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Following the work of David Hume (1739/1964), many
scholars have viewed the process of causal induction as
the progressive strengthening of an association between
the mental representation of the cause and the mental
representation of the effect. This idea has been at the
basis of the associative models of causal learning (e.g.,
Dickinson & Burke, 1996; Van Hamme & Wasserman,
1994). Although associative models of learning were ini-
tially developed to explain the data obtained in animal
conditioning experiments (e.g., Rescorla & Wagner, 1972),
the observed similarities between animal conditioning
and human causal learning (Alloy & Abramson, 1979;
Dickinson, Shanks, & Evenden, 1984) suggested that as-
sociative models could also be used to explain causal
judgments. According to these models, whenever two
events appear close together in time, the strength of the
association between their mental representations grows.
When people are asked to assess whether there is a causal
relation between two events, they presumably base their
estimations on the strength of the association between

the representation of the potential cause and the repre-
sentation of the effect.

Associative models have been quite successful in ex-
plaining some of the most relevant phenomena observed
in causal induction experiments and have also helped to
establish a link between research in human cognition and
research in animal learning. However, one of the main
limitations of these models is that they assume that or-
ganisms store and use a single index of the relationship
between events (i.e., the associative strength). This means
that most associative models cannot make a distinction
between the different indexes that people can use to de-
scribe the way in which events are related. These models
would predict that participants asked to rate the degree of
relationship between two events would give the same esti-
mation regardless of the specific question they are asked.
That is, according to associative models, the response of
participants who are asked to predict the occurrence of
one of the events will be similar to that of participants
who are asked to rate the strength of the causal relation
between both events. Not only theoretical models, but re-
searchers in general, have tended to use terms such as
causal induction, predictive value (of a cue), and predic-
tion (of the outcome) as synonymous.

Under certain circumstances, however, one could ex-
pect different responses to different types of questions.
Imagine a situation in which we have to assess the rela-
tionship between a number of patients taking a medicine
and their developing an allergic reaction as a secondary
effect of the medicine. The allergy appears in 75% of the
patients, no matter whether they have taken the medicine
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In three experiments, we show that people respond differently when they make predictions as opposed
to when they are asked to estimate the causal or the predictive value of cues: Their response to each of
those three questions is based on different sets of information. More specifically, we show that predic-
tion judgments depend on the probability of the outcome given the cue, whereas causal and predictive-
value judgments depend on the cue–outcome contingency. Although these results might seem problem-
atic for most associative models in their present form, they can be explained by explicitly assuming the
existence of postacquisition processes that modulate participants’ responses in a flexible way.
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or not. If we were asked to judge the causal relation be-
tween the medicine and the allergy, we should conclude
that there is no such relationship because the outcome
(O) is equally probable both in the presence and in the
absence of the cue (C) [i.e., P(O | C) � P(O | ~C)]. Sim-
ilarly, if we were asked to rate the degree to which tak-
ing the medicine is a good predictor of the development
of the allergic reaction, we should conclude that taking
the medicine is not a good predictor because the allergy
occurs anyway. However, if we were asked to predict how
likely it is that a patient who has taken the medicine will
develop the allergic reaction, we should strongly predict
the development of such allergy because the probability
of the outcome given the cue is high [i.e., P(O | C) �
.75].1 Thus, whereas participants asked to predict the
outcome given the presence of the cue should base their
judgments on the probability of the outcome given the
cue, P(O | C), participants asked to estimate the strength
of the predictive or causal relation (i.e., the predictive or
causal value of the cue) should instead look for differ-
ences in the probability of the outcome in the presence
and in the absence of the cue, P(O | C) � P(O | ~C), a sta-
tistical measure known as ΔP (Allan, 1980; Cheng &
Novick, 1990, 1992). So we should expect very different
judgments depending on whether participants are asked
to predict whether the outcome will occur or to estimate
the causal or the predictive value of the cue. However, if
participants based their judgments, regardless of their
being predictions or causal estimations, directly on the
output of an associative mechanism such as that pro-
posed by most associative models (e.g., Dickinson &
Burke, 1996; Rescorla & Wagner, 1972; Van Hamme &
Wasserman, 1994), participants would not be able to
make such a distinction. Predictions, causal judgments,
and predictive-value judgments would reflect the strength
of the association between the cause and the effect.

Existing data suggest that people are indeed able to
make at least some of these subtle distinctions. For ex-
ample, Wasserman, Elek, Chatlosh, and Baker (1993,
Experiment 3), asked their participants to rate not only
the causal strength of the relationship between a cue and
an outcome, but also the probabilities of the outcome
both in the presence and in the absence of the cue. Al-
though they did not directly compare the causal and the
probability ratings, their results show that participants’
causal ratings correlated with ΔP, whereas ratings of the
probability of the outcome in the presence of the cue cor-
related with the objective P(O | C). This indicates that
participants were clearly able to distinguish between
these types of judgments and gave different responses in
each case.

Other studies have explicitly compared ratings to dif-
ferent types of test questions and have shown that peo-
ple’s judgments vary depending on the type of question
used to request their judgments. In a study by Crocker
(1982), participants had to assess the relationship be-
tween exercising the day before a match and winning the
match. When they were asked to rate the relationship be-
tween exercising and winning, judgments were more in-

fluenced by the number of trials in which the cue (exer-
cising the day before) and outcome (winning) were pres-
ent. However, when participants were asked to rate the
relationship between exercising and losing, judgments
were more influenced by the trials on which exercising
occurred but the hypothetical individual lost. That is, the
weight given to each trial type depended on the type of
question used. Recently, White (2003) has provided a
more systematic study of the effect of the question word-
ing on the weighting of the different trial types. He found
that subtle manipulations, like asking for the effect of the
cause in a negative way (i.e., asking for the effect of
withdrawing the potential cause instead of asking for the
effect of introducing it) or using a passive grammatical
structure (i.e., asking to what degree the effect is caused
by the potential cause) resulted in participants giving a
different weight to each trial type.

