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Abstract 

Objective: To evaluate the causal association of 22 previously reported risk factors for 

Alzheimer’s disease (AD) on the “AD phenome”: AD, AD age of onset (AAOS), hippocampal 

volume, cortical surface area and thickness, cerebrospinal fluid (CSF) levels of Aβ42, tau, and 

ptau181, and the neuropathological burden of neuritic plaques, neurofibrillary tangles, and 

vascular brain injury (VBI). 

Methods: Polygenic risk scores (PRS) for the 22 risk factors were computed in 26,431 AD 

cases/controls and the association with AD was evaluated using logistic regression. Two-

sample Mendelian randomization was used to evaluate the causal effect of risk factors on the 

AD phenome.   

Results: PRS for increased education and diastolic blood pressure were associated with 

reduced risk for AD. PRS for increased total cholesterol and moderate-vigorous physical activity 

were associated with an increased risk of AD. MR indicated that only Education was causally 

associated with reduced risk of AD, delayed AAOS, and increased cortical surface area and 

thickness. Total- and LDL-cholesterol levels were causally associated with increased neuritic 

plaque burden, while diastolic blood pressure and pulse pressure are causally associated with 

increased risk of VBI. Furthermore, total cholesterol was associated with decreased 

hippocampal volume; smoking initiation and BMI with decreased cortical thickness; and sleep 

duration with increased cortical thickness. 

Interpretation: Our comprehensive examination of the genetic evidence for the causal roles of 

previously reported risk factors in AD using PRS and MR, supports a causal role for education, 

blood pressure, cholesterol levels, smoking, and BMI with the AD phenome. 

 

Keywords: Alzheimer’s disease; endophenotypes; Mendelian randomization; Polygenic risk 

scores; risk factors 
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Introduction 

Late-onset Alzheimer’s disease (AD) is a debilitating neurological condition characterized by 

progressive deterioration in cognitive function resulting in functional decline 1. The primary 

neuropathological hallmarks of AD are the aggregation of extracellular amyloid-β (Aβ) peptides 

into amyloid plaques and of intracellular hyperphosphorylated tau into neurofibrillary tau tangles 

(NFTs), accompanied by gliosis and neurodegeneration 1. 

  

In the absence of any disease-modifying therapies, the number of people living with dementia in 

the USA is expected to exceed 13.8 million by 2050 1. Observational studies have identified 

potentially modifiable risk factors that could be targeted in intervention studies to reduce the risk 

of dementia or delay its onset, thereby significantly reducing the population prevalence of AD 

and related dementias 2. From these studies it has been estimated that 35% of AD cases may 

be attributable to preventable causes such as low educational attainment, hearing loss, 

hypertension, obesity, smoking, depression, physical inactivity, social isolation and diabetes 3. 

However, lifestyle interventions that target modifiable risk factors are entirely dependent on 

accurate causal relationships being established between modifiable risk factors and AD. In 

observational studies, a correlation between a risk factor and AD cannot be reliably interpreted 

as evidence of a causal relationship due to potential confounding or reverse causation. 

Therefore, unless those modifiable factors specifically exacerbate disease progression, disease 

reduction strategies targeting them will not be successful. 

 

Methods of causal inference that exploit genetic information, such as polygenic risk scores 

(PRS) and Mendelian randomization (MR), can overcome some of the limitations of 

observational studies. PRS are a measure of an individual’s genetic propensity to a trait and can 

be used in cross-trait analyses to test whether genetic liability for one trait is associated with 

disease risk for a second 4. While this does not imply that the trait causally modifies disease 
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risk, since there are several alternative explanations, such a PRS-disease association would be 

expected if the trait were causal of disease, and thus PRS can be used to prioritize putative 

causal risk factors 4. MR uses genetic variants as proxies for environmental exposures to 

provide an estimate of the causal association between an intermediate exposure and a disease 

outcome . MR is akin to conducting a ‘genetic randomized control trial’, with the risk factors 

(genotypes) randomly allocated (from parents to offspring), independent of confounding factors 

that influence the risk factors and disease and unaffected by reverse causation 5. While MR can 

be used to directly assess causality between traits, it typically has lower statistical power than 

tests of PRS-disease associations 4. 

  

In this study, we used PRS and MR to establish causal relationships between 22 modifiable risk 

factors and the AD phenome – AD status, AD age of onset survival (AAOS), CSF levels of 

amyloid-beta42 (Aβ42), tau and hyperphosphorylated tau (ptau181), hippocampal volume, cortical 

surface area and thickness, and the neuropathological burden of neuritic plaques, neurofibrillary 

tangles and vascular brain injury (VBI). Based on these analyses we identified a subset of 

modifiable risk factors that represent the most promising targets for public health initiatives to 

reduce AD burden in the population. 

  

Methods 

Genome-wide association summary statistics  

We obtained GWAS summary statistics (GWAS-SS) for each exposure and outcome of interest 

(Table 1). Exposures included: alcohol consumption 6, the alcohol use disorder identification test 

(AUDIT) 7, moderate-vigorous physical activity (MVPA) 8, lipid traits 9, systolic blood pressure 

(SBP), diastolic blood pressure (DBP), pulse pressure (PP) 10, type 2 diabetes (T2D) 11, body 

mass index (BMI) 12, meat-related diet and a fish- and plant-related diet 13, depression 14, 
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Insomnia symptoms 15, sleep duration 16, social isolation 17, smoking initiation 6, cigarettes per 

day 6, educational attainment 18, and hearing difficulty 19.  

  

GWAS-SS for the AD phenome consisted of late-onset AD status 20, AAOS 21, CSF levels of 

Aβ42, ptau181 and total tau (Tau) 22, hippocampal volume 23, cortical surface area and thickness 

24, neuropathological burden of neuritic plaques, neurofibrillary tangle burden and vascular brain 

injury 25. Due to data use restrictions associated with evaluating alcohol intake and education 

phenotypes in the most recent GWAS of AD and hippocampal volume, we used an earlier 

GWAS for AD 26 and hippocampal volume 27 for estimating the causal effect of alcohol intake 

and educational attainment on these phenotypes. 

