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Abstract

A number of approaches to causal discovery assume that
there are no hidden confounders and are designed to learn
a fixed causal model from a single data set. Over the last
decade, with closer cooperation across laboratories, we are
able to accumulate more variables and data for analysis, while
each lab may only measure a subset of them, due to technical
constraints or to save time and cost. This raises a question of
how to handle causal discovery from multiple data sets with
non-identical variable sets, and at the same time, it would
be interesting to see how more recorded variables can help
to mitigate the confounding problem. In this paper, we pro-
pose a principled method to uniquely identify causal relation-
ships over the integrated set of variables from multiple data
sets, in linear, non-Gaussian cases. The proposed method also
allows distribution shifts across data sets. Theoretically, we
show that the causal structure over the integrated set of vari-
ables is identifiable under testable conditions. Furthermore,
we present two types of approaches to parameter estimation:
one is based on maximum likelihood, and the other is like-
lihood free and leverages generative adversarial nets to im-
prove scalability of the estimation procedure. Experimental
results on various synthetic and real-world data sets are pre-
sented to demonstrate the efficacy of our methods.

1 Introduction

Learning causal relationships is one of the fundamental tasks
in scientific developments. As it is often difficult to carry
out randomized experiments, inferring causal relations from
purely observational data, known as causal discovery, has
drawn much attention. Most approaches in causal discovery
are designed to learn causal relationships from a single data
set generated by a fixed causal model, and they often assume
that there are no hidden confounders (Spirtes, Glymour, and
Scheines 1993; Heckerman, Geiger, and Chickering 1995;
Shimizu et al. 2006; Zhang and Hyvirinen 2009), with sev-
eral exceptions. Dealing with the confounding problem is
challenging—much effort has been made, but existing meth-
ods usually resort to rather strong assumptions (e.g., graph
structure constraints over observed variables or latent vari-
ables), and the estimated graphs usually have large indeter-
minacies (Spirtes, Glymour, and Scheines 1993; R. Silva and
Spirtes 2006; Hoyer et al. 2008; Anandkumar et al. 2013).
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Over the last decade, thanks to the improved ability to
collect and store “big data” and closer cooperation across
laboratories, we are able to accumulate more variables and
data for analysis, while each lab may only measure a subset
of them. For instance, in biology, to understand the gene ex-
pression process, each researcher or each lab is responsible
for measuring a part of the genes or proteins. In electrophys-
iology, in each experiment, an electrode might only record
activities generated by one or several nearby neurons, and it
impedes recording and analyzing information flows between
distinct areas. A solution is to record a subset of target areas
in each experiment and repeat the experiments several times.

Thus, it is desirable to perform causal discovery from
multiple data sets with non-identical sets of variables. A typ-
ical proposal to solve the problem is to analyze each data
set separately and then integrate the results. However, this
procedure may again suffer the confounding problem due to
missing variables in each data set. In addition, it ignores the
information shared by different data sets and may suffer low
statistical reliability, especially when the sample size from
each data set is small while the data dimension is high.

Several approaches have been proposed to dealing with
the above scenario, such as the Integration of Overlapping
Networks (ION) algorithm (Danks, Glymour, and Tillman
2009) and Causal discovery from Overlapping INtErven-
tions (COmbINE) (Triantafillou and Tsamardinos 2015).
They use conditional independence information to find a
partial ancestral graph (PAG) on each data set independently
and then search for PAGs over the integrated set of variables
that are consistent with the input PAGs from all data sets.
With this line of approaches, the final causal graph over the
integrated set of variables is generally not unique and usu-
ally has large indeterminacies. Moreover, statistical ineffi-
ciency may affect the estimation of individual PAGs, espe-
cially in the case when the sample sizes of some data sets
are small, and further affect the accuracy of final results.

In this paper, we focus on the linear, non-Gaussian case,
where the causal relations are linear and noise variables are
non-Gaussian. Interestingly, in this case, we are able to de-
velop a principled method to uniquely identify causal rela-
tionships over the integrated set of variables from multiple
data sets, called Causal Discovery from Multiple data sets
with Non-identical variables (CD-MiNi). It also allows dis-
tribution shifts across data sets (some approaches can handle



distribution shifts, but they assume the same variable sets
across data sets (Zhang et al. 2017; Ghassami et al. 2018;
Huang et al. 2019a; 2019b)). Our main contributions are as
follows:
e To the best of our knowledge, the proposed CD-MiNi is
the first that can identify the entire directed acyclic causal
structure from non-identical sets of variables.
We show the theoretical identifiability of the causal struc-
ture under testable conditions.
We present two practical estimation approaches. One ex-
ploits the Expectation-Maximization (EM) algorithm to
maximize the likelihood. The other adopts generative ad-
versarial nets, which is likelihood free and improves scala-
bility of the algorithm.
We further extend our approach to confounding cases,
where the integrated set of variables is not causally suffi-
cient (i.e., some direct common causes of two variables in
this set are not in the set), and to cyclic cases.

