Holds(f,So) > CHolds(f,So) —Holds(f, So) D C—~Holds(f, Sp)
Figure 5.1: UCL translation of default theory for Example 1. CHolds(f,s) A Holds(f, Result(a,s)) D CHolds(f, Result(a, s))

C—Holds(f,s) A —=Holds(f, Result(a, s)) > C—~Holds(f, Result(a, s))
Holds( Trotting, So)
Holds(Loaded(Gun,), Sg) V Holds(Loaded (Guns), Sy))) Figure 5.3: UCL theory for Example 2.
C—Holds(Alive, s) D C—Holds(Trotting, s)
CHolds(Loaded(z),s) D C—Holds(Alive, Result(Shoot(z), s))
Holds(f, So) D Holds(f, So) —Holds(f, So) D —Holds(f, So)
CHolds(f,s) N\ Holds(f, Result(a, s)) D CHolds(f, Result(a, s))
C—Holds(f,s) A —=Holds(f, Result(a, s)) D C—~Holds(f, Result(a, s))

Figure 5.2: Simpler UCL theory for Example 1.

Holds( Winner, Result(BetHeads, Result(Toss, Sy)))

Of course adding the formula —¢ to a UCL theory has precisely the same Holds(Heads, Result(Toss, s)) > CHolds(Heads, Result(Toss, s))

effect on the causally explained interpretations: it simply eliminates those that —Holds(Heads, Result(Toss, s)) D C—Holds(Heads, Result(Toss, s))
satisfy ¢. Hence, we have shown that one can replace C¢ O CFalse with —¢ without CHolds(Heads, s) O CHolds(Winner, Result(BetHeads, s))
affecting causally explained interpretations. C—Holds(Heads, s) O C—Holds( Winner, Result( BetHeads, s))

Th b X a4 tional logic. <h hat the UCL th Holds(f,So) > CHolds(f, So) —Holds(f,Sy) D C—~Holds(f,So)

ese observations, and some propositional logic, show that the theory CHolds(f. ) A Holds(f, Result(a, s)) > CHolds(f, Result(a, 5))

in Figure 5.1 has exactly the same causally explained interpretations as the simpler C—Holds(f, s) A —Holds(f, Result(a, s)) D C—Holds(f, Result(a, s))
theory shown in Figure 5.2. This approach also yields the UCL theories shown in
Figures 5.3 and 5.4 for Examples 2 and 3 from Section 3.2. (In the third formula in Figure 5.4: UCL theory for Example 3.

Figure 5.3, we have also used the fact that Cé A C¢ is S5-equivalent to C(¢ A 1))
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The Correspondence Theorem of Chapter 3, along with Theorem 5.10, can
lead to a still more general embedding of AC in UCL. There is a minor complication
though. The default theories used to establish the Correspondence Theorem are not
guaranteed to yield complete extensions. While it is possible to modify them to do
so, we will not pursue that possibility here.

Instead we move toward simpler kinds of UCL theories, and simpler repre-
sentations of action domains in UCL. As we will see, one way to make UCL theories
mathematically simpler is to eliminate occurrences of the modal operator C, partic-
ularly negative occurrences.

Here is a related proposition.

Proposition 5.14 Let T be a UCL theory in which every formula has the standard
form

CaNpBDCy V- VCy, (5.15)

where all of a,B,71,...,n are nonmodal formulas. Any interpretation causally
ezplained by T is also causally explained by any UCL theory T' that can be obtained

from T by replacing some or all formulas (5.15) of T with the corresponding formula
aANBDCy V-V Cy,. (5.16)

Proof. Assume that I is causally explained by T. Thus, (I,{I}) |- T. If (5.15) is
true in (I, {I}), then so is (5.16). Hence, (I,{I}) = T". Let S be a superset of {I}
such that (I,S) = T'. If (5.16) is true in (I, S), then so is (5.15). Hence, (I,S) = T,
and since I is causally explained by T, S = {I}. Therefore, I is causally explained
by T'. O

To see that, in general, the converse of Proposition 5.14 does not hold, con-
sider T = {Cp D Cp} and T" = {p D Cp}, with p the only atom in the language.

The interpretation {p} is causally explained by T”’, but not by 7.
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Holds(Trotting, Sp)

Holds(Loaded(Gun,), So) V Holds(Loaded(Guns), Sp)))
—Holds(Alive, s) D C=Holds(Trotting, s)

Holds(Loaded(zx), s) > C—Holds(Alive, Result(Shoot(z), s))
Holds(f, So) D Holds(f,Sy) —Holds(f, Sy) D ~Holds(f, So)
Holds(f,s) A\ Holds(f, Result(a,s)) D CHolds(f, Result(a, s))

—Holds(f,s) N ~Holds(f, Result(a,s)) D C-Holds(f, Result(a, s))

Figure 5.5: Another UCL theory for Example 1.

—Holds(Open, Sp)

C—Holds(Fastened(z), Result(Unfasten(z), s))

—Holds(Fastened(Clasp,), s) A ~Holds(Fastened(Clasp,), s) D CHolds(Open, s)
Holds(f, So) © CHolds(f,Sy) —Holds(f,Sy) > C—~Holds(f, Sp)
Holds(f,s) A Holds(f, Result(a,s)) D CHolds(f, Result(a, s))

—Holds(f,s) A —Holds(f, Result(a,s)) D C-Holds(f, Result(a, s))

Figure 5.6: Another UCL theory for Example 2.

Nonetheless, it is possible to show that this transformation preserves all
causally explained interpretations for the UCL theories in Figures 5.2-5.4, yielding
the still simpler versions displayed in Figures 5.5 5.7, in which all negative occur-
rences of C are eliminated. Next we state a general theorem along these lines. Its
proof can be constructed by using Theorem 5.10 to map the problem into default
logic, and then reasoning on the basis of the Splitting Sequence Theorem for defanlt
logic (stated and proved in Section 4.1). For this we’ll want a few definitions.

Let T' be a UCL theory whose formulas have the (simpler) standard form

CanpoCy (5.17)
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Holds( Winner, Result(BetHeads, Result(Toss, Sp)))

Holds(Heads, Result(Toss, s)) O CHolds(Heads, Result(Toss, s))
—Holds(Heads, Result(Toss, s)) D C—Holds(Heads, Result(Toss, s))
Holds(Heads, s) D CHolds( Winner, Result(BetHeads, s))
—Holds(Heads, s) > C—Holds( Winner, Result(BetHeads, s))
Holds(f, So) > CHolds(f,So) —Holds(f, So) D C—~Holds(f, Sp)
Holds(f,s) N Holds(f, Result(a, s)) D CHolds(f, Result(a, s))
—Holds(f,s) A =Holds(f, Result(a, s)) D C—~Holds(f, Result(a, s))

Figure 5.7: Another UCL theory for Example 3.

where «, 3 and 7 are nonmodal formulas. Let A be a total function from the atoms
of the language of T to the ordinals. For each atom A, we call A\(A) the level of A.
We say that \ splits T if, for every formula (5.17)

e all atoms that occur in  have the same level, and

e no atom that occurs in « or 3 has a level greater than an atom that occurs
in 7.
We say that a formula (5.17) is stratified by X\ if

e every atom that occurs in a has a level less than the level of every atom in ~.

Theorem 5.15 Let T be a UCL theory all of whose formulas have form (5.17).
If X\ splits T, then T has the same causally ezplained interpretations as any UCL
theory T' that can be obtained by replacing any or all formulas (5.17) that are

stratified by \ with the corresponding formula
aNpDCy.

Proof Sketch. Use Theorem 5.10 to map UCL theories T and 7" to default the-

ories D and D'. The interpretations causally explained by T correspond to the
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complete, consistent extensions of D, and the interpretations causally explained
by T’ correspond to the complete, consistent extensions of D'. If X splits T', A can
be used to construct a splitting sequence for the default theory D, as follows. Let
4 be an ordinal such that, for every atom A, A(A) < p. Then for every a < p,
U, = {A : M4) < a}. The resulting sequence also splits D'. Complete the
proof by using the Splitting Sequence Theorem to show that D and D' have the

same complete, consistent extensions. The key observation is that if A stratifies a
a:f
v
% does not change the complete, consistent extensions. O

formula (5.17), then replacing the default rule

with the corresponding rule

It would be straightforward to extend the Splitting Theorems for default
logic to cover also disjunctive default logic, in which case this theorem could be

likewise extended to cover UCL theories whose formulas have standard form (5.15).

5.6 Flat and Definite UCL Theories

Here we define the class of UCL theories called “flat.” Flat UCL theories corre-
spond exactly to the so-called language of causal theories introduced by McCain
and Turner in [MT97]. For this subclass of UCL there is a mathematically simpler
characterization of causally explained interpretations. We also consider in this sec-
tion the still more restricted class of “definite” UCL theories, for which there is a

concise translation into classical propositional logic.

5.6.1 Flat UCL Theories
A UCL formula is flat if it has the form
¢ D Cy (5.18)

where both ¢ and ¢ are nonmodal formulas. A UCL theory is flat if all of its

formulas are.
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Notice that a nonmodal formula ¢ is S5-equivalent to the formula —¢ O CFalse,
which is flat. (So we can think of nonmodal formulas as essentially flat.)

Given a flat UCL theory T and an interpretation I, we define
T! = {4 : for some ¢,  DCp e T and I |= ¢} . (5.19)

Theorem 5.16 For any flat UCL theory T, an interpretation I is causally explained
by T if and only if I is the unique model of T'.

Lemma 5.17 For any flat UCL theory T and UCL structure (I,S), (I,S) =T if
and only if, for all ' € S, I' =T,

Proof. The lemma follows easily from the following observation. For any flat UCL

formula ¢ D Ct, the following two conditions are equivalent.
e (LS E¢O W
o If [ |= ¢, then, forall I' € S, I' = 4. o

Proof of Theorem 5.16. (=) Assume T is the unique model of T2 By Lemma 5.17,
(I,{I}) = T. Let S be a superset of {I} such that (I,.S) = T. By Lemma 5.17, for
all I' € S, I' = TL 1t follows that S = {I}, so (I,{I}) is the unique I-model of T'.

(«<=) Assume that (I,{I}) is the unique I-model of T. By Lemma 5.17,
I |=TL Assume that I' = TL By Lemma 5.17, (I,{I,1'}) |= ucl(T). It follows that

I =1 so I is the unique model of T". 0

5.6.2 Definite UCL Theories

A flat UCL formula ¢ D C¢ is definite if ¢ is either a literal or the formula False.
A flat UCL theory T is definite if

e each of its formulas is definite, and
e for every literal L, finitely many formulas in 7" have consequent CL.
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Notice that, due to the first condition, an interpretation I is causally ex-
plained by a definite UCL theory T if and only if T = T'.

We are particularly interested in definite UCL theories because they have a
concise translation into classical propositional logic, which we call “literal comple-
tion.”

Let T be a definite UCL theory. By the literal completion of T, denoted
by lcomp(T'), we mean the classical propositional theory obtained by an elaboration
of the Clark completion method [Cla78], as follows. For each literal L in the language

of T, include in lcomp(T) the formula
L=(¢1V -V ¢n) (5.20)

where ¢1, ..., ¢, are the antecedents of the formulas in 7' with consequent CL. (Of
course, if no causal law in T has consequent CL, then (5.20) becomes L = False.)
We will call formula (5.20) the completion of L. Also, for each formula of the form
¢ D CFalse in T, include in lcomp(T) the formula —¢. We will sometimes refer to
flat UCL formulas with consequent CFalse as constraints.

For example, let T be the UCL theory (in the language with exactly the

atoms p and ¢) consisting of the formulas

pDCp, n¢q2>Cp, ¢ O Cq, -q D Crq, q D CFalse .
UCL theory T is definite, and lcomp(T) is

{p=pV-q, -p=False, q=q, "¢=—q, ~q}.

Theorem 5.18 (Literal Completion Theorem) An intepretation I is causally

ezplained by a definite UCL theory T if and only if I |= lcomp(T).

Proof. Assume that T is causally explained by T. By Theorem 5.16, I = T'. So,

for every literal L € I,
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o there is a formula ¢ such that ¢ O CL belongs to T and I |= ¢, and
e there is no formula ¢ such that ¢ > CL belongs to T and I |= ¢.
It follows that for every literal L € I,
e ] satisfies the completion of L, and
o [ satisfies the completion of L.

That is, I satisfies the completion of every literal in the language of 7. Similarly,
since False ¢ T, we can conclude that I satisfies every formula in lcomp(T') obtained
from a constraint. So I is a model of lcomp(T).

Proof in the other direction is similar. O

The following corollary to Theorem 5.18 suggests an approach to query eval-

uation for definite UCL theories.

Corollary 5.19 Let T be a definite UCL theory, T a set of nonmodal formulas, and
¢ a formula. T UT |~ ¢ if and only if lcomp(D) UT U {—¢} is unsatisfiable.

5.7 (More) Causal Theories of Action in UCL

In this section, we introduce a family of languages for describing action domains and
illustrate their use. This discussion follows the presentation in [MT97], where the
same approach was introduced in a mathematically more limited setting (specifically,
the language of “causal theories”). In this approach, time has the structure of the
natural numbers, and action occurrences become propositions in the language. Thus,
concurrent actions can be treated more conveniently. Moreover, as we have already
argued (Chapter 2), this ontology avoids certain technical difficulties that can arise
in the situation calculus due to the phenomenon of “unreachable” situations. When

time has a linear structure and action occurrences are represented by propositions,
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the question of whether an action can be performed in a particular situation need
not be explicitly addressed in the theory. Instead, if an action can be performed in
a situation, there will be, roughly speaking, some causally possible world in which

it actually is.?