Matute, Arcediano, and Miller (1996), using a relative
stimulus validity design, also observed that participants’
judgments changed depending on the type of question.
In this procedure, participants are exposed to two com-
pounds of stimuli, AX and BX. For one group of partic-
ipants, one of these compounds is always followed by an
effect [P(O | AX) � 1], while the other is always fol-
lowed by its absence [P(O | BX) � 0]. For a different
group of participants, both compounds are followed by
the effect on 50% of the trials [P(O | AX) � P(O | BX) �
.50]. Thus, Cue X, which is the target cue, is followed by
the outcome in 50% of the trials in both groups. Matute
et al. (1996) reported that when asked to rate the causal
relation between the target cue, X, and the effect, partic-
ipants exposed to the first condition gave lower ratings
than participants exposed to the second one. That is, the
presence of a strong potential cause, A, made partici-
pants disregard X as a causal factor. This replicates the
well-known results observed with nonhuman animals
under the same design (e.g., Wagner, Logan, Haberlandt,
& Price, 1968; Wasserman, 1974). However, when asked
to judge the degree of co-occurrence between X and the
outcome (i.e., the percentage of times Cue X had been
followed by the outcome), judgments did not differ be-
tween the groups. This means that people recognize that
some events are sometimes followed by others, even
when no causal relation is perceived between them. That
is, contrary to what associative models pose, people can
give different ratings depending on what they are being
asked (but see Cobos, Caño, López, Luque, & Almaraz,
2000, for a different result).

Similarly, in another set of experiments, Matute, Vegas,
and De Marez (2002) also observed differences between
participants’ causal and prediction judgments. They ex-
posed their participants to an acquisition-extinction par-
adigm in which a cue was present in all trials. It was al-
ways followed by an outcome during the first half of
treatment (acquisition) and during the last half of treat-
ment was never followed by the outcome (extinction).
On each trial, half of the participants in each group were
asked to predict the likelihood that the outcome would
occur. The remaining participants were asked to rate the
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causal relation between the cue and the outcome. The re-
sult was that participants asked to predict the outcome
were more sensitive to the most recent information that
they received (i.e., extinction trials) than participants
asked to assess the causal relation.

As in the case of Matute et al. (2002), in the present re-
search, we focus on the different responses people give
to different questions. But instead of assessing differ-
ences due to the temporal distribution of the informa-
tion, we tested whether participants’ responses adjust to
the differences between prediction and causation men-
tioned above even when the cue–outcome contingency
remains unchanged during training. Specifically, we
tested whether participants’ judgments when they are
asked to predict the likelihood that the outcome will
occur are by default more sensitive to the probability of
the outcome in the presence of the cue [i.e., P(O | C)],
whereas causal judgments are more sensitive to the over-
all contingency between the cue and the outcome (i.e.,
ΔP). In addition, we examined responses to another type
of predictive question in which participants were asked
to rate the predictive value (or predictiveness) of the cue.
Although this latter question is also focused on the pre-
dictive relation between the cue and the outcome, it does
not require participants to make a prediction concerning
the outcome. Instead, it requires them to estimate the
value of the cue as a predictor of the outcome. In other
words, it encourages participants to take into account not
only how likely the outcome is in the presence of the cue
[i.e., P(O | C)] but also how likely it is in its absence [i.e.,
P(O | ~C)]. Indeed, a cue can be a good predictor of an
outcome only if it adds some information regarding the
probability of the outcome’s occurrence. That is, the
probability of the outcome’s occurrence has to be different
in the presence than in the absence of the cue for the cue
to have predictive value. This concept of predictive value
is similar to what animal researchers usually mean when
describing the conditioned stimulus–unconditioned stim-
ulus relationship in terms of predictiveness (Rescorla,
1968). On the other hand, the main difference between
making a prediction and estimating the predictive value
(or predictiveness) of a cue is that in the first case the
participant is rating his/her expectancy that the outcome
will follow the cue, whereas in the second case the par-
ticipant is assessing whether the cue is a reliable predic-
tor (or indicator) that the outcome will occur. Thus, we
expected that judgments in reply to the predictive-value
question would be closer to causal judgments than to
prediction judgments.

The distinction between different types of predictive
judgments must be emphasized because they are often
confused in the literature, and many experiments have
used different types of predictive questions. Some re-
searchers dealing with predictive judgments have asked
participants to predict the outcome on the basis of the
presence of the cue (or to rate their expectancy of the
outcome), which is equivalent to what we are here call-
ing prediction judgment (e.g., De Houwer, Beckers, &

Glautier, 2002; Livesey & Boakes, 2004; Matute et al.,
2002; Vadillo, Vegas, & Matute, 2004). By contrast,
other researchers have asked participants to rate the de-
gree to which the cue is a predictor (or an indicator) of
the outcome, which is equivalent to what we are here
calling predictive-value judgments (e.g., Cobos, López,
Caño, Almaraz, & Shanks, 2002; Matute et al., 1996;
Pineño, Denniston, Beckers, Matute, & Miller, 2005).
As argued above, each type of predictive judgment sup-
ports a different normative analysis, which means that
they should not be used interchangeably. The empirical
question of whether participants actually perceive dif-
ferences between them was tested in the present series
of experiments.

EXPERIMENT 1

In Experiment 1, we exposed participants to a sequence
of trials in which the cue–outcome contingency was zero,
but the probability of the outcome was high both in the
presence and in the absence of the cue [i.e., P(O | C) �
P(O | ~C) � .80, ΔP � 0]. Then we assessed their answers
to three different questions. The prediction question asked
participants to predict to the degree to which they thought
that the outcome would occur provided the presence of
the cue. The predictive-value question asked them to as-
sess to the degree to which they thought the cue was a
good predictor of the outcome. And the causal question
asked them to rate to the degree to which they thought
that the cue was the cause of the outcome. We expected
high ratings for the prediction question because the prob-
ability of the outcome given the cue was high. In addi-
tion, we expected participants’ responses to predictive-
value and causal questions to be low, given that a cue is
not likely the cause of an outcome, or even a good pre-
dictor, if the outcome is equally probable both in its pres-
ence and in its absence.

