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Physical principles such as unitarity, causality, and locality can constrain the space of consistent effective
field theories (EFTs) by imposing two-sided bounds on the allowed values of Wilson coefficients. In this
paper, we consider the bounds that arise from the requirement of low energy causality alone, without
appealing to any assumptions about UV physics. We focus on shift-symmetric theories, and consider
bounds that arise from the propagation around both a homogeneous and a spherically symmetric scalar field
background. We find that low energy causality, namely the requirement that there are no resolvable time
advances within the regime of validity of the EFT, produces two-sided bounds in agreement with compact
positivity constraints previously obtained from 2 → 2 scattering amplitude dispersion relations using full
crossing symmetry.
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I. INTRODUCTION

From a bottom-up perspective, the construction of
effective field theories (EFTs) based on symmetry princi-
ples allows us to compute observables in the infrared (IR)
without the full knowledge of the ultraviolet (UV) com-
pletion of the theory. This has proven to be a useful
approach not only in particle physics and cosmology but
also when studying gravitational systems. While the EFT
contains an infinite number of higher derivative inter-
actions, at low energies only a finite number are relevant
at a given order in the EFT expansion. Nevertheless,
symmetry principles on their own are not sufficient to
ensure that the EFT is unitary and causal. Imposing these
physical principles leads to constraints on the possible
values of the coefficients in the Wilsonian effective action
of the low energy EFT [1]. A well-known approach for
bounding these Wilson coefficients consists of looking at
dispersion relations for 2 → 2 scattering amplitudes and
engineering positive bounded functions of the scattering
amplitude [2–8].1 The associated positivity bounds require
assumptions about the UV completion such as unitarity,
locality, causality, Poincaré symmetry, and crossing sym-
metry. Additionally, one can obtain stronger bounds when
considering weakly coupled tree-level UV completions. In
recent years this has proven to be a fruitful approach

(see for example [15–38]). Crucially in [33,34] it was
shown that incorporating the constraints of full crossing
symmetry, now referred to as null constraints, imposes two-
sided positivity bounds generically on the space of all
Wilson coefficients.2 The purpose of the present work is to
show that these two-sided bounds can be largely anticipated
from low energy causality considerations alone.
The extension of positivity bounds to (massless) gravi-

tational theories and arbitrary curved spacetimes, and more
specifically to time-dependent gravitational backgrounds is
not straightforward [39,40]. Gravitational amplitudes in
Minkowski spacetime have recently been incorporated by
using dispersive arguments that evade the t-channel pole
inevitable in gravitational amplitudes [41–45] or account
for it by its implied Regge behavior [46–51]. While
perturbative unitarity rules can be generalized on curved
spacetime [52], analyticity has proven more challenging
and some initial explorations of positivity bounds to curved
spacetimes were proposed in [53–55]. Further analyses
considering that the bounds arising from positivity con-
straints around a Minkowski vacuum can be translated into
bounds for Wilson coefficients around a curved vacuum are
examined in [56–61]. The main difficulties in constructing
dispersion relations in curved backgrounds arise due to the
broken Lorentz symmetries and the lack of an S-matrix.
Some progress has been made recently for broken Lorentz
boost theories [62] and in de Sitter spacetimes where there
is an equivalent notion of positivity of spectral densities
[63–68]. By contrast the causality approach discussed here
is easily generalizable to curved spacetimes.
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1Earlier approaches in the chiral perturbation theory context
are found in [9–14].

2This phenomenon was already noted in [15–20] in the context
of massive spin-1 and -2 theories where the two-sidedness comes
from consideration of different external polarizations.
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In this paper, we will focus on constraints arising purely
from causality in the low energy regime. Our central tool is
the scattering time delay well studied in nonrelativistic
scattering [69–73] and gravitational scattering [74,75]
which describes in the semiclassical (WKB) or eikonal
approximation the delay of a scattered wave relative to a
freely propagating wave. Causality violation is associated
with the presence of a resolvable time advance, and this
criterion has in recent years been utilized to impose similar
bounds on Wilson coefficients [76–86] which, importantly,
do not require any assumption on the UV behavior of the
theory. Indeed, since small superluminalities could lead to
correlation functions having support outside of the light
cone when present at large distances, the violations of
causality can be measured within the low energy EFT that
describes the infrared physics. In a generic EFT, the higher-
derivative interactions will modify the equation of motion
for the propagation of a perturbation around an arbitrary
background rendering a sound speed cs ≠ 1. Note however
that a small superluminal low energy speed is not neces-
sarily in contradiction with causality since the would-be
observation detecting violations of causality could turn out
to be unmeasurable within the regime of validity of the EFT
[87–89].
For a local field theory inMinkowski spacetime, causality

tells us that the retarded Green’s function evaluated in an
arbitrary quantum state does not have support outside of the
forwardMinkowski light cone. For a generic EFT, locally the
propagation of information is encoded in effective metric
arising in the hyperbolic equations of motion for small
fluctuations around a given background which at leading
order is determined by the sound speed cs and reads

ds2eff: ¼ −c2sðxμ;ωÞdt2 þ dx⃗2: ð1:1Þ

Generically this speed is dependent on the momentum scale/
frequency of propagating fluctuations ω. Causality does not
directly impose constraints on the phase velocity, but it
requires that its high frequency (high ω) limit, that is, the
front velocity is luminal c2sðxμ;∞Þ ¼ 1. This determines the
support of the retarded propagator and implies that informa-
tion propagates (sub)luminally. Furthermore, it can be shown
that causality implies analyticity of the scattering amplitude
and refractive index in the upper half complex ω-plane
[90–92].
Here, we will only focus on the causal properties of the

EFT as encoded on light cones defined by the effective
metric in Eq. (1.1) in the low frequency regime where the
EFT is under control. In the EFT, the true front velocity is
unknown, as is whether there is a Lorentz invariant UV
completion. Furthermore demanding locally the strict
bounds c2sðxμ;ωÞ ≤ 1 is too strong since the associated
apparent superluminality may be unresolvable within the
EFT (furthermore in the gravitational context the local
speed is sensitive to field redefinitions, although this last

subtlety will not be relevant here3). The presence of local
low energy superluminality does not in itself imply the
possibility of creating closed timelike curves. For that these
superluminalities ought to be maintained for sufficiently
large regions of spacetime. A cleaner diagnostic is the
scattering time delay which is defined from the S-matrix
and is hence independent of field redefinitions. The scatter-
ing time delay for a given incident state containing a particle
of energy ω may be defined in terms of the S-matrix by

ΔT ¼ −ihinjŜ† ∂

∂ω
Ŝjini: ð1:2Þ

The scattering phase shiftsmay be defined as the eigenvalues
of the S-matrix, Ŝjini ¼ e2iδjini, so that in an incident
eigenstate the time delay is simply

ΔT ¼ 2
∂δ

∂ω
: ð1:3Þ

For example, for one-particle scattering in a spherically
symmetric background, the S-matrix diagonalizes in multi-
poles l and we may define the associated multipole time
delays

ΔTl ¼ 2
∂δl
∂ω

jl: ð1:4Þ

In the large-l limit, we may consider scattering at fixed
impact parameter b ¼ ðlþ 1=2Þω−1, giving the time delay
traditionally calculated in the eikonal approximation [93,94]

lim
l→∞

δl¼bω−1=2ðωÞ ¼ δEikonalðω; bÞ; ð1:5Þ

for which the time delay is (see for example [76])

ΔTb ¼ 2
∂δl
∂ω

����
b
: ð1:6Þ

The signature of true causality violation would be the
manifest existence of closed-time-like curves within the
regime of validity of the EFT, however it is understood that
such phenomena are akin to experiencing a resolvable4

3On curved backgrounds, the notion of asymptotic causality
[75,76] (requiring the absence of superluminalities as compared
to the asymptotic flat metric which imposes bounds on the net
scattering time delay) is a physical requirement, but it does not
always capture the full implications of causality. In fact, it leads to
weaker bounds than the notion of infrared causality [85–89]
(requiring the absence of superluminalities as compared to the
local metric which imposes bounds on the net scattering time
delay minus the Shapiro time delay).