5.7.1 L (F,A,T) Languages

It is convenient to specify the underlying propositional signature by means of three
pairwise-disjoint sets: a nonempty set F of fluent names, a set A of action names,
and a nonempty set T of time names, corresponding to the natural numbers or an
initial segment of them. The atoms of the language £ (F,A,T) are divided into two
classes, defined as follows. The fluent atoms are expressions of the form f; such that
f €F and t € T. Intuitively, f; is true if and only if the fluent f holds at time ¢.
The action atoms are expressions of the form a; such that a € A and ¢, t+1 € T.
Intuitively, a; is true if and only if the action a occurs at time ¢. An action literal
is an action atom or its negation. A fluent literal is a fluent atom or its negation.
A fluent formula is a propositional combination of fluent atoms. We say that a
formula refers to a time ¢ if an atom whose subscript is ¢ occurs in it.

An £ (F,A,T) domain description is a UCL theory in an £ (F,A,T) language.

5.7.2 L (F,A,T) Domain Descriptions

We illustrate the approach by formalizing a slight elaboration of Lin’s Suitcase
domain, considered previously as Example 2 in Section 3.2, and discussed elsewhere
in the dissertation as well. One thing to notice about the current formalization is
that it allows for concurrent actions, unlike the situation calculus versions we have

considered up to now.

3A similar idea is made precise in the third part of the dissertation, where the executablity of a
plan is defined for the kind of UCL action theories introduced in this section.
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Recall that there is a suitcase with two latches, each of which may be in
either of two positions, up or down. The suitcase is spring-loaded so that whenever
both latches are in the up position the suitcase is caused to be open. We model the
opening of the suitcase as a static effect (as Lin does); that is, we do not model a
state of the domain in which both latches are up but the suitcase is not (yet) open.

We take time names corresponding to the natural numbers, and we choose

fluent names and action names as follows.

Up(Ly) : the first latch is up
Fluents Up(Ls) : the second latch is up

IsOpen : the suitcase is open

Toggle(Ly) : toggle the first latch
Actions Toggle(L2) : toggle the second latch
Close : close the suitcase
Given our choice of language, the Suitcase domain can be partially formalized

by the following schemas, where [ is a metavariable ranging over {L1, Lo}.

Toggle(1)¢ A Up(1)¢ D C=Up(l)n (5.21)
Toggle(l); A =Up(l)e > CUp(I)en (5.22)

Closes D C—IsOpen (5.23)
Up(L1): A Up(L2)y D CIsOpen, (5.24)

According to schemas (5.21) and (5.22), whenever a latch is toggled at a time ¢ it is
caused to be in the opposite state at time ¢+1. Schema (5.23) says that whenever
the suitcase is closed at a time ¢ it is caused to be not open at ¢-+1. Schema (5.24)
says that whenever both latches are up at a time ¢ the suitcase is caused to be open
also at t. Schemas (5.21)—(5.23) express “dynamic causal laws.” Schema (5.24)

expresses a “static causal law.”
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Notice that (5.24) is not the weaker formula
CUp(Ly)¢ A CUp(L2)¢ D CIsOpen, (5.25)

which would correspond more closely to the static causal laws studied in the first
part of the dissertation (and also to the corresponding situation calculus formula in
Figure 5.3). In this case, the weaker version would not affect the causally explained
interpretations (as can be shown using Theorem 5.15). Given this, we prefer (5.24)
to (5.25), since (5.24) is definite.

Similarly, one might expect that in place of (5.21) and (5.22), we would write

Toggle(l); A CUp(l); D C=Up() (5.26)

Toggle(l)¢ A C-Up(l); D CUp(1) ey - (5.27)

Again, Theorem 5.15 could be used to show that for this domain description it makes
no difference—the causally explained interpretations would not be affected. In fact,
in this case, we can invoke a somewhat simpler result, Proposition 5.20 below, which
is a straightforward consequence of Theorem 5.15, based on the following definitions.

Let D be an £ (F,A,T) domain description whose formulas have the standard

form (5.17). That is, every formula in D has the form
CanpBDCy.

We say that D respects the flow of time if every formula (5.17) in D satisfies the

following three conditions.
e v refers to at most one time.
e If v refers to a time ¢, then neither o nor 3 refer to a time later than ¢.

e If a fluent atom that refers to a time ¢ occurs in 7, then every action atom

that occurs in a or 3 refers to a time earlier than t.
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We say that a formula (5.17) in D is stratified by time if

e every time that « refers to is earlier than every time that + refers to.

Proposition 5.20 Let D be an L (F,A,T) domain description whose formulas have
the standard form (5.17). If D respects the flow of time, then D has the same
causally explained interpretations as any L (F,A,T) domain description D' that can
be obtained by replacing any or all formulas (5.17) that are stratified by time with
the corresponding formula

aApBDCy.

This result follows easily from Theorem 5.15. (Let A map each atom to the
time it refers to.)

The UCL theory (5.21) (5.24) is an incomplete description of the Suitcase
domain because it does not represent sufficient conditions for certain facts being
caused: namely, facts preserved by inertia, facts about the initial situation, and facts
about which actions occur (and when). The following schemas provide a standard
way to fill these gaps.

In the following two schemas, a is a metavariable for action names.

a; O Cay (5.28)

—a; O C—ay (5.29)

Schema (5.28) says that the occurrence of an action a at a time ¢ is caused whenever
a occurs at ¢. Schema (5.29) says that the non-occurrence of an action a at a time ¢
is caused whenever a does not occur at ¢. In effect, by these schemas we represent
that facts about action occurrences are exogenous to the theory.

In the following two schemas, f is a metavariable for fluent names.

fo > Cfo (5.30)

—fo > C=fo (5.31)
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In effect, by these schemas we represent that facts about the initial values of fluents
may be exogenous to the theory.

By a fluent designating formula we mean a propositional combination of
fluent names. Given a fluent designating formula o and a time name ¢, we write oy
to stand for the fluent formula obtained from o by simultaneously replacing each
occurrence of each fluent name f by the fluent atom f;.

Let T be a set of fluent designating formulas. We express that the fluents
designated by the formulas in I are inertial by writing the following schema, where

o is a metavariable ranging over I.
ot Ao O Copa (5.32)

According to schema (5.32), whenever a fluent designated in I holds at two successive
times, its truth at the second time is taken to be caused simply by virtue of its
persistence.? For the Suitcase domain, we take I to be the set of all fluent names
and their negations. Thus, the inertia laws for the Suitcase domain can also be
represented by the schemas
fe A fua O Cfn
and
—fi AN =fu1 D C=fun,

where f is a metavariable for fluent names. In other cases, there may be inertial
fluents that are not designated by fluent names or their negations, and, conversely,
there may he fluent names or negations of fluent names that do not designate inertial
fluents. We will see such a case in Section 5.7.3, when we describe how to introduce

explicit definitions in £ (F,A,T) domain descriptions.

“Notice that Coy A o¢a D Cogp is stratified by time. Hence, when used in a domain description
that respects the flow of time, (5.32) can be replaced with Coy A o1 D Cowr without affecting the
causally explained interpretations.
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Toggle(l)e A Up(1)¢ > C=Up (1)

Toggle(l): A =Up(1): D CUp(L)eu

Close; D C—IsOpen

Up(L1)¢ A Up(La)¢ D CIsOpen,

a; D Ca; —a; D C-ay foDCfo —fo2 C=fo
feNfur D Cfen —fe A=fin D Cafen

Figure 5.8: £ (F,A,T) description D3 of Lin’s Suitcase domain.

Schemas (5.21)-(5.24) and (5.28)—(5.32) express the complete UCL theory
for the Suitcase domain. Schemas (5.21)—(5.24) are domain specific. We often re-
fer to the remaining schemas (5.28)—(5.32) as standard schemas. Intuitively, the
standard schemas exempt specific classes of facts from the principle of universal
causation. (Notice that the standard schemas respect the flow of time.) The com-
plete £ (F,A,T) description D3 of the Suitcase domain appears in Figure 5.8. Notice
that it is definite.

Let I be the interpretation characterized below.

—Toggle(L1)o —Toggle(L1); —Toggle(Ly)a
Toggle(La)o —Toggle(Ly)1  —Toggle(Ls)a

= Closeg = Closey = Closes
Up(L1)o Up(L1)1 Up(L1)2
~Up(L2)o  ® Up(La)t Up(L3)2
—IsOpeng e IsOpen, IsOpen,y

Interpretation I specifies, for all actions a and times ¢, whether or not a occurs
at ¢, and, for all fluents f and times ¢, whether or not f holds at t. Here, exactly
one action occurs—the toggling of the second latch at time 0—and, intuitively, it
results in the suitcase being open at time 1. (The ellipses indicate that after time 2

no action occurs and no fluent changes its value. The bullets indicate literals that
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are “explained” by domain specific schemas. All others are explained by standard
schemas.) It is not difficult to see that I is causally explained by Dj.

The following formula is a UCL-consequence of Ds.
Up(L1)o A Up(La)g A Closeq D Toggle(L1)o V Toggle(La)o (5.33)

In general, when both latches are up, it is impossible to perform only the action of
closing the suitcase; one must also concurrently toggle at least one of the latches. If
this seems unintuitive, recall that we have chosen to model the suitcase being open
as a static effect of the latches being up, so there is no time in any causally possible

world at which both latches are up and the suitcase is closed.

5.7.3 Expressive Possibilities

The previous example demonstrates that £ (F,A,T) domain descriptions can be
used to represent some standard features of action domains, such as indirect effects
of actions, implied action preconditions and concurrent actions. Next we briefly

describe a few of the additional expressive possibilities of the approach.

Ramification and Qualification Constraints

Ramification and qualification constraints, in the sense of Lin and Reiter [LR94],
are formalized by schemas of the forms Coy and oy respectively, where o (the “state
constraint”) is a fluent designating formula. (Similar results are established by

Proposition 5.8 and Theorem 5.12.)

Nondeterministic Actions

The semantics of UCL rests on the principle of universal causation, according to
which every fact is caused. Intuitively, in the case of a nondeterministic action,

there is no cause for one of its possible effects rather than another. We have already
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Toss; N Heads;1 D CHeadst 1

Tossy N "Headsyy1 O C—Heads; 1

a; D Cay —a; D C-ay foDCfo —fo2 C=fo
fiNfer D Cfua = fi A=fun D Cofun

Figure 5.9: £ (F,A,T) description D4 of Coin Toss domain.

seen, however—in standard schemas (5.28) through (5.32)—that there are ways
of effectively exempting facts from the principle of universal causation. We can
use laws of a similar form to describe nondeterministic actions. For instance, the
nondeterministic effect of tossing a coin can be described by the following pair of

schemas.

Tossy A\ Headsy+1 DO CHeadsy1 (5.34)

Tossy N —Headsyy1 D C—~Heads; 1 (5.35)

Intuitively, according to schemas (5.34) and (5.35), for every time ¢, Toss; renders
Heads;11 exogenous. We’ll consider some related results in Section 5.9.3.

Notice that these formulas are similar to those used in the UCL formalization
of Example 3 appearing in Figure 5.7.

This description can be completed by adding the UCL formulas given by the
standard schemas (5.28) (5.32), with the set of inertial fluents I = {Heads, ~Heads}.
The complete domain description Dy is represented in Figure 5.9. We will consider
this action domain, and some elaborations of it, in more detail in the next chapter,
in relation to the definitions of various classes of plans. In the meantime, notice

that Dy is definite.
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Defined Fluents

Given an £ (F,A,T) domain description, we add a defined fluent f (f ¢ F) by first

adding f to the set of fluent names and then defining f by means of a schema
fi=ot (5.36)

where o is a fluent designating formula that doesn’t mention f. Notice that the
set T used to designate the inertial fluents is not altered in this process. Intuitively
speaking, the defined fluent inherits any inertial properties it may have from its
definiens. The correctness of this method of introducing defined fluents follows from
the remarks on definitional extension in Section 5.2.2. Notice that it also corresponds

closely to the method inherited via the translation of AC in Theorem 5.12.

Delayed Effects and Things that Change by Themselves

Because we refer explicitly to time points in our action descriptions, we may, if we
wish, describe actions with delayed effects. Similarly, we can write formulas that
refer to more than two time points. We may also model things that change by
themselves. This we can do simply by writing causal laws that relate fluents at
different times, without mentioning any actions. Here we consider an example along
these lines involving the dynamic mechanism of falling dominos.

We wish to describe the chain reaction of dominos falling over one after the
other, after the first domino is tipped over.

Let the fluent names be

Up(1),..., Up(4),

and let the single action name be

Tip .
Identify time with the natural numbers 0, ..., 4.
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Tip, O C-Up(d)en Tip, O Up(d):

Up(d)e A = Up(d)enn D C-Up(d+1)ep2

a; D Cay —ay D Cnay fo D Cfy —fo D Cfo
fiNfer D Cfur = fi A=fua D Cofun

Figure 5.10: £ (F,A,T) description D5 of Dominos domain.

Here, as usual, we assume that facts about the occurrences of actions are ex-
ogenous. We also assume that facts about the initial values of fluents are exogenous.
The fluent names Up(1),..., Up(4), and their negations, will be designated inertial.

We describe the direct effect and action precondition of the Tip action by

writing

Tip; 5 C~Up(1)en (5.37)

Tip, > Up(1); . (5.38)

So Tip is the action of tipping over the first domino. It can only be done if the first
domino is standing up.
We describe the chain reaction mechanism as follows, where d is a metavari-

able ranging over numbers 1,2, 3.
Up(d)s AN = Up(d)ga D C—Up(d+1)42 (5.39)

Notice that this schema does not mention an action. It describes dynamic change
involving three distinct time points. Roughly speaking, if domino d falls in the
interval from ¢ to ¢t+1, then domino d+1 is caused to fall in the interval from ¢+1
to t+2.