Method
Participants and Apparatus

An important feature of Experiments 1 and 2 is that they were run
over the Internet. Web-delivered experiments are not yet common
in our research area. However, their advantages and disadvantages,
as well as their reliability, have been well studied (for reviews see
Birnbaum, 2000; Gosling, Vazire, Srivastava, & John, 2004; Reips
& Bosnjak, 2001) and the Internet has been successfully used in ex-
periments concerning probability learning, causal induction, and
decision making (e.g., Birnbaum, 1999; Birnbaum & Wakcher,
2002; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). In
order to control for the potential noise that the use of this method-
ology could have introduced in Experiments 1 and 2, Experiment 3
was aimed to replicate and extend the results of these experiments
in the laboratory.

One hundred and sixty-seven anonymous Internet users who vis-
ited our virtual laboratory (http://www.labpsico.com) volunteered
to participate in the experiment. They were tested using a comput-
erized version of the allergy task frequently used in human causal
learning experiments (e.g., Wasserman, 1990). The experimental
program was written in JavaScript, so that it could work on common
Internet browsers.2 The participants were not asked to provide any
personal data: All of them were anonymous and voluntary, accord-
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ing to ethical standards for human research over the Internet
(Frankel & Siang, 1999).

Design and Procedure
The experiment used a within-subjects design in which all partic-

ipants received the three types of questions under study at the end
of training. During training, participants were shown the records of
60 fictitious patients, one per trial. In each trial, participants saw
first whether or not that trial’s patient had taken a medicine called
Dugetil. In order to keep their attention, participants were next
asked to predict the outcome (an allergic reaction) or its absence by
giving only a yes or no response. After participants had entered
their response, they were told whether that patient had actually de-
veloped the allergic reaction and were then allowed to see the med-
ical record of the next patient, and so on. These yes/no responses
are frequently used in human contingency learning experiments as
a means of retaining participants’ attention and the available evi-
dence shows that, although requesting numerical judgments in all
trials does affect final judgments, these binary responses have no
effect on the final judgment given at test (Matute et al., 2002).

There were four types of trials: trials in which the patient had
taken Dugetil and developed the allergic reaction (Trial Type A),
trials in which the patient had taken Dugetil but not developed the
allergic reaction (Trial Type B), trials in which the patient had not
taken Dugetil but developed the allergic reaction (Trial Type C),
and trials in which the patient had not taken Dugetil nor developed
the allergic reaction (Trial Type D). The frequency of each of these
trial types was 24, 6, 24, and 6, respectively. This yielded probabil-
ities of the outcome (the patient developing the allergic reaction)
given either the presence or the absence of the cue (the patient tak-
ing or not taking Dugetil) equal to .80. Trials were ordered in a ran-
dom sequence.

Before the 60 training trials, participants were given a screen of
instructions. A translation from Spanish of these instructions reads
as follows:

This experiment studies people’s ability to learn relations between dif-
ferent events. Imagine that you are a specialist who wants to study the
degree to which the consumption of a medicine causes, as a secondary
effect, an allergic reaction. The medical records of a series of patients
will be presented. You will first see a card that tells you whether a pa-
tient has taken the medicine. Once you have read it, you will see, on a
second card, whether the patient did or did not develop the allergic re-
action. After that, you will see the cards for the next patient, and so on.
After seeing all the patients’ records, you will have to assess the rela-
tionship between the medicine and the allergic reaction.

Once they had seen the 60 patients’ records, a screen appeared in
which there were three questions and three scales upon which par-
ticipants were asked to enter their judgments by clicking one point
on the scale. Although the scale was not itself labeled with num-
bers, when participants moved the mouse over some part of the
scale, a text box appeared indicating the numerical value of that
point, ranging from 0 to 100. One of the questions, the causal one,
asked them to assess the causal relation between the medicine and
the allergic reaction. The translation from Spanish of this question
is: To what extent do you think that Dugetil is the cause of the al-
lergic reaction? The opposite ends of the scale below this question
were labeled as It is definitely not the cause and It is definitely the
cause. A second question, the predictive-value question, asked
them to rate the degree to which the medicine was a good a predic-
tor of the allergic reaction. The translation from Spanish is as fol-
lows: To what extent do you think that taking Dugetil is a good pre-
dictor of the allergic reaction? The end points of the scale below
this question were labeled as It is not a reliable predictor and It is
a reliable predictor. Finally, the prediction question asked partici-
pants to predict the extent to which they would expect a patient that
has taken the medicine to develop the allergic reaction. A transla-
tion from Spanish is as follows: If a patient has taken Dugetil, to
what extent do you think that this patient will develop the allergic
reaction? The end points of the scale below this question were labeled
as Definitely will not develop it and Definitely will develop it. The
three questions were presented on the same screen, but their position
was counterbalanced across participants. The participants were asked
to answer these questions from top to bottom, but were allowed to
change their responses to each question before saving the data.