  

GWAS-SS that were mapped to earlier human genome builds were lifted over to Human 

Genome Build 19 28. GWAS-SS were standardized using a pipeline, that 1) aligns effect alleles 

to the alternate allele on the forward strand of the human genome reference build and 

normalizes indels, 2) annotates variants with marker names using chromosome:position:ref:alt, 

1000 Genomes rsIDs (phase 3), and dbSNP rsIDs (b151) 3) where allele frequencies are 

missing, annotates allele frequencies using non-Finnish Europeans from gnomAD (v2.1), and 4) 

convert summary statistics to VCF and TSV files. 

 

Alzheimer’s Disease Genetics Consortium  

Individual-level genetic and phenotypic data used to compute and test the association of 

polygenic risk scores were obtained from the Alzheimer’s Disease Genetics Consortium 

(ADGC), a large multicenter project composed of 34 separate cohorts with the goal of 

performing genome-wide analyses of Alzheimer’s Disease. The recruitment and genotyping of 

ADGC samples has been described in detail elsewhere 20,29. Briefly, genotype data in each 

cohort underwent stringent quality control checks, with variants excluded if the call rate < 0.95, 
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not in Hardy-Weinberg equilibrium (p < 1 x 10-6), and samples excluded if call rate was <0.95, 

discordant sex was reported based on X chromosome heterozygosity, cryptic relatedness, and 

non-European ancestry. Related individuals were determined within and across cohorts by 

identity-by-descent using KING 30, with individuals excluded based on a proportion of IBD < 

0.1875, corresponding to less than halfway between second- and third-degree relatives. 

Ancestry was determined empirically by projecting samples onto principal components from 

known ancestral populations in the 1000 Genomes Project, with samples determined to be 

European population outliers if they were ±6 SD away from the EUR population mean on the 

first 10 principal components using PC-Air 31 and PLINK 32. SNPs that were not directly assayed 

were imputed on the Michigan Imputation Server individually for each of the cohorts or sub-

cohorts using all ethnicities of the Haplotype Reference Consortium (HRC) 1.1 reference panel 

33. Eagle was used for phasing and Minimac3 was used for imputation. Following imputation, 

poorly imputed (r2 < 0.8) or rare (MAF < 0.01) variants were removed and the cohorts merged 

for joint analysis. Following this merger, variants with low call rate due to differential imputation 

(< 95%) were removed, and then samples with low call rate (< 95%) were removed. Within-

ancestry principal components were created using PLINK to correct for residual population 

stratification within the European population subset. After sample QC, 26,431 participants were 

available (Table 2). Written informed consent was obtained from study participants or, for those 

with substantial cognitive impairment, from a caregiver, legal guardian, or other proxy, and the 

study protocols for all populations were reviewed and approved by the appropriate Institutional 

review boards (IRB’s). 

 

Polygenic Risk Scores 

The software package PRSice-2 was used to construct polygenic risk scores for each of the 

exposures of interest in ADGC 34. PRSice generates PRS as the sum of all alleles associated 

with the exposure of interest exceeding a given P-value threshold (Pt), weighted by their effect 
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size estimated in an independent GWAS on the trait. SNPs were clumped to obtain variants in 

linkage equilibrium with an r2 > 0.001 within a 10MB window and PRS were constructed across 

a range of Pt (Pt  = 5e-8, 1e-6, 1e-5, 1e-4, 1e-3, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5). The 

optimal P-value threshold was determined according to the results of a linear regression 

(PRSice uses linear regression with binary traits to avoid issues of perfect separation during 

permutation) testing the association of the trait PRS and the AD outcome, adjusted for age, sex, 

APOE ε4 dose, and 10 principal components; the PRS Pt with the smallest P-value of 

association is selected for association analysis. To guard against overfitting, 1000 permutations 

were conducted to obtain an empirical P-value for each PRS-AD association. PRS were 

standardized to have a mean of 0 and SD of 1. After obtaining the optimal Pt the association 

between each exposure PRS and AD was evaluated using logistic regression adjusting for age, 

sex, APOE ε4 dose, and 10 principal components. The Benjamini & Hochberg false discovery 

rate was used to account for the multiple testing across the 22 different exposures.         

 

Mendelian Randomization Analysis  

Genetic Instruments 

For each exposure, we constructed two different sets of instrumental variables (IV), 

corresponding to independent (1) genome-wide significant SNPs (P < 5 x 10-8) and (2) SNPs of 

at least borderline significance (P < 5 x 10-6). Increasing the number of SNPs used as IVs 

increases the phenotypic variance explained and, thus, has the potential to increase statistical 

power. However, if the additional variants included violate the core MR assumptions then they 

may instead reduce power, biasing the results towards the null by introducing weak instrument 

bias. To obtain independent SNPs, linkage disequilibrium (LD) clumping was performed by 

excluding SNPs that have an r2 > 0.001 with another variant with a smaller p-value association 

within a 10MB window using PLINK 32. For genetic variants that were not present in the 
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outcome GWAS, PLINK was used to identify proxy SNPs that were in LD (r2 > 0.8; EUR 

reference population). Finally, the exposure and outcome GWAS datasets were harmonized so 

that the effect size for the exposure and outcome corresponded to the same effect alleles. 

Genetic variants that were palindromic with ambiguous allele frequencies (AF > 0.42), or that 

had incompatible alleles, were removed. Variants within the APOE region were excluded due to 

pleiotropy with AD. The proportion of variance in the phenotype explained by each instrument 

and F-statistic were calculated as previously described 35,36. 