Let D5 be the domain description given by schemas (5.37)-(5.39), along
with the standard schemas (5.28) (5.32), as shown in Figure 5.10. Notice that

although Ds is not definite, it is S5-equivalent to a definite UCL theory, since
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Tip(d); D Up(d); is Sh-equivalent to the formula —(Tip(d); D Up(d):) D CFalse,
which is definite.

Let I be the interpretation shown below.

Tipg —Tip, —Tipy —Tips

Up(1)o »~Up(1)1 —Up(l)a —Up(l)s —Up(1l)s
Up(2)o  Up(2)1 o~Up(2)2 —Up(2)s —Up(2)s
Up(3)o  Up(3)1  Up(3)2 e ~Up(3)s —Up(3)s
Up(4)o  Up(4)1  Up(4)s Up(4)s e —Up(4)s

The only action occurrence is Tip at time 0. One easily verifies that I is causally
explained by D5. The four literals preceded by bullets are “explained” by the domain
specific schemas (5.37) and (5.39). The others are explained by standard schemas.

The Course of Nature

The fact that the commonsense law of inertia can be expressed straightforwardly in
UCL makes it easy to generalize it, as follows. Rather than supposing that things
tend to stay the same, we can imagine more generally that they tend to change in
particular ways. That is, there is a course that nature would follow, in the absence
of interventions.

As an example, we will formalize a dynamic domain from [GL98]. In this
domain there is a pendulum. In the course of nature (i.e., in the absence of inter-
ventions), the pendulum bob swings back and forth from right to left. However, at
any time the agent can intervene to change the course of nature by holding the bob
in its current location. So long as he continues to hold it, the bob remains where it
is. When he no longer holds it, the bob resumes its natural course, swinging back
and forth from right to left.

In formalizing the Pendulum domain, we will use a single action name Hold

and fluent name Right. We will identify time with the natural numbers 0,. .., 4.
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Hold, A Right, > CRight,,

Hold; N ~Right; 5 C—Righty,

—Right; \ Right,; D CRight

Right, A —Right,,, > C—Right,,

a; D Cay —ay D Cnay  fo D Cfy —fo D Cfo

Figure 5.11: £ (F,A,T) description Dg of Pendulum domain.

The effects of the action Hold are specified straightforwardly by writing

Hold; A Right; O CRight (5.40)

Hold; A —Right; O C—Right,,,. (5.41)
The behavior of the pendulum in the absence of interventions is described by writing

—Right, A Right,,, > CRight,, (5.42)

Right, A —Right,,; D C—Right,,,. (5.43)

Like the standard schema (5.32) for inertia, schemas (5.42) and (5.43) describe a
course of nature. Here the course of nature is dynamic rather than static, but
otherwise there are clear similarities between the two pairs of schemas. Both pairs
allow for the possibility that the course of nature may be overridden by the effects
of actions, and both achieve this without mentioning facts about the non-occurrence
of actions as preconditions. In essence, schemas (5.42) and (5.43) solve the frame
problem for the dynamic fluent Right in the same way that (5.32) solves the frame
problem for inertial fluents.

Let Dg be the definite causal theory given by schemas (5.28)—(5.31) and

(5.40)—(5.43), as shown in Figure 5.11. Consider the following interpretation I.

—‘Holdn Hald1 Holdz —\Hold:;
Right,  —Right, —Righty, —Right; Right,
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One easily verifies that I is causally explained by Dsg.

5.8 A Subset of UCL in Circumscription

Let T be a finite UCL theory, with a finite signature, in which the operator C
is applied only to literals. In this section, we show that T' can be reduced to a
circumscriptive theory ct(T).?

The language L of ct(T) is a second-order language with equality, with two
sorts, atom and wvalue. Let At stand for the set of atoms in the language of T.
In L, the set of all object constants of sort atom is exactly the set A¢. The symbols
T and L will be the two object constants of sort value. L includes exactly two
predicates, in addition to equality: a unary predicate Holds of sort atom and a
binary predicate Caused of sort atom x value. We will use a variable z of sort atom,
and a variable v of sort value.

We begin the description of ct(T') by letting C(T") stand for the sentence

A @) (5.44)

¢eT

where C(¢) is defined recursively, as follows.

C(X) = Holds(X) if X € At (5.45)
C(CX) = Caused(X,T) if X € At (5.46)
C(C-X) = Caused(X,1) if X € At (5.47)
C(True) = True (5.48)
C(-¢) = —C(¢) (5.49)

Cl(e@y) = (C(¢)@C(H) (5.50)

Here ® stands for any binary propositional connective. Notice that this definition

SFamiliarity with circumscription will be assumed. See, for example, [Lif93a].
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depends on the finiteness of the UCL theory T', as well as the assumption that the
modal operator C is applied only to literals. Notice also that C(T') is ground.

We will want a unique names axiom (denoted by UNA) to say that all object
constants of sort atom denote distinct domain objects. Thus, UNA stands for the
conjunction of all formulas X # X' such that X and X' are distinct members of At.
Notice that this definition depends on the finiteness of the signature of T'.

The complete embedding ct(T) consists of the following five sentences.

CIRC[C(T) : Caused ] (5.51)
Va (Holds(x) = Caused(z, T)) (5.52)
Va (~Holds(x) = Caused(z, L)) (5.53)
UNA (5.54)
Vow=T#v=1) (5.55)

Notice that second-order quantification is used only implicitly, in (5.51). The models
of (5.51) are simply the models of C(T') in which the extent of Caused is minimal (for
a fixed universe and fixed interpretation of all nonlogical constants except Caused).
For every model M of ct(T), there is a one-to-one correspondence between
the domain objects of sort atom and the members of A¢. To see this, first notice
that, because of the UNA, M maps each pair of distinct members of At to distinct
domain objects. Now, suppose there is a domain object d of sort atom such that
M maps no member of At to §. Because C(T') is ground, and M is a model of C(T")
in which the extent of the predicate Caused is minimal, we can conclude that neither
(6, TM) nor (5, L M) belong to Caused™. But the axioms (5.52) and (5.53) together
imply that
Va(Caused(z, T) # Caused(z, L)). (5.56)

Given, in addition, the axiom (5.55) expressing the unique names and domain

closure assumptions for sort values, we can conclude that every model of ct(T) is
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isomorphic to some Herbrand model of ct(T). Thus, in what follows, we restrict our
attention to Herbrand interpretations.

For every UCL structure (I, S), let M(I,S) be the Herbrand interpretation
of L such that, for every X € At, the following three conditions hold.

o M(I,S) = Holds(X) iff (I,S) =X

e M(1,S)

= Caused(X,T) iff (I,S) | CX
e M(I,S) |= Caused(X, L) iff (I,S) =C-X
The following lemma is a straightforward consequence of the definitions.

Lemma 5.21 Let T be a finite UCL theory, with finite signature, in which C is
applied only to literals. For any UCL structure (I,S), (I,S) =T if and only if
M(I,S) E=C(T).

Theorem 5.22 Let T be a finite UCL theory, with finite signature, in which C is
applied only to literals. An interpretation I is causally explained by T if and only if
M(I,{I}) is a model of ct(T'). Moreover, every model of ct(T) is isomorphic to an

interpretation M(I,{I}), for some interpretation I of the language of T'.

Proof. We’ve already established that every model of ¢t(T) is isomorphic to a
Herbrand model. In light of (5.52) and (5.53), every Herbrand model can be written
in the form M(7,{I}). Now we turn to the first part of the theorem.

(=) Assume [ is causally explained by T'. So (I, {I}) = T. By Lemma5.21,
M(I.{I}) EC(T). Also, M(I,{I}) clearly satisfies all of (5.52), (5.53), (5.54)
and (5.55). It remains only to show that the extent of Caused in M(I,{I}) is min-
imal among models of C(T) with the same universe, and the same interpretation of
all nonlogical constants except Caused. Any possible counterexample can be written
in the form M(I, S), for some superset S of {I}. So assume that M(I, S) |= C(T).
By Lemma 5.21, (I, S) |= T'. Since (I,{I}) is the unique I-model of T', S = {I}.
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(«<=) Assume M(I,{I}) is a model of ¢t(T). By Lemma 5.21, (I,{I}) = T.
Let S be a superset of {I} such that (I, S) = T. By Lemma 5.21, M(I, S) = C(T).
Since M(I,{I}) is a model of (5.51), we can conclude that M(I,S) = M(I,{I}). It
follows that S = {I}, which shows that (I,{I}) is the unique I-model of T. That

is, I is causally explained by T. O

5.9 UCL and Lin’s Circumscriptive Action Theories

Lin [Lin95] recently introduced a causal approach to reasoning about action based
on circumscription. In this section, we explore the relationship between Lin’s cir-
cumscriptive action theories and the UCL action theories described in Section 5.7,
restricted to the case when C is applied only to literals. We show that on a wide

range of action domains, the two approaches coincide.

5.9.1 Lin’s Circumscriptive Causal Action Theories

For the purpose of comparison, we present an account of Lin’s proposal that is
simplified in several ways. We do not consider non-propositional fluent and action
symbols. We also do not employ the situation calculus. Instead we model worlds
in which time has the structure of the natural numbers. As discussed previously
(Chapter 2 and elsewhere), this simplifies matters somewhat, eliminating the need
for a Poss (or Reachable) predicate. Finally, we include a domain closure assumption
for fluents. In the case of propositional fluents, this is not very significant.

In some other ways, the circumscriptive approach that we describe is more
general than Lin’s. Because our language includes propositions about the occurrence
and non-occurrence of actions, we can accomodate concurrent actions more easily
than Lin. We also accomodate a wider variety of causal laws. For instance, we allow
formulas expressing causal laws that refer to more than one time point and yet do

not involve the occurrence of an action. We allow also for causal laws that involve
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more than two time points, and we do not require that the time points be successive.

The language of the circumscriptive theory is constructed in the same man-
ner as in the previous section, on the basis of the signature At of an underlying
propositional language. For this purpose, we employ £ (F,A,T) languages, as de-
scribed in Section 5.7.1, under the additional restriction that each of the sets F, A,
and T is finite.

Let us introduce an abbreviation. Given a fluent formula ¢, Holds(¢) stands
for the formula obtained by replacing every occurrence of every fluent atom f; in ¢
by Holds(f;).

We need axioms expressing domain closure and unique names assumptions

for both sorts, as follows.

Vo(Vxear v = X) (5.57)
Axxedtxrx X # X' (5.58)
Vo(o=T Zv=_1) (5.59)

We also need the following axioms, saying that whatever is caused is true.

Va(Caused(x, T) D Holds(z)) (5.60)

Va(Caused(x, L) O —Holds(z)) (5.61)

For the purposes of this chapter, a Lin formula is the conjunction of a finite
set of ground sentences in which Caused appears only positively, and at most once
in each sentence.

The next few observations help characterize the relationship between Lin
formulas as specified here and the kinds of circumscriptive action theories described
in [Lin95]. Assume that o is a fluent designating formula, A is an action name, F is
a fluent name, and V is either T or L. Lin’s “direct effect” axioms correspond to

schemas of the form

Holds(Ay) A Holds(oy) D Caused(Fyy,V). (5.62)
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His “causal rule” axioms correspond to schemas of the form
Holds(o¢) D Caused(F;, V). (5.63)
His “explicit precondition” axioms correspond to schemas of the form
Holds(A¢) D Holds(ay) . (5.64)
His “qualification state constraint” axioms correspond to schemas of the form
Holds(oy) . (5.65)

For example, consider again the Suitcase domain from [Lin95]. We’'ll use
almost the same L (F,A,T) language as in Section 5.7.2, but restrict time to a
finite initial segment of the natural numbers. The Lin formula for this example is
characterized by the following schemas of type (5.62) and (5.63), where [ is again

metavariable ranging over {L1, La}.

Holds(Toggle(l);) A Holds(Up(l);) > Caused(Up(l), L) (5.66)
Holds(Toggle(l)¢) A —Holds(Up(l);) > Caused(Up(l)1, T) (5.67)

Holds(Close;) D Caused(IsOpeny,,, 1) (5.68)
Holds(Up(Ly);) A Holds(Up(L3);) O Caused(IsOpeny, T) (5.69)

Let D7 be the UCL theory given by schemas (5.21) (5.24), which express the domain
specific part of the UCL description of the Suitcase domain from Section 5.7.2. The
conjunction of the sentences given by schemas (5.66)—(5.69) is exactly C(D7), where
C is the translation function defined in Section 5.8.

Given a Lin formula D, the complete circumscriptive action theory cat(D)

consists of

CIRC[D : Caused ] (5.70)
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along with the standard axioms (5.57)—(5.61) and the inertia axioms given by the

schema
Holds(fw1) = (Holds(ft) A —Caused(fea, 1))V Caused(fr1,T) (5.71)

where f is a metavariable ranging over fluent names.

5.9.2 Lin’s Circumscriptive Action Theories in UCL

The first thing to observe is that, for every Lin formula D, there is a UCL theory T'
in language £ (F,A,T) such that C(T) = D. We will show that there is an ex-
tension uclat(D) of T such that the interpretations causally explained by uclat(D)
correspond to the models of cat(D). We obtain uclat(D) by adding to T the for-
mulas given by the standard schemas (5.28)—(5.32) from Section 5.7.2, taking I to

be the set of all fluent names and their negations.

Theorem 5.23 For any Lin formula D, an interpretation I is causally explained
by uclat(D) if and only if there is a superset S of {I} such that M(I,S) is a
model of cat(D). Moreover, every model of cat(D) is isomorphic to an interpre-

tation M(I,S), for some UCL structure (I, S).
We begin the proof of Theorem 5.23 with a straightforward lemma.

Lemma 5.24 Let T be a UCL theory with no nested occurrences of C, in which C
occurs only positively. If (I,S) =T, then for all subsets S’ of S such that I € S,
(I1,8") = T. If, in addition, C occurs at most once in each formula, (I,SUS") =T
whenever (I,S) =T and (I,S") =T.