Results and Discussion

The mean judgments given at test for each question are
depicted in Figure 1. As expected, these means show that
the response to the prediction question was considerably
higher than those given to either the causal or predictive-
value questions and that there are no remarkable differ-
ences between these latter ones. These impressions were
confirmed by a one-way repeated measures analysis of
variance (ANOVA) performed on the judgments at test,
which revealed an effect of the type of question [F(2,332) �
23.61, MSe � 445.6, p � .001], and by planned compar-
isons (with α divided by the number of contrasts, accord-

Figure 1. Mean judgments in response to three types of test question
(causal, predictive-value, and prediction) in Experiment 1, in which
P(O | C) � P(O | ~C) � .80. Error bars represent the standard error of
each mean.
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ing to the Bonferroni correction procedure, α � 0.05/3 �
0.017), which revealed significant differences between
prediction judgments and both causal [t(166) � 6.83,
p � .001] and predictive-value judgments [t(166) �
5.35, p � .001], whereas no differences were found be-
tween causal and predictive-value judgments [t(166) �
0.2, p � .84]. The results of Experiment 1, taken together
with previously reported experiments (Matute et al.,
1996; Matute et al., 2002), provide support for the pro-
posal that participants are sensitive to the type of ques-
tion used to assess their judgments about the relationship
between a cue and an outcome.

EXPERIMENT 2

The results of Experiment 1 clearly show that people
can distinguish between making a prediction and assessing
the strength of a causal or a predictive relation, although
different mechanisms could be proposed to account for the
pattern of results. On the one hand, the fact that prediction
judgments tend to be higher than causal and predictive-
value judgments when P(O | C) is high but ΔP is low sug-
gests that, as expected, prediction judgments are sensitive
to P(O | C) while causal and predictive-value judgments
are sensitive to ΔP. On the other hand, our results could
reflect participants’ giving less weight to P(O | ~C) when
making predictions than when assessing predictive value
or causal relations. Moreover, it could simply be that
people are more conservative when considering the causal
strength of a cue–outcome relation than when making
predictions, an idea that some could interpret as consistent
with Pineño et al.’s (2005) proposal that causal judg-
ments are more sensitive to stimulus competition than
are predictive-value judgments.3

However, both causal and predictive-value judgments
were considerably higher than 0 in Experiment 1, con-
trary to what we would expect if these judgments were
based on ΔP. This result might have been due to the use
of an inappropriate scale for registering participants’
judgments. Although a scale labeled from 0 to 100 is
suitable for prediction judgments, it might be inappro-
priate for causal and predictive-value judgments, given
that their normative referent, ΔP, can yield negative re-
sults. In this situation, participants might have inter-
preted the lower part of the scale (i.e., from 0 to 50) as
representing the negative contingency. If so, they might
have given an estimation of 50 because they wanted to
indicate the absence of a causal relation or a null predic-
tive value. Thus, it might be better to assess people’s
ability to differentiate prediction, predictive-value, and
causal questions with a procedure that does not depend
so much on their interpretation of the scale. The fact that
the scale for each judgment was labeled in a different
way is another possible source of the differences ob-
served in Experiment 1, which makes it even more de-
sirable that we look for alternative strategies. Because of
this, in Experiment 2, instead of looking for absolute dif-
ferences in the ratings to each question, we looked for

manipulations that could affect one type of judgment
without having an effect on the other ones. For example,
varying ΔP between groups while keeping P(O | C) con-
stant should have an effect on predictive-value and causal
judgments, but no effect on prediction judgments. We
tested this prediction in Experiment 2.

Alternatively, the high ratings observed in prediction
judgments of Experiment 1 could have been due to a
preasymptotic bias in participants’ responses. It is well
known that judgments tend to be preasymptotically high
even under null contingencies when the probability of
the outcome is high (Allan & Jenkins, 1983; Chatlosh,
Neunaber, & Wasserman, 1985; Shanks, 1987; Shanks,
López, Darby, & Dickinson, 1996; for an analogous ef-
fect in animal conditioning, see Benedict & Ayres, 1972;
Kremer & Kamin, 1971). Moreover, this preasymptotic
outcome-density bias is a straightforward prediction of
the Rescorla–Wagner model (Allan, 2003; Shanks, 1995).
However, although this bias can explain why judgments
greater than 0 were observed under a null cue–outcome
contingency, it cannot account for the observed differ-
ences between the different types of judgments (i.e., ac-
cording to this explanation, all judgments should have
been equally high). Nevertheless, in Experiment 2 we
decided to minimize the potential influence of the preas-
ymptotic outcome-density bias by doubling the number
of trials.

Method
Participants and Apparatus

Sixty-nine anonymous participants volunteered for the experiment.
All of them performed the experiment through the Internet, as in Ex-
periment 1. The computer program randomly distributed the partici-
pants across two experimental groups, which resulted in 35 partici-
pants in Group 0.80-0.80 and 34 participants in Group 0.80-0.10.

Design and Procedure
The participants in Group 0.80-0.80 were exposed to a sequence

of 120 trials with a null contingency but with a high probability of
the outcome both in the presence and in the absence of the cue [i.e.,
P(O | C) � P(O | ~C) � .80, ΔP � 0]. The frequencies of each trial
type, A, B, C, and D, for this group were 48, 12, 48, and 12, respec-
tively. The participants in Group 0.80-0.10 were exposed to a differ-
ent sequence of 120 trials with a high contingency and a high proba-
bility of the outcome in the presence of the cue [i.e., P(O | C) � .80,
P(O | ~C) � .10, ΔP � .70]. The frequencies of each trial type, A,
B, C, and D, for this group were 48, 12, 6, and 54, respectively. All
other procedural details were kept the same as in Experiment 1. Ac-
cording to our hypothesis, prediction judgments should be similar
in both groups, because the P(O | C) is .80 in both cases. However,
the predictive value and causal value of the cue should be higher in
Group 0.80-0.10 than in Group 0.80-0.80, because the contingency
is higher in that group.