2 Motivation and Related Work

Identification of causal relationships from observational data
is attractive for the reason that traditional randomized ex-
periments may be hard or even impossible to do. Over the
past decades, prominent progress has been made in this
area. Constraint-based and score-based methods make use
of conditional independence constraints to find causal skele-
ton and determine orientations up to the Markov equivalence
class (Spirtes, Glymour, and Scheines 1993; Heckerman,
Geiger, and Chickering 1995; Meek 1997; Chickering 2003;
Huang et al. 2018). It was later shown that with functional
causal model-based approaches, it is possible to recover the
whole causal graph under certain constraints on the func-
tional class of causal mechanisms, by making use of asym-
metries between causal and anti-causal directions. For ex-
ample, in the case of linear causal relationships, the non-
Gaussianity of noise terms helps to identify the causal direc-
tion; in the causal direction, the noise term is independent
of hypothetical causes, while independence does not hold
in the anti-causal direction. The linear non-Gaussian acyclic
model (LINGAM) (Shimizu et al. 2006) uses this property
for causal discovery.

The above approaches are designed to do causal discov-
ery from a single data set generated by a fixed causal model.
In many cases, we aim to learn the causal model over the
complete set of variables from multiple data sets, each of
which records only a subset of variables. To handle this case,
several approaches have been proposed. ION (Danks 2005;
Danks, Glymour, and Tillman 2009) is the first algorithm
proposed to do causal discovery in such cases. It first learns
a PAG from each data set independently, by using constraint-
based FCI (Spirtes, Glymour, and Scheines 1993) or score-
based greedy equivalence search (Chickering 2003) with la-
tent variable post-processing steps. Then the learned set of
PAGs are input to an integration procedure, to learn PAGs
over the integrated set of variables, which are consistent (i.e.,
with the same d-separation and d-connection relations) with
the input graphs from individual data sets. The output of
ION may contain multiple PAGs. Moreover, in practice with
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finite samples, the structures integrated may entail contra-
dictory conditional independences and dependences.

COmbINE (Triantafillou and Tsamardinos 2015) and
SAT-based causal discovery approaches (Hyttinen et al.
2013; Hyttinen, Eberhardt, and Hoyer 2012; Hyttinen, Eber-
hardt, and Jarvisalo 2014; Tillman and Eberhardt 2014;
Rantanen, Hyttinen, and Jirvisalo 2018; Zhang et al. 2019)
use a similar idea to ION, with the difference that they con-
vert all constraints to SAT solvers, which are usually more
efficient. The Multiple model Causal Inference (MCI) algo-
rithm (Claassen and Heskes 2010) takes into account the
variability of causal structures across experiments. The In-
tegration of Overlapping Datasets (IOD) algorithm (Till-
man and Spirtes 2011) learns equivalence classes directly
from multiple datasets to avoid potential conflicts. Wang and
Glymour (2019) further leveraged trek rules for better in-
tegration. Unfortunately, generally, this line of approaches
may result in large indeterminacies in the estimated graph
over the integrated set of variables, as noticed in Spirtes et
al. (2010).

Figure 1 gives an illustration of such indeterminacies in
the estimation results. Suppose there are two data sets. On
data set 1, we observed x,, x3, and x4, and on data set 2,
we observed xj, x3, and x4. Figure 1(a) gives the true causal
structure over the four integrated variables. Figure 1(b1) and
(b2) show the learned PAGs with FCI in the ideal case (with
no statistical error) from data sets 1 and 2, respectively. Fig-
ure 1(c1)-(c8) are the output PAGs with ION, using Figure
1(bl) and (b2) as input. ION gives us 8 candidate PAGs.
Even if excluding bidirected edges, there are still 5 possi-
bilities. Hence, from the results, we can only determine that
there are causal edges between x; and x3, and between x;
and x4. We cannot be certain of the existence of other edges,
let alone causal directions.

In contrast, we develop an approach which avoids such
indeterminacies in the estimation results. The proposed CD-
MiNi can uniquely identify the entire causal graph over the
integrated set of variables.