Proof of Theorem 5.23. We first prove the second part of the theorem. Ax-

ioms (5.57) (5.59) allow us to restrict our attention to the Herbrand models of cat(D).

SWe note in passing that uclat(D) is easily seen to be S5-equivalent to a definite UCL theory.
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Axioms (5.60) and (5.61) show that every Herbrand model of cat(D) can be ex-
pressed in the form M (I, S).

Now we turn to the main part of the theorem. Let T be the UCL theory
such that C(T") = D. (Here we assume the most natural choice of T', which satisfies
the conditions of Lemma 5.24.) Let 7' = uclat(D).

(=) Assume I is causally explained by T'. Thus, (I,{I}) =T, and by
Lemma 5.21, M(I,{I}) |= D. Tt follows that there is a superset S of {I} such that
M(I,S) is a model of CIRC[D : Caused]. Clearly, M(I,S) satisfies the standard
axioms (5.57)-(5.61). It remains to show that M(I,S) satisfies the inertia axioms

given by (5.71). Suppose otherwise. Thus, there is a fluent atom f; such that either

M(I,S) |= —Holds(f:) N Holds(fe1) N —Caused(fua, T)
or

M(I,S) = Holds(f:) A —Holds(fu1) N ~Caused(fya,L).

We'll argue the first case. (The second is similar.) By Lemma 5.21, we know that
(I,S) = =fi A fesr A—=Cfer. Let I' = TU{=fu1} \ {fenn}. Notice that I' # I, with
I'E= fu1 and I' |= —fyq. Since M(I,S) [~ Caused(fu1, T) and I € S, we can con-
clude by our choice of I’ that M (1, S) = M(I,SU{I'}). Thus, M(I,SU{I'}) E D,
and by Lemma 5.21, (I, SU{I'}) = T. By Lemma 5.24, (I,{I,I'}) = T. One eas-
ily checks that (I,{I,I'}) also satisfies (5.28)—(5.32). So (I,{I,I'}) = T, which
contradicts the assumption that I is causally explained by T".

(«<=) Assume M(I,S) is a model of cat(D). Thus, M(I,S) = D. By
Lemma 5.21, (I,S) =T. By Lemma 5.24, (I,{I}) |=T. One easily verifies that,
since 7" is obtained from T by adding (5.28)—(5.32), (I,{I}) =T'. We wish to
show that (I,{I}) is the unique I-model of 7". Suppose otherwise. So there is a
strict superset S’ of {I} such that (I,S’) =T’, and there is a literal L such that
(1,S") |E L A =CL. In light of (5.28)—(5.31), L is a fluent literal that refers to a non-
zero time. Assume L has the form fi1. (The argument is analagous if L is = fy1.) So

(I1,8") |= fur A =Cfua. In light of (5.32), (I, S") = =fi. So (I, S") = =fi A fea, and
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thus (I,S) = =f¢ A fua also. By Lemma 5.21, M (I, S) = —Holds(f;) A Holds(fi)-
It follows by (5.71) that M(I,S) |= Caused(fia, T). On the other hand, since
(1,8") V= Cfepr, M(I,S") ¥~ Caused(fi1, T). Hence M(I,SUS") = Caused(fya, T),
which shows that M(I,SUS') # M(I,S). Since (I,S')ET', (I,S')=T. And
since (I, S) = T also, we know by Lemma 5.24 that (I, SU S') = T. By Lemma 5.21,
M(I,SUS') = D. Since M(I,S) is a model of CIRC[ D : Caused |, we can conclude
that M(I,SUS') = M(I,S). Contradiction. O

5.9.3 Discussion

In [Lin95], Lin briefly discusses the possibility of using a more general form of
“causal rule” axiom (5.63), in which Caused can occur negatively any number of
times in a sentence, in addition to the one positive occurrence. For example, he
suggests extending the circumscriptive action theory for the Suitcase domain with
an additional fluent IsClosed, understood as the antonym of IsOpen, and adding

(essentially) the schemas

Caused(IsClosedy, T) = Caused(IsOpeny, 1) (5.72)

Caused (IsCloseds, 1) = Caused(IsOpeny, T) (5.73)

to reflect this understanding. Notice that this resembles the notion of a “defined
fluent,” discussed in Section 5.7.3, according to which one would augment the UCL

Suitcase domain description D3 from Section 5.7.2 with
C (IsClosed; = —~IsOpen,) . (5.74)

The first thing to observe is that (5.74) entails IsClosed; = ~IsOpen, (in S5), while
(5.72) and (5.73) do not entail

Holds(IsClosed;) = —~Holds(IsOpen,) . (5.75)
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This correctly suggests that some models of the circumscriptive action theory fail
to satisfy (5.75), for some time names ¢. It appears that, in this case, one can
obtain a more satisfactory “definition” of IsClosed by also including (5.75) in the
circumscriptive theory. In general though, it is unclear how to introduce defined
fluents in circumscriptive action theories.

A related complication arises if we try, for instance, to replace the causal rule

axiom (5.69) with
Caused(Up(L1)s, T) A Caused(Up(La)s, T) D Caused(IsOpeny, T). (5.76)

(Replacing (5.69) with (5.76) greatly alters the meaning of the circumscriptive action

theory. For instance, it allows models that fail to satisfy
Holds(Up(L1)¢) A Holds(Up(L2)¢) D Holds(IsOpeny) . (5.77)

It also make it impossible, intuitively speaking, to open the suitcase unless one
toggles both latches at the same time.

In a subsequent paper [Lin96], Lin investigates how to extend his circum-
scriptive action theories to accomodate nondeterministic actions. For our purposes,
the first thing to observe is that nondeterministic actions can often be described
using the natural counterpart to the approach from Section 5.7.3. For instance, one

can describe the nondeterministic effect of coin tossing by the schemas
Holds(Tossy) A\ Holds(Heads;11) O Caused(Headssy1, T) (5.78)

Holds(Tossy) N —Holds(Heads¢1) D Caused(Headssy1, L) (5.79)

which correspond to the UCL schemas (5.34) and (5.35) from Section 5.7.3. Lin does
not (directly) consider this approach. Instead, he begins by considering a variety
of methods involving sentences with multiple positive occurrences of Caused. For

instance, he (essentially) considers a coin-toss axiom like
Holds(Toss;) O Caused(Headsy+1, T)V Caused(Heads 1, 1) . (5.80)
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Notice that, in the presence of standard axioms (5.60) and (5.61) guaranteeing that
whatever is caused obtains, one can equivalently replace (5.80) with (5.78) and

(5.79). In UCL, the corresponding formula
Tossy O CHeadsy 1 V C—Headsy1 (5.81)

also works, since it is S5-equivalent to the conjunction of (5.34) and (5.35). But in
general such approaches do not translate faithfully into UCL. For instance, if we

were to add an action MaybeFlipUp to the Suitcase domain, using the UCL schema
MaybeFlipUp; O CUp(L1)1+1 V CUp(La)t+1 (5.82)

to describe its effects, it would never cause the second latch to go up, when performed
alone, if the first was already up.

Lin shows particular interest in two special cases of nondeterministic effects,
which he calls “inclusive” and “exclusive.” Inclusive nondeterminism corresponds,

in the UCL setting, to families of effect axioms of the following form, where A is an

action name, and ¢°,0',...,0" are fluent designating formulas.
Ayno) D Caly V-V Coly (5.83)
Ayno) D Coly Vv Cooly (5.84)
Ay Aol D Coly v Coly (5.85)

The first of these axioms, in the presence of the subsequent axioms, can be equiva-

lently replaced (in S5) by
A NG D afy Ve Vol (5.86)

We can also equivalently replace each of the subsequent axioms with the following

pair.
Ay Ao Noby D Coky (5.87)
Ay N Aoy D Caoky (5.88)
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Notice that these transformations yield formulas in which C occurs at most once, and
only positively. Analagous equivalence transformations apply to the corresponding
axioms in Lin’s theory, given the axioms (5.60) and (5.61) guaranteeing that any
fluent literal that is caused is true. These observations show that Lin’s proposal
for inclusive nondeterminism can be applied in the UCL setting, on the basis of
Theorem 5.23. In fact, what we see is that Lin’s method for inclusive nondeter-
minism is essentially a variant of the approach to nondeterminism described briefly
in Section 5.7.3. The same observations apply to Lin’s proposal for exclusive non-
determinism, which, in the UCL setting, is equivalent to augmenting the inclusive
nondeterminism axioms with the additional axiom

Ana?D N (ot Aol)- (5.89)

1<i<j<n

Ultimately, Lin [Lin96] introduces a more satisfactory general method for
formalizing nondeterminism, using auxiliary Case symbols to distinguish between
possible nondeterministic outcomes. Without going into details, we note that Lin’s
“cases” method is easily adapted to the UCL setting.

Finally, while Theorem 5.23 is concerned with an embedding of Lin’s cir-
cumscriptive action theories in UCL, it is interesting to consider also what hap-
pens when we proceed in the opposite direction. Recall that a UCL action theory,
as described in Section 5.7, typically includes the formulas given by the standard
schemas (5.28)-(5.32). Let us assume about such a UCL theory T' that it is finite,
with a finite signature, and that C is applied only to literals. In this case, the trans-
lation C(T') is defined. Let us assume in addition that the inertial fluents (I) are
given by the set of fluent names and their negations. If we extend the definition of
cat so that it applies even when Caused is allowed to occur negatively and more than
once in each sentence, then it is straightforward to verify that the circumscriptive
theory cat(C(T)) is equivalent to ct(T"). In light of Theorem 5.22, this observa-

tion shows that when we augment Lin’s circumscriptive action theories with axioms
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corresponding to the standard schemas—so that all models satisfy the principle of
universal causation—his approach converges with ours. The principal difference
remaining, in the propositional setting, is the ability of the modal language to ex-
press directly the fact that a complex formula is caused to hold. In particular, this
makes it possible to introduce defined fluents and to express traditional ramification
constraints, as described in Section 5.7.3.

In establishing the relationship between Lin’s circumscriptive action theories
and UCL, it is crucial that we assume that the set of inertial fluents is given by the
set of fluent names and their negations. More generally, in UCL action theories, as
remarked earlier, the inertial fluents may differ from this. In fact, as demonstrated
in Section 5.7.3, it is possible in UCL to generalize the commonsense law of inertia
so as to allow for fluents that tend to change in particular ways (instead of tending

to remain unchanged).

5.10 UCL and Autoepistemic Logic

It may be interesting to consider briefly the mathematical relationship of UCL to
autoepistemic logic, which is surely the most widely-familiar modal nonmonotonic
logic. For this purpose we employ the elegant model-theoretic characterization of
autoepistemic logic from [LS93].
Let T be an autoepistemic theory. We say that a set S of interpretations is
an AE model of T if
S={I:(I,S)=T}. (5.90)

Recall that for autoepistemic logic (AEL) we do not require that structures (I,.5)
satisfy the condition I € S.
The definition of an AE model can be reformulated as follows. A set S of

interpretations is an AE model of an AE theory 7' if and only if, for all interpreta-
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tions I,

(I,S)ETiffTeS. (5.91)

In this form, we can observe a strong resemblance to the fixpoint condition in UCL,
which can be similarly reformulated, as follows. An interpretation I is causally
explained by a UCL theory T if and only if, for every set S of interpretations such
that I € S,

(I,S) ETiff S ={I}. (5.92)
Roughly speaking, the reversal of the roles of S and I in the fixpoint conditions (5.91)
and (5.92) is reflected in a corresponding reversal of the role of the modal operator
in the two logics. In accordance with this observation, it is not difficult to establish

the following.”
Proposition 5.25 Let T be a UCL theory consisting of formulas of the form
¢V Cy (5.93)

where ¢ and 1) are nonmodal formulas. Take the AEL theory T' obtained by replacing
each UCL formula (5.93) with the AEL formula

Bo V. (5.94)

An interpretation I is causally explained by T if and only if {I} is an AE model
of T'.

We can obtain a more general result of this kind by translating UCL formulas

of the form
GV CPL V- v Cy" (5.95)
where ¢,%!,... 4" are nonmodal formulas, into autoepistemic formulas
BoV (¥' ABY) V.-V (47 ABYT). (5.96)

"We will use the symbol B for the AEL modal operator, rather than L, which is also often used.
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In this more complex translation, “caused” becomes, roughly speaking, “truly be-
lieved.”

It is unclear what lessons to draw from such mathematical facts. Notice that,
for AE models of the form {I}, the fixpoint condition involves only structures of
the form (I’, {I}). Therefore, one can, for instance, replace B¢ with —~B—¢ without
affecting the “complete” AE models. This suggests that the “complete” subset
of autoepistemic logic is relatively inexpressive as a logic of belief, as one would

intuitively expect.

5.11 UCL with Quantifiers

In this section, we extend UCL to allow first and second-order quantifiers. This
makes it possible to write much more compact theories. Second-order quantifica-
tion in particular is convenient for axiomatizing the structure of situations in action
theories. For instance, one can use the Peano axioms, including second-order induc-
tion, to characterize completely the structure of situations in linear worlds.

The signature of a (nonpropositional) UCL language is given by a set of
nonlogical constants: that is, function symbols (with arities and sorts) and predicate
symbols (with arities and sorts). The definitions of a formula, sentence, theory, free
occurrence of a variable and so on are as expected.

A UCL structure is a pair (I,.9) such that S is a set of interpretations with
the same universe, and I € S.

In the recursive truth definition, we extend the language each time a quanti-
fier is encountered, adding a new nonlogical constant of the appropriate type (that
is, a new function or predicate constant of suitable arity and sort). To this end, we
introduce the following auxiliary definition.