Results and Discussion

Figure 2 shows the mean judgments given for each
type of test question in Experiment 2. As can be seen in
this figure, the results for Group 0.80-0.80 replicated
those obtained in Experiment 1: Responses to the predic-
tion question were considerably higher than responses to
the causal and predictive-value questions. In addition,
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participants in Group 0.80-0.10 gave, relative to the par-
ticipants in Group 0.80-0.80, equally high ratings for the
prediction question but higher ratings for the causal and
predictive-value questions. A 3 (type of question: causal,
predictive-value, and prediction) � 2 (group: 0.80-0.80
vs. 0.80-0.10) ANOVA yielded main effects of both type
of question [F(2,134) � 23.17, MSe � 485.51, p � .001]
and group [F(1,67) � 11.4, MSe � 1,564.11, p � .01].
Moreover, an interaction was found between these two
variables [F(2,134) � 5.28, MSe � 485.51, p � .01], in-
dicating that the type of test question used had different
effects on the two groups. As we expected, planned com-
parisons (with α adjusted according to the Bonferroni
correction procedure, α � 0.05/5 � 0.01) showed that
there were no significant differences between the pre-
diction judgments given by participants in Group 0.80-
0.80 and participants in Group 0.80-0.10 [t(67) � 1.28,
p � .21], but there were differences between the two
groups in their responses to the predictive-value ques-
tion [t(67) � 3.94, p � .001]. The expected difference in
the causal judgments is also evident in Figure 2 [t(67) �
2.37, p � .02], though it is only marginally significant in
light of the Bonferroni correction procedure. Planned
comparisons also showed that, as expected, in Group 0.80-
0.80 responses to the prediction question were higher
than responses to the causal question [t(34) � 4.63, p �
.001], and higher than responses to the predictive-value
question [t(34) � 7.09, p � .001].

The results of this experiment replicate those of Exper-
iment 1; that is, when there is a large difference between
P(O | C) and ΔP, judgments to each type of question di-
verge. In addition, the general pattern of results provides
stronger support for our hypothesis, because it shows
that there are manipulations, like varying P(O | ~C), which
affect responses to some of the questions but not others.
Specifically, this manipulation affects predictive-value
judgments, but not prediction ones. The question of
whether or not this manipulation affects causal judg-

ments remains unclear in this experiment, given that the
difference between causal ratings in both groups is mar-
ginally significant if the Bonferroni correction proce-
dure is applied. Thus, the prediction that causal judg-
ments should vary depending on ΔP was tested again in
Experiment 3.

One reason for conducting Experiment 2 was that the
scale used in Experiment 1 to request causal and predictive-
value judgments might not have been appropriate for 
assessing participants’ subjective ratings, because the pa-
rameter assumed to be normative for causal and predictive-
value judgments, ΔP, can adopt negative values that did
not appear in the scale we used, and also because each
type of question had its corresponding scale labeled in a
different way. However, the results obtained in Experi-
ment 2 show that there are manipulations that can affect
predictive-value and perhaps causal judgments without
having an effect on prediction judgments, a finding that
is independent of the scale used to request these judg-
ments and that overcomes this potential limitation of Ex-
periment 1.

EXPERIMENT 3

The preceding experiments demonstrated not only that
participants respond differently to causal, predictive-
value, and prediction questions, but also that there are
manipulations that influence responses to some of these
questions while having no effect on others. Specifically,
manipulations of contingency seem to have little or no
effect on responses to the prediction question if the prob-
ability of the outcome given the cue is kept the same
across conditions. However, this manipulation has a clear
effect on responses to causal and predictive-value ques-
tions. What remains to be tested is the complementary
prediction—that is, that there can be manipulations that
influence prediction judgments without having an effect
on causal and predictive-value judgments. According to
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Figure 2. Mean judgments in response to three types of test question (causal,
predictive-value, and prediction) for the two groups in Experiment 2. Error
bars represent the standard error of each mean.
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our hypothesis, manipulating the probability of the out-
come given the cue without changing the contingency
should yield this pattern of results. This prediction was
tested in Experiment 3.

In addition, the data from Experiments 1 and 2 were
collected using an Internet-based methodology, which
poses the question of whether these results might not be
replicable under more controlled situations, like those of
the traditional laboratory. In order to address this ques-
tion, Experiment 3 was performed in the laboratory and
it included two conditions that tested the same hypothe-
sis as Experiments 1 and 2, although using slightly dif-
ferent contingencies.

Method
Participants and Apparatus

Ninety-nine undergraduate students from Deusto University vol-
unteered to take part in the experiment. Random assignment of par-
ticipants resulted in 35 participants in Group 0.50-0.00, 32 partici-
pants in Group 1.00-1.00, and 32 participants in Group 1.00-0.50.
The participants performed the experiment in a large computer
room. Adjacent participants were seated at about 1.5 m apart from
each other and were exposed to different experimental conditions.
Although the experiment was not performed over the Internet, the
experimental program was an adapted version of the same JavaScript
program used in Experiments 1 and 2.

Design and Procedure
Three groups of participants were exposed to 120 trials that re-

flected particular cue–outcome contingencies and probabilities of
the outcome given the cue. Group 0.50-0.00 was exposed to an
intermediate probability of the outcome given the cue and an inter-
mediate cue–outcome contingency [i.e., P(O | C) � .50, P(O | ~C) �
.00, ΔP � .50]; the frequencies of each trial type, A, B, C, and D,
for this group were 30, 30, 0, and 60, respectively. Group 1.00-1.00
was exposed to a high probability of the outcome given the cue but
a null cue–outcome contingency [i.e., P(O | C) � P(O | ~C) � 1.00,
ΔP � .00]; the frequencies of each trial type, A, B, C, and D, for this
group were 60, 0, 60, and 0, respectively. Finally, Group 1.00-0.50

was exposed to a high probability of the outcome given the cue and a
medium cue–outcome contingency [i.e., P(O | C) � 1.00, P(O | ~C) �
.50, ΔP � .50]; the frequencies of each trial type, A, B, C, and D,
for this group were 60, 0, 30, and 30, respectively. All other proce-
dural details were kept the same as in Experiments 1 and 2. Ac-
cording to our hypothesis, Groups 1.00-1.00 and 1.00-0.50 should
differ in their responses to the causal and predictive-value questions
but not in their response to the prediction question (a result that
would replicate the pattern of results observed in the previous ex-
periments). Moreover, Groups 0.50-0.00 and 1.00-0.50 should dif-
fer in their response to the prediction question but not in their re-
sponse to the causal and predictive-value questions.

