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Abstract
The missing data issue is a common phenomenon
in many applications such as healthcare. When
applying causal discovery algorithms, such as PC,
to a data set with missing values, not properly han-
dling the missing data issue might introduce bias
and lead to wrong causal relations. In this work,
we identify the potential errors of simply apply-
ing PC to data sets with missing values. Further,
we extend the constraint-based causal discovery
method PC to handle binary data sets with missing
values for the neuropathic pain diagnosis1.

1. Introduction
Understanding causal relations from observational data is
essential for many machine learning applications, e.g., a
healthcare application in (Alaa & van der Schaar, 2017).
Many causal discovery algorithms have been developed to
determine causal relations from only observational (Gly-
mour et al., 2019). However, these algorithms commonly
assume that data are fully observed. Missing data entries
are common in many domains and become one of the key
practical obstacles that causal discovery methods are fac-
ing, especially in the situation when data are not Missing
Completely At Random (MCAR). Unfortunately, there are
only few works proposing solutions for causal discovery
in presence of missing data (Gain & Shpitser, 2018; Strobl
et al., 2018). Strobl et al. (2018) use FCI combining with
list-wise and test-wise deletion (Spirtes et al., 2000) and
output Partial Ancestral Graphs (PAGs) as results which
are difficult to interpret, and limit its impact in practical
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applications. Gain & Shpitser (2018) propose a PC-based
method but assume that the missingness model is known. In
this work, we take a real-world neuropathic pain diagnosis
application as an example and propose Missing Value PC
(MVPC) for binary data. We utilize the MVPC framework
that identifies potential erroneous edges by applying PC to
the observed part of the data, and propose simple correction
methods to recover the true causal graph. Theoretical results
on the erroneous edge identification have been presented
in our recent work (Tu et al., 2019a). This paper focuses
on the new extension of the MVPC framework for binary
data with the real-life application to determine the causal
relations among pathological labels and symptoms by using
neuropathic pain patient record data.

2. Method
2.1. Preliminaries

Missingness Graph. A missingness graph is a causal Di-
rected Acyclic Graph (DAG), G(V,E) where V consists of:
1) A set of unobservable nodes U2; 2) A set of substantive
nodes V containing the set of fully observed variables Vo

and the set of partially observed variables Vm which is
shadowed in gray in our graphical representation; 3) A set
of missingness indicators R; 4) A set of proxy variables V∗.
Figure 1 shows a missingness graph in which Y contains
missing values. For the simplicity of our graphical represen-
tation, we did not show the proxy variable Y ∗, an auxiliary
variable for the convenience of derivation. Ry = 1 means
that the value of Y is missing and Y ∗ takes the missingness
value, such as a character "m"; Ry = 0 means that the value
of Y is observed and Y ∗ takes the value of Y .
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Figure 1. A missingness graph

2In this paper, we assume causal sufficiency. Thus, U is an
empty set.
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Missingness Mechanisms. All missing data problems be-
long to one of the three categories (Rubin, 1976): Miss-
ing Completely At Random (MCAR), Missing At Random
(MAR), and Missing Not At Random (MNAR). Data are
MCAR when all missingness indicators are independent of
any other variables. Data are MAR when parents of missing-
ness indicators are observed. Data that are neither MAR nor
MCAR fall under the MNAR category. Removing samples
corrupted by missingness and performing analysis solely
with the remaining complete cases will bias conclusions
especially when data are MAR or MNAR (Rubin, 2004;
Mohan et al., 2013; Shpitser, 2016; Tu et al., 2019a).

PC and Test-wise deletion PC algorithms. The PC algo-
rithm (Spirtes et al., 2000) is one of the most commonly used
causal discovery methods. Based on Conditional Indepen-
dence (CI) constraints in data, PC firstly recovers a causal
skeleton (undirect causal graph), then orients directions of
causal relations, and finally outputs a Completed Partially
Directed Acyclic Graph (CPDAG). Test-wise deletion PC
algorithm (TD-PC) is the PC algorithm that performs CI
tests on those records which do not have missing values for
the variables involved in CI tests. Tu et al. (2019a) show
that TD-PC can produce erroneous edges when the missing-
ness indicator is the common child or a descendent of the
common child.

