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Introduction

Introduction

Data Replication - a technique for fault tolerance in distributed systems

Reduces access latency in the cloud and geo-replicated systems.

Consistency of data - a core issue in the distributed shared memory

Consistency Models
Represent a trade-off (cost V.S. convenient semantics)

linearizability (the strongest)

sequential consistency

causal consistency [1]

pipelined RAM

slow memory

eventual consistency (the weakest)

Industry interest

For example, Google, Amazon, Microsoft, Facebook, LinkedIn
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Introduction

Geo-Replicated Cloud Storage Features

CAP theorem (Brewer , 2000)� cannot provide all 3 features in the same
system

Consistency of Replicas

Availability of Writes

Partition Tolerance

low Latency

high Scalability
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Introduction

Related Works

Causal consistency in distributed shared memory systems (Ahamad et

al.)

Causal consistency has been studied (by Baldoni et al., Mahajan et al.,

Belaramani et al., Petersen et al.).

In the past four years,

ChainReaction (S. Almeida et al.)

Bolt-on causal consistency (P. Bailis et al.)

Orbe and GentleRain (J. Du et al.)

Wide-Area Replicated Storage (K. Lady et al.)

COPS, Eiger (W. Lloyd et al.)

The above works assume full replication.
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Introduction

Partial Replication

Figure : Case for Partial Replication.
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Introduction

Case for Partial Replication

Partial replication is more natural for some applications. As shown in the
previous case, ...

With p replicas places at some p of the total of n DCs, each write

operation that would have triggered an update broadcast to the n DCs

now becomes a multicast to just p of the n DCs.

For write-intensive workloads, partial replication gives a direct savings in

the number of messages.

Allowing flexibility in the number of DCs required in causally consistent

replication remains an interesting aspect of future work.

The supposedly higher cost of tracking dependency metadata is relatively

small for applications such as Facebook.
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System Model

System Model

A system with n application processes - ap1, ap2,...,apn - interacting

through a shared memory Q composed of q variables x1,x2,...,xq

Each api can perform either a read or a write operation on any of the q

variables.

ri(xj )v : a read operation performed by api on variable xj which returns

value v

wi(xj )v : a write operation performed by api on variable xj which writes

value v

Each variable has an initial value ?.

local history hi : a series of read and write operations generated by

process api

global history H : the set of local histories hi from all n application

processes
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System Model

Causally Consistent Memory [1]

Program Order : under which a local operation o1 precedes another

operation o2, denoted as o1 �po o2

Read-from Order : there are variable x and value v such that read

operation o2 = r (x )v retrieves the value v written by the write

operation o1 = w(x )v from a distinct process, denoted as o1 �ro o2

for any operation o2, there is at most one operation o1 such that o1 �ro o2

if o2 = r (x )v for some x and no operation o1 such that o1 �ro o2, then

v =?

Causality Order : for two operations o1 and o2 in OH , o1 �co o2 if and
only if one of the following conditions holds:

9api s.t. o1 �po o2 (program order)

9api , apj s.t. o1 �ro o2 (read-from order)

9o3 2 OH s.t. o1 �co o3 and o3 �co o2 (transitive closure)
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System Model

Underlying Distributed Communication System

The shared memory abstraction and its causal consistency model is

implemented on top of the distributed message passing system.

With n sites (connected by FIFO channels), each site si hosts an

application process api and holds only a subset of variables xh 2 Q.

When an application process api performs a write operation w(x1)v , it

invokes the Multicast(m) to deliver the message m containing w(x1)v

to all sites replicating x1.

When an application process api performs a read operation r (x2)v , it

invokes the RemoteFetch(m) to deliver the message m containing

r (x2)v to a pre-designated site replicating x2 to fetch its value.
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System Model

Events Generated at Each Site

Send event. Multicast(m) by api generates event sendi (m).

Fetch event. RemoteFetch(m) by api generates event fetchi(m).

Message receipt event. The receipt of a message m at site si generates

event receipti (m).

Apply event. Applying the value written by wj (xh )v to xh ’s local replica

at api , an event applyi(wj (xh )v ) is generated.

Remote return event. After the occurrence of receipti (m) corresponding

to the remote rj (xh )u performed by apj , an event

remote_returni(rj (xh )u) is generated to transmit xh ’s value u to site sj .

Return event. Event returni(xh ; v ) corresponding to the return of xh ’s

value v either through a previous fetchi (f ) event or read from the local

replica.
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System Model

Activation Predicate

Baldoni et al. [2] defined a new relation, !co , on send events.