4Strict positivity of the scattering time delay is sometimes
incorrectly imposed. This is not required since the time delay is
only a meaningful indication of causality in the semiclassical
region (WKB or eikonal).

GONZÁLEZ, DE RHAM, POZSGAY, and TOLLEY PHYS. REV. D 106, 105018 (2022)

105018-2



scattering time advance (within the regime of validity of the
EFT). The resolvability requirement comes from the
uncertainty principle which is reflected in the fact that a
time advance no bigger than the uncertainty Δt ∼ ω−1 is
clearly not in conflict with causality. Indeed in general, as is
well understood, scattering time advances can be mildly
negative without contradicting causality, but only in a
bounded way. For example for s-wave (monopole) scatter-
ing in a spherically symmetric potential which vanishes for
r > a, causality imposes the bound on the scattering time
delay of the form [69–73]

ΔTl¼0 ≥ −
2a
v
þ 1

kv
sinð2kaþ δ0Þ ≥ −

2a
v

−
1

kv
; ð1:7Þ

with v the group velocity and k the momentum with
ω ∼OðkvÞ. The first term gives the allowed time advance
associated with the spherical waves scattering of the
boundary r ¼ a, and the second term gives an allowed
time advance due to the wave nature of propagation, i.e.,
the uncertainty principle. For the intermediate scale
frequencies and smooth backgrounds considered in what
follows the first term will be absent (see Appendix A for a
discussion) but we must still allow for the uncertainty
principle. In other words, we will consider frequencies
larger than the scale of variation of the background (within
the WKB semiclassical region) and sufficiently high such
that we do not encounter any potential barriers, but within
the regime of validity of the EFT. All these conditions will
be carefully monitored throughout the analysis performed
below. Note that lower frequencies do not probe the support
of the retarded Green’s function and hence are not probing
causality. Working in the regime of validity of the WKB
approximation, our de facto relativistic causality require-
ment is that

ΔT ≳ −
1

ω
ð1:8Þ

applied in the relativistic region where the background is
sufficiently smooth and no potential barrier is encountered
on scales set by the wavelength ω−1 such that the hard
sphere type time advances −2a=v are absent.
The goal of this paper is then to determine constraints we

obtain on a given EFT by imposing (1.8) around different
backgrounds. Since our primary concern will be non-
gravitational scalar field theories, we can choose to probe
the EFT by adding an external source. This device allows
us to consider backgrounds which are not solutions of the
unsourced background equations of motion. By choosing
different sources, we can adjust the background solution to
probe different possible scattering phases, and by extrem-
izing over the choices of backgrounds we will be able to
obtain competitive constraints from the scattering time
delay.

The rest of the paper is structured as follows. In Sec. II,
we introduce the shift-symmetric low energy scalar EFTwe
will be considering and discuss the positivity constraints
that arise from consideration of their scattering amplitudes.
We also provide generic arguments for the expected time
delay within a WKB approach on generic backgrounds. For
concreteness, we then focus on specific profiles for the rest
of the manuscript. In Sec. III, we consider the simple case
of a homogeneous background and argue for the need of
less symmetric configurations to make further contact with
positivity bounds. We then proceed to consider the scatter-
ing of perturbations around a spherically symmetric back-
ground in Sec. IV. We examine two limits: one where the
waves have no angular dependence and the other where
they have large angular momentum. For each of these
cases, we spell out carefully the conditions for the validity
of the EFT and the WKB approximation. After computing
the time delay and requiring that we cannot obtain a
resolvable violation of causality we obtain bounds on the
Wilson coefficients of the EFT. The case of no angular
momentum gives rise to a lower bound while the large
angular momentum case draws an upper bound that
approaches the nonlinear positivity bounds obtained in
[33,34]. Lastly, we discuss our results and conclude in
Sec. V. In the Appendices, we show details of our calcu-
lations at higher orders in the EFT and for large angular
momentum. We also explain our setup for obtaining bounds
on the Wilson coefficients.

II. LOW ENERGY EFFECTIVE FIELD THEORY
AND PROPOGATION SPEED

In this paper, we consider the requirements for a scalar
effective field theory to be causal. For pedagogical sim-
plicity we focus on theories invariant under a shift
symmetry ϕ → ϕþ c. Since we are interested in comparing
the constraints arising from 2 → 2 tree-level scattering, we
will consider only operators up to quartic order in the field
ϕ, and we will ensure to work in a regime where operators
that are higher order in the field remain irrelevant to our
causality considerations. In the following, we work with a
minimal set of such independent operators up to dimen-
sion-12, so that our Lagrangian is given by [95]

L¼−
1

2
ð∂ϕÞ2−1

2
m2ϕ2þ g8

Λ4
ð∂ϕÞ4

þg10
Λ6

ð∂ϕÞ2½ðϕ;μνÞ2−ð□ϕÞ2�þg12
Λ8

ððϕ;μνÞ2Þ2−gmatterϕJ;

ð2:1Þ

where ðϕ;μνÞ2 ¼ ∂μ∂νϕ∂
μ
∂
νϕ, ð∂ϕÞ2 ¼ ∂μϕ∂

μϕ, gmatter is
the coupling strength to external matter and J is an arbitrary
external source. Note that for convenience we choose to
write down the dimension-10 operator as the quartic
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Galileon [96].5 The scale Λ has been introduced as the
standard cutoff of this low energy EFT. Note that even
though some EFTs may be reorganized so as to remain
valid beyond Λ (see for instance [97] for a discussion), here
we take the more conservative approach and consider the
low energy EFT to break down at Λ. Except when we
consider the case g8 ¼ 0, it proves convenient to redefine Λ
so that g8 ¼ 1.
Positivity bounds: The aim of what follows is to

establish to which extent positivity bounds constraining
fg8; g10; g12g can be reproduced using low energy infrared
causality arguments (i.e., the statement of causality as
manifested directly at the level of the low energy EFT
without any prior knowledge on the embedding of this EFT
within a unitary high energy completion). Technically,
the derivation of the positivity bounds requires the presence
of a mass gap and to this purpose, in principle, we can
always introduce a shift-symmetry-breaking mass term in
Eq. (2.1). The mass term can indeed be treated as an
irrelevant deformation of the shift-invariant Lagrangian
which, at the quantum level, does not induce any further
symmetry-breaking operators [22,98]. In the following, we
will be working in the limit m ≪ ω where the mass term
can be neglected (hence effectively restoring shift sym-
metry). The positivity bounds from [33,34] can be trans-
lated into bounds on the Wilson coefficients appearing in
the Lagrangian of Eq. (2.1) by using Table I and read

g8 > 0; g12 > 0; g10 < 2g8;

g12 < 4g8; −
16

3

ffiffiffiffiffiffiffiffiffiffi
g8g12

p
< g10 <

ffiffiffiffiffiffiffiffiffiffi
g8g12

p
: ð2:2Þ

From the above, only the left hand side of the last bound is
derived by using full crossing symmetry whereas the other
bounds follow from standard fixed t dispersion relations.
Causality: Violations of causality can occur when super-

luminal speeds can be consistently maintained within a
region of spacetime so as to lead to a physical support of the
retarded propagator outside the standard Minkowski light
cone. In this section, we will compute the low frequency
propagation speed of a perturbation ψ ¼ ϕ − ϕ̄ living on an
arbitrary background ϕ̄ created by an external source J. For
this, we work within the WKB approximation such that the
background’s scale of variation, r0, is much larger than the
scale on which the perturbation varies (ω−1). In Sec. III we
will perform a precise analysis of the possible violations of
causality arising in a homogenous background and in a
static and spherically symmetric background in Sec. IV, but

for now it is instructive to consider perturbations given by a
plane wave ∂μψ ¼ ikμψ .
The equation of motion for the scalar field ϕ is given by