Results and Discussion

The mean responses to each type of test question can be
seen in Figure 3. A 3 (type of question: causal, predictive-
value, prediction) � 3 (group: 0.50-0.00, 1.00-1.00, and
1.00-0.50) ANOVA performed on participants’ judg-
ments yielded a main effect for both type of question
[F(2,192) � 25.15, MSe � 518.24, p � .001] and group
[F(2,96) � 9.75, MSe � 1,420.3, p � .001]. More inter-
esting was that an interaction between these factors was
also observed [F(4,192) � 7.06, MSe � 518.24, p �
.001], indicating that the effect of the type of question de-
pended on the group.

The general pattern of judgments given by participants
in Group 1.00-1.00 supports the idea that prediction
judgments tend to be higher than causal and predictive-
value judgments when the P(O | C) is high but ΔP is low.
This impression was confirmed by planned comparisons
(with α corrected, according to the Bonferroni correc-
tion procedure, α � 0.05/9 � 0.0055), which showed
that prediction judgments were higher than either causal
or predictive-value judgments [t(31) � 4.84, p � .001,
and t(31) � 5.62, p � .001, respectively]. Moreover, the
difference between causal and predictive-value judg-
ments was nonsignificant [t(31) � 0.46, p � .65]. These
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Figure 3. Mean judgments in response to three types of test question (causal,
predictive-value, and prediction) for the three groups in Experiment 3. Error bars
represent the standard error of each mean.
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results replicate those found in Experiment 1 as well as
in Group 0.80-0.80 in Experiment 2. This indicates that
the results of these Internet-based experiments can be
replicated in the laboratory.

In addition, planned comparisons showed that, as ex-
pected, responses to both causal and predictive-value ques-
tions were lower in Group 1.00-1.00 than in Group 1.00-
0.50 [t(62) � 3.39, p � .0055, and t(62) � 4.47, p �
.001, respectively], and that the response to the predic-
tion question did not differ significantly between groups
[t(62) � 1.3, p � .20]. These results replicate those of
Experiment 2 regarding the differential effect of manipu-
lating P(O | ~C) on predictive-value and prediction judg-
ments. That is, when the probability of the outcome given
the cue is kept constant, manipulations of contingency
had an effect on predictive-value judgments but not on
prediction judgments. Importantly, the fact that the dif-
ference in causal judgments between the two groups with
the same P(O | C) but different ΔP was now significant
confirms the tendency that was already apparent in Ex-
periment 2. The present experiment was conducted under
controlled laboratory conditions, which suggests that the
marginally significant effect observed in Experiment 2 was
probably due to a lack of statistical power, perhaps induced
by the larger variance usually observed in Internet-based
experiments.

Contrary to our hypothesis, prediction judgments
tended to be somewhat higher in Group 1.00-0.50 than in
Group 1.00-1.00. This tendency could indicate that pre-
diction judgments are actually influenced by P(O | ~C),
although in a lesser degree than causal and predictive-
value judgments (a result that could be seen as support-
ing the differential sensitivity view proposed by Pineño
et al., 2005; but see note 3). However, the fact that this
difference was nonsignificant in both Experiments 2 and
3 suggests that this difference is not robust.

In addition, the comparison of Groups 0.50-0.00 and
1.00-0.50 indicates that responses to some questions
were affected by a change in the P(O | C) that left the
cue–outcome contingency unchanged, while others re-
mained the same. As expected, planned comparisons
showed that responses to the causal question were not
significantly different between these two groups [t(65) �
0.29, p � .77], and that responses to the prediction ques-
tion differed [t(65) � 3.75, p � .001]. The difference in
predictive-value judgments, which is contrary to our hy-
pothesis and to the pattern of results observed in the previ-
ous experiments, is not significant according the Bonfer-
roni correction [t(65) � 2.59, p � .012], but admittedly
there is a tendency toward a difference. It is not clear to
us whether this is due to a true absence of difference or
to a lack of statistical power, given that this is the first
time that we have observed this tendency. Because of
this, we prefer to draw no firm conclusions about the
predictive-value question in this experiment at this time.
Nevertheless, what is clear is that the results of the causal
and prediction questions still confirm the general pattern
of results of the previous experiments. That is, when the
probability of the outcome given the cue is manipulated

but cue–outcome contingency is kept constant, responses
to the prediction question vary but responses to the causal
question do not. This general pattern of results is evident
both in the laboratory and in the Internet studies.

GENERAL DISCUSSION

Our general pattern of results is consistent with the
view that people’s judgments about the relationship be-
tween a cue and an outcome can be affected by the type
of question used to assess these judgments (Crocker,
1982; Matute et al., 1996; Matute et al., 2002; Pineño
et al., 2005; White, 2003). Specifically, when partici-
pants are asked to rate how likely it is that an outcome
will occur, their responses are sensitive to the objective
probability of the outcome given the presence of the cue.
However, when they are asked to rate the cue’s causal re-
lation with the outcome (and often when they are asked
to assess the predictive value of the cue), their responses
are more sensitive to the difference between the proba-
bility of the outcome in the presence and in the absence
of the cue. This interpretation is also consistent with the
results of many experimental studies that have asked par-
ticipants to judge the probability of the outcome given
the presence of the cue and have obtained accurate esti-
mations of this probability (e.g., Wasserman et al., 1993).

A major finding here is that participants are able to
make distinctions not only between causal and predic-
tion judgments but also between predictive-value and
prediction judgments. This means that they can perceive
differences between different types of predictive questions,
even though all of them refer to a noncausal probabilistic
relationship between the cue and the outcome. This result
emphasizes the importance of researchers’ being careful
when using predictive questions to assess participants’
judgments, given that subtle differences in the wording
of this question can have a great impact on the observed
judgments, a prescription that will become more and
more important as interest in the comparison between
causal and predictive learning grows (e.g., De Houwer
et al., 2002; Matute et al., 2002; Pineño et al., 2005).