Let (I,S) be a UCL structure for a given language. When we add a new

nonlogical constant X to the signature, we call a UCL structure (I’,S') for the
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resulting language an X-eatension of (I,S) if I' is an extension of I and S’ is
obtained by taking, for each member of S, the unique extension that interprets X
as I' does.

The truth of a UCL sentence in a UCL structure is defined by the standard

recursions over the propositional connectives, plus the following four conditions.

(I,S)EP iff T=P (for any ground atom P)

(1,5) = Co iff foralll’e S, (I',S)E¢

(I,S) = Vag(z) iff for every X-extension (I',S’) of (I,S), (I',S") = ¢(X)
(I,S) = Jag(z) iff for some X-extension (I',5') of (I,S), (I',S") = #(X)

Here we assume that X is a new nonlogical constant of the same type as the vari-
able z. By ¢(X) we denote the formula obtained from ¢(z) by simultaneously
replacing each free occurrence of z by X.

It is often convenient to designate some nonlogical constants ezempt, which,
intuitively, exempts them from the principle of universal causation. Mathematically,
this practice is reflected in the definition of an I-structure: a UCL structure (I, .S)
such that all members of S interpret all exempt symbols exactly as I does. An
I-model of a UCL theory T is an I-structure that is a model of T

The definition of a causally explained interpretation is just as it was in the
propositional case. An interpretation I is causally ezplained by a UCL theory T if
(I,{1}) is the unique I-model of T

Clearly, this definition extends the definition introduced in Section 5.2 for
propositional UCL, assuming that the nonlogical constants of the language (i.e. the
propositional symbols) are not declared exempt.

Before continuing, a few remarks about the truth definition, and in particular
the definition of an X-extension, may be in order. Notice that, roughly speaking, the
proposed definition of an X-extension makes each newly introduced logical constant

exempt from the principle of universal causation, since all members of the second
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component of an X-extension of (I,.5) interpret X as I does. As we will see in the
next section, this is mathematically consistent with the definition of nonproposi-
tional causal theories proposed in [Lif97]. Moreover, such an approach seems to be
necessary in order to catch our intended meaning in the case of first-order quanti-
fiers. For example, consider a language with only a unary predicate symbol P in its
signature, where P is not declared exempt. Let T' be the UCL theory consisting of

the following two sentences.

Vz (P(z) D CP(z)) (5.97)
Va (=P(x) D C=P(z)) (5.98)

We wish to understand these sentences to say that, for every domain object 4, if §
has the property P then that is caused, and if § does not have the property P then
that is caused. Thus, our intention is that every interpretation of the language be
causally explained by T'. Under the proposed definition, this is indeed the case. By
comparison, if we were to allow members of the second component of an X-extension
of (I, S) to interpret X differently from I, we would find that, in every model of T',
either Yo P(z) or Vo—P(z) holds. Given that the current approach seems correct for
first-order quantifiers, it is (mathematically) natural to define truth for second-order
quantifiers in essentially the same manner. Perhaps we will eventually learn to do
better. In the meantime, it is convenient to have second-order quantifiers available.

As an example, one more version of Lin’s Suitcase domain is displayed in
Figure 5.12. The signature of the language and the types of variables should be
clear from context. All nonlogical constants except Holds are exempt. We abbre-
viate Suce(s) as s'. The axioms for inertia and for the exogeneity of fluents in the
initial situation have a different form than previous examples would suggest. (They

are equivalent to what one would expect, but shorter.)
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Vs(0#£s') AVs, t(s'=t' D s=t) AVp (p(0) AVs(p(s) D p(s')) D Vs(p(s)))
VI(1=L1 # 1=L3) A Up(L1)# Up(L2) A Toggle(L1)# Toggle(L2)
Vf(EI(f=Up(l)) # f=1IsOpen) AVa(3l(a= Toggle(l)) # a= Close)
Vf(CHolds(f,0) vV C—Holds(f,0))

Vs, f ((Holds(f,s) = Holds(f,s')) D CHolds(f,s') v C—~Holds(f,s'"))
Vs, 1 (Occurs(Toggle(l), s) A Holds(Up(l), s) D C—~Holds(Up(l),s'))
Vs, l(Occurs(Toqqle( ),8) A —Holds(Up(l),s) D CHolds(Up(l), s"))

Vs (Occurs(Close, s) > C—Holds(IsOpen, s'))
Vs(Holds(Up(L1),s) A Holds(Up(L2),s) D CHolds(IsOpen, s))

Figure 5.12: Lin’s Suitcase domain in second-order UCL.

5.12 Nonpropositional Causal Theories in UCL

Here we review Lifschitz’s definition of nonpropositional causal theories [Lif97], al-
tering some terminology and notation to follow more closely the presentation of
propositional causal theories in [MT97], which, as we have previously observed, co-
incide with flat propositional UCL theories. We then sketch a proof of the fact that

second-order causal theories are subsumed by second-order UCL.

5.12.1 Lifschitz’s Nonpropositional Causal Theories

Begin with a language of classical logic. As in the previous section, some nonlogical
constants may be designated exempt. In fact, here we must require that only a
finite number of nonlogical constants are not designated exempt. A causal law is an
expression of the form

b= (5.99)

where ¢ and ¢ are formulas of the language. A causal theory is a finite set of
causal laws. (Except for the finiteness requirements, this definition of a causal

theory extends that of [MT97].) In Lifschitz’s account, an interpretation is causally
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explained by a causal theory just in case it is a model of an associated theory of
classical logic.

In what follows, let IV be a list of all nonexempt nonlogical constants. We
say that a list of nonlogical constants or variables is similar to N if it has the
same length as IV and each of its members is of the same type as the corresponding
member of N. We can denote a formula (in which none, some, or all nonexempt
nonlogical constants appear) by ¢(N). Then for any list M that is similar to N, we
can write ¢(M) to denote the formula obtained by simultaneously replacing each
occurrence of each member of N by the corresponding member of M.

Consider a nonpropositional causal theory D with causal laws

6 (N,z') = i (N,2") (5.100)

u(N. k) = (N, ob) (5.101)

where 2 is the list of all free variables for the i-th causal law. Let 7 be a list of new
variables that is similar to N. By D*(7) we denote the formula
A vat (@(N, @) O (T, x")) . (5.102)
I<i<k
An interpretation is causally explained by D if it is a model of

VA (D*(ﬁ) =n= N) (5.103)
where 77 = N stands for the conjunction of the equalities between members of 7@ and
the corresponding members of N.

As shown in [Lif97], this definition of a causally explained interpretation
extends the definition for propositional causal theories [MT97].

5.12.2 Second-Order Causal Theories in UCL

Here we sketch a proof of the following theorem.
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Theorem 5.26 Let D be a (nonpropositional) causal theory in which all variables
are either first or second order, and let T be the UCL theory obtained by replacing
each causal law ¢ = 1 by the universal closure of the UCL formula ¢ D Cip. An

interpretation is causally explained by D if and only if it is causally explained by T'.

Proof sketch. Let us write VaT*(7) to denote the sentence (5.103) whose models
are the interpretations causally explained by D. Extend the language of VaT™*(m)
as follows. For every X € N, add a new nonlogical constant X' of the same type.
Let N7 be the list of these new symbols, which is similar to N. Given an interpreta-
tion I of the original language, an interpretation J of the new language is called an
I-interpretation if .J extends I. (That is, if J has the same universe as I and inter-
prets all nonlogical constants in the original language exactly as I does.) The first
observation is that I |= VaT*(m) iff, for every I-interpretation J, J |= T*(N'). Let
I be the unique I-interpretation such that for every X € N, (X')? = X'. The sen-
tence T*(N7) is an equivalence whose right-hand side is the sentence N’ = N. Since
I is the only I-interpretation that satisfies N’ = N, it follows from the previous
observation that I |= VaT*(7) iff I is the unique I-interpretation satisfying D*(NV7).

The proof can be completed by showing that I is the unique I-interpretation
satisfying D*(N7) iff (I,{I}) is the unique I-model of T. The first step in this is
to show that I|= D*(N") iff (I,{I}) =T, which can be done by showing that,
for any i, I = Va' (qﬁz(ﬁ z%) 2 (N, z’)) iff IV (qﬁl(ﬁ z%) O (N, z‘)) iff

(I,{I}) E Vz* (qﬁl(ﬁ, z') D Cy(N, zl)) It remains only to prove that if I = D*(N7),

then some I-interpretation other than I satisfies D*(N7) iff there is a proper super-
set S of I such that (I,S) |=T.

Now we describe observations and a lemma sufficient to complete this last
step. First, because C occurs only positively in T, we know that if (I, S) |= T, then
for any subset S’ of S such that I € §’, (I,S') |=T. Consequently, one need only

consider I-structures of the form (I, {I,I'}) in order to determine whether (I,{I})
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is the unique I-model of T'. This is convenient because there is a natural one-to-one
correspondence between I-interpretations and I-structures of the form (I,{I,I'})
such that, for every I-interpretation J and corresponding I-structure (I,{I,I'}), for
all X e N, (X)) = X In light of these observations, we can complete the proof
by establishing the following lemma. If (I, {I}) = T, then for any I-interpretation J
and corresponding I-structure (I, {I,I'}), J | D*(N') iff (I,{I,I'}) = T. For the
proof of this lemma, it is convenient to extend the truth definition for UCL to
apply also to structures of the form (I, {I'}), where I’ may differ from I. Under this
extended truth definition, one can show that J |= Va! (¢7 (N, z%) D (N, z’)) if and
only if (I{I'}) |=¥a' (¢:(N,2%) > C(N,2%)). So J |= D*(N') iff (I,{I'}) = T.
To complete the proof of the lemma, notice that (I,{I,I'}) |- T iff both (I, {I}) =T
and (I,{I'}) = T, since C appears at most once, and only positively, in each sentence

of T. O
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Chapter 6

Satisfiability Planning with

Causal Action Theories

6.1 Introduction

In this chapter, we describe an implemented approach to satisfiability planning
[KS92, KS96], which is based on the translation from the “definite” subclass of UCL
theories into classical propositional logic that was described in Section 5.6. This ma-
terial is adapted from [MT98b]. This approach to planning is noteworthy for two
reasons. First, it is based on a formalism for describing action domains that is more
expressive than the STRIPS-based formalisms traditionally used in automated plan-
ning. Secondly, our experiments suggest that the additional expressiveness of causal
theories comes with no performance penalty in satisfiability planning. Specifically,
in this chapter we show that the large blocks world and logistics planning problems
used by Kautz and Selman [KS96] to demonstrate the effectiveness of satisfiabil-
ity planning can be conveniently represented as causal theories and solved in times
comparable to those that they have obtained.

Because UCL theories are more expressive than traditional planning lan-
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guages, we must consider the preliminary question of when a sequence of actions
is a valid plan for achieving a goal G in an initial situation Sp. A valid plan has
two fundamental properties: sufficiency and executability. Roughly speaking, a suf-
ficient plan will always achieve G if carried out starting in Sp, and an executable
plan can always be carried out starting in S;. We will make these ideas precise, in
the setting of UCL action theories.

We must also consider how to find valid plans by the satisfiability method.
Assume that T is a classical propositional theory describing the worlds that are
“causally possible” for an action domain. In satisfiability planning, a plan is obtained
by extracting the sequence of actions from a model of T that satisfies both the initial
state Sy and the goal G. We will call a plan obtained in this way a causally possible
plan, because what we know in this case is simply that there is at least one causally
possible world in which the plan achieves G starting in .Sy. In order for satisfiability
planning to be sound, we must guarantee that the causally possible plans are in fact
valid. Accordingly, we define a subclass of definite UCL theories, called “simple,”
and show that their translations into classical logic are suitable for satisfiability
planning. That is, the plans obtained from the models of their translations are not
only causally possible, but also deterministic, and thus, as we will show, valid.

The main contributions of the chapter are (1) to provide a theoretical foun-
dation for satisfiability planning on the basis of causal action theories, and (2) to
present experimental evidence that the approach is relatively effective. More specif-
ically, we define a family of fundamental properties a plan may have: causally
possible, deterministic, sufficient, executable. We say a plan is valid if and only if
it is sufficient and executable. We prove that every causally possible, deterministic
plan is valid. We then identify a class of “simple” UCL action theories suitable for
satisfiability planning. Simple theories have a concise translation into classical logic,

and, as we prove, the classical models yield valid plans. Simple theories are very
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expressive, thus enabling planning with respect to a wide variety of action domains.
We also provide experimental evidence that this planning approach can be very
effective on classical problems, by solving, comparatively quickly, the large blocks
worlds and logistics planning problems from [KS96].

The chapter is organized as follows. Section 6.2 defines plan validity and
related notions for £ (F,A,T) domain descriptions. Section 6.3 defines the class of
simple £ (F,A,T) domain descriptions, and presents the main theorem showing that
satisfiability planning is sound for them. Section 6.4 describes an implementation
of satisfiability planning with £ (F,A,T) domain descriptions. Section 6.5 reports
experimental results on the large blocks world and logistics planning problems from

[KS96]. Section 6.6 consists of the proof of the main theorem.

6.2 Planning with £ (F,A,T) Domain Descriptions

In this section we define fundamental notions related to planning, in the setting of
L (F,A,T) domain descriptions.

Let D be an £ (F,A,T) domain description. By an initial state description
we mean a set Sp of fluent literals that refer to time 0 such that (1) for every
fluent name F € F, exactly one of Fy, —~Fy belongs to Sp, and (2) So U D |£ False.
Intuitively, an initial state description specifies an initial state that occurs in some
causally possible world, i.e., a causally possible initial state. By a time-specific goal,
we simply mean a fluent formula. Notice that a time-specific goal may refer to more
than one time. By an action history we mean a set P of action literals such that,
for every action name A € A and time ¢ such that ¢+1 € T, exactly one of A;, —A4;
belongs to P. Every interpretation includes exactly one action history.