□ϕ ¼ 4g8
Λ4

ðϕ;μð∂ϕÞ2Þ;μ

−
2g10
Λ6

½ð□ϕÞ3 − 3□ϕðϕ;μνÞ2 þ 2ðϕ;μνÞ3�

−
4g12
Λ8

ðϕ;αβðϕ;μνÞ2Þ;αβ − gmatterJ: ð2:3Þ

In the WKB approximation, we assume that perturbations
can be characterized by plane waves with wave-vector
kμ ¼ ðω;kÞ. In the regime of validity of the EFT, the
g8;10;12 operators considered in (2.1) are treated perturba-
tively implying −kμkμ ¼ ω2 − jkj2 ¼ ðc2s − 1Þjkj2 ≪ jkj2.
One should note that remaining within the regime of
validity of the EFT requires

∂ϕ

Λ2
≡ δ1 ≪ 1;

∂
pþ1ϕ

Λpþ2
≡ δ1δ

p
2 ≪ 1; ð2:4Þ

where p ∈ N and the derivatives can hit the background or
the perturbation. The most stringent bounds are obtained
when p → ∞. Since we are interested in contributions up to
dimension-12 operators, we will consider the expansion up
to order δ21δ

2
2; δ

4
1 and assume δ21 ≪ δ2; δ22 ≪ δ1. Thus, at

order δ21δ
2
2; δ

4
1 and leading order in ωr0 we have:

c2s jkj2 ¼ jkj2 − g8
8

Λ4
ðkμ∂μϕ̄Þ2 þ g28

32

Λ8
ðkμ∂μϕ̄Þ2ð∂ϕ̄Þ2

− g12
8

Λ8
ðkμkν∂μ∂νϕ̄Þ2

þ g10
12kμkν

Λ6
ð∂μ∂ρϕ̄∂ρ∂νϕ̄ −□ϕ̄∂μ∂νϕ̄Þ; ð2:5Þ

where we can immediately see that the g8 and g12 con-
tributions are sign definite which are directly equivalent to
the first two positivity bounds included in (2.2). This direct
equivalence was pointed out for the g8 operator in [2]. In
what follows we shall attempt to make contact with the
remaining bounds in (2.2) but note that the contributions of
g8 and g12 to the speed imply that, within this framework
we consider here, it will be impossible to reproduce the
bound g12 < 4g8 from pure infrared causality considera-
tions since, in the absence of g10, positivity of both g8 and
g12 is sufficient to prevent causality violation in this limit.
To establish the basic setup, it will be useful to start by

looking at the simple example of a homogeneous back-
ground first (even though no further bounds will be
derived), before proceeding to a more instructive spheri-
cally symmetric situation which will allow us to make
further contact with the remaining bounds of (2.2).
Time delay: To understand whether the perturbations are

causal around an arbitrary background,we need to consider a

5The time delay remains manifestly invariant under field
redefinitions as long as we can neglect boundary terms. This
can be seen for instance explicitly in Sec. IV B for the zero
angular momentum case up to the EFT order that we consider
here.
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hierarchy between the scales of variation of the background
and the perturbations, namely, λbackground ≫ λperturbation.
Hence, we can use the WKB approximation to obtain the
phase shift experienced by the scattered perturbation from
which the time delay is easily computed. Considering the
wave nature of the scattering and the uncertainty principle,
we define a resolvable time advance as one that satisfies

ωΔT < −1; ð2:6Þ

where ω is the asymptotic energy of the scattered state. This
states that a resolvable time advance needs to be larger than
the resolution scale of geometric optics [87,89].6 If Eq. (2.6)
is satisfied within theWKB approximation and the regime of
validity of the EFT, then we have an observable violation of
causality. At leading order in the EFT, the requirement in
Eq. (2.6) can be equivalentlywritten in terms of the scattering
phase shift as δEFT < −1. However, this does not hold when
including higher EFT corrections that modify the speed of
sound with ω-dependent contributions. In such cases, one
should simply consider the bound in Eq. (2.6). A commonly
taken approach to understanding causality bounds consists of
working in the eikonal (geometric optics) limit. This amounts
to considering the scattering of waves with large angular
momentum l so that the dynamics can be described in terms
of the scattering of particle trajectories with fixed impact
parameter b ¼ ðlþ 1=2Þω−1. We shall consider both this
region and the small l region which can also be described
semiclassically. We will see that exploration of both limits is
complementary when imposing bounds on Wilson coeffi-
cients from the requirement of causality in the EFT and will
give rise to the two-sided bounds known from other
considerations.
As already noted, demanding locally that csðωÞ ≤ 1 is

too strict a requirement. The leading-order contributions to
violations of causality, as encoded in the support of the
retarded Green’s function, are determined by the light
cones defined by the effective metric in the EFT equations
of motion [88,99] which is given by Eq. (1.1). Thus,
acausality can be measured by integrating the effects of the
sound speed. More precisely, by measuring whether the
scattered waves can propagate outside the Minkowski light
cone and if this effect is observable within the regime of
validity of the EFT. It is clear that a subluminal speed will
always lead to a causal theory. On the other hand, small (as
dictated by the validity of the EFT) superluminalities do not
violate causality if they do not have support in a large
region of spacetime.
In what follows we perform a careful treatment of

causality for homogeneous backgrounds and static and

spherically symmetric ones. Note that we always use the
same definition of causality, but depending on the sym-
metries of the background it might be more natural to
express the support outside the Minkowski light cone as
given by a timelike or a spatial observable. For example,
when we work with a homogeneous background we have
spatial momentum conservation and hence the natural
observable is the spatial displacement of the light cone
defined by the effective metric. On the other hand, when we
work with spherically symmetric backgrounds, we have
energy conservation and it is more natural to describe the
support outside the Minkowski light cone with a timelike
displacement. Both of these quantities encode the same
physics and capture the support of the retarded Green’s
function; hence both encode the same causality criterion.