2.2. Missing Value PC for Binary Data

We use an example to introduce how to recover the true
causal relations with MVPC for binary data. Suppose that
the missingness causal graph of the collected data is shown
in Figure 1. According to Proposition 2 in (Tu et al., 2019a),
the CPDAG result of applying TD-PC to the data contains
an extraneous edge between node X and Y . The reason is
that when testing whether X and Y are independent given
Z, we can only get access to the conditional independence
relation conditioning on Ry = 0 in the data set. In this case,
TD-PC implies X 6⊥⊥ Y | Z regarding the result of the test-
wise deletion CI test, X 6⊥⊥ Y ∗ | {Z,Ry = 0}; however,
the correct result is X ⊥⊥ Y | Z 3. Therefore, TD-PC
produces an extraneous edge between X and Y because of
the wrong implication of the test-wise CI test.

Binary permutation-based correction. MVPC with the
binary permutation-based correction solves this problem
by testing CI relations on generated virtual data whose dis-
tribution is P (X,Y, Z). In the generated virtual data, we
have the access to the CI relation of X and Y given Z. We

3We denote an independent relation in a data set by "⊥⊥ ".

generate the virtual data regarding

P (X,Y, Z) =
∑
W

P (X,Y, Z |W )P (W )

=
∑
W

P (X,Y ∗, Z |W,Ry = 0)P (W ). (1)

Note that we can estimate both of P (X,Y ∗, Z | W,Ry =
0) and P (W ) in Equation 1 with the collected data set.
We consider P (X,Y ∗, Z | W,Ry = 0) as a generator
for generating virtual data and P (W ) as the input data
distribution of the generator. Binary permutation-based
correction is summarized in Algorithm 1. Note that con-
ditions of the binary permutation-based correction is that
Ri ⊥⊥dVi |W, where i ∈ {x, y, z} and X denoted by Vx
here; and Rwj

⊥⊥dWj |Wk, where Wk ⊂W \Wj .

Algorithm 1 Binary Permutation-based correction
Input: data of concerned variables, such as X , Y , and Z
in Figure 1, and the direct causes of their corresponding
missingness indicators, such as the direct cause W of Ry in
Figure 1.
Output: The CI relations among concerned vari-
ables, such as the CI relations among X , Y , and
Z.

1: Delete records containing any missing value. We denote
the deleted data set by Dd, and denote the original data
set by Do.

2: SplitDd intoDd
W=0 andDd

W=1 according to the values
of W , e.g., Dd

W=0 are the samples of Dd in which the
value of W is 0.

3: Estimate the joint distributions of X , Y , and Z with
Dd

W=0 and Dd
W=1, denoted by PW=0(X,Y, Z) and

PW=1(X,Y, Z).
4: Shuffle data of W in Do, denoted by WS , and delete

records containing any missing value in Do (included
WS). We denoDte this data set by Dd

S .
5: Generate virtual data by sampling from PW=0(X,Y, Z)

or PW=1(X,Y, Z) depending on values of WS in Dd
S .

6: Test the CI relations among X̂ , Ŷ , and Ẑ in the gener-
ated virtual data.
return The test results of CI relations of X̂ , Ŷ , and Ẑ.

Binary density ratio weighted correction. When the
conditions of binary permutation-based correction cannot
be satisfied, we use binary density ratio weighted correction,
which gives every data sample a weight according to

P (V ) =
P (R = 0, V )∏

i P (Ri = 0 | Pa(Ri), RPa(Ri) = 0)

= P (V | R = 0)× c×
∏
i

βPa(Ri) , (2)
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where V is a set of concerning variables,
c = P (R=0)∏

i P (Ri=0|RPa(Ri)
=0) , and βPa(Ri) =

P (Pa(Ri)|RPa(Ri)
=0)

P (Pa(Ri)|Ri=0,RPa(Ri)
=0) . Considering the example in Fig-

ure 1, the weights can be computed by βW = P (W )
P (W |Ry=0) .