  

Statistical Analysis  

For each genetic variant, we calculated an instrumental variable ratio estimate by dividing the 

SNP-exposure by SNP-outcome and the resulting coefficients were combined in a fixed-effects 

meta-analysis using an inverse-variance weighted (IVW) approach to give an overall estimate of 

causal effect 5. The IVW method assumes that all SNPs included in the causal estimate are 

valid instruments - that is, that they do not violate any of the underlying MR assumptions, in 

particular horizontal pleiotropy, whereby genetic variants have direct effects on multiple 

phenotypes, could lead to false inference of causal associations 5. In order to account for 

potential violations of the assumptions underlying the IVW analysis, we conducted sensitivity 

analyses using alternative MR methods known to be more robust to horizontal pleiotropy in 

particular, but at the cost of reduced statistical power. The alternative approaches included 1) 

Weighted Median Estimator (WME), which tests the median effect of all of the IV variants, 

allowing 50% of variants to exhibit horizontal pleiotropy 5; 2) Weighted Mode Based Estimator 

(WMBE), which clusters variants into groups based on the similarity of causal effects and 

reports the final causal effect based on the cluster with the largest number of variants 5; and 3) 

MR-Egger regression, which allows all variants to be subject to direct effects that bias the 

estimate in the same direction 5. 
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The MR-Egger regression intercept was used to verify the absence of pleiotropic effects of the 

SNPs on the outcome 5. To further confirm the absence of distortions in the causal effects due 

to heterogeneity or horizontal pleiotropy, we used the Mendelian randomization pleiotropy 

residual sum and outlier (MR-PRESSO) test to detect and correct for horizontal pleiotropic 

outliers 37. Where heterogeneity was detected (the MR-PRESSO Global Test) and significant 

outliers were detected (MR-PRESSO Outlier Test), the outliers were removed. 

  

We report the IVW results for the set of IV variants (at P < 1x10-8 or 1x10-6) with the smallest p-

value, outliers were removed if detected. Where there was evidence of horizontal pleiotropy or 

heterogeneity (MR-PRESSO Global Test p < 0.05 or an MR-Egger Intercept p < 0.05), we 

report the IVW results for which the sensitivity analyses were also significant and the effect 

direction was concordant with the IVW results. To account for multiple testing, we report q-

values, a false discovery rate-based measure of significance 38. Power analyses were 

conducted using the non-centrality parameter-based approach using the observed IVW 

coefficient 39.  

  

All statistical analyses were conducted using R version 3.5.2. Mendelian randomization analysis 

was performed using the ‘TwoSampleMR’ package 5. A Snakemake workflow was constructed 

that automates the PRS and MR analysis pipelines and allows for multiple exposure – outcomes 

datasets to be run in parallel 40.  

  

The SNPs used as IVs, their harmonized effects and outliers are presented in Supplementary 

Table 1. The causal estimates for each p-value threshold, MR method and pre- and post-outlier 

removal are presented in Supplementary Table 2.  
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Results 

Polygenic Risk Score Analysis  

We evaluated the association of 22 PRS for potentially modifiable risk factors with AD in ADGC. 

The Pt, number of SNPs and the association of each PRS with AD are presented in Table 3. 

After correction for multiple testing, a 1SD higher PRS for educational attainment increased risk 

of AD (OR [CI] 0.93 [0.91, 0.96]). Higher PRS for total cholesterol levels (OR [CI]1.05 [1.02, 

1.08]) and moderate-vigorous physical activity (OR [CI]1.04 [1.01, 1.07]) were associated with 

an increased risk of AD. Using only genome-wide significant SNPs, only the PRS for 

educational attainment was significant after correction for multiple testing (Table 3). 

 

Mendelian Randomization Analysis 

We used Mendelian randomization to estimate the causal associations between 22 potentially 

modifiable risk factors and 11 AD outcomes, across two sets of IV variants corresponding to two 

different p-value thresholds. We observed 12 exposure-outcome pairs that were significant at an 

FDR < 0.05 and that either showed no evidence of heterogeneity or horizontal pleiotropy, or in 

the presence of heterogeneity or horizontal pleiotropy, the additional MR sensitivity analyses 

were significant (Figure 1; Table 4). The PVE, F-statistics and power for each model are 

presented in Supplementary Table 2. 

 

Genetically predicted increased low-density lipoproteins (OR [CI]: 2.01 [1.39, 2.92]) and total 

cholesterol levels (OR [CI]: 1.99 [1.4, 2.84]) were associated with significantly increased risk of 

neuritic plaques. Genetically predicted higher diastolic blood pressure (OR [CI]: 1.08 [1.04, 

1.11]) and pulse pressure (OR [CI]: 1.06 [1.02, 1.1]) were associated with significantly increased 

risk of vascular brain injury. Genetically predicted higher educational attainment was associated 

with significantly 1) lower risk of Alzheimer's disease (OR [CI]: 0.64 [0.56, 0.74]), 2) delayed 

AAOS (HR [CI]: 0.76 [0.67, 0.85]), 3) increased cortical surface area (β mm2 [CI]: 4900 [4037.6, 
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5762.4]), and 4) increased cortical thickness (β mm [CI]: 0.01 [0, 0.02]). Genetically predicted 

longer sleep duration was associated with significantly increased cortical thickness after outlier 

removal (β mm [CI]: 0.02 [0.01, 0.02]). Genetically predicted smoking status was associated 

with significantly reduced cortical thickness (β mm [CI]: -0.02 [-0.03, -0.01]). Genetically 

predicted higher BMI was associated with significantly reduced cortical thickness after outlier 

removal (β mm [CI]: -0.01 [-0.01, 0]).                              