III. HOMOGENEOUS BACKGROUND

In this section, we will derive the dispersion relation for a
homogeneous background. To do so, we consider the
equation of motion in Eq. (2.3) and perturb the field
around a homogeneous background ϕ̄ðtÞ which varies on
a time scale of order H−1, which we shall consider as being
constant to a first approximation. To access the information
encoded in the retarded Green’s function, we consider a
perturbative setup in which we derive a perturbative,
second-order in time, hyperbolic equation of motion for
the perturbations. Any higher-order (> 2) time derivative
can be iteratively removed at each order in the EFT
expansion. Schematically, the equations of motion for
the perturbation reads

ψ̈ þ A _ψ þ Bψ ¼ 0; ð3:1Þ

where A and B are functions of the background ϕ̄ðtÞ and its
derivatives, the wave number k, the coupling constants gI ,
and the energy scale Λ. For convenience, the friction term
can be removed by performing a field redefinition of the
form ψðtÞ ¼ fðϕ̄ðtÞÞψ0ðtÞ leading to the perturbation
equation

ψ̈0 þ
�
B −

A2 þ 2 _A
4

�
ψ0 ¼ 0: ð3:2Þ

This allows us to write down an effective dispersion
relation for the perturbations as

ω2 ¼ m2
eff þ c2sðkÞjkj2; ð3:3Þ

where m2
eff is the effective mass square and c2sðkÞ is the

k-dependent square sound speed. Our definition of the
sound speed corresponds to a momentum-dependent phase
velocity. Note that at leading order in jkj, the notions of
phase velocity and group velocity are equivalent when the
mass is negligible, which is the case under consideration.

6The geometric optics or eikonal limit assumes that the
scattering problem can be described in terms of particle trajecto-
ries with large impact parameters and that the energies of the
asymptotic states are large.
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Considering only the g8, g10, and g12 operators, we find at
order δ21δ

2
2 [where the expansion parameters δ1 and δ2 are

defined in (2.4)],

m2
eff ¼ −

12

Λ4
g8∂tð ̈ϕ̄ _̄ϕÞ; ð3:4Þ

c2sðkÞ ¼ 1 −
8

Λ4
g8

_̄ϕ
2 −

8

Λ8
g12jkj2 ̈ϕ̄2 þ 96

Λ8
g28

_̄ϕ
4
; ð3:5Þ

up to terms that are more suppressed. Note that the g10
contribution to the square sound speed vanishes as expected
as the quartic Galileon7 vanishes on an effectively one-
dimensional background. To analyze this term, one needs
to explore backgrounds that are effectively at least two
dimensional and in the next section we will consider a
spherically symmetric background.8

Note that to stay within the regime of validity of the EFT
we require that

HΦ̄0

Λ2
≪ 1;

H
Λ

≪ 1; and
ωH
Λ2

≪ 1; ð3:6Þ

where Φ̄0 is the overall scale of the background field, or one
can take Φ̄0 ¼ maxðjϕ̄ðtÞjÞ. As a consequence, this ensures
that cs ∼ 1, up to small perturbative corrections.
Furthermore, the validity of the WKB regime where the
perturbations vary much faster than the background implies
that jkjH−1 ≫ 1. These requirements imply that the speed
(3.5) is subluminal for g8 > 0, g12 ¼ 0 and for g8 ¼ 0,
g12 > 0. Even though the departure from the speed of light
will be small, this effect may pile up when dealing with
large observation times and lead to macroscopic effects. To
understand how this could occur, we establish the amount
of support Δx the field would be able to gain outside the
standard Minkowski light cone

Δx ¼ H−1
Z

τf

τi

ð1 − csðτÞÞdτ; ð3:7Þ

where we introduced the dimensionless time τ ¼ Ht. The
light cone observed by the perturbation is smaller than the
Minkowski one by Δx. Hence, violations of causality arise
for waves with three-momentum k enjoying jkjΔx < −1
for any Δτ ¼ τf − τi > 0 while remaining within the
regime of validity of the EFT. That is, if the distance that
the perturbations can propagate outside of the Minkowski

light cone becomes larger than the wavelength of the
perturbation. As is well known, in this setup, there is no
risk of causality violation if g8 > 0 and g12 > 0. However if
g8 < 0, one can easily find solutions on which jkjΔx < −1.
Consider for instance a time-localized profile of the form

ϕ̄ðτÞ ¼ Φ̄0e−τ
2

. The resulting support outside the light cone
will then be

jkjΔx ¼ jkj
H

Z
∞

−∞
ð1 − csðτÞÞdτ ¼ 4

ffiffiffi
π

p jkj
H

�
HΦ̄0

Λ2

�
2

×

�
g8 þ 3g12

jkj2H2

Λ4
−
9g28ffiffiffi
2

p H2Φ̄2
0

Λ4

�
: ð3:8Þ

In the regimeof validity of theEFT,HΦ̄0 ≪ Λ2 and the terms
quadratic in g8 are naturally negligible.While the prefactor in
square brackets should be small, this can always be com-
pensated by a sufficiently large jkjH−1 ≫ 1 as required from
the validity of the WKB approximation. For those solutions
the term linear in g12 is always subdominant as
jkjH ∼ ωH ≪ Λ2. Hence as g8 < 0, there are solutions
within the regime of validity of the EFT for which the time
advance is resolvable jkjΔx < −1 signaling a violation of
causality. This result complements that derived in [89].
On the other hand for more involved profiles, the term

linear in g12 can be sufficiently enhanced so that it dominates
over the term linear in g8 despite the jkj2H2Λ−4 suppression.
As a simple proof of principle, we could consider for instance
a profile of the form ϕ̄ðτÞ ¼ Φ̄0τ

2e−τ
2

for which the support
then becomes

jkjΔx¼ 7
ffiffiffi
π

p

2
ffiffiffi
2

p jkj
H

�
HΦ̄0

Λ2

�
2

×

�
g8 þ

57

7
g12

jkj2H2

Λ4
−
6129

1792

g28ffiffiffi
2

p H2Φ̄2
0

Λ4

�
; ð3:9Þ

hence taking jkjH=Λ2 ∼ 0.2 ensures validity of the EFT,
while the g12 dominates over the g8 term and hence a
resolvable time advance will be possible within the regime
of validity of the EFT for negative g12 ∼ −1 even if g8 ∼ 1.
One could push the analysis to more generic profiles and
derive a more systematic resolvable support outside the light
cone whenever g12 is negative however at this stage moving
on to spherically symmetric profiles will prove more
instructive and positivity of g12 from pure causality consid-
erations will be proven in that context (see the summary of
the causality constraints depicted in Fig. 4 where it is clear
that even in the presence of a generic positive g8, g12 still
ought to be positive to ensure causality on generic configu-
rations that remain in the regime of validity of the EFT). No
additional information can be obtained from this analysis
sinceg10 hasno effects on thedispersion relation as explained
under Eq. (3.5) and, as argued previously, the g8 and g12

7As expected, if one were to choose the parametrization for the
g10 operator in (2.1) where the term□ϕð∂ϕÞ2 is removed by field
redefinition, the g10 contribution to c2sðkÞ would be a total
derivative and would also vanish at the level of the time delay
so long as one considers background profiles with vanishing
boundary terms, as is done in our analysis.

8Cylindrically symmetric background were also considered
and lead to no additional insights, we shall therefore not present
them in this work.
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contributions to the speed are sign definite so we cannot
bound these coefficients from above.