Let w(x )a and w(y)b be two write operations in OH . For their
corresponding send events, sendi (mw(x)a) !co sendj (mw(y)b) iff one of
the following conditions holds:

1 i = j and sendi(mw(x)a) locally precedes sendj (mw(y)b)

2 i 6= j and returnj (x ; a) locally precedes sendj (mw(y)b)

3
9sendk (mw(z)c), s.t. sendi (mw(x)a) !co sendk (mw(z)c) !co sendj (mw(y)b)

!co � ! (Lamport’s happened before relation)

With the !co relation, an optimal activation predicate is shown:

AOPT (mw ; e) � �mw 0

: (sendj (m
0

w ) !co sendk (mw ) ^ applyi(w
0

) =2 Ei je)

(1)

It is optimal because the moment this AOPT (mw ; e) becomes true is the

earliest instant that the update mw can be applied.
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Algorithms

Algorithms

Two algorithms implement causal consistency in a partially replicated
distributed shared memory system.

Full-Track

Opt-Track (a message and space optimal algorithm)

Adopt the optimal activation predicate AOPT

A special case of Opt-Track - for full replication.

Opt-Track-CRP (optimal) : a lower message size, time, space complexity

than the Baldoni et al. algorithm [2]
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

Algorithm 1 is for a non-fully replicated system.

Each application process performing write operation will only write to a

subset of all the sites.

Each site si needs to track the number of write operations performed by

every apj to every site sk , denoted as Writei [j ℄[k ℄.

the Write clock piggybacked with messages generated by the
Multicast(m) should not be merged with the local Write clock at the
message reception, but only at a later read operation reading the value
that comes with the message.

optimal in terms of the activation predicate
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

Data structures
1 Writei - the Wrtie clock

Writei [j ; k ℄ : the number of updates sent by application process apj to site

sk that causally happened before under the !co relation.
2 Applyi - an array of integers

Applyi [j ℄ : the total number of updates written by application process apj

that have been applied at site si .
3 LastWriteOnihvariable id, Writei - a hash map of Write clocks

LastWriteOnihhi : the Write clock value associated with the last write

operation on variable xh locally replicated at site si .
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

The activation predicate AOPT is implemented.
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Each message corresponding to a write operation piggybacks an O(n2
)

matrix in Algorithm 1.

Algorithm 2 further reduces the message size and storage cost.

Exploits the transitive dependency of causal deliveries of messages as given

by the KS algorithm [3][4]

Each site keeps a record of the most recently received message from each
other site (along with the list of destinations of the message).

optimal in terms of the activation predicate

optimal in terms of log space and message space overhead

achieve another optimality that no redundant destination information is

recorded.
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Algorithms Opt-Track Algorithm: partially replicated memory

Two Situations for Destination Information to be
Redundant

Figure : s2 is a destination of M . The causal future of the relevant message delivery

events are shown in dotted lines.
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Algorithms Opt-Track Algorithm: partially replicated memory

Two Situations for Destination Information to be
Redundant

Figure : s2 is a destination of m . The causal future of the relevant apply and return

events are shown in dotted lines.
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Algorithms Opt-Track Algorithm: partially replicated memory

If the Destination List Becomes ;, then ...

Figure : Illustration of why it is important to keep a record even if its destination

list becomes empty.
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Data Structures
1 clocki

local counter at site si for write operations performed by application

process api .
2 Applyi - an array of integers

Applyi [j ℄ : the total number of updates written by application process apj

that have been applied at site si .
3 LOGi = fhj ; clockj ; Destsig - the local log

Each entry indicates a write operation in the causal past.
4 LastWriteOnihvariable id, LOGi - a hash map of LOGs

LastWriteOnihhi : the piggybacked LOG from the most recent update

applied at site si for locally replicated variable xh .
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Figure : Write process at site si
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Figure : Read, receiving processes at site si
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Algorithms Opt-Track Algorithm: partially replicated memory

Procedures used in Opt-Track

Figure : PURGE and MERGE functions at site si
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Algorithms Opt-Track-CRP: fully replicated memory

Algorithm 3: Opt-Track-CRP

Special case of Algorithm 2 Opt-Track for full replication.

Same optimizations as for Algorithm Opt-Track.

Since in the full replication case, every write operation will be sent to

exactly the same set of sites, there is no need to keep a list of the

destination information with each write operation.

Each time a write operation is sent, all the write operations it

piggybacks as its dependency will share the same set of destinations as

the one being sent, thus their destination list will be pruned.

When a write operation is received, all the write operations it

piggybacks also have the receiver as part of their destination.

We represent each individual write operation using only a 2-tuple

hi ; clocki i at site si .

the cost of a write operation from O(n) down to O(1).
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Algorithms Opt-Track-CRP: fully replicated memory

Further Improved Scalability

In Algorithm 2, keeping entries with empty destination list is important.

In the fully replicated case, we can also decrease this cost.

Figure : In fully replicated systems, the local log will be reset after each write

operation.
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Algorithms Opt-Track-CRP: fully replicated memory

Algorithm 3: Opt-Track-CRP

Figure : There is no need to maintain the destination list for each write operation in

the local log.
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Complexity measures of causal memory algorithms

Parameters

n : the number of sites in the system

q : the number of variables in the distributed shared memory system

p: the replication factor, i.e., the number of sites where each variable is

replicated

w : the number of write operations performed in the distributed shared

memory system

r : the number of read operations performed in the distributed shared

memory system

d : the number of write operations stored in local log (used only in

Opt-Track-CRP algorithm)
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Complexity measures of causal memory algorithms

Complexity

Figure : Complexity measures of causal memory algorithms for fully-replicated

memory. OptP : Optimal propagation-based protocol proposed by Baldoni et al. [2].
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Complexity measures of causal memory algorithms

Comparisons

Compared with OptP , our algorithms also adopt the optimal activation

predicate AOPT but incur a lower cost in the message size, space, and

time (for read and write operations) complexities.