We will define when an action history P is a valid plan for achieving a time-
specific goal G in an initial state Sy. This definition rests on the more fundamental

notions of sufficiency and executability, which we also define. We define two other
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properties of plans, more naturally associated with satisfiability planning. One is

determinism. The other is discussed next.

6.2.1 Causally Possible Plans

Let D be an £ (F,A,T) domain description, Sy an initial state description, and G a
time-specific goal. An action history P is a causally possible plan for achieving G
in Sy if
SoUPUDR-G.

This condition says that there is, intuitively speaking, some causally possible
world in which G can be achieved by executing P in initial state Sp.

Corollary 5.18 (Section 5.6) yields the following proposition showing that the
satisfiability method yields causally possible plans.

Proposition 6.1 Let D be a definite L (F,A,T) domain description, Sy an initial
state description, and G a time-specific goal. An action history P is included in
a model of lcomp(D)U Sy U {G} if and only if P is a causally possible plan for

achieving G in Sy.

This proposition guarantees that every plan obtained by the satisfiability
method is causally possible. Unfortunately, this is a rather weak guarantee. For
example, in the nondeterministic Coin Toss domain Dy, introduced in Section 5.7.3
(Figure 5.9), a causally possible plan for having the coin lie heads at time 1, after
lying tails at time 0, is simply to toss the coin at time 0. We can make this precise,
as follows. There is a single fluent name Heads, and a single action name Toss.
Assume that there are two times, 0 and 1. Take Sq = {~Headso}, G = Headsy, and
P = {Tossg}. One easily checks that the interpretation Sy U P U {G} is causally
explained by Dy4. Hence, P is a causally possible plan for achieving Heads; in Sp.
On the other hand, P is also a causally possible plan for achieving —Heads; in Sp,

since Sy U P U {~G} is also causally explained by Dy.
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6.2.2 Sufficient Plans

Let D be an £ (F,A,T) domain description, Sy an initial state description, and G a

time-specific goal. An action history P is a sufficient plan for achieving G in Sy if
SoUPUDRKG.

Intuitively, according to this definition, G will be achieved whenever P is
done starting in Sp.

Sufficiency does not say anything about whether P can be executed in Sy, so
it is not surprising that some sufficient plans are not valid. In fact, even plans that
are both causally possible and sufficient can fail to be valid. Here is an example,
again involving coin tossing, along with a second action of truly saying that the
coin lies heads. We have a single fluent name, Heads, two action names, Toss and
TrulySayHeads, and three times, 0, 1 and 2. Again Heads is inertial. The £ (F,A,T)
domain description Dg for this action domain is represented by the schemas of

Figure 5.9, along with one additional domain specific schema, shown below.
TrulySayHeads; O Heads; (6.1)
Take Sy = {~Headso}, G = Headss, and
P = {Tossq, ~ TrulySayHeads,, = Toss1, TrulySayHeads, } .

So the plan is to toss the coin and then truly say heads. There is exactly one
model of Sy U P that is causally explained by Dg—namely, the interpretation
So U P U {Headsy, Heads>}. Therefore, P is a sufficient, causally possible plan for
achieving Headss in Sg. That is, roughly speaking, there is a causally possible
world in which doing P in Sy achieves Headss, and, moreover, in any causally pos-
sible world in which P is done in Sy, Headss is achieved. Nonetheless, P is not a
valid plan. Intuitively, the problem is that P is not executable in So—it could be
that the coin comes up tails after the initial toss, in which case the agent cannot

truly say heads at time 1.
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6.2.3 Executable Plans

We next define when a plan is executable in an initial state. Unfortunately, this
condition is less convenient to state and check than the previous ones.

Let D be an £ (F,A,T) domain description. For any time name ¢t € T, let
Tjt = {s € T:s <t}. Given a set X of L(F,A,T) literals, and a time name ¢, we
write X|¢ to denote the set of all literals in X that belong to the restricted language
L(F,AT|t).

Let P be an action history and Sy an initial state description. We specify
when Pt is executable in Sy by the following recursive definition. P|0 is ezecutable
in Sg. (Note that P|0 = (.) For all times t+1 € T, P|t+1 is ezecutable in Sy if the
following two conditions hold: (i) P|t is executable in Sy, and (ii) for every causally
explained interpretation I that satisfies Sy U P|t, there is a model of I|t U P|t+1
that is causally explained. Finally, we say that P itself is ezecutable in Sy if, for
every time t € T, P|t is executable in Sp.

So a plan P is executable if all of its prefixes are. Recall that a prefix P|¢
completely specifies all action occurrences before time ¢, and that P|t+1 specifies
in addition the action occurrences at time ¢. Thus P|t+1 is executable, roughly
speaking, if P|t is and, no matter the state of the world after executing P|t, the
actions specified by P for time ¢ can then be performed.

For example, consider more closely why the plan P from the last example
is not executable in Sy. Recall that initially the coin lies tails. The prefix P|1 is
executable in Sy. That is, it is possible to toss and not truly say heads at time 0.
But prefix P|2 is not executable in Sp. Intuitively, it may not be possible to truly
say heads at time 1. More precisely, notice that the interpretation I obtained
from Sp U P|1 by adding —Headsy,—Toss1, - TrulySayHeads,, 7 Headsy is causally
explained by Dg, yet no model of I|1 U P|2 is causally explained. This is because

no causally explained interpretation satisfies both —Heads; and TrulySayHeads,.
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6.2.4 Valid Plans

Let D be an £ (F,A,T) domain description, Sy an initial state description, and G a
time-specific goal. An action history P is a valid plan for achieving G in Sy if it is
both sufficient and executable.

The next proposition shows that valid plans are causally possible.

Lemma 6.2 Let D be an L(F,AT) domain description and Sy an initial state
description. If an action history P is ezecutable in Sy, then there is model of Sy U P

that is causally explained by D.

Proof Sketch. The definition of the executability of P in Sy provides a basis for
constructing a causally explained interpretation I such that, for all times ¢t € T,

I satisfies Sy U P|t. O

Proposition 6.3 Let D be an L (F,A,T) domain description, Sy an initial state
description, and G a time-specific goal. If P is a valid plan for achieving G in Sy,

then it is a causally possible plan for achieving G in Sp.

Proof. By Lemma 6.2, since P is executable in Sy, some model I of SqU P is
causally explained. Since P is sufficient for G in Sy, So U P U D |~ G. Hence, I sat-
isfies G, which shows that Sy U P U D |% —-G. O

6.2.5 Deterministic Plans

We will define one more class of plans, the deterministic plans. We will show that
if a plan is causally possible and deterministic, it is valid. This is a key result in
our approach to satisfiability planning. In Section 6.3 we will introduce the class of
simple £ (F,A,T) domain descriptions, and show that for them all causally possible

plans are deterministic, and thus valid.
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Let D be an £ (F,A,T) domain description, P an action history, and Sy an
initial state description. For every time ¢, P|t is deterministic in Sy if for all fluent
names F and times s <t, SgUP|tUD |~ Fy or Sy UP|tUD |~—F,. We say that
P is deterministic in Sy if for every time ¢t € T, P|t is deterministic in Sp.

Thus a plan P is deterministic if all of its prefixes are. Recall that a prefix
Pjt is a complete specification of action occurrences for all times before ¢t. Prefix
Pjt is deterministic if, roughly speaking, performance of the actions in P|t starting
in Sy would completely determine the values of all fluents up to time ¢.

This definition yields a strong lemma.

Lemma 6.4 Let D be an L (F,AT) domain description and Sy an initial state
description. If an action history P is deterministic in Sp, then at most one model

of So U P is causally explained by D.

Proof. Let I and I' be causally explained models of Sq U P. Consider any fluent
atom Fj. Since P is deterministic in Sy, so is P|t. Since both I and I’ satisfy

Sp U P|t, it follows that they agree on F;. Hence I = I'. O

The converse of Lemma 6.4 does not hold. P may fail to be deterministic
in Sy even when there is at most one causally explained model of Sy U P. We il-
lustrate this with another coin tossing example. Take a single fluent name, Heads,
and three action names, Toss, TrulySayHeads and TrulySayTails. Identify time
with the natural numbers. Once more we designate Heads inertial. The domain
description Dy is represented by the schemas in Figure 5.9 together with the addi-
tional domain specific schema (6.1) from Dg, and two more domain specific schemas,

shown below.

TrulySayTails; O —~Heads; (6.2)
TrulySayHeads; # TrulySayTails, (6.3)
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Due to (6.3), exactly one non-toss action occurs at every time in every causally
possible world. Moreover, by (6.1) and (6.2), whenever truly say heads occurs, the
coin lies heads, and whenever truly say tails occurs, the coin lies tails. Thus, each
causally possible world is completely determined by its initial state and the actions
that are performed in it. For instance, let So = {—Headso} and consider the plan P
in which the agent initially tosses and concurrently truly says tails, and forever after
truly says heads and does not toss. Although exactly one model of Sy U P is causally
explained, P is not deterministic. This is because P|1 is not deterministic. That is,
tossing and concurrently truly saying tails at time 0 simply does not determine the

state of the coin at time 1.

Proposition 6.5 Let D be an L (F,A,T) domain description, Sy an initial state
description, and G a time-specific goal. If P is a causally possible plan for achiev-
ing G in S and P is also deterministic in Sg, then P is a valid plan for achieving G

in Sg.

Proof. Since P is a causally possible plan for achieving G in Sy, some model I'*
of Sp UPU{G} is causally explained. By Lemma 6.4, no other model of Sy U P
is causally explained. Since I* satisfies G, P is sufficient for achieving G in Sp.
To show that P is executable in Sy, we prove by induction that for all times ¢,
PJt is executable in Sg. The base case is trivial. For the inductive step, we show
that P|t+1 is executable in Sp. By the inductive hypothesis, P|t is executable
in Sp. Thus we can complete the proof as follows. Assume that I is a causally
explained model of Sy U P|t. Notice that both I and I* satisfy So U P|t. Since P is
deterministic in Sp, so is P|t, and it follows that I*|t = I|t. Since I* also satisfies

P|t+1, we're done. O

Of course the converse of Proposition 6.5 does not hold, since valid plans

need not be deterministic.
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6.3 Satisfiability Planning with £ (F,AT) Domain De-

scriptions

In this section, we consider how to restrict definite £ (F,A,T) domain descriptions so
that the causally possible plans are deterministic and thus, by Proposition 6.5, valid.

To this end, we introduce the class of “simple” £ (F,A,T) domain descriptions.

6.3.1 Simple Domain Descriptions

A definite £ (F,A,T) domain description D is simple if it has the following three
(yet to be defined) properties: it is inertially unambiguous, adequately acyclic, and

respects the flow of time.

Inertially Unambiguous

Let F* denote the set of all fluent atoms that refer to nonzero times. Formulas in D
of the form ¢ A L D CL, where L € Ftor L € F*, and ¢ is any £ (F,A,T) formula,
will be called inertia-like laws.

Note that this definition covers not only UCL formulas obtained from the
standard inertia schema (5.32) but also, for instance, formulas such as those obtained
from schemas (5.42)—(5.43) in the Pendulum domain D3, which describe a dynamic
course of nature. This definition also covers formulas such as those obtained from
schemas (5.34)—-(5.35) in the coin-tossing domains. Although these UCL formulas
express the direct nondeterministic effect of the coin-tossing action, they have a
form similar to that of inertia laws.

D is called inertially unambiguous if it includes no pair of inertia-like laws

A Fyyy D CFyy (6.4)

Y AFy D C-Fy (6.5)
such that the formula ¢ A % is satisfiable.
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This exclusivity condition on ¢ and 9 is the only non-syntactic component of
the definition of a simple domain description. Notice that the formulas represented
by the schema (5.32) for inertia and schemas (5.42) (5.43) in the Pendulum domain

satisfy this condition.

Adequately Acyclic

The proper atom dependency graph of D is the directed graph defined as follows.
Its nodes are the atoms of the language of D. Let D' be the UCL theory obtained
from D by (i) deleting all formulas whose consequent is CFalse, and (ii) replacing
each inertia-like law ¢ A L 5 CL with the UCL formula ¢ D CL. For each formula
in D', there is an edge from the atom that occurs in the consequent to each atom
that occurs in the antecedent. We use the proper atom dependency graph to define
an ordering on F* as follows. For all A, A’ € F+ A <p A’ if there is a nonempty
path from A’ to A. (So the edges in the graph point downward in the ordering.)
We say that D is adequately acyclic if the ordering <p on F7 is well-founded.
Intuitively, this condition restricts cyclic causal dependencies between fluents,

while allowing cycles that arise due to formulas related to inertia.

Respects the Flow of Time

Here we provide a simpler version (specialized to definite £ (F,A,T) doman descrip-
tions) of a definition first presented in Section 5.7. We say that D respects the flow

of time if every formula in D satisfies the following two conditions.

e If the consequent refers to a time ¢, then the antecedent does not refer to a

time later than t.

o If the consequent is a fluent literal that refers to time ¢, then every action

atom in the antecedent refers to a time earlier than ¢.
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Notice that the description D3 of the Suitcase domain (Figure 5.8), as well as
the descriptions D5 of the Dominos domain (Figure 5.10) and Dg of the Pendulum
domain (Figure 5.11) are all simple domain descriptions.! The coin-tossing domains

Dy, Dg and Dy are not, because they are not inertially unambiguous.?

6.3.2 Simple Domain Descriptions Yield Valid Plans

Here is the main technical result related to simple domain descriptions. Its proof is

postponed to Section 6.6.

Proposition 6.6 Let D be a simple L (F,A,T) domain description, Sy an initial
state description, and G a time-specific goal. If P is a causally possible plan for

achieving G in Sy, then P is a valid plan for achieving G in Sy.