3 Causal Model for Non-Identical Sets of

Variables
Suppose we have data collected from M data sets. Let X™
(m =1,---,M) be the set of variables measured in the m-

th data set, with the number of variables |[X"| = d,,. Each
data set may contain different sets of variables but partially
overlaps with each other. Let X be the union of variables

M

from all M data sets: X = |J X", with d variables in total.
m=1

We assume that the causal graph over X is a directed

acyclic graph (DAG), and that each variable x; € X (i

1,---,d) satisfies the following data generating process
X; = Zbinj+€i, (1)
JEPi

where variable x; € X is the direct cause of x;, b;; represents
causal coefficient from x; to x;, and P; is the index set of
the direct causes of x;. The noise term ¢; is non-Gaussian
distributed and is independent of the parents of x;. We allow



(c6)

(c7)

Figure 1: An example to illustrate that current approaches
(e.g., ION) may introduce large indeterminacies in the
causal graph over the integrated set of variables. (a) Ground
truth. (b1)-(b2) Oracle PAGs from two data sets. (c1)-(c8)
Output PAGs over the integrated set of variables.

that the noise distribution p(e;) varies across data sets, but
the causal coeflicient b;;, for any i and j, is fixed. Note that in
the individual data set, some x;’s are not observable, because
the variable sets are not identical across data sets.

Denote by B the dxd causal adjacency matrix with entries
b;j. We can reorganize Eq. (1) into the matrix form:

X=(U-B""E, (2)

where X = (x1,-++ ,x5), E=(ey, - ,eq) ,and Iisad xd
identity matrix. Let A = (1 — B)’l, and then X = AE.

Let I" = (I7",--- ,1I]) be a 0-1 binary vector indicating
the measured variables in the m-th data set; i.e., I'" = 1 if
and only if variable i is measured in the m-th data set. Fur-
thermore, let 7 = diag(/™), i.e., a diagonal matrix with /"
on its diagonal. Then the m-th data set satisfies

XITI e AmEm — g(ImA)EIn’

3

where A = g(I™A) is a d,,xd submatrix of A, with g remov-
ing all zero rows from matrix 7™A, and E" = (e, - -, efi”)T.
To remove g in the formula, equivalently, we fill in zero
values to those missing variables in the m-th data set. Denote
the m-th variable set after filling in zero values by X", and

then it becomes:
X" = I"AE™,

form=1,---,M. 4

Remark: Note that with the representation in Eq. (4),
we can leverage all data sets to estimate A in one step, in-
stead of separately estimating A” from the m-th data set, for
m=1,---, M, and then concatenating A™’s to derive A. The
advantages that our representation enjoys are mainly two-
fold:

1. Directly estimating A from all data sets improves compu-
tational efficiency. If we estimate each A™ separately, we
need to run the estimation procedure M times (although
they can be done in parallel), and furthermore, we need to
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find appropriate ordering and scaling of A™’s to derive A.
Matching the rows in two A™’s is in principle a combina-
torial problem.

. Directly estimating the whole matrix of A also improves
statistical efficiency. In the case where the sample size
of individual data set is small, if we consider each data
set separately, the estimation error of A™ may be large.
Moreover, due to estimation errors, it may be hard to find
appropriate ordering and scaling of A™’s to derive A. In-
stead, if we estimate A from all M data sets directly, we
make use of the information shared across data sets to im-
prove statistical efficiency. Furthermore, by estimating A
in one step, it avoids possible conflicts during integration.
The detailed estimation procedure will be introduced in

Section 5. In the next section, we show that the causal struc-

ture over X is identifiable under verifiable conditions.

4 Identifiability Conditions

Suppose the underlying causal graph over X is acyclic and
that the variable set X is causally sufficient. In this section,
we show that the causal model for non-identical variable
sets, given in Eq. (3) or (4), is identifiable under verifiable
conditions. Before moving forward, we first give the identifi-
ability condition of independent component analysis (ICA).

Theorem 1 (Identifiability of ICA (Comon 1994, Eriksson
and Koivunen 2004)). Let X be observed variables, satisfy-
ing X = AS, with sources in S being independent of each
other. Then the mixing matrix A can be identified up to scal-
ing and column permutation, if one of the following two con-
ditions is satisfied:

1. There is no Gaussian source in S.

2. Ais full column rank and at most one source is Gaussian.

Because the noise terms in Eq. (3) are independent of each
other, and |E™| > |X"|, Eq. (3) satisfies the over-complete
ICA model. For over-complete ICA, where the number of
observed variables is smaller than that of sources, condition
2 is not satisfied, and thus to achieve identifiability, a natural
way is to assume that there is no Gaussian source in S'.