IV. SPHERICALLY SYMMETRIC BACKGROUND

We proceed to explore causality constraints on a static and
spherically symmetric background ϕ̄ðrÞ for which the
operator g10 is relevant. This allows us to establish to which
extent the nonlinear positivity bounds in Eq. (2.2) can be
reproduced using causality considerations at low energy
without other information from itsUVcompletion.Given the
symmetries of the background, we perform an expansion in
spherical harmonics9 (partial waves) and write our perturba-
tion as ψ ¼ P

l e
iωtYlðθÞδρlðrÞ. We obtain an equation of

motion for the l-mode radial perturbation, ρl, which
schematically is

δρ00lðrÞ þ Aðω2; rÞδρ0lðrÞ

þ
�
ω2Cðω2; rÞ − lðlþ 1Þ

r2
þ Bðr;lÞ

�
δρlðrÞ ¼ 0:

ð4:1Þ

In the absence of interactions we have Bðr;lÞ ¼ 0 (up to the
mass of the scalar field which we treat as negligible). We

perform a field redefinition, δρlðrÞ ¼ e−
R

Aðω2;rÞ=2drχlðrÞ, to
remove the friction term and get

χ00lðrÞ þ
1

c2sðω2; rÞ ðω
2 − VeffÞχlðrÞ ¼ 0; with

Veff ≡ lðlþ 1Þ
r2

þ B̃ðr;lÞ: ð4:2Þ

We can obtain this equation in an exact form, but for our
purposes, we will consider an expansion in the parameters δ1
and δ2 defined in Eq. (2.4). Let us consider a spherically
symmetric background of the form ϕ̄ðrÞ ¼ Φ̄0fðrÞ and
change coordinates to R ¼ r=r0, where r0 is an arbitrary
length scale thatmeasures thevariation of the backgroundand
Φ̄0 has dimensions of mass,

ϕ̄ðr=r0Þ ¼ Φ̄0fðRÞ: ð4:3Þ

With these definitions, both the profile f and the radiusR are
dimensionless. Note that the definitions of all dimensionless
parameters and functions are reported in Table II of
Appendix B. Moreover, we expect f and its derivatives
fðnÞ (where the differentiation is takenwith respect toR) to be
at most of Oð1Þ. The validity of the EFT implies that:

ϵ1≡ Φ̄0

r0Λ2
≪ 1; ϵ2≡ 1

r0Λ
≪ 1; and Ωϵ2≡ ω

r0Λ2
≪ 1:

ð4:4Þ
At the level of the phase shift, each contribution from the gi
terms would scale as follows

g8∶Oðϵ21Þ; g10∶Oðϵ21ϵ22Þ; g12∶Oðϵ21ϵ22Ω2Þ:
More generally, any term coming from gn18 gn210g

n3
12 will be

suppressed by at least a power

ϵ2ðn1þn2þn3Þ
1 ϵ2ðn2þn3Þ

2 Ω2n3 : ð4:5Þ

We write our expressions in terms of ϵ1, ϵ2, and Ω and then
perform an expansion up to order ϵ21ϵ

2
2 and ϵ

4
1, which requires

the assumptions ϵ21 ≪ ϵ2 and ϵ22 ≪ ϵ1. In fact, we will
consider ϵ1 and ϵ2 of the same order, but allow the freedom
of the exact value of these scales to be different. Wewill refer
to these contributions as the leading-order (LO) or Oðϵ4Þ.
Thus, we need to keep track of the contributions coming from
the g8; g10; g28; g12 terms. Expanding up to order ϵ21ϵ

2
2 we find

χ00lðRÞþWlχlðRÞ ¼ 0; Wl ¼
ðωr0Þ2

c2sðω2;RÞ
�
1−

VeffðRÞ
ðωr0Þ2

�
;

ð4:6Þ

where prime now denotes a derivativewith respect toR. Note
that the expansion is not just in ϵ, but in giϵ. For this
perturbative result to be correct, we need tomake sure higher-
order corrections to the series expansion inEq. (4.6) above are
small. Thus, we require schematically that giϵ ≪ 1, which as
expected, simply tells us that we should not consider too large
values for the Wilson couplings. Wilson coefficients much
larger than unity should be rescaled appropriately in the cutoff
Λ resulting in a lower cutoff scale. We now solve Eq. (4.2)
using the WKB approximation, first analyzing how far in the
WKB approximation one needs to include contributions to be
consistent with the EFT expansion. Once the consistency of
the WKB expansion with the EFT expansion is established,
we can then explore the parameter space in which causality
violations can arise. We will do so for the cases l ¼ 0 and
l ≠ 0 separately.

A. Regime of validity of the WKB approximation

We start by considering Eq. (4.6) given in terms of
dimensionless variables

χ00lðRÞ þ ðωr0Þ2ŴlðRÞχlðRÞ ¼ 0;

ŴlðRÞ ¼
WlðRÞ
ðωr0Þ2

¼ 1

c2sðω2; RÞ
�
1 −

VeffðRÞ
ðωr0Þ2

�
: ð4:7Þ

Since we assume that the perturbation fluctuates faster than
the background, namely,

9Due to the azimuthal symmetry, we can neglect the φ
dependence of the spherical harmonics and work with the
Legendre polynomials.
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λperturbation
λbackground

¼ 1

ωr0
¼ ϵ2

Ω
≪ 1; ð4:8Þ

we can solve the equation above using theWKBmethod. In
this approach, the solution to the equation of motion up to
nthth-order correction in the WKB formula is given by

χðnÞl ðRÞ ∝
�
eiðωr0Þ

R
R

0

P
n
j≥0 δ

ðjÞ
WKBdR − e−iðωr0Þ

R
R

0

P
n
j≥0 δ

ðjÞ
WKBdR

�
;

ð4:9Þ

where the boundary conditions were chosen such that

χðnÞl ðR ¼ 0Þ ¼ 0 and δðjÞWKB is the jth-order term in the
WKB series expansion whose explicit expressions can be
found in [100] and we list the relevant ones for our analysis

below. Noting that Ŵl > 0, it is easy to realize that δðjÞWKB
are purely imaginary total derivatives when j is odd,
meaning that they do not contribute to the phase but simply
to the amplitude. In the end, we have that the phase is
proportional to

X
j≥0

δð2jÞWKB ¼ δð0ÞWKB þ δð2ÞWKB þ δð4ÞWKB þ � � � ; ð4:10Þ

where the first three contributions are

δð0ÞWKB ¼
ffiffiffiffiffiffiffi
Ŵl

q
; ð4:11Þ

δð2ÞWKB ¼ −
1

ðωr0Þ2
1

8
ffiffiffiffiffiffiffi
Ŵl

p
�
Ŵ00

l

Ŵl
−
5

4

�
Ŵ0

l

Ŵl

�
2
�
; ð4:12Þ

δð4ÞWKB ¼ 1

ðωr0Þ4
1

32Ŵ3=2
l

�
Ŵð4Þ

l

Ŵl
− 7

Ŵ0
lŴ

ð3Þ
l

Ŵ2
l

−
19

4

�
Ŵ00

l

Ŵl

�
2

þ 221

8

Ŵ00
lŴ

0
l
2

Ŵ3
l

−
1105

64

�
Ŵ0

l

Ŵl

�
4
�
: ð4:13Þ

For our purposes, we need to consider terms up to order

Oðϵ4Þ. Below, we will see that δð2ÞWKB has contributions of
order ϵ21=ðωr0Þ2 ¼ ϵ21ϵ

2
2=Ω2 that should be taken into

account in order to have a consistent expansion at LO
for the phase shift, and hence the time delay. In some cases,
we would be interested in computing the next EFT
contribution to ensure that it is a small effect that does
not change our bounds. These next-to-leading (NLO)
corrections include terms of the following orders
Oðϵ61; ϵ21ϵ42; ϵ41ϵ22Þ. In this case, we will need to include