 

A further three risk factors, including AUDIT, diabetes, and insomnia, were causally associated 

with the AD phenome in the IVW analysis (Table 4; Figure 1), however, there was evidence of 

heterogeneity and the sensitivity analyses were non-significant suggesting that the observed 

associations were not robust to violations of MR underlying assumptions.                                                      

 

Discussion 

Using genetic variants as proxies for modifiable risk factors, we applied PRS and MR analyses 

to investigate the association of putative modifiable risk factors with the AD phenome. PRS for 

higher educational attainment and diastolic blood pressure were observed to be associated with 

reduced risk for AD, while higher total cholesterol and increased moderate-vigorous physical 

activity were associated with an increased risk of AD. However, in the MR analysis, only higher 

educational attainment was causally associated with a reduced risk of AD. The lack of causal 

associations between modifiable risk factors and AD may reflect heterogeneity in the underlying 

pathogenesis that can lead to clinical phenotypes analogous to Alzheimer’s disease. 

 

An endophenotype is usually less genetically complex than the disorder it underlies due to the 

endophenotype being influenced by fewer genetic risk factors than the disease as a whole and 

reflecting a single pathophysiological pathway of the overall clinical disorder. As 

endophenotypes can be measured in both cases and controls there is greater power to detect 
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an association due to the effect allele influencing the endophenotype even in asymptomatic 

carriers. As such we expanded our MR analysis to evaluate the causal effect of modifiable risk 

factors on AD endophenotypes to evaluate how potential risk factors may influence the 

underlying pathophysiological pathways of AD. We observed 1) higher total-cholesterol and 

LDL-cholesterol levels to be causally associated with increased risk of neuritic plaque burden, 2) 

higher diastolic blood pressure and pulse pressure causally associated with increased risk of 

vascular brain injury, and 3) higher educational attainment causally associated with a delayed 

AAOS and increased cortical surface area and thickness. Furthermore, 1) higher total 

cholesterol was causally associated with decreased hippocampal volume, 2) smoking status 

and higher BMI were causally associated with reduced cortical thickness, and 3) longer sleep 

duration was causally associated with increased cortical thickness.  

 

Observational studies have indicated that lifestyle interventions targeting modifiable risk factors 

can either prevent or delay the age of onset of dementia. In particular, low educational 

attainment, hearing loss, hypertension, obesity, smoking, depression, physical inactivity, social 

isolation and diabetes have been indicated to be key risk factors in the development of 

dementia 3. However, with the exception of educational attainment, our analyses did not provide 

strong evidence of a causal association with these risk factors and AD or AAOS. The lack of a 

causal association between these risk factors and AD could be due to insufficient power in our 

analyses, but, alternatively, may be a result of confounding or reverse causation in 

observational studies. For instance, increased physical activity is generally associated with a 

reduced risk of dementia 3, however, a recent meta-analysis found that the protective 

association with dementia was observed when physical activity was measured <10 years before 

dementia diagnosis, but when measured >10 years before dementia onset no association with 

dementia was observed – consistent with reverse causation driving the observed protective 

association 41. Additionally, while these risk factors may not be associated with AD 
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pathogenesis, they may be associated with the pathogenesis of other dementia subtypes. For 

instance, the observed association between blood pressure and VBI suggests that while 

reducing blood pressure in late life may have limited utility in the prevention of AD, it may 

reduce the risk of vascular dementia by reducing the risk of VBI and therefore affect the risk for 

all-cause dementia, but not specifically affect the risk of AD.  

 

The association of modifiable risk factor PRS with clinically diagnosed AD has not been 

extensively studied, though several studies have conducted phenome-wide scans to evaluate 

the association of AD PRS with a wide range of diseases and other traits. Using data from the 

UK Biobank (n = 334,398), Richardson and colleagues found that an AD PRS composed of 124 

SNPs and inclusive of APOE (Pt ≤ 5e-05) was associated with 72/551 traits (FDR < 0.05) 4. In 

particular, a higher AD PRS was associated with lower diastolic blood pressure and BMI, 

reduced risk of self-reported diabetes, shorter sleep duration, increased risk of self-reported 

high cholesterol and increased amount of moderate-physical activity 4. Similarly, a second study 

by Korologou-Linden and colleagues evaluated the association of an AD PRS composed of 18 

SNPs, inclusive of APOE, (Pt ≤ 5e-08) across 15,403 traits in the UK Biobank (n = 334,968) 42. 

A higher AD PRS was associated with 165 traits and in particular, with lower diastolic blood 

pressure, lower BMI, increased total cholesterol, levels, reduced risk of self-reported diabetes, 

increased oily fish consumption, increased sleeplessness or insomnia, reduced sleep duration 

increased amount of moderate-physical activity and increased risk of self-reported depression 

42. In a follow-up MR analysis of these traits, only moderate-physical activity was observed to be 

causally associated with an increased risk of AD 42.  

 

Two earlier studies used MR to evaluate the association of potentially modifiable risk with AD 

cases-control status 43,44. First Østergaard and colleagues evaluated the association of 13 risk 

factors with AD and observed that higher systolic blood pressure, HDL-cholesterol and smoking 
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quantity were associated with a reduced risk of AD, while higher total cholesterol and LDL 

cholesterol were associated with increased risk 44. No significant associations were observed for 

BMI, diabetes, insulin resistance, triglycerides, smoking initiation or education and after variants 

in the APOE locus were excluded from the analysis, the cholesterol levels were no longer 

significantly associated with AD risk 44. Second, Larsson and colleagues evaluated the 

association of 22 risk factors with AD, finding that years of education, intelligence, and 25-

hydroxyvitamin D were associated with a reduced risk of AD, while coffee consumption was 

associated with increased risk 43. No significant associations were observed between alcohol 

consumption, serum folate, serum vitamin B12, homocysteine, cardiometabolic factors or C 

reactive protein with Alzheimer’s disease 43.  

 

The results of this study should be interpreted in conjunction with knowledge of its limitations 

and those of MR in general. First, while we cannot exclude that our findings may be affected by 

weak instrument bias, the F-statistics for all of the analyses were greater than 10, indicating that 

the instrument strength was sufficient for MR analysis 36. However, in two-sample MR, weak 

instrument bias is in the direction of the null, thus, we cannot exclude low power as an 

explanation for the null results 45. Second, we cannot completely rule out violations of the 

independence and the exclusion restriction assumption, particularly in regard to pleiotropy 46. 