Let m; and m, be two data sets, and let X; = X™ N X2,
where i is the index of overlapping variables of m; and my.
‘We make the following assumption on the mixing matrix A.

Assumption 1. For any two overlapping data sets m, and
my with the number of overlapping variables |i| > 2, there
exist two different iy, iy € i, so that a;, ja;,x # a;xa;,j, for any
J # k, where a;,;, a;,;, a; 1, and a;,; are entries in A.

This assumption removes ambiguity when integrating dif-
ferent data sets. The validity of the assumption can be
checked after identifying A. Now we are ready to give iden-
tifiability conditions of causal relations, which are stated in
Theorem 2.

Theorem 2. Suppose X satisfies the generating process in

Eq. (1). Under Assumption 1, the causal graph over X is

identifiable, if the collected data sets satisfy the following

conditions:

1. for any data set i, there exists another data set j which
has at least two overlapping variables with i;

2. all noises are non-Gaussian.



Below, we give a sketch of the proof. For complete proofs
of theoretical results in the paper, please refer to the supple-
mentary material.

Proof Sketch. According to the identifiability of over-
complete ICA, if Condition 2 holds, Al is identifiable up to
column permutation and scaling. Furthermore, if Condition
1 holds, A" and A/ have two overlapping rows, and by con-
sidering all data sets together and estimating A directly, we
guarantee that the shared rows of A’ and A/ are the same.
Then A’ and A’ have the same column sequence and scale,
by matching the ratio of the two overlapping rows, under As-
sumption 1. It follows that, for any i, A’ has the same column
sequence and scale with others. Thus, the estimated A is the
same as estimating the mixing matrix over X directly (up to
column permutations and rescaling of the whole matrix), if
we had such a data set including all variables. Therefore, A
is identifiable up to column permutation and scaling.

We can further determine A by using the property that B =
I — A" can be permuted to a strict lower triangular matrix,
where the permutation is unique. Therefore, A and the causal
adjacency matrix B are uniquely identifiable. O

Based on the example in Figure 1, below we give an in-
tuitive explanation of the identifiability conditions and how
Assumption 1 removes ambiguity.

e Suppose there was only one overlapping variable, say x4,
between data sets 1 and 2. Denote the 4-th row of A from
data set 1 by A}k and that from data set 2 by Ai. Be-
cause the column permutations and scales of A and A?
are not determined and noise distributions may vary across
data set, matching only A}k and Ai does not give a unique
integration result. For example, let A}k = (1,2,3,4) and
Ai =(2,1,3,4). Then Ai can be matched to A}k either by
permuting its first two columns, or by multiplying the first
column by 1/2 and the second column by 2. Thus, only one
overlapping variable across the two data sets is not enough.
Now suppose there are two overlapping variables x3 and x4.

1 _ (1234 2 _ (1234
For example, let A Q) = (5’6’7’8) and A Q) = (3’10’7’8), where
Assumption 1 holds. To match Aé). to AE3)., its column
47 4/

permutation and scaling can be uniquely determined by
matching the ratio of the first row to the second row, more
specifically, by permuting the first two columns and then
multiplying the first column by 1/2 and the second column
by 2. However, if Assumption 1 does not hold (which is
not the case here), the permutation and scaling may not be
unique by matching the ratio of the first two columns.

Remark: Note that the conditions in Theorem 2, includ-
ing linearity and non-Gaussianity, are verifiable. Specifi-
cally, for linearity, one may check for the linear relation-
ships by scatter plot, or more rigorously, by linearity tests.
It is non-trivial to extend our approach to nonlinear cases,
as nonlinear ICA is a nontrivial task, and it is left as future
work. For non-Gaussianity, it has been argued that in theory
non-Gaussianity is ubiquitous in the linear case (Spirtes and
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Zhang 2016), and if needed, it can be checked by normal-
ity tests (see e.g., (Székely and Rizzo 2005)). In the supple-
mentary material, we also discuss the case when noises are
Gaussian, in which not identifiable without further assump-
tion such as faithfulness.