δð4ÞWKB corrections to the WKB formula.
We can establish the validity of the WKB approximation

by looking at the relative error between the exact solution
χl and the WKB approximation up to nth-order corrections

χðnÞl . Thus we require that

χlðRÞ − χðnÞl ðRÞ
χlðRÞ

∼
1

ðωr0Þn
Z

R

0

δðnþ1Þ
WKB dR ≪ 1; ð4:14Þ

as well as

1

ðωr0Þn
Z

R

0

δðnþ1Þ
WKB dR ≪

1

ðωr0Þn−1
Z

R

0

δðnÞWKBdR; ð4:15Þ

in order for the WKB to be a useful approximation given by
an asymptotic series in ðωr0Þ−1 [100]. Similarly, we want to
ensure that the next order WKB terms are indeed negligible
at the order in the perturbative expansion that we are
working on. This can be checked by computing the next
order in Eq. (4.7) inferring that,

χðnÞl
00ðRÞþðωr0Þ2ŴlðRÞχðnÞl ðRÞ¼Eðnþ1Þ

l ∼
δðnþ1Þ
WKB

δð0ÞWKB

: ð4:16Þ

From which we can see that the leftover is of order
Oððωr0Þ−ðnþ1ÞÞ which is small provided ðωr0Þ ≫ 1, as
postulated earlier. In practice, we compute carefully the
order of these leftover and make sure that it vanishes at LO.

B. Case 1: Monopole

In this section, we analyze the causality bounds on the
EFT Wilson coefficients that arise when scattering the
monopole mode. To do so, we consider Eq. (4.6) with
l ¼ 0. At leading order, the function Ŵ0 that appears in the
equation of motion reads

Ŵ0ðRÞjLO ¼ 1þ 8g8ϵ21f
0ðRÞ2 þ 96g28ϵ

4
1f

0ðRÞ4

þ 8g12Ω2ϵ21ϵ
2
2f

00ðRÞ2 þ 24g10ϵ21ϵ
2
2

f0ðRÞf00ðRÞ
R

þ 12
g8
Ω2

ϵ21ϵ
2
2

�
2
f0ðRÞf00ðRÞ

R
þ 1

2
∂
2
Rf

0ðRÞ2
�
;

ð4:17Þ

where f and R are respectively the dimensionless spheri-
cally symmetric background and radius defined in (4.3). As
explained earlier we have performed an expansion in the
small dimensionless parameters ϵ1, ϵ2, Ωϵ2 that measure
the validity of the EFT. There is another dimensionless
parameter which measures the validity of the WKB
expansion and can be written in terms of the previous
parameters, namely, ðωr0Þ−1 ¼ ϵ2=Ω. In order to obtain
tight bounds for the Wilsonian coefficients one needs to
consider the extreme situation where these small param-
eters are as large as possible while maintaining the EFT
under control and being able to compute the necessary
WKB corrections at this order. We will be computing
the time delay at LO while ensuring validity of the EFT
by imposing Eq. (4.4). These requirements together
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with the validity of the WKB approximation lead to
ϵ2 ≪ Ω ≪ 1=ϵ2, but in practice, we require slightly tighter
bounds given by

ffiffiffiffiffi
ϵ2

p
< Ω < 1=

ffiffiffiffiffi
ϵ2

p
, together with ϵ21 < ϵ2

and ϵ22 < ϵ1 in order to have a well-defined expansion
truncated at Oðϵ4Þ. For example, this means that we keep

corrections of order ðϵ1=ðωr0ÞÞ2 but neglect ðϵ1=ðωr0Þ2Þ2.
The latter type of corrections arise in the effective potential,
but not in the speed.
It is instructive to look at the sound speed and effective

potential which, at leading order, are given by

c2sðω2; RÞjLO ¼ 1 − 8g8ϵ21f
0ðRÞ2 − 32g28ϵ

4
1f

0ðRÞ4 − 8g12ϵ21ϵ
2
2

ω2

Λ2
f00ðRÞ2 − 24g10ϵ21ϵ

2
2

f0ðRÞf00ðRÞ
R

;

VeffðRÞjLO ¼ −12g8ϵ21

�
2
f0ðRÞf00ðRÞ

R
þ 1

2
∂
2
Rf

0ðRÞ2
�
: ð4:18Þ

One should note here that the effective potential term is
suppressed by ðωr0Þ−2 ¼ ϵ22Ω−2 with respect to the sound
speed term. The corrections at NLO to the speed of sound
and to the effective potential are listed in Appendix C.
From the sound speed expression, we can understand
whether we should expect to be able to reproduce any of
the positivity bounds in Eq. (2.2). Firstly, as already
argued in Sec. II, the g8 and g12 contributions to the speed
are clearly sign definite. Next, we analyze the g10 con-
tribution. This term appears to be sign indefinite, but

under the integral, it is equivalent to a sign definite
contribution up to total derivatives that will vanish at
the boundaries. Hence, with use of the monopole, we can
only expect to be able to bound the g10 coefficient from
below and we will need to resort to higher multipoles to
bound g10 from above.
We can now determine the phase shift experienced by the

perturbation traveling in the spherically symmetric back-
ground. For that we first rewrite the solution to the
perturbed equation of motion in the following way

χðnÞ0 ðRÞ ∝ e−iðωr0Þ
R

R

0
ð
P

n
j≥0

δðjÞWKB−1ÞdR
�
e2iðωr0Þ

R
R

0
ð
P

n
j≥0

δðjÞWKB−1ÞdReiðωr0ÞR − e−iðωr0ÞR
�
; ð4:19Þ

so that it can be compared to the asymptotic solution χ0ðRÞ ∝ ðe2iδ0eiðωr0ÞR − e−iðωr0ÞRÞ to find that the expression for the
phase shift at l ¼ 0 reads

δ0ðωÞ ¼ ωr0

Z
∞

0

�X
j≥0

δðjÞWKB − 1

�
dR; ð4:20Þ

which is positive for 0 < cs < 1 and large enough ωr0 as seen when using Eqs. (4.7) and (4.13):

δ0ðωÞ ∼ ωr0

Z
∞

0

�
1

cs
− 1

�
dR: ð4:21Þ

From Eq. (4.20), we see that the dimensionless time delay of a partial wave with zero angular momentum is given by

ωΔT0ðωÞ ¼ 2ω
∂δ0ðωÞ
∂ω

¼ 2ω

Z
∞

0

∂

∂ω

�
ðωr0Þ

�X
j≥0

δðjÞWKB − 1

��
dR≡

Z
∞

0

I0ðω; RÞdR; ð4:22Þ

where up to Oðϵ4Þ we have

I0ðω2; RÞjLO ¼ 8ðωr0Þϵ21
�
g8f0ðRÞ2 þ 10g28ϵ

2
1f

0ðRÞ4 þ 3g12Ω2ϵ22f
00ðRÞ2

−
g8
Ω2

ϵ22

�
3
f0ðRÞf00ðRÞ

R
þ 1

2
∂
2
Rðf0ðRÞ2Þ

�
þ 3g10ϵ22

f0ðRÞf00ðRÞ
R

�
: ð4:23Þ

As appropriate for a scattering regime which is intrinsically wavelike such as the l ¼ 0 case, we are computing the time
delay at fixed l. As mentioned earlier, we will consider background profiles giving null boundary terms so that we can
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neglect any contribution from total derivative terms. Taking this into consideration and performing integration by parts we
find that the above equation can be written as