The results of all these studies taken together pose
problems for some of the main associative models of
human causal and predictive learning (e.g., Dickinson &
Burke, 1996; Rescorla & Wagner, 1972; Van Hamme &
Wasserman, 1994). It is well known that the asymptotic
outcome of the associative learning rule proposed by
Rescorla and Wagner, which inspired later associative
models, reflects the statistical contingency between the
cue and the outcome. That is, once the association between
the cue and the outcome has reached its asymptote, the
value of its associative strength equals the statistical
measure of contingency ΔP (Chapman & Robbins, 1990).4
Thus, the Rescorla–Wagner model could easily account
for participants’ assessments of causal strength and pre-
dictive value, given that they seem to be sensitive to ΔP.
Importantly, however, the Rescorla–Wagner model can-
not account in its present form for participants’ predic-
tions of the outcome occurrence, which cannot be com-



180 VADILLO, MILLER, AND MATUTE

puted by a contingency-based learning algorithm. Below
we will suggest ways in which several major theories, in-
cluding the Rescorla–Wagner model, could be extended
to account for the present results.

Statistical Reasoning Account

The results of the three experiments we present here
could be easily explained in terms of statistical reason-
ing processes. Such an explanation would simply assume
that during training participants store the information
presented (e.g., accumulating the frequencies of each
type of trial) and that this information can be used in a
flexible way when they are asked about the relationship
between the cue and the outcome. Depending on the type
of question asked, participants would use this informa-
tion to compute the statistical index most relevant to an-
swer that question. Although most statistical models
have focused mainly on causal (Cheng, 1997; Cheng &
Novick, 1990, 1992) and contingency (Allan, 1980) judg-
ments, the basic processes suggested by these models
can also underlie prediction judgments. Moreover, if the
computation of statistical indexes like ΔP is algorithmi-
cally based on any sort of contrast of conditional proba-
bilities, P(O | C) and P(O~|C), then these models pre-
suppose the ability to compute the specific conditional
probabilities that underlie prediction judgments.

Although this general perspective is supported by our
data, some models of causal induction, specifically the
power PC theory (Cheng, 1997), might have problems
explaining part of the results. According to Cheng, hu-
mans intuitively know that the causal relations between
events underlie covariation relations between events, but
also that covariation and causation are different things.
In other words, the strength of the causal relation be-
tween a cue and an outcome (i.e., the causal power) can
be different from the observed contingency between
those events. If this is the case, in some situations different
judgments would be expected depending on whether par-
ticipants are asked to rate the strength of the causal relation
or they are asked to give an estimation of the degree of
covariation between a cue and an outcome. Specifically,
according to the power PC theory, ΔP underestimates the
generative causal power (the ability of a cue to cause an
effect) as P(O | ~C) increases. However, this prediction
is not supported by the results of Experiment 3. In that
experiment, two groups of participants, 0.50-0.00 and
1.00-0.50, were exposed to the same cue–outcome con-
tingency but different values of P(O | ~C), which means
that causal judgments should be larger in Group 1.00-
0.50 than in Group 0.50-0.00. But our results show that
the causal ratings were similar in the two groups. Although
these results could be due to the use of a causal question
instead of a counterfactual question, which has been
shown to be more sensitive to causal power (Buehner,
Cheng, & Clifford, 2003), they remain unexplainable by
the power PC theory.

Despite this problem of the power PC theory to account
for the present results, it is still likely that our participants

resolved the task by the use of higher order cognitive
processes involving statistical reasoning. In fact, any ex-
planation of these results requires the intervention of
complex cognitive processes. Our participants at least
had to have been able to understand the different semantics
of each type of question and to have used some previously
acquired knowledge regarding the differences between
assessing causal relationships, assessing predictive values,
and making predictions. However, as we shall discuss in
the next section, this does not mean that more mechanical,
lower level, associative mechanisms need to be excluded
from the explanation of these results.

Associative Account

Perhaps the main feature of associative models that
prevents them from explaining the present results is their
lack of a distinction between learning and performance.
In other words, for most of these models (Dickinson &
Burke, 1996; Rescorla & Wagner, 1972; Van Hamme &
Wasserman, 1994) the performance of participants in a
prediction and in a causal task is solely determined by the
strength of the cue–outcome associations. However, many
experimental findings do not support this point of view
(e.g., Allan, Siegel, & Tangen, 2005; De Houwer et al.,
2002; Matute et al., 2002). Nevertheless, there are also
some models that suggest a clear distinction between the
learning processes and the performance processes, mod-
els that could be taken as a starting point for an attempt
to provide an associative-based account for the results
presented in this paper (e.g., Allan et al., 2005; Miller &
Matzel, 1988).

As an example, some ideas underlying the comparator
hypothesis could be used with this aim. The comparator
hypothesis (Miller & Matzel, 1988; Miller & Schacht-
man, 1985; see also Denniston, Savastano, & Miller,
2001) was developed in the area of animal conditioning
and assumes that learning takes place by means of a non-
competitive, contiguity-based learning algorithm, like
the one proposed by Bush and Mosteller (1951). Ac-
cording to Bush and Mosteller, the associative strength
between a cue and an outcome is based solely on the con-
tiguity between them and is not affected by the strength
of the associations that other cues (including the context)
may have to the same outcome. This means that the as-
sociative strength of the cue is affected only by the prob-
ability of the outcome given the cue and that the proba-
bility of the outcome in the absence of the cue has no
effect on this associative strength. According to the com-
parator hypothesis, however, a subsequent comparison
process takes place at the performance stage between the
associative strength of the target cue and that of all other
stimuli that were present along with the target cue dur-
ing training: Conditioned responses in animals will be
observed whenever the associative strength of the target
cue is higher than that of the comparator stimuli associ-
ated with it.