Furthermore, we realize that in a special case when the
noise distributions in different data sets are the same, Con-
dition 1 in Theorem 2 can be relaxed to one-variable over-
lapping, which is stated in Corollary 1, which holds under
Assumption 2. The intuition is as follows. Suppose only x3
is shared in the example given in Figure 1. If the noise distri-
bution does not change, then after enforcing the same vari-
ance of all noise terms across data sets, any entry in the third
row of A! (the mixing matrix on data set 1) will be identical
to some entry in the third row of A>. Hence, we can permute
and integrate A' and A2

Assumption 2. For any two overlapping data sets m; and
my, there exist i € i, so that |a;j| # |ax|, for any j # k, where
a;j and aj; are entries in A.

Corollary 1. Suppose X satisfies the generating process in
Eq. (1) and that the noise distributions are fixed across data
sets. Under Assumption 2, the causal graph over X is iden-
tifiable, if the collected data sets satisfy the following condi-
tions:

1. for any data set i, there exists another data set j which

has at least one overlapping variables with i;

2. all noises are non-Gaussian.

Next, we show how to learn causal relations from mea-
sured data.

5 Model Estimation

We propose two estimation approaches to learning causal
relationships over non-identical variable sets. One maxi-
mizes the log-likelihood, and the other adopts a likelihood-
free framework, adversarial learning-based estimation, to
improve scalability.

In estimation, instead of estimating A, we estimate the
causal adjacency matrix B directly, where B = I-A~!, which
enjoys the following advantages:

It is easy to add prior knowledge of causal connections. In
practice, experts may have domain knowledge about the
presence/absence or the strength of some causal edges.
One can directly enforce sparsity constraints on the causal
adjacencies. This cannot be easily achieved if the pro-
cedure estimates A directly, because even if B is sparse,
A = (I - B)~! may not be sparse.

The estimation procedure directly outputs the causal adja-
cency matrix, without additional steps of permutation and
rescaling, as required in LINGAM (Shimizu et al. 2006)
analysis, which are usually expensive. In practical imple-
mentations, one may fix the diagonal entries of B to zero,
with no update in the procedure.

Likelihood-Based Estimation

We first introduce a likelihood-based estimation approach,
by maximizing the following log-likelihood over all M data



sets:

M
00) = Z log P(X™; ™),
m=1
where 6" denotes involved parameters in the model of m-
th data set, and 8 = {9’"} . Note that the parameter B is
shared in all 8", for m = 1
We allow the noise dlstrlbutlons to vary across data sets.
Denote the noise term in the i-th variable in the m-th data set
by e!". Specifically, to handle general non-Gaussian distribu-
tions, we model ¢ by a mixture of Gaussian (MoG):

&)

plel) = Zp(z,k = DN(E 1 o), (©)

where p(z =1 = ﬂl’k, with Zk:l ﬂfk = 1, is the mixture
proportlon Z’" = (zl E ,sz) is a K-dimensional binary
vector in Wthh a partlcular element z} is equal to 1 and all
other elements are zero, and N(-) denotes the density of a
Gaussian distribution.

The causal model defined above can be seen as a
latent variable model, with U™ {{e! }l 1> {Zlm} B
as latent variables in the m-th data set, and 6"
{B, {”Tk}i,k,{ﬂ?fk}i,k,{o'glk}i,k} as free parameters in the m-
th data set that are to be estimated. Thus, we use the
Expectation-Maximization (EM) algorithm for maximum
likelihood estimation of the model parameters, by iterating
between two steps, expectation (E) and maximization (M),
until convergence:

(E) Compute pg-(U™|X™), form = 1,--- , M, and the lower
bound of the log-likelihood, Q(¢’, 6), with

M
Q(a’,a)zz f per(U™|X™)10g pyn(X, U™ dU™.
m=1

(M) Given Q(#',0), the lower bound is maximized with
respect to the parameters, by computing: 6
arg maxgee Q(6', 6).

Note that because the EM lower bound Q can be decom-
posed into several terms which only depend on subsets of the
parameters, the parameters can be updated independently.

With the EM algorithm, the computational complexity in
each iteration is linear in the number of data sets but is cubic
in the number of integrated variables. Hence, it is computa-
tionally demanding for large-scale problems. To circumvent
this issue, below we propose adversarial learning-based es-
timation, which is likelihood free.

Adversarial Learning-Based Estimation

To improve scalability, we adopt a likelihood-free frame-
work for parameter estimation, based on a recently pro-
posed likelihood-free overcomplete ICA algorithm (Ding et
al. 2019). It utilizes adversarial learning (Goodfellow et al.
2014) for parameter estimation, by minimizing appropriate
distributional distances between the generated data and the
observed data.