From this result, along with Propositions 6.1 and 6.3, we obtain the following
characterization of satisfiability planning with simple £ (F,A,T) domain descrip-

tions.

Theorem 6.7 Let D be a simple L (F,A,T) domain description, Sy an initial state
description, and G a time-specific goal. An action history P is included in a model
of

lcomp(D) U Sy U {G}

if and only if P is a valid plan for achieving G in Sy.

For effective satisfiability planning, we must of course also require that the

simple £ (F,A,T) domain description be finite, with F, A, and T finite as well.

More precisely, as noted previously, Ds is easily seen to be S5-equivalent to a simple domain
description.

2 Again, we should note that although Dg and Dy are not definite, they are clearly S5-equivalent
to definite theories.
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% File: pendulum
:— declare_types
type (fluent, [right]),
type(action, [holdl),
type(time, [0..4]),
type (atom, [h(fluent,time),o(action,time)]).
:— declare_variables
var(A,action),
var(F,fluent),
var ([T,T1] ,time) .
% domain specific schemas
o(hold,T) & h(right,T) => h(right,T1) where T1 is T+1.
o(hold,T) & -h(right,T) => -h(right,T1) where T1 is T+1.
-h(right,T) & h(right,T1) => h(right,T1) where T1 is T+1.
h(right,T) & -h(right,T1) => -h(right,T1) where T1 is T+1.
% standard schemas
o(A,T) => o(A,T). -0(A,T) => -o(A,T).
h(F,0) => h(F,0). -h(F,0) => -h(F,0).

Figure 6.1: Example input file for the planning system: the Pendulum domain.

6.4 Satisfiability Planning Program

Given a finite signature and a set of schemas representing a finite, definite £ (F,A,T)
domain description, it is straightforward to instantiate the schemas to obtain the
represented (ground) £ (F,A,T) domain description, form its literal completion,
and convert it to clausal form. Norm McCain and I (mostly Norm) wrote a Prolog
program to carry out these tasks. It includes a procedure named load_file/1,
which reads in a file such as the one displayed in Figure 6.1 for the Pendulum
domain (compare Figure 5.11), and writes out in clausal form the literal completion
of the UCL theory. In the input syntax, fluent atoms f; are represented as h(f,t),
and action atoms a; are represented as o(a,t). The symbols h and o are read as
“holds” and “occurs,” respectively. Also, we write ¢ = L to stand for the UCL
formula ¢ D CL.
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After load_file/1 has processed the domain description, planning problems
are posed by calling the procedure plan/0, as shown in Figure 2. The procedure
plan/0 reads in an initial state description Sy and a time-specific goal G, converts
them to clausal form, and adds them to the clause set obtained from the domain
description.? The resulting clause set is simplified, as in [KS96]?, and submitted to
the satisfiablity checker rel_sat [BS97]. If lcomp(D) U Sp U {G} is satisfiable, rel_sat
finds a satisfying interpretation and plan/0 displays it, answering “yes.” The plan P
can be read off from this display. By Theorem 6.7, if D is simple, P is guaranteed
to be a valid plan for achieving the goal G starting in initial state Sy. If rel_sat fails
to find a satisfying interpretation, plan/0 answers “no.” Since the solver rel_sat is
systematic, we know in this case that G cannot be achieved starting in Sg. In either

case, the time spent in the solver rel_sat is reported.

6.5 Large Planning Problems

Here we report on the performance of our approach when applied to the large blocks
world and logistics planning problems from [KS96]. As far as we know, the results
obtained there compare favorably with the best current general-purpose planning

systems. We obtain comparable results.

6.5.1 Blocks World Problems

The large blocks world planning problems from [KS96] are characterized in Fig-
ure 6.3. To provide a rough idea of the quality of our experimental results, we note
that Kautz and Selman report for the planner GraphPlan [BF95] a solution time of

over 7 hours for Blocks World B (on an SGI Challenge). By comparison, we solve

3 As illustrated in Figure 6.2, the initial state description Sy can be replaced by a set T of formulas
referring only to time 0 such that T'U D |~ ¢, where ¢ is the conjunction of the members of Sy, and
yet T'U D t False.

“Steps: subsumption, unit propogation, subsumption.
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| ?- load_file(pendulum).

% 9 atoms, 28 rules, 16 clauses loaded.
yes

| 7- plan.

enter facts and goal (then ctrl-d)
|+ h(right,0).

|: -h(right,2) & h(right,4).

| :

0. right

Actions: hold

1. right

Actions:

2. -right

Actions: hold

3. -right

Actions:

4. right

Elapsed Time (cpu sec): 0.01

yes

Figure 6.2: Planning session with Pendulum domain.

Blocks World A. 9 blocks. Requires 6 moves.
Initial state: 2/1/0 4/3 8/7/6/5
Goal state: 4/0 7/8/3 1/2/6/5
Blocks World B. 11 blocks. Requires 9 moves.
Initial state: 2/1/0 10/9/4/3 8/7/6/5
Goal state: 0/4/9 7/8/3 1/2/10/6/5
Blocks World C. 15 blocks. Requires 14 moves.
Initial state: 2/1/0/11/12 10/9/4/3/13/14 8/7/6/5
Goal state: 13/0/4/9  14/12/7/8/3  11/1/2/10/6/5
Blocks World D. 19 blocks. Requires 18 moves.
Initial state: 0/11/12 10/9/4/3/13/14 8/7/6/5 18/17/16/15/2/1
Goal state: 16/17/18/13/0/4/9  14/12/7/8/3 11/1/2/15/10/6/5

Figure 6.3: Characterization of large blocks world problems from [KS96].
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:- declare_types

=

B

=

type(block, [0..18]1),
type(location, [block,table]),
type(fluent, [on(block,location)]),
type(action, [pickup(block),putat(location)]),
type (inaction, [nopickup,noputat]),
type(time, [0..18]),
type(atom, [o(action,time) ,o(inaction,time) ,h(fluent,time)]).
- declare_variables
var([B,B1],block),
var([L,L1],location),
var (F,fluent),
var (A,action),
var(X,inaction),
var ([T,T1],time) .
state constraints: the first two allow concise input of initial state and goal
h(on(B,L),0) & h(on(B,L1),0) => false where B \== L, B \== L1, L @< L1.
h(on(B,L),18) & h(on(B,L1),18) => false where B \== L, B \== L1, L @< L1.
h(on(B,B),T) => false.
direct effects of actions
o(pickup(B),T) & o(putat(L),T) => h(on(B,L),T1) where T1 is T+1, B \== L.
h(on(B,L),T) & o(pickup(B),T) => -h(on(B,L),T1) where T1 is T+1, B \== L.
explicit action preconditions
o(pickup(B),T) & h(on(B1,B),T) => false where B =\= B1.
o(putat(B),T) & h(on(B1,B),T) => false where B =\= Bl.
o(pickup(B),T) & o(putat(B),T) => false.
o(pickup(B),T) & o(putat(table),T) & h(on(B,table),T) => false.
at most one move action at a time
o(pickup(B),T) & o(pickup(B1),T) => false where B @< B1.
o(putat(L),T) & o(putat(L1),T) => false where L @< Li.
o(pickup(B),T) => -o(nopickup,T).
o(putat(L),T) => -o(noputat,T).
o(nopickup,T) & -o(noputat,T) => false.
—o(nopickup,T) & o(noputat,T) => false.
standard schemas
h(F,0) => h(F,0). -h(F,0) => -h(F,0).
h(F,T) & h(F,T1) => h(F,T1) where T1 is T+1.
-h(F,T) & -h(F,T1) => -h(F,T1) where T1 is T+1.
o(A,T) => o(A,T). -o(A,T) => -o(A,T). o(X,T) => o(X,T).

Figure 6.4: Input file for Blocks World D.
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Blocks World B in under a second (on a slower Sparcstation 5).

Our input file representing Blocks World D is displayed in Figure 6.4. We
adapt the “operator splitting” approach used by Kautz and Selman. Instead of
axiomatizing an action Move(b,!',1), they axiomatize three “component” actions,
which we can write: Pickup(b), Takefrom(l'), Putat(l). Their axioms are based on
Schubert’s “explanation closure” [Sch90], augmented with state constraints. In com-
parison, we introduce names for only two components of the move action: Pickup(b),
Putat(l). (When moved, a block is taken from where it currently is.) We also do
not introduce a fluent Clear(b). Kautz and Selman include in their description a
number of state constraints that we omit.® Preliminary experiments indicated that
additional state constraints in our blocks world descriptions increase solution times
on larger problems.

One can easily verify that the domain description represented in Figure 6.4
is simple. The main complication, compared to our descriptions of the Dominos and
Pendulum domains involves action atoms, which are largely irrelevant in determining
whether a description is simple. Here we include a family of action atoms that are
“true by default” rather than exogenous. Thus, for example, the action NoPickup
is assumed to occur, roughly speaking, and we describe the conditions under which
it is caused not to occur whenever PickUp(B) occurs, for some block B. These
auxiliary “inaction” atoms are used to stipulate that a pickup action occurs if and

only if a putat action does.

5Their state constraints still do not rule out all “physically impossible” states. This is in accor-
dance with the usnal practice in describing action domains for planning. Roughly speaking, one
need only say enough to guarantee that no “illegal” state can be reached from a legal one. Intu-
itively, this is adequate because planning problems are posed in part by specifying a legal initial
state.
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6.5.2 Logisitics Planning Problems

The logistics domain is due to Veloso [Vel92]. Kautz and Selman studied three large
logistics planning problems. Our input file for the largest of these problems appears
in Figure 6.5.

The logistics domain is more complex than the blocks world domain. It
includes several kinds of actions that can occur concurrently. Our description of
the logistics domain does not use operator splitting (which is not generally appli-
cable to concurrent actions). Preliminary experiments indicated that, in constrast
to the blocks world, logistics domain descriptions should include a variety of state
constraints in order to get consistently good performance. We note that the lo-
gistics domain description used in our experiments is simple, and thus suitable for

satisfiablity planning.

6.5.3 Experimental Results

In our experimental results on these planning problems, we report the size of the
clausal theory obtained from the literal completion of the causal action theory—in
terms of numbers of atoms, clauses and literal occurrences, after simplification and
time spent in the solver, following the reporting methodology of [KS96]. Solution
times are averaged over 20 runs of the solver rel_sat on a Sparcstation 5, using
different random number seeds. Table 6.1 displays statistics for finding plans by our
method.

For the sake of comparison, we performed the corresponding experiments on
the problem descriptions from [KS96], again using the solver rel_sat on a Sparcsta-

tion 5.5 The results appear in Table 6.2. Bayardo and Schrag [1997] showed that,

SKautz and Selman considered two kinds of descriptions of the logistics domains (both in classical
propositional logic): one based on intuitions underlying the planner Graphplan [BF95]; the other
obtained by first describing the domain as in explanation closure, then eliminating all action atoms.
In this second case, a satisfying interpretation does not include an action history. Rather it provides,
as it were, a refinement of the planning problem. That is, the satisfying interpretation can be
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:- declare_types type(package,[0..6]), type(city,[0..3]), type(airplame,[0..1]),
type(cityloc, [p,al), type(packageloc,[inPlane(airplane),inVan(city),
unloaded(city,cityLoc)]), type(inertialFluent, [planeloc(airplane,city),
vanLoc(city,cityLoc),at (package,packageLoc)]),
type (defaultFalseFluent, [nowhere (airplane) ,misplaced(package)]), Table 6.1: Satisfiability Planning with Causal Action Theories. Sizes are for clausal
type(fluent, [inertialFluent,defaultFalseFluent]), theories obtained, via literal completion, from causal action theories (after simplifi-

type(action, [f1y (airplane,city) ,drive(city,cityloc), cation). Time in seconds using the satisfiability solver rel_sat on a Sparcstation 5.
loadPlane (package,airplane,city), unloadPlane(package,airplane,city),

loadVan(package,city,citylLoc), unloadVan(package,city,cityloc)]),

type(time, [0..13]), type(atom, [o(action,time),h(fluent,time)]). Instance || Atoms | Clauses | Literals | Time ‘
:— declare_variables var([T,Ti],time), var(If,inertialFluent), BW A 383 2412 5084 0.13
var (Dff ,defaultFalseFluent), var(E,action), var(P,package), var([C,C1],city), BW B 934 6241 15903 0.81
var ([PL,PL1],packageLoc), var([L,L1],cityLoc), var([A,Al1],airplane).
h(planeLoc(A,C),T) & h(planeLoc(A,C1),T) => false where C < C1. BW C 2678 18868 48704 | 35.2
h(nowhere(A),T) => false. -h(vanLoc(C,a),T) & -h(vanLoc(C,p),T) => false. BW D 5745 41726 108267 | 620.0
h(vanLoc(C,L),T) & h(vanLoc(C,L1),T) => false where L @< L1. LOG A 1643 9205 20712 37
h(at(P,PL),T) & h(at(P,PL1),T) => false where PL @< PL1.
h(misplaced(P),T) => false. h(planeLoc(A,C),T) => -h(nowhere(A),T). LOG B 1760 10746 24134 8.4
h(at(P,PL),T) => -h(misplaced(P),T). h(I£,0) => h(I£,0). LOG C 2300 | 14450 | 32346 | 25.0

-h(If,0) => -h(If,0). h(If,T) & h(If,T1) => h(If,T1) where T1 is T+1.