I0ðω2; RÞjLO ¼ 8ðωr0Þϵ21
�
g8f0ðRÞ2 þ 10g28ϵ

2
1f

0ðRÞ4 þ 3ϵ22

�
g12Ω2f00ðRÞ2 þ 1

2

�
g10 −

g8
Ω2

�
f0ðRÞ2
R2

��

þ total derivatives: ð4:24Þ

We can now explicitly see that the contribution from each
term in the EFT expansion is sign definite when looking at
the scattering of l ¼ 0 modes. From these expressions and
the constraints from the validity of the EFT and the WKB
approximation in Eqs. (4.4), (4.8), we can easily see that the
g8 and g12 terms can give rise to resolvable time delays. In
fact, the time delay is positive for g8 > 0when g10¼g12¼0
and for g12 > 0 when g8 ¼ g10 ¼ 0, however we will
soon be able to make more general statements. For the
g10 terms, one can also obtain a resolvable time delay, but
this requires tuning of the function f to make the time delay
large while satisfying Eq. (4.4). After considering the
high l case in the following section, we will analyze the
situations when a resolvable time advance can occur in
Sec. IV D.

C. Case 2: Higher-order multipoles

We will now consider the case of partial waves with
l > 0. As first noted by Langer [101], the standard WKB
approach fails to be useful when considering low multipole
contributions since the approximation fails to reproduce the
behavior of the solutions near r ¼ 0. To deal with this, one
can perform a change of variable, r ¼ eρ, in order to map
the singularity r ¼ 0 to ρ ¼ −∞. Then, the exponentially
decayingWKB solution reproduces the correct asymptotics
at ρ ¼ −∞. We proceed to change the variables in Eq. (4.1)
as described above and obtain an equation of motion that
contains a friction term which we remove with a field
redefinition to get,

∂
2
ρδρlðρÞ ¼ −ŴlðρÞδρlðρÞ: ð4:25Þ

Then, we solve this equation using the WKB approxima-
tion. To find the phase shift, we want to express ŴlðρÞ back
in terms of the dimensionless radial coordinate R ¼ r=r0.
For generic multipole we define the dimensionless quantity

WlðRÞ≡ 1

ðωrÞ2 ŴlðρðrÞÞ; ð4:26Þ

note that this is not precisely the same definition as what
was performed in (4.7). Here the factor 1=r2 captures the
Jacobian of the transformation:

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŴlðρÞ

q
dρ ¼ ωr0

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
WlðrÞ

p
dR: ð4:27Þ

Before moving on, we note that within the present
formalism we cannot compute the time delay beyond the
leading-order WKB approximation for the l > 0 case. It is
well known that higher-order (n > 0) WKB corrections are
divergent at the turning point. This simply signals the
breaking of the approximation in this region and the WKB
solution can be improved by matching to an asymptotic
solution near the turning point. Nevertheless, this does not
modify the asymptotic behavior of the WKB solution and
thus does not change the inferred time delay. While these
subleading contributions seem to involve infinities at finite
order in the WKB series expansion, the physical phase shift
is finite so that upon appropriate reorganization or resum-
mation of the series the result will end up being finite. We
could in principle carry out this resummation or reorgani-
zation of the series, however for simplicity we focus here
instead in the regime where ðωr0Þ ≫ 1 so that all WKB
corrections can safely be ignored.
At first order in theWKBapproximation, the phase shift of

the partial wave with l > 0 can be identified as (see
Appendix B of [89])

δl ¼ ðωr0Þ
�Z

∞

Rt

dRð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WlðRÞ

p
− 1Þ−Rt þ

1

2
Bπ

�
; ð4:28Þ

where theRt ¼ rt=r0 is the dimensionless turning point such
that WlðrtÞ ¼ 0 and we have introduced the dimensionless
impact parameter B ¼ b=r0, where b ¼ ðlþ 1=2Þ=ω is the
impact parameter of the free theory, i.e., when gi ¼ 0. We
remind the reader that the definitions of all dimensionless
parameters are reported in Table II of Appendix B.
In order to perform the integral in Eq. (4.28) analytically,

we will expand the integrand at LO as in the monopole
case. We have to be careful when splitting the integral order
by order so that each term is a converging integral. To do
so, we start by writing

WlðRÞ ¼ WlðRÞjgi¼0 þ δWlðRÞ; ð4:29Þ

where WlðRÞjgi¼0 is the contribution arising purely from
the angular momentum contributions but no self inter-
actions. Using the fact that WlðRtÞ ¼ 0, this can be
rewritten as
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WlðRÞ ¼
�
1 −

R2
t

R2

�
þ ΔWlðRÞ;

ΔWlðRÞ ¼ δWlðRÞ −
R2
t

R2
δWlðRtÞ; ð4:30Þ

so that each contribution is finite at the integration
boundaries and the integrals at each order in ϵ1 and ϵ2
converge. Now, expanding the square root at Oðϵ4Þ gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WlðRÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
t

R2

r
þ UlðRÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2
t

R2

q ; ð4:31Þ

where UlðRtÞ ¼ 0. The LO explicit expressions for
WlðRÞ, UlðRÞ, and Rt can be found in Appendix D.
Integrating this expression gives the phase shift at Oðϵ4Þ.
Note that Rt ¼ BþOðϵ4Þ and Ul ¼ Oðϵ2Þ, hence, when
dealing with the Ul term, the turning point Rt can be
replaced by B since any corrections will contribute at NLO.
This means that we can write

Z
∞

Rt

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WlðRÞ

p
− 1ÞdR

¼
Z

∞

Rt

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

R2
t

R2

r
− 1

�
dRþ

Z
∞

B

UlðRÞffiffiffiffiffiffiffiffiffiffiffi
1− B2

R2

q dR; ð4:32Þ

giving

δlðωÞ ¼ ðωr0Þ
�Z

∞

B

UlðRÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

R2

q dRþ π

2
ðB − RtÞ

�
: ð4:33Þ

To get the time delay, we need to differentiate the expression
above with respect to ω. As opposed to the monopole case
where we fixed l, when going to higher multipoles it is
convenient to think of the scattering not in terms of the
scatteringofwaves but of particles specified by agiven impact
parameter. That is to say, what is naturally held fixed for
particle scattering is the impact parameter b (orB). This is the
time delay traditionally considered in the eikonal approxi-
mation (see for example [76]). Thus, the time delay reads

ðωΔTbðωÞÞ ¼ 2
∂δlðωÞ
∂ω

����
b
¼ 2ðωr0Þ

�Z
∞

Rt

ð∂ωðω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WlðRÞ

p
Þ − 1ÞdR − Rt þ

1

2
Bπ

�
; ð4:34Þ

which after using Eq. (4.33) can be written as

ðωΔTbðωÞÞ ¼ 2ðωr0Þ
�Z

∞

B

∂ωðωUlðRÞÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

R2

q dRþ π

2
ðB − ∂ωðωRtÞÞ

�
: ð4:35Þ

In the next section, we will explore the regions in
Wilson coefficient space that can lead to a resolvable time
advance given by Eq. (4.35). Contrary to the l ¼ 0 case,
the contribution to the time delay from g10, found in
Eq. (D3), is not sign definite when we have angular
momentum. This will allow us to bound the g10 coefficient
from above and below. The tightest bounds will arise from
considering the scattering of higher-order multipole
modes. Note that while we can take the large-l limit,
we cannot take l → ∞. This can be seen by writing
L ¼ lþ 1=2, and

L ¼ ωb ¼ BΩ
ϵ2

: ð4:36Þ

The impact parameter B cannot be taken to infinity,
otherwise there would be no scattering. Meanwhile, Ω
is bounded by Eq. (4.4) so that we stay within the regime
of validity of the EFT. Thus, at a fixed impact parameter,
the angular momentum has an upper bounded given by

L ≪
B
ϵ22
: ð4:37Þ

Note that this large angular momentum limit is related to
the standard approach of computing phase shifts by
looking at the eikonal limit of 2 → 2 scatterings.