The adversarial learning-based estimation approach es-
timates the causal adjacency matrix B directly by back-
propagation without explicit assumptions on the density
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function of noise terms. Specifically, each noise term e!" is
modeled with a function f,,» that transforms a Gaussian vari-
able u}" to the non-Gaussian e, with involved parameters

w!; thatis, e fwm(u’”) where u" ~ N(0, 1), and the func-
t10n S 18 generated by a Multi- Layer Perceptron (MLP).
Note that different noise terms are generated separately, so
they are independent of each other and their distributions
may be different. Thus, the generative model of data in the
m-th data set is as follows:

X" T"AE™ = I"(I - By ' [fup '), - -- @]
= Gj,."),
(7
where 0" = [}, ", ™ = [, ,u?]", and we

use G (") to denote the generating function. Figure 2
shows the graphical structure of the data generation process.

m m m
Mf Mi Md
[ MLP,, MLP,; |-{ MLP,; J
v v ¥
m m . m
e1 I~ ,ei ~ ,—:ed
1 SNl <7 1
Y L,fvzf;’v";,: oad
Sn & -7 Sm L Zm
X i Xd

Figure 2: A graph representation of the generating process
of the m-th dataset. The dashed lines represents the mixing
matrix I"A.

Generator (X" },I:f: 1
uM — G v )Q(M—] Discrimintor
u" — G xm M 0/1
- _*C}l _>1J
u B,w! X

Figure 3: A graph illustration of the whole adversarial-
learning process over the M data sets.

To learn the parameters B and Q = [w', oM, we
minimize the Maximum Mean Discrepancy (MMD (Gret-
ton et al. 2012)) between the joint distributions of true and
generated data over all M data sets:

A M
B,Q = argmin ¥ MMD(p(X™), p(G ., (u™)))
BQ m=1 B

()

—argmin 3. [Exepxe [6(X")]-E, L@,

BQ m=1
where ¢ is the feature map corresponding to a kernel func-
tion. All parameters are estimated efficiently by stochas-
tic gradient descent. A graph illustration of the whole
adversarial-learning process over the M data sets is shown
in Figure 3, and the procedure is given in Algorithm 1.

w~pan [$(Gg

6 Extensions to More General Cases

In this section, we show that our approach CD-MiNi can be
easily extended to confounding cases and cyclic cases.



Algorithm 1 Adversarial Learning-Based Estimation of the
Causal Adjacency Matrix

1. Get a minibatch of i.i.d. samples {u’”}f‘::1 from the stan-
dard Gaussian distribution.

2. Generate mixtures )2(”’ form=1,---, M, using Eq. (7).

. Get a minibatch of samples from the distribution of ob-
served mixtures p(X'), - -, p(XM).

. Update B and {w’"}ﬁ‘y’l’:1 by minimizing the empirical esti-
mate of Eq. (8) on the minibatch.

. Repeat step 1 to step 4 until max iterations reached.

Confounding Cases

In previous sections, we assume that there are no con-
founders relative to the integrated set of variables. In this
section, we show that CD-MiNi can be extended to the case
where there are hidden confounders.

Suppose we did not observe variables Z = (z1,--- ,z4,) in
any data sets, while they influence two or more variables in
X. The generating processes of X and Z are as follows:

{ X B\ X + B,Z + Ey,

Z B3Z + Ey,
where B; and B; are the causal adjacency matrices over X
and Z, respectively, and B, is the causal influence from Z to
X. After reorganization, Eq. (9) becomes

©)

X =[U-B)™" (I-B)'ByI-B3y)"] [gx]
I o)

E
[A1  A1BA3] [E)Z(}’

where A} = (I — B;)! and A3 = (I — B3)~!. Specifically, for
the m-th data set, we have
E™
X
E?} , (11)

form = 1,---, M, where A7 is a d,, X d submatrix of Aj;.
With a similar trick as in Eq. (4), we can re-formalize the
above equation to:

X" = [AT ATByAs)

X" =[I"A, I"A\BAs] [g{,‘,} (12)
z
Denote [A; A;B,A3] by H for future use.

Since all noises in Ex and E; are independent of each
other, Eq. (12) satisfies the over-complete ICA model.
Hence, similar to the proof of Theorem 2, H is identifiable
up to column permutation and scaling, under conditions in
Theorem 2 and Assumption 1.