Nevertheless, we used several methods to identify robust causal estimates, including outlier 

removal using MR-PRESSO and WMBE, WME and MR-Egger sensitivity analyses. Finally, it is 

assumed that both samples used to generate the GWAS summary statistics used in the MR 

model come from comparable populations. In evaluating the demographics of the studies used 

in this analysis, the exposures have an average age of 56.1 – 63.8yrs, while outcomes, with the 

exception of hippocampal volume, have an average age of 71 – 74.7yrs. As such, some of the 

results reported here may be subject to survivor bias 47. Nevertheless, the bias introduced by 
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survival effects is large for exposures that strongly affect survival. However, when selection 

effects are weak or moderate, selection bias does not adversely affect causal estimates 47. 

 

Despite these limitations, this study has significant strengths. We assessed the causal effect of 

multiple modifiable factors strongly hypothesized as affecting AD risk. In addition, we used the 

largest GWAS for AD and the exposure traits available at the time of analysis, allowing us to 

include the largest possible number of instruments for the exposures, resulting in increased 

statistical power. Finally, rather than limiting our analyses to AD case/control status, we 

expanded our MR analysis to include AD endophenotypes.  

 

In conclusion, this study used large exposure and outcome GWAS to conduct PRS and MR 

analyses to evaluate the causal association of potentially modifiable risk factors with the AD 

phenome. The PRS analysis identified four traits for which a higher genetic predisposition 

influenced AD risk. In the follow-up MR analysis, only genetically predicted higher education 

was observed to have a causal association with reduced AD risk. Expanding our analysis to 

additional AD endophenotypes, we observed that higher genetically predicted cholesterol levels 

and blood pressure were associated with increased risk of neuritic plaque burden and vascular 

brain injury respectively, suggesting that these risk factors influence the development of 

neurodegenerative disease pathology.      
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Tables and Figures  

Table 1: GWAS datasets utilized in this study 
Study Trait Cohort/Consortium N Age Females (%) 
Exposures      

Liu et al 2019 Alcohol Consumption GSCAN; 23andMe 941,280 - - 

  Smoking Initiation GSCAN; 23andMe 1,232,091 - - 

  Cigarettes per Day GSCAN; 23andMe 337,334 - - 

Sanchez-Roige et al 2019 Alcohol Use Disorder Test UKBB; 23andMe 141,932 - - 

Wells et al 2019 Hearing Difficulty   UKBB 250,389 - - 

Xue et al 2018 Type 2 Diabetes DIAGRAM; UKBB; GERA 659,316 - - 

Yengo et al 2018 Body Mass Index UKBB; GIANT 690,495 - - 

Willer et al 2013 Total Cholesterol GLC 188,577 54.94 56.58 

  LDL Cholesterol      

  HDL Cholesterol      

  Triglycerides      

Evangelou et al 2018 Diastolic Blood Pressure UKBB; ICBP 757,601 - - 

  Systolic Blood Pressure      

  Pulse Pressure      

Howard et al 2019 Depression UKBB; PGC; deCODE; 

iPSYCH; GeneScotland; 

GERA; 23andMe 

807,553 - - 

Jansen et al 2018 Insomnia Symptoms UKBB; 23andMe 1,331,010 - - 

Dashti et al 2019 Sleep Duration UKBB 446,118 57.3 54.1 

Day et al 2018 Social Isolation UKBB 452,302 - - 

Lee et al 2018 Educational Attainment UKBB; SSGAC; 23andMe 1,131,881 63.8 54.7 

Klimentidis et al 2018 Moderate-Vigoures Physical 

Activity 

UKBB 377,234 - - 

Niarchou et al 2020 Meat-related diet UKBB 335,576 - 54% 

 Fish and plat related diet UKBB 335,576 - 54% 

Outcomes      

Lambert et al 2013 Late Onset Alzheimer’s disease IGAP 54,162 71 58.4 
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Kunkle et al 2019 Late Onset Alzheimer’s disease IGAP 63,926 72.6 58.5 

Huang et al 2017 Alzheimer’s Age of Onset Survival IGAP 40,255 77.5 60.35 

Deming et al 2017 CSF Aβ42 Knight-ADRC 3,146 71.8 49.57 

  CSF Ptau181      

  CSF Tau      

Hibar et al 2015 Hippocampal Volume ENIGMA 13,688 39.9 51.8 

Hibar et al 2017 Hippocampal Volume ENIGMA; CHARGE 26,814 54.3 55.3 

Grasby et al 2020 Cortical Surface Area ENIGMA 33,709 45.9 51.9 

 Cortical Thickness     

Beecham et al 2014 Neuritic Plaques ADGC 4,914 74.7 65.4 

  Neurofibrillary tangles      

  Vascular Brain Injury      

 
 
  

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

a
c
e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s
 n

o
t

th
is

 v
e
rs

io
n
 p

o
s
te

d
 M

a
y
 4

, 2
0
2
0
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/6

8
9
7
5
2

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2: Demographic characteristics of ADGC 

Variable Cases (n = 13,312) Controls (n = 13,119) 

Female  7,699 (57.8%) 7,785 (59.3%) 
APOE e4+ 7,690 (57.8%) 3,085 (23.5%) 
Age  73.4 (8.3) 76.6 (8.3) 
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Table 3: Association of polygenic risk scores for potentially modifiable risk factors on Alzheimer’s disease 

 Genome-Wide Significant Pt Best Pt 

Exposure  SNPs b (se) p fdr Pt SNPs b (se) p fdr 

Educational Attainment 424 -0.066 (0.014) 3.80E-06 8.40E-05 1.00E-04 797 -0.07 (0.014) 8.00E-07 1.80E-05 

Diastolic Blood Pressure 381 -0.03 (0.014) 0.032 0.354 0.001 863 -0.039 (0.014) 0.006 0.033 