We firstly delete the records containing any missing value.
We denote the samples of the deleted data set in which W
takes the value 0 by Dd

W=0, and the samples in which W
takes the value 1 by Dd

W=1. Next, we test the conditional
independence relation of X and Y given Z with the
weighted Dd

W=0 and Dd
W=1 whose weights are βW=0 and

βW=1. There are many ways to implement the weighted CI
test. For example, the G2 test (McDonald, 2009), a CI test
for binary variables, is based on counting the number of
times that each possible value combination of X , Y , and Z
is observed in a data set. We firstly multiply the counted
numbers in Dd

W=0 by βW=0 and multiply the counted
numbers in Dd

W=1 by βW=1. Then, we apply the weighted
G2 test.

3. Experiment
Binary synthetic data evaluation. To evaluate MVPC in
the binary case, we used Tetrad (Spirtes et al., 2004) to gen-
erate binary datasets together with corresponding ground-
truth causal graphs. We compare the performance of base-
line methods in MAR and MNAR datasets. The sample
size is 600000. The number of substantive variables is 20
in each dataset. The number of missingness indicators is
10 and at most 5 of them producing extraneous edges. We
limit the number of the parent of missingness indicators to
1. The values of missingness indicators follow the Bernoulli
distribution of which the parameters depend on the parent
value of missingness indicators.

We mainly compare MVPC to TD-PC. The ideal indicates
the result from using fully observed data. As PC has larger
sample sizes in CI tests in this case, we also apply PC
to the complete data set whose sample size is the average
sample size of all CI tests in MVPC/TD-PC. We denote such
experiments by target. Target and ideal are targeted ideal
performance which is listed as reference. Figure 2 shows
that the results of MVPC are clearly better than Test-wise
Deletion PC (TD-PC) and close to "target" in the result with
Structural Hamming Distance (SHD) metric. Moreover, we
find that MVPC with the density ratio weighted correction
(MVPC-DRW) in binary cases is much less data-efficiency
than MVPC with the permutation-based correction (MVPC-
PermC) due to the fact that density ratio weighted correction
starts performing better than TD-PC when the samples size
is larger than 500000.

Simulated neuropathic pain diagnosis data evaluation.
We use the recently developed neuropathic pain diagnosis
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Figure 2. Results of the baseline methods in binary cases that
are Missing At Random (MAR) and Missing Not At Random
(MNAR).

Table 1. Results of applying causal discovery methods to simula-
tion data with missing values from the neuropathic pain diagnosis
simulator (Tu et al., 2019b).

Cau_acc Recall Precision F1-score
PC-ideal 0.047 0.046 0.44 0.085
PC-target 0.046 0.046 0.44 0.085
MVPC 0.045 0.043 0.452 0.078
TD-PC 0.033 0.025 0.559 0.047

simulator (Tu et al., 2019b) to generate patient diagnostic
data. The simulator generates diagnostic labels in forms
of binary data indicating that certain diagnostic labels ex-
ist or not. The ground-truth of causal relations is given
thanks to the domain knowledge and the generated data are
indistinguishable from real-world patient records verified
by the medical expert. We generate 1000 MAR data of 222
variables with the simulator. We evaluate the performance
of different methods with the causal accuracy (Cau_acc)
(Claassen & Heskes, 2012), recall, precision and F1 score
of undirected graphs results. The experiment settings fol-
low (Tu et al., 2019b). The experimental results are shown
in Table 1 and Figure 3. We find that the performance of
MVPC is close to target and ideal and better than TD-PC in
the simulation experiments.
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Figure 3. Simulation experiments results
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