However, since H is only identified up to column per-
mutation and scaling, we cannot determine which columns
belong to A; without further constraints, and thus, in the
confounding case, the causal adjacency matrix B; is not
uniquely identifiable. In general, the upper bound for the

. e e (dd)! .
number of causal adjacency matrices is ¢ i d_‘,) , where d is

the number of integrated set of observed variables, and . is
the number of hidden confounders.
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Cyclic Cases

Now we consider the case where there are cycles in the
graph. In cyclic cases, without further constraints, there may
be multiple graphs that are distribution equivalent (Lacerda
et al. 2008).

The following theorem shows that with further con-
straints, including stability of the causal system and the cy-
cles being disjoint, the causal graph over the integrated set
of variables X is uniquely identifiable.

Theorem 3. Suppose the causal graph over X is cyclic. Un-

der Assumption 1, the causal graph over X is identifiable, if

the collected data sets satisfy the following conditions:

1. for any data set i, there exists another data set j which
has at least two overlapping variables with i;

2. all noises are non-Gaussian;

3. the cycles are disjoint, and the causal system is stable.

7 Experimental Results

To show the efficacy of the proposed approach for causal
discovery from non-identical data sets, we apply it to both
synthetic and real-world data.

Synthetic Data

We generated synthetic data according to the functional
causal model in Eq. (1). In particular, to generate data from
the m-th data set, we first generated complete data of all d
variables and then randomly removed some variables. We
guaranteed that the generated data satisfy Assumption 1 and
the two identifiability conditions in Theorem 2. Each noise
term e; is modeled with a mixture of two Gaussian compo-
nents, with mean y;; ~ U(-0.6,-0.3) U U(0.3,0.6), vari-
ance o-ik ~ U(0.1,0.5), and the mixture proportion m;; ~
U(0.3,0.6) with 213:1 7, = 1, where U(l, u) denotes a uni-
form distribution between / and u. The acyclic causal struc-
ture G was generated according to the Erdos-Renyi model.
The non-zero entries of the causal adjacency matrix B was
generated according to b;; ~ U(-0.8,-0.3) U U(0.3,0.8).
Note that the noise terms over different variables and differ-
ent data sets are generated independently, while B is shared
across data sets.

To show the finite sample size effect of the proposed
method, we varied the sample size per data set T
200, 500, 1000, 2000, the number of integrated variables d =
4,6,8, 10,20, and the number of variables per data set d; =
3,4,5, 6. For each setting, we generated 30 realizations.

We used the proposed likelihood-based (CD-MiNi-EM)
and adversarial learning-based (CD-MiNi-AL) approaches.
We compared them with other well-known approaches that
are designed to handle such cases, including ION (Danks,
Glymour, and Tillman 2009) and COmbINE (Triantafil-
lou and Tsamardinos 2015). We took COmbINE as a
representative of SAT-based methods for causal discovery
(e.g., Triantafillou, Tsamardinos, and Tollis; Hyttinen et
al.; Hyttinen, Eberhardt, and Hoyer; Hyttinen, Eberhardt,
and Jarvisalo; Rantanen, Hyttinen, and Jarvisalo; Zhang et
al. (2010; 2013; 2012; 2014; 2018; 2019)), because they are
similar.



Since our proposed approaches can recover a unique
DAG, while ION and COmbINE may result in a list of PAGs,
it is hard to make a fair comparison directly. Thus, for the
results from ION and COmbINE, we adopted the following
two strategies to analyze the output PAGs. (1) We first only
considered those edges which appear in all output PAGs, i.e.,
the intersection of output PAGs, which are denoted as solid
edges in Triantafillou and Tsamardinos (2015). Moreover,
since in PAGs, some orientations are not determined, we did
the following steps: for o— or < in a PAG, we transfered it
to — according to the ground truth; for o—, we transfered
it to —. (2) We next considered all edges that appear in the
output PAGs, i.e., a union of all PAGs, and for conflicted
ones, we chose the correct one according to the ground truth.
The undetermined directions were set in the same way. Be-
low, we used ION-solid and COmbINE-solid to denote the
results with Strategy (1) from ION and COmbIME, respec-
tively, and ION-union and COmbINE-union the results with
Strategy (2).

For the results from the proposed methods, the final graph
is determined by setting a threshold on the estimated causal
adjacency matrix B: we used 0.1 as the threshold, that is,
the estimated graph Gij = 1if |B,-j| > 0.1, and Gij =0if
otherwise. Alternatively, one may use statistical test to de-
termine the edges (Hoyer et al. 2008). We used the F; score
to measure the accuracy of the estimated structure, which is
the geometric mean of precision and recall.