AUDIT 10 0.028 (0.014) 0.05 0.363 5.00E-08 10 0.028 (0.014) 0.05 0.139 

Cigarettes per Day 39 -0.024 (0.014) 0.091 0.429 5.00E-08 39 -0.024 (0.014) 0.091 0.182 

Systolic Blood Pressure 392 -0.023 (0.014) 0.098 0.429 1.00E-06 475 -0.025 (0.014) 0.081 0.182 

Pulse Pressure 332 -0.022 (0.014) 0.124 0.456 5.00E-08 332 -0.022 (0.014) 0.124 0.228 

Meat related diet 20 -0.015 (0.014) 0.283 0.742 1.00E-06 48 -0.032 (0.014) 0.024 0.105 

Social Isolation 13 -0.014 (0.014) 0.309 0.742 0.01 858 0.028 (0.014) 0.047 0.139 

BMI 450 -0.013 (0.014) 0.352 0.742 5.00E-08 450 -0.013 (0.014) 0.352 0.462 

Depression 77 -0.013 (0.014) 0.357 0.742 5.00E-08 77 -0.013 (0.014) 0.357 0.462 

Low-density lipoproteins 72 0.012 (0.015) 0.404 0.742 0.001 306 0.028 (0.015) 0.05 0.139 

Smoking Initiation 307 -0.011 (0.014) 0.436 0.742 1.00E-06 419 -0.014 (0.014) 0.324 0.462 

Fish and plant related diet 41 0.009 (0.014) 0.504 0.742 1.00E-06 81 -0.012 (0.014) 0.402 0.491 

Hearing Difficulties 35 -0.009 (0.014) 0.504 0.742 1.00E-06 61 -0.024 (0.014) 0.083 0.182 

Insomnia Symptoms 139 0.009 (0.014) 0.536 0.742 1.00E-04 515 -0.009 (0.014) 0.528 0.555 

Alcohol Consumption 71 0.009 (0.014) 0.548 0.742 1.00E-06 123 0.018 (0.014) 0.2 0.338 

High-density lipoproteins 85 -0.008 (0.014) 0.573 0.742 0.4 1398 0.009 (0.014) 0.513 0.555 

Total Cholesterol 82 0.007 (0.014) 0.622 0.761 0.3 1344 0.045 (0.014) 0.002 0.02 

Sleep Duration 58 0.004 (0.014) 0.761 0.842 0.001 593 0.009 (0.014) 0.53 0.555 

Type 2 Diabetes 111 -0.004 (0.014) 0.783 0.842 1.00E-04 346 0.008 (0.014) 0.577 0.577 

Moderate-to-vigorous PA 18 0.004 (0.014) 0.804 0.842 1.00E-04 234 0.039 (0.014) 0.005 0.033 

Triglycerides 54 0.001 (0.014) 0.943 0.943 1.00E-05 105 0.018 (0.014) 0.215 0.338 
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Table 4: Causal association of potentially modifiable risk factors on Alzheimer’s disease and Alzheimer’s endophenotypes 
 
Exposure Pt SNPs Outliers IVW MR-

Egger 
WMBE WME MR-PRESSO 

Global 
MR-Egger 
Intercept 

    b (se) q-value b (se) b (se) b (se) p p 
LOAD           

Educational 

Attainment 5e-8 478 0 

-0.44 

(0.071) 2.09E-07 

-0.55 

(0.27)* 

-0.44 

(0.11)*** 

-0.43 

(0.37)  0.042 0.68 

AAOS           

Educational 

Attainment 5e-6 716 0 

-0.28 

(0.058) 8.51E-05 

-0.19 

(0.21)  

-0.31 

(0.096)** 

-0.28 

(0.26)  0.002 0.62 

Type 2 Diabetes 

5.00E-

06 218 0 

0.072 

(0.017) 0.001 

0.035 

(0.044)  

0.045 

(0.032)  

0.067 

(0.034). 5.00E-04 0.34 

Neuritic Plaques            

Low-density 

lipoproteins 5e-8 74 0 

0.7 

(0.19) 0.007 

0.67 

(0.32)* 

0.51 

(0.33)  

0.21 

(0.45)  0.253 0.91 

Total Cholesterol 
5e-6 122 0 

0.69 

(0.18) 0.006 

0.7 

(0.31)* 

0.8 

(0.31)** 

0.71 

(0.44)  0.857 0.95 

Vascular Brain Injury           

Diastolic Blood 

Pressure 5e-6 608 0 

0.073 

(0.017) 0.001 

0.1 

(0.041)* 

0.068 

(0.028)* 

0.022 

(0.054)  0.591 0.47 

Pulse Pressure 
5e-8 384 0 

0.058 

(0.017) 0.018 

0.14 

(0.045)** 

0.055 

(0.026)* 

0.033 

(0.068)  0.171 0.057 

Hippocampal Volume           

Total Cholesterol 
5e-6 125 0 

-0.065 

(0.02) 0.028 

-0.034 

(0.035)  

-0.084 

(0.034)* 

-0.061 

(0.031)* 0.106 0.26 

Cortical Surface Area           

AUDIT 5e-6 51 1 

5400 

(1400) 0.004 

-4800 

(9900)  

3400 

(2300)  

460 

(4100)  0.0094 0.3 

Educational 

Attainment 5e-6 707 3 

4900 

(440) 5.81E-26 

3200 

(1800). 

3100 

(690)*** 

350 

(3100)  <4e-05 0.32 

Type 2 Diabetes 5e-6 217 1 

-460 

(140) 0.016 

-410 

(400)  

-360 

(300)  

-340 

(310)  <1e-04 0.89 

Insomnia Symptoms 5e-6 375 4 

-4100 

(1300) 0.029 

-4900 

(8200)  

-2700 

(2000)  

700 

(5700)  0.00188 0.92 
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Cortical Thickness           

Smoking Initiation 5e-6 554 1 

-0.022 

(0.0065) 0.012 

-0.08 

(0.029)** 

-0.019 

(0.01). 