In its present state, the comparator hypothesis is unable
to account for the results presented here. However, some
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ideas can be borrowed from it. Of special interest would be
the assumptions (1) that learning takes place by a learning
algorithm that is sensitive to cue–outcome co-occurrence
alone (i.e., akin to Bush & Mosteller’s learning rule, in-
stead of the more popular and complex contingency-like
learning algorithms; e.g., Rescorla & Wagner, 1972) and
(2) that associations might not always be directly ex-
pressed in behavior (i.e., that a distinction between learn-
ing and performance should be made; see also Allan
et al., 2005). From this perspective, accounting for the
present results would only require the assumption that
participants’ predictions are based just on the associa-
tive strength of the target cue, computed by a noncom-
petitive or co-occurrence-based learning algorithm, and
that causal, and probably predictive-value judgments as
well, are based on a comparison between the associative
strength of the target cue and that of the context. When
the probability of the outcome is high both in the pres-
ence and in the absence of the cue, the learning process
leads to a high associative strength for both the cue and
the context. Thus, judgments based solely on the asso-
ciative strength of the cue (prediction judgments) will be
high, whereas judgments based on the comparison be-
tween the associative strengths of the cue and the context
(causal and predictive-value judgments) will be low (Ex-
periment 1). If the probability of the outcome given the
cue is kept constant, manipulations of P(O | ~C) will af-
fect only the associative strength of the context. There-
fore, the comparison process will yield differences in
causal (and probably in predictive-value) judgments but
not in prediction judgments (Experiments 2 and 3). In
addition, manipulations of P(O | C) should have a direct
effect on prediction judgments, but should not affect
causal and predictive-value judgments if ΔP remains un-
changed (Experiment 3). Thus, this account can explain
qualitatively the results of the three experiments here re-
ported by assuming that the comparator processes can be
triggered or not depending on the type of question. Note,
however, that this assumption is clearly beyond the scope
of the comparator hypothesis in its current state; according
to a rigorous interpretation of the model, the comparator
processes should always take place, regardless of the
type of question used to assess participants’ judgments.

In a similar vein, it could also be possible to extend
the Rescorla–Wagner model to account for our results by
simply assuming that judgments about the cue–outcome
relation need not necessarily be based exclusively on the
target cue–outcome association. What this extension im-
plies is simply recognizing that the association between
the cue and the outcome is not directly mapped onto a re-
sponse, but that in the process of organizing a response
the organism might also use the information contained in
other associations. From this point of view, prediction
judgments (the only ones which pose problems for the
Rescorla–Wagner model) could result from our partici-
pants’ basing their responses on the addition of the cue–
outcome association and the context–outcome association.
Although so stated this process might appear strange, the
underlying logic is quite simple. In order to make a pre-

diction about an outcome’s occurrence, it is necessary to
take into account the predictive value of all the cues that
are present at a given moment. The predictive value of
each cue would be summarized in the strength of its as-
sociation to the outcome (which would be dependent on
ΔP as computed by the Rescorla–Wagner learning algo-
rithm). Thus, the probability of the occurrence of the
outcome at any given moment would be the sum of the
associative strength of all the cues that are present at that
moment.

An important advantage of the use of an associative-
based account (either the one based on Bush & Mosteller,
1951, or the one based on the Rescorla–Wagner, 1972,
model) is that either one is perfectly compatible with the
proposals of many cognitive theories, which are often
designed to explain how causal judgments are computed
but not how causal information is acquired. Most statis-
tical models assume that causal induction is based on a
comparison or contrast of conditional probabilities and
that this contrast is guided by top-down processes. How-
ever, none of those models states clearly how people ac-
quire the information needed to compute the relevant
conditional probabilities, nor do they explain how these
conditional probabilities are computed. An implicit as-
sumption is that the conditional probabilities are com-
puted by performing some mathematical operation with
the frequencies of events stored in a mental contingency
table. If this were the case, causal induction would re-
quire a great amount of memory resources and complex
induction tasks could easily overload the cognitive sys-
tem. Part of all these processes could instead be per-
formed by very elemental associative mechanisms that
would accomplish the task with little cognitive effort.
For example, the noncompetitive, co-occurrence-based
associative algorithm proposed by Bush and Mosteller
could provide a parsimonious process for computing the
conditional probabilities that could then be processed by
higher cognitive processes if necessary. Those higher
order cognitive processes refer not to how information is
acquired, but to how acquired information is processed
and used. They speak to postacquisition reasoning pro-
cesses but not to the learning processes of causal induc-
tion. On the other hand, an associative mechanism alone
could perfectly well account for the learning process, but
not for the postacquisition reasoning process. The theo-
retical interpretation we suggest here tries to keep the
best of both associative and statistical models and pro-
vides a parsimonious analysis of the processes involved
in human causal and predictive judgments.
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NOTES

1. Of course, the symmetrical rule would apply if we were asked to
predict how likely it is that a patient who has not taken the medicine
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will develop the allergic reaction. In this case our prediction should just
be based on the probability of the outcome in the absence of the cue,
P(O | ~C) � .75). For the sake of simplicity, however, we will hereafter
refer only to the case in which the participant predicts what will happen
when the cue is present.

2. A demonstration of the actual program used can be downloaded
from http://paginaspersonales.deusto.es/matute/software.html

3. Note that Pineño et al. (2005) used different terms to describe their

questions, but the questions they used were predictive-value questions (as
defined herein), not predictions. Thus, the difference that they proposed
is between causal and predictive-value judgments. By contrast, the dif-
ference that we observed is between prediction judgments and both causal
and predictive-value judgments (which did not differ from each other).

4. This property of the Rescorla and Wagner (1972) algorithm re-
quires the assumption that the learning parameter β is equal when the
outcome is presented and when it is not.