~-h(If,T) & -h(If,T1) => -h(If,T1) where T1 is T+1. h(Dff,T) => h(Dff,T).

o(£f1ly(A,C),T) => h(planeLoc(A,C),T1) where T1 is T+1.

o(£f1y(A,C),T) => -h(planeLoc(A,C1),T1) where T1 is T+1, C =\= C1.

o(£f1y(A,C),T) & h(planeLoc(A,C),T) => false.

o(drive(C,L),T) => h(vanLoc(C,L),T1) where T1 is T+1.

o(drive(C,L),T) => -h(vanLoc(C,L1),T1) where T1 is T+1, L \== L1.

o(drive(C,L),T) & h(vanLoc(C,L),T) => false.

o(loadPlane(P,A,C),T) => h(at(P,inPlane(A)),T1) where T1 is T+1.

o(loadPlane(P,A,C),T) => -h(at(P,unloaded(C,a)),T1) where T1 is T+1i.

o(loadPlane(P,A,C),T) & -h(planeLoc(A,C),T) => false.

o(loadPlane (P,A,C),T) & -h(at(P,unloaded(C,a)),T) => false. Table 6.2: Kautz and Selman Problem Descriptions. Here we establish the
o(loadVan(P,C,L),T) => h(at(P,inVan(C)),T1) where T1 is T+1. benchmarks—the results for the clausal theories used in [KS96], with solution times
o(loadVan(P,C,L),T) => -h(at(P,unloaded(C,L)),T1) where T1 is T+1.
o(loadVan(P,C,L),T) & -h(vanLoc(C,L),T) => false.

obtained in the same manner as in Table 6.1.

o(loadVan(P,C,L),T) & -h(at(P,unloaded(C,L)),T) => false. . Tnstance || Atoms | Clauses | Literals | Time
o(unloadPlane(P,A,C),T) => h(at(P,unloaded(C,a)),T1) where T1 is T+1.

o(unloadPlane(P,A,C),T) => -h(at(P,inPlane(A)),T1) where T1 is T+1i. BW A 459 4675 10809 0.20
o(unloadPlane(P,A,C),T) & -h(planeLoc(A,C),T) => false. BW B 1087 13772 31767 1.4
o(unloadPlane(P,A,C),T) & -h(at(P,inPlane(A)),T) => false. ) BW C 3016 50457 114314 66.3
o(unloadVan(P,C,L),T) => h(at(P,unloaded(C,L)),T1) where T1 is T+1.

o(unloadVan(P,C,L),T) => -h(at(P,inVan(C)),T1) where T1 is T+1. BW D 6325 | 131973 | 294118 | 1052.0
o(unloadVan(P,C,L),T) & -h(vanLoc(C,L),T) => false. LOG A 1782 20895 42497 2.5
Loc b | aius | a5 | s | o
o y s s o oa ane SA, N =. alse.

0(£1y(A,C),T) & o(unloadPlane(P,A,C1),T) => false. LOG C 2809 | 48920 | 99090 32.3

o(drive(C,L),T) & o(loadVan(P,C,L1),T) => false.
o(drive(C,L),T) & o(unloadVan(P,C,L1),T) => false.
o(E,T) => o(E,T). -o(E,T) => -o(E,T).

Figure 6.5: Input file for Logistics C.
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Table 6.3: Proving Plans Optimal: Satisfiability Planning with Causal Action The-
ories. Here, in each case, the domain description includes one time step less than
needed for a solution. Time reported is number of seconds required for solver rel_sat
to determine unsatisfiability.

Instance || Atoms | Clauses | Literals | Time
BW A 281 1741 4211 | 0.04
BW B 788 5246 13276 | 0.43
BW C 2420 17033 43865 | 21.6
BW D 5343 38795 | 100544 | 374.2

LOG A 1354 7378 16595 2.2
LOG B 1498 8908 20026 | 31.3
LOG C 1946 11924 26710 | 54.8

for the clausal theories of Kautz and Selman that we consider, their solver rel_sat
outperforms both of the solvers—one systematic, one stochastic—used in [KSQﬁ}.7
Notice that in all cases except Logistics A our solution times are better.

Finally, in order to show that a plan is optimal (in the number of time steps),
it is necessary to show that no shorter plan exists. For this purpose it is essential
that a systematic solver be used. In Table 6.3, we report on the performance of
our approach for this task, again using the solver rel_sat. For each problem, we
report the time to fail to find a plan one step shorter than the optimal plan. Notice
that, for these planning problems,; the time needed to fail is comparable to the time

needed to succeed.

6.6 Proof of Main Proposition

We begin with the main lemma.

understood as an initial state and goal which together specify completely the values of all fluent
atoms. In our reported results, we refer to the first kind of description. We note in comparison
that the solver rel_sat takes longer for each instance of the second kind of description.

7On the other hand, for their description of the logistics domain in which the action names are
eliminated, their stochastic solver (properly tuned) is faster than rel_sat.
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Lemma 6.8 Let D be a definite L (F,AT) domain description that is inertially
unambiguous and adequately acyclic. Let P be an action history and Sy an initial

state description. At most one model of Sy U P is causally explained by D.

Proof. We proceed by the method of contradiction. Suppose that two distinct
causally explained interpretations I and I' satisfy SoU P. Let X be the set of
atoms on which I and I' disagree. Notice that X is a nonempty subset of F™,
since I and I' differ, and yet agree on all atoms not in F*. Let X’ consist of
the members of X that are minimal (among members of X) with respect to the
ordering <p. Notice that X’ is nonempty, since X is nonempty and <p restricted
to X is well-founded. Finally, let Fyy; be a member of X’ whose time subscript is
minimal (among members of X'). Without loss of generality, assume that I = Fyy
and I' = —Fyy. Since I = D! and I' = DT there must be a pair of formulas
¢ D CFyq and ¢ D C—Fyyy in D such that I |= ¢ but I' i~ ¢, and I [~ ¢ but I' |= 4.
It follows that I and I' differ on at least one atom A that occurs in ¢. Thus, A € X
and also A <p Fj1. Consequently, by the minimality of Fyq, A is Fyy. Since D is
adequately acyclic, ¢ D CFjq must be of the form (6.4), and so can be written
¢' N Fyq D CFuy. Since I |= ¢, I = ¢'. A similar argument shows that ¢ D C—Fyy
has form (6.5), and can be written ¢/ A =Fyy D C—Fyy, with I' |=¢'. Because D
is inertially unambiguous, I’ cannot satisfy both ¢' and ¢'. Hence I' [~ ¢'. (We
complete the proof by showing that I’ = ¢’.) We have already shown that the only
atom in ¢ on which I and I' differ is Fyy, which is to say that the only atom in
¢' A Fyy on which T and I' differ is Fiy;. Since D is adequately acylic, we know
Fyyy does not occur in ¢'. So I and I' agree on all atoms in ¢', and since I = ¢/,

I' = ¢' as well. Contradiction. O

Let D be an L (F,A,T) domain description. For any ¢t € T, let D|t be the
UCL theory in the restricted language £ (F,A,T|t) consisting of all formulas from D

in that language.
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Observe that if D is a simple £ (F,A,T) domain description, then, for every
time ¢, D[t is a simple £ (F, A, T|t) domain description.

Lemma 6.9 Let D be a simple £ (F,A,T) domain description, Sy an initial state
description and P an action history. For allt € T, if I is a model of So U P|t that is
causally ezplained by D, then I|t is the unique model of So U Pt causally ezplained
by Dit.

Proof. Clearly I|t is a model of Sp U P|t. Given that D respects the flow of time,
one easily verifies that (D[t)! ! = DI[t. Since I — DI, I|t = DI|t. So It — (D|t)",
and we’ve shown that I|t is a model of Sy U P|t that is causally explained by D|t.
We know that D|t is simple since D is, so we can conclude by Lemma 6.8 that I|t is

unique. O

Lemma 6.10 Let D be a simple L (F,A,T) domain description, Sy an initial state
description, and P an action history. If D has a causally explained interpretation

satisfying So U P, then P is deterministic in Sy.

Proof. We need to show that, for all times ¢t € T, P|t is deterministic in Sy. Proof
is by induction on ¢. The base case is trivial. By the inductive hypothesis, P|t is
deterministic in Sp. Assume that I and I" are models of Sg U P|t+1 that are causally
explained by D. We need to show that I|t+1 = I'|t+1, which follows easily from

Lemma 6.9. o

Proposition 6.5 and Lemma, 6.10 yield Proposition 6.6.
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Chapter 7

Concluding Remarks

This dissertation belongs to a recent line of work in reasoning about action in which
causal notions are represented more explicitly than they typically have been in
the past. It is important that in this dissertation we do not attempt to formalize
assertions of the form “¢ causes 9", but instead focus on causal knowledge of a
simpler kind: knowledge of the conditions under which facts are caused.

In the first part of the dissertation, we use a simple, well-understood math-
ematical tool inference rules to express “static causal laws” of the form “if ¢ is
caused, then ¢ is also caused.” In Section 3.3 we give a definition of “possible next
states” based on this idea, and in Section 3.4 we use that definition as the basis for a
high-level action language AC, which incorporates it in a situation calculus setting.

In Section 3.5, we embed AC in the rule-based nonmonotonic formalism of
default logic. The correctness proof for this embedding, presented in Chapter 4, is
rather elaborate, and uses so-called Splitting Theorems for default logic, introduced
for that purpose. From the embedding in default logic, we derive in Section 3.6 a
similar embedding of AC in logic programming.

The definition of possible next states on which AC is based reflects a new,

causal understanding of commonsense inertia. The embedding of AC in default logic
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shows how to express this causal understanding of inertia by means of default rules
of a remarkably simple form. These discoveries contributed to the development of
the more satisfactory, general approach described in the second part of dissertation.

The second part of the dissertation discusses UCL, a modal nonmonotonic
logic designed specifically for representing the conditions under which facts are
caused. On the basis of this mathematically simple form of causal knowledge, UCL
characterizes the worlds that are causally possible. The logic takes its name from
the principle of universal causation, the simplifying assumption that underlies the
fixpoint definition of a causally explained interpretation.

In applications of UCL to reasoning about action, discussed primarily in Sec-
tions 5.5, 5.7, and 5.9, universal causation is easily relaxed by means of standard
axioms. Also, as introduced in Section 5.11, one can declare a subset of the nonlog-
ical constants exempt from universal causation, as is done in the formalization of
the Suitcase domain in second-order UCL (Figure 5.12).

Universal causation plays a key role in the simple, robust solution to the
frame problem in Section 5.7. In fact, as illustrated by the pendulum example,
essentially the same approach can be used to describe inertia in worlds in which,
intuitively speaking, things change (in a certain way) unless they are made not to.
For another example of this, imagine a timer that can be reset to zero, but never
turned off. One might (partially) describe such a state of affairs in second-order

UCL as follows.

CTimer(0)=0 (7.1)
Vs,n(Timer(s)=n A Timer(s')=n' D CTimer(s')=n') (7.2)
Vs(ResetTimer(s) D CTimer(s')=0) (7.3)

(Assume here that the natural numbers are axiomatized as in Figure 5.12, that s’

and n’ stand for succ(s) and succ(n), and that ResetTimer is declared exempt.)
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In Sections 5.4, 5.8, and 5.10, we relate UCL to Reiter’s default logic (and,
more generally, disjunctive default logic), circumscription, and autoepistemic logic.
In Section 5.6, we observe that UCL extends the causal theories formalism of McCain
and Turner [MT97], and, in doing so, provides a more adequate semantic account
of it. We also introduce the computationally useful class of definite UCL theories.
In Section 5.12, we show that (second-order) UCL extends the second-order subset
of the nonpropositional causal theories of Lifschitz [Lif97].

We show that UCL can express a variety of causal theories of action and
change previously proposed in the literature, including the action language AC from
the first part of the dissertation, as well as the circumscriptive action theories of
Lin [Lin95, Lin96]. We also establish, by means of Theorems 5.16 and 5.23, the
remarkable similarity between the action theories of Lin and the causal theories of
action of [MT97]. Moreover, in light of this, Theorem 5.10 and Proposition 5.25
show how such causal action theories can also be expressed in default logic—as
“prerequisite-free” default theories—and in autoepistemic logic.

The third part of the dissertation provides a theoretical foundation for satis-
fiability planning with UCL theories. In our approach, action domain descriptions
expressed as UCL theories are translated into classical propositional logic. The clas-
sical models of the translation correspond exactly to the “causally possible” world
histories according to the causal theory. Following Kautz and Selman, we then find
plans by extracting them from models obtained by satisfiability checking.

In order to establish a basis upon which to judge the soundness of this ap-
proach to planning, we define a family of fundamental properties a plan may have:
causally possible, deterministic, sufficient, executable. A plan is valid if and only
if it is sufficient and executable. We observe that the plans obtained by the satis-
fiability method may, in general, fail to be sufficient or executable. They are only

guaranteed to be causally possible. We show though that any causally possible plan
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that is deterministic is also valid.

We identify a class of “simple” domain descriptions for which the satisfiability
method is applicable. Simple domain descriptions have a concise translation into
classical logic. Moreover, we show that for such domains, the causally possible plans
are deterministic and thus valid.

We describe an implemented satisfiability planning system based on these
ideas, and provide experimental evidence that the approach can be computationally
effective, by solving hard classical planning instances from [KS96] comparatively
quickly.

These developments are particularly noteworthy because of the expressive
potential of simple UCL theories, as illustrated by the Dominos and Pendulum
domains. Thus, future applications of satisfiability planning with causal theories
may address extensions to classical planning involving such features as concurrent
actions and dynamic worlds.

There remains a great deal of work to do with UCL. We may attempt to
automate more expressive subsets of UCL. It would also be interesting to carry out
more systematic comparisons with other approaches to planning. This could involve
more exhaustive testing of classical planning examples. It could also take the form of
an investigation of how well UCL handles various extensions to classical planning,
such as concurrent actions. It would also be interesting to look at embeddings
in UCL of some of the many other causal approaches to reasoning about action
that have been proposed in recent years. Such results can clarify the relationships
between the various proposals. They can also help guide future work exploring the

range of action domains expressible in UCL and its various sublanguages.
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