0.0083 

(0.028)  <4e-05 0.04 

Educational 

Attainment 5e-6 710 3 

0.011 

(0.0031) 0.01 

0.013 

(0.012)  

0.011 

(0.0051)* 

0.013 

(0.015)  <4e-05 0.87 

BMI 5e-6 694 1 

-0.0084 

(0.0022) 0.005 

-0.006 

(0.0067)  

-0.0078 

(0.0038)* 

-0.019 

(0.01). <4e-05 0.7 

Sleep Duration 5e-6 191 2 

0.016 

(0.0045) 0.01 

0.012 

(0.02)  

0.018 

(0.007)* 

0.036 

(0.018). 0.0039 0.83 
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Figure 1: Putative causal associations between modifiable risk factors and the AD phenome. Shown are the best IVW results for each causal 

association, with colors representing the standardized effect sizes - for LOAD, NP, NFT, and AAOS red indicates increased risk / earlier onset and 

blue reduced risk / delayed onset, for CSF levels and Hippocampal volume, red indicates increased levels/volume and blue reduced 

levels/volume. “.” FDR < 0.1; * FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001. Causal estimates bracketed in red or orange indicate significant 

causal effects that showed no evidence for horizontal pleiotropy or where sensitivity analyses were also significant.  

 
 

 

 

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

a
c
e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s
 n

o
t

th
is

 v
e
rs

io
n
 p

o
s
te

d
 M

a
y
 4

, 2
0
2
0
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/6

8
9
7
5
2

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgments  

SJA, BFH, EM and AMG were supported by the JPB Foundation (http://www.jpbfoundation.org) 

and by the National Institute of Health (U01AG052411 and U01AG058635; principal investigator 

Alison Goate). PFO was supported by funding from the UK Medical Research Council 

(MR/N015746/1) and the National Institute of Health (R01MH122866). Adam Naj was supported 

by funding from the National Institute of Aging (R01 AG054060 and RF1 AG061351). The 

funders had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. This analysis was possible due to the generous sharing of 

genome-wide association summary statistics. We would like to thank the research participants 

and employees of 23andMe for making this work possible. 

 

ADGC: The Alzheimer's Disease Genetics Consortium supported collection and genotyping of 

samples used in this study through National Institute on Aging (NIA) grants U01AG032984 and 

RC2AG036528. 

  

NCRAD: Samples from the National Centralized Repository for Alzheimer’s Disease and 

Related Dementias (NCRAD), which receives government support under a cooperative 

agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in 

this study. We thank contributors who collected samples used in this study, as well as patients 

and their families, whose help and participation made this work possible. 

  

NACC: The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are  

contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI 

Neil Kowall, MD), P30 AG062428-01 (PI James Leverenz, MD) P50 AG008702 (PI Scott Small, 

MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), 

P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P30 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

AG062421-01 (PI Bradley Hyman, MD, PhD), P30 AG062422-01 (PI Ronald Petersen, MD, 

PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 

AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI 

David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI 

Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P30 AG062429-01(PI James 

Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, 

MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), 

P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 

AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 

(PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P30 AG062715-01 (PI 

Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI 

Stephen Strittmatter, MD, PhD). 

  

NIAGADS: Data for this study were prepared, archived, and distributed by the National Institute 

on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania 

(U24 AG041689). 

  

 

Author Contributions 

SJA, AMG, PFO, BFH, EM contributed to the conception and design of the study. SJA, BFH, 

EM. contributed to the acquisition and analysis of data. SJA, AMG, PFO, BFH, EM. contributed 

to drafting a significant portion of the manuscript or figures.  LAF, JLH, RM, ACN, MAPV, GDS, 

LW contributed to the acquisition of data for the Alzheimer’s Disease Genetics Consortium.   

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Potential Conflicts of Interest  

AMG served on the scientific advisory board for Denali Therapeutics from 2015-2018. She has 

also served as a consultant for Biogen, AbbVie, Pfizer, GSK, Eisai and Illumina. SJA, BFH, EM 

and PO have no conflicts of interest to declare.  

 

Data Availability  

This study used published summary results from published research papers, with the references 

for those studies provided in the main paper. Supplementary Table 1 provides the harmonized 

SNP effects needed to reproduce the results of this analysis.  

 

Supplementary Data  

Supplementary Table 1: Harmonized SNP effects across exposures - outcomes  

Supplementary Table 2: Mendelian Randomization results  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References 
 

1. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 2020;16(3):391–460. 

2. Anstey KJ, Ee N, Eramudugolla R, et al. A Systematic Review of Meta-Analyses that 
Evaluate Risk Factors for Dementia to Evaluate the Quantity, Quality, and Global 
Representativeness of Evidence. J Alzheimer’s Dis Jad 2019;1–21. 

3. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. 
Lancet 2017;390(10113):2673–2734. 

4. Richardson TG, Harrison S, Hemani G, Smith GD. An atlas of polygenic risk score 
associations to highlight putative causal relationships across the human phenome. Elife 
2019;8:e43657. 

5. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal 
inference across the human phenome. Elife 2018;7:e34408. 

6. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new 
insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2019;51(2):237–244. 

7. Sanchez-Roige S, Palmer AA, Fontanillas P, et al. Genome-Wide Association Study Meta-
Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based 
Cohorts. Am J Psychiat 2019;176(2):107–118. 

8. Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide association study of habitual 
physical activity in over 377,000 UK Biobank participants identifies multiple variants including 
CADM2 and APOE. Int J Obes 2005 2018;42(6):1161–1176. 

9. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with 
lipid levels. Nat Genet 2013;45(11):1274–83. 

10. Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million 
people identifies 535 new loci associated with blood pressure traits. Nat Genet 
2018;50(10):1412–1425. 