In Figure 4, we reported the F; score (both mean and
one standard deviation over 30 realizations) to measure
the accuracy of learned causal graphs. Specifically, Fig-
ure 4(a) shows the F; score along with the sample size
T = 200,500, 1000,2000, when the total number of vari-
ables d = 6, the number of variables per data set d, = 4,
and the number of data sets M = 3. Figure 4(b) shows
the F; score along with the number of variables per data
set d; = 3,4,5,6, whend = 6, M = 3, and T = 1000.
Figure 4(c) shows the F; score along with the number of
integrated variables d = 4,6,8,10,20. In this case, d; =
d/2+1 =3,4,5,6,11, T = 1000, and M = 3. We found
that CD-MiNi-EM, ION, and COmbINE are computation-
ally demanding when d = 20, so we only reported their re-
sults when d < 10.

From the results, we can see that the proposed methods,
CD-MiNi-EM and CD-MiNi-AL, have the best performance
(the highest F; score) in all settings, and between them, CD-
MiNi-AL is slightly better in most cases. More specifically,
the accuracy tends to increase along with the sample size or
the number of variables per data set with a fixed total number
of variables. However, with the increase of total number of
variables, they tend to perform less well; we suspect that
it is because both EM and adversarial training may suffer
more statistical errors and be more prone to local optimal,
with the increase of the number of free parameters. With
ION or COmbINE with Strategy (1), which only accounts
for solid edges (edges appear in all output PAGs), only a very
small percentage of edges is identified. With Strategy (2),
which considers the union of edges from the output PAGs,
we found that their accuracy has improved.
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Figure 4: F, score of the learned causal structure.

Cellular Signaling Networks

We applied CD-MiNi to multivariate flow cytometry data,
which were measured from 11 phosphorylated proteins and
phospholipids (Sachs et al. 2005). The 11 variables are
Raf, Mek, Plc, PIP2, PIP3, Erk, Akt, Pka, Pkc, P38, and
Jnk. We used the data set with general perturbation (anti-
CD3/CD28). To test and verify our method, we split the 11
variables into 2 data sets and 3 data sets, respectively. The
splits are according to different types of antibodies that were
used to assay the target residues.

Figure 5 shows the estimated cellular signaling networks
from the 2-dataset case, with CD-MiNi-EM (Figure 5(c))
and CD-MiNi-AL (Figure 5(d)). We compared the estima-
tions with the ground-truth graph given in Figure 5(a); note
that edges in the ground-truth graph are those with high con-
fidence in biology, but other edges may also exist in the sys-
tem. Solid lines denote found edges that are consistent with
the ground-truth graph, and dashed edges are those that are
not in the ground-truth graph. We found the following true
edges with both estimations: Raf — Mek, Mek — Erk, Plc
— PIP2, Plc — PKC, PIP3 — Plc, Erk — Akt, PKA — Raf,
PKA — P38, PKA — Erk, PKC — PKA, PKC — P38. Fig-
ure 5(b) shows the F; scores from 1 data set (M = 1, without
split), 2 data sets (M = 2), and 3 data sets (M = 3). Inter-
estingly, the F; score seems to be approximately the same
across different values of M, indicating that with our ap-
proach, we do not sacrifice the estimating accuracy because
of the lack of observations for all variables together.

For more experimental details and the results from the 1-
dataset case and the 3-dataset case, please refer to the sup-
plementary material.

8 Conclusions

This paper proposed a principled approach CD-MiNi to
identify causal relationships from multiple data sets with
non-identical variable sets, under the linearity and non-
Gaussianity assumption. We showed that the causal struc-
ture over the integrated set of variables is uniquely identi-
fiable under certain technical conditions, which are testable
given observed data. To the best of our knowledge, the pro-
posed method is the first that can identify the entire DAG
from non-identical sets of variables. We presented two types
of estimation approaches: a likelihood-based approach and
a likelihood-free approach based on adversarial training to
improve scalability. The proposed methods showed promis-
ing results on flow cytometry data. We further showed that



Figure 5: Estimated cellular signaling networks. (a) Ground-
truth graph (edges with high confidence in biology). (b) F;
score according to the ground truth in (a). (c) Estimated
graph with CD-MiNi-EM from 2 data sets. (d) Estimated
graph with CD-MiNi-AL from 2 data sets.

our framework can be easily extended to more general cases,
such as the confounding case and the cyclic case. A future
line of research is to extend our approach to nonlinear cases.
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