Compared with other causal consistency algorithms, our algorithms have

the additional ability to implement causal consistency in partially

replicated distributed shared memory systems.

Our algorithms provide scalability without using a form of log

serialization and exchange to implement causal consistency.
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Complexity measures of causal memory algorithms

The Benefit of Partial Replication V.S. Full
Replication

Reduces the number of messages sent with each write operation. The

overall number of messages can be lower if the replication factor is low

and readers tend to read variables from the local replica instead of

remote one (e.g., Hadoop HDFS and MapReduce).

Also reduces the total size of messages transmitted with the system

(Consider the size of the data that is actually being replicated). Modern

social multimedia networks are such examples.

Decreases the cost brought by full replication in the write-intensive

workload.

Min Shen, Ajay D. Kshemkalyani, TaYuan Hsu University of Illinois at ChicagoCausal Consistency for Geo-Replicated Cloud Storage under Partial Replication32 / 46



Complexity measures of causal memory algorithms

Message Count as a Function of wrate

Message count is the most important metric.

Partial replication gives a lower message count than full replication if

pw + 2r
(n � p)

n
< nw ) w > 2

r

n
(2)

wrate =
w

w + r
) wrate >

2

2+ n
(3)
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Complexity measures of causal memory algorithms

Partial Replication versus Full Replication

Figure : The graph illustrates message count for partial replication vs. full

replication, by plotting message count as a function of wrate .

Min Shen, Ajay D. Kshemkalyani, TaYuan Hsu University of Illinois at ChicagoCausal Consistency for Geo-Replicated Cloud Storage under Partial Replication34 / 46



Complexity measures of causal memory algorithms

Simulation Parameters of KS algorithm

n : Number of processes

MIMT - Mean intermessage time : the average period of time between

two message sending events at any process

M/T - Multicast frequency : the ratio of the number of send events at

which data is multicast to more than one process (M) to the total

number of message send events (T)

MTT - Mean transmission time : the transmission time of a message

usually refers to the message size/bandwidth+propagation delay.

B/T : the fraction of send events that broadcast messages

Baseline is n2 matrix size of RST algorithm.
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Complexity measures of causal memory algorithms

Average message space overhead as a function of n

Figure : The simulations were performed for (MTT, MIMT, M/T).
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Complexity measures of causal memory algorithms

Average Message Space Overhead as a Function of MTT

Figure : The simulations were performed for (MIMT, M/T, n).
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Complexity measures of causal memory algorithms

Average Message Space Overhead as a Function of MIMT

Figure : The simulations were performed for (MTT, M/T,n).
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Complexity measures of causal memory algorithms

Average Message Space Overhead as a Function of M=T

Figure : The simulations were performed for (MTT, MIMT, n).
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Complexity measures of causal memory algorithms

Average Message Space Overhead as a Function of jDestsj=n

Figure : The simulations were performed for (MTT, MIMT, n).
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Complexity measures of causal memory algorithms

Average Message Space Overhead as a Function of B=T

Figure : The simulations were performed for (MTT, MIMT, n).
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Conclusion

Future Work

For some applications where the data size is small (e.g, wall posts in
Facebook), the size of the meta-data can be a problem.

quadratic in n in the worst case, even for Algorithm Opt-Track

Future work aims to reduce the size of the meta-data for maintaining

causal consistency in partially replicated systems.
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Conclusion

Notion of Credits

Figure : Reduce the meta-data at the cost of some possible violations of causal

consistency. The amount of violations can be made arbitrarily small by controlling a

tunable parameter (credit).
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Conclusion

Instantiation of Credits

Integrate the notion of credits into the Opt-Track algorithm, to give an

algorithm that can fine-tune the amount of causal consistency by trading

off the size of meta-data overhead.

Give three instantiations of the notion of credits (hop count,

time-to-live, and metric distance)
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Conclusion

Conclusions

A suite of algorithms implementing causal consistency in large-scale

geo-replicated storage under partial replication.

For the partially replicated scenario, adopted the optimal activation
predicate in the sense that each update is applied at the earliest instant
while removing false causality:

Full-Track Algorithm

The second algorithm further minimizes the size of meta-information
carried on messages and stored in local logs.

Opt-Track Algorithm: partially replicated scenario

Provides less overhead (transmission and storage) than the full replication

case.

A derived optimized algorithm of the second one reduces the message
overhead, the processing time, and the local storage cost at each
site in the fully replicated scenario.

Opt-Track-CRP Algorithm
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