11. Xue A, Wu Y, Zhu Z, et al. Genome-wide association analyses identify 143 risk variants and 
putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018;9(1):2941. 

12. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies 
for height and body mass index in �700000 individuals of European ancestry. Hum Mol Genet 
2018;27(20):3641–3649. 

13. Niarchou M, Byrne EM, Trzaskowski M, et al. Genome-wide association study of dietary 
intake in the UK biobank study and its associations with schizophrenia and other traits. Transl 
Psychiat 2020;10(1):51. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14. Howard DM, Adams MJ, Clarke T-K, et al. Genome-wide meta-analysis of depression 
identifies 102 independent variants and highlights the importance of the prefrontal brain regions. 
Nat Neurosci 2019;22(3):343–352. 

15. Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010 
individuals identifies new risk loci and functional pathways. Nat Genet 2019;51(3):394–403. 

16. Dashti HS, Jones SE, Wood AR, et al. Genome-wide association study identifies genetic loci 
for self-reported habitual sleep duration supported by accelerometer-derived estimates. 2019; 

17. Day FR, Ong KK, Perry JRB. Elucidating the genetic basis of social interaction and isolation. 
Nat Commun 2018;9(1):2457. 

18. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-
wide association study of educational attainment in 1.1 million individuals. Nat Genet 
2018;50(8):1112–1121. 

19. Wells HRR, Freidin MB, Abidin FNZ, et al. GWAS Identifies 44 Independent Associated 
Genomic Loci for Self-Reported Adult Hearing Difficulty in UK Biobank. Am J Hum Genetics 
2019;105(4):788–802. 

20. Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s 
disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 
2019;51(3):414–430. 

21. Huang K-L, Marcora E, Pimenova AA, et al. A common haplotype lowers PU.1 expression in 
myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 2017;20(8):1052–1061. 

22. Deming Y, Li Z, Kapoor M, et al. Genome-wide association study identifies four novel loci 
associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol 
2017;133(5):839–856. 

23. Hibar DP, Adams HHH, Jahanshad N, et al. Novel genetic loci associated with hippocampal 
volume. Nat Commun 2017;8(1):13624. 

24. Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral 
cortex. Science 2020;367(6484):eaay6690. 

25. Beecham GW, Hamilton K, Naj AC, et al. Genome-Wide Association Meta-analysis of 
Neuropathologic Features of Alzheimer’s Disease and Related Dementias. Plos Genet 
2014;10(9):e1004606. 

26. Lambert J-C, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals 
identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;45(12):1452–1458. 

27. Hibar DP, Stein JL, Renteria ME, et al. Common genetic variants influence human 
subcortical brain structures. Nature 2015;520(7546):224–229. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28. Kent WJ, Sugnet CW, Furey TS, et al. The Human Genome Browser at UCSC. Genome 
Res 2002;12(6):996–1006. 

29. Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 
and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011;43(5):436–
441. 

30. Manichaikul A, Mychaleckyj JC, Rich SS, et al. Robust relationship inference in genome-
wide association studies. Bioinformatics 2010;26(22):2867–2873. 

31. Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry 
prediction and correction of stratification in the presence of relatedness. Genet Epidemiol 
2015;39(4):276–93. 

32. Purcell S, Neale B, Todd-Brown K, et al. PLINK: A Tool Set for Whole-Genome Association 
and Population-Based Linkage Analyses. Am J Hum Genetics 2007;81(3):559–575. 

33. Consortium HR, McCarthy S, Das S, et al. A reference panel of 64,976 haplotypes for 
genotype imputation. Nat Genet 2016;48(10):ng.3643. 

34. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. 
Gigascience 2019;8(7) 

35. Shim H, Chasman DI, Smith JD, et al. A multivariate genome-wide association analysis of 
10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. Plos One 
2015;10(4):e0120758. 

36. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in 
Mendelian randomization studies. Int J Epidemiol 2011;40(3):755–764. 

37. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in 
causal relationships inferred from Mendelian randomization between complex traits and 
diseases. Nat Genet 2018;50(5):693–698. 

38. Storey JD. A direct approach to false discovery rates. J Royal Statistical Soc Ser B 
Statistical Methodol 2002;64(3):479–498. 

39. Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian 
randomization studies. Int J Epidemiol 2013;42(5):1497–501. 

40. Koster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. 
Bioinformatics 2012;28(19):2520–2522. 

41. Kivimäki M, Singh-Manoux A, Pentti J, et al. Physical inactivity, cardiometabolic disease, 
and risk of dementia: an individual-participant meta-analysis. Bmj Clin Res Ed 2019;365:l1495. 

42. Korologou-Linden R, Anderson EL, Howe LD, et al. The causes and consequences of 
Alzheimer’s disease: A Mendelian randomization analysis. Medrxiv 2019;2019.12.18.19013847. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43. Larsson SC, Traylor M, Malik R, et al. Modifiable pathways in Alzheimer’s disease: 
Mendelian randomisation analysis. Bmj 2017;359:j5375. 

44. Østergaard SD, Mukherjee S, Sharp SJ, et al. Associations between Potentially Modifiable 
Risk Factors and Alzheimer Disease: A Mendelian Randomization Study. Plos Med 
2015;12(6):e1001841; discussion e1001841. 

45. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 
2-sample instrumental variable estimators. Am J Epidemiol 2013;178(7):1177–84. 

46. Hemani G, Bowden J, Smith GD. Evaluating the potential role of pleiotropy in Mendelian 
randomization studies. Hum Mol Genet 2018;27(R2):R195–R208. 

47. Gkatzionis A, Burgess S. Contextualizing selection bias in Mendelian randomization: how 
bad is it likely to be? Int J Epidemiol 2018; 

 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2020. ; https://doi.org/10.1101/689752doi: bioRxiv preprint 

https://doi.org/10.1101/689752
http://creativecommons.org/licenses/by-nc-nd/4.0/