D. Causal shift-symmetric theories

We now consider a specific background profile to obtain
constraints on the Wilson coefficients given by causality.
We use an analytic function in order to avoid any possible
divergences at R ¼ 0. Furthermore, we require that the
background vanishes at infinity to have a well-defined
scattering around an asymptotically flat background, that
is, the light cones observed by the perturbation approach
the Minkowski ones near infinity. Therefore, we will
consider a profile of the form

fðR2Þ ¼
�Xp

n¼0

a2nR2n

�
e−R

2

; ð4:38Þ
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where a2n are arbitrary coefficients of order 1. For a generic
scalar field EFT in its own right (not coupled to gravity),
one can always consider an external source J that would
generate such a profile. In more specific contexts where
the scalar field is considered to be diagnosing one of
the degrees of freedom of gravity (as would for instance be
the case for the helicity-0 mode in [102] or in massive
gravity [103,104]), one may consider more carefully how
such a profile could be generated as discussed in
Appendix F.
When considering such profiles (4.38), the largest

contributions to the time delay (or advance) come from
small powers n, so in practice we truncate the series by
choosing p ¼ 3, i.e., including terms up to a6. Given this
profile, we can explore the regions where one can obtain a
resolvable time advance, that is, ωΔTb ≲ −1 while main-
taining the EFT under control and hence violate causality.
Since we have already established in the homogeneous case
that g8 ought to be positive we can set g8 ¼ 1without loss of
generality (this simply corresponds to a rescaling of all the
Wilson coefficients by g8). The case g8 ¼ 0 will be consid-
ered separately in what follows. We use an extremization
procedure to find the largest region where causality is
violated following the method is explained in Appendix E.
Monopole modes: We first consider the l ¼ 0 case. In

the extremization procedure, we include all the constraints
on the dimensionless parameters arising from the validity of
the EFT as in (4.4) and we require that the LO and NLO
results differ only by a 3% for g14 of order 1. The
NLO contributions, found in Appendix C, include WKB
corrections as well as higher-order EFT terms. Within
our parametrization, we find the tightest constraints by
considering

a0 ¼ 1; a2 ¼ 0.72; a4 ∼ 0; a6 ¼ 0.14;

ϵ1 ¼ 0.36; ϵ2 ¼ 0.35; Ω ¼ 0.70; ð4:39Þ

although it is likely that even tighter constraints could be
derived if one considered other classes of profiles, the
bounds we obtain here already serve as proof of principle.
The bounds arising from the previous choice are shown in
blue in Fig. 1 together with the orange positivity bound
from [33]. It is easy to prove, by examining Eq. (4.24), that
the slope of the line delimitating the causal region from the
acausal one is negative for any choice of coefficients when
considering l ¼ 0. This means that when considering the
monopole, we can only get a left-sided bound as argued
earlier.
Note that our choice in Eq. (4.39) implies ωr0 ∼ 2

which does not suppress higher-order WKB corrections.
Nevertheless, when working at Oðϵ4Þ we can safely

consider this case since all the corrections δð2nÞWKB for
n ≥ 2 will correspond to total derivatives that do not
contribute to the phase shift. One can see that this is the

case by looking at Eq. (4.13) and noting that after
expanding in ϵ1 and ϵ2 up to order Oðϵ4Þ the WKB
corrections will arise from Wð2nÞ.
Higher multipole modes: Moving to the higher multi-

poles, l > 0, we consider the same profile as in Eq. (4.38).
By allowing finite values of l, the equation for the line
ðωΔTbÞ ¼ −1 separating regions of “causality-violation”
has a new free parameter and now allows for a positive
slope. This opens the possibility to constrain the causality
region from both sides and below. We do not get a better
lower-sided bound on g10 but we do get an upper bound by
considering the union of the constraints arising from a set of
parameters as explained in Appendix E. Remarkably, this
method also sets a lower bound on g12 which ought to be
positive, in complete agreements with positivity bounds. In
itself this is a remarkable statement as in the presence of the
g8 operator the speed is typically dominated by that term
and little would be inferred from g12.
Our results are shown in Fig. 2 where the causality bound

region corresponds to the intersection of regions in Wilson
coefficient space that do not give rise to resolvable time
advances as defined in Appendix E. An example of a set of
parameters that we use to obtain the causality bounds is
given by

FIG. 1. Positivity and monopole causality constraints for the
shift-symmetric scalar EFT considered in (2.1). In white, we
observe a region that can lead to violations of causal propagation
in the infrared, i.e., where ΔT0 < −1=ω. The blue region is its
complement where there is not yet any indication of causality
violation. Here, we have focused on bounds arising from
monopole modes with a background profile given by
Eq. (4.38) and the coefficient of the ð∂ϕÞ4 operator set to
g8 ¼ 1. In orange, we observe the region that satisfies the
positivity constraints in [33], and assumes physical properties
of the UV completion.
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a0 ¼ −5; a2 ¼ −5; a4 ¼ 5; a6 ¼ −0.91;

ϵ1 ¼ 0.17; ϵ2 ¼ 0.17; Ω ¼ 3; ð4:40Þ

leading to our tightest bound on g10 at g12 ¼ 0. Once again
we do not preclude the possibility that stronger bounds
could be obtained by improved optimization methods or by
considering more generic classes of profiles, however great
care should be taken so as to ensure validity of the EFT and
WKB approximation. As in the previous case, we ensure
that we are within the regime of validity of the EFT by
satisfying Eq. (4.4). Furthermore, we only work at leading
order in theWKB approximation and guarantee that higher-
order corrections are negligible by taking ωr0 ∼Oð20Þ.
Note that, as explained earlier, odd higher-order WKB
corrections only contribute to the overall amplitude and
hence, corrections to the phase shift (and time delay) only
come from even higher-order WKB corrections, which are
then suppressed by powers of ðωr0Þ2 ∼Oð400Þ. In contrast
to the l ¼ 0 analysis, we cannot compare to the NLO
corrections since these would include WKB corrections
that we cannot compute within our formalism as explained
in the previous section. However, we do ensure smallness
of the corrections by relying on dimension analysis given
by Eq. (4.8). It is interesting to note that the tightest bounds
that we found come from the region where l ∼Oð30Þ, and
thus are related to calculations in the eikonal limit. On the
other hand, the results from the previous case (l ¼ 0) arise
in the opposite regime that is less explored in the literature.

Combining monopole and higher multipoles causality
bounds gives rise to the left panel of Fig. 4 strongly
constraining the viable region of the fg10; g12g parameter
space. We highlight that there is room for our procedure to
be further tightened (for instance by considering more
generic backgrounds and more freedom in their paramet-
rizations and their scaling). As a result the white regions
ruled out in Figs. 1 and 2 are very likely not the most
optimal bounds that one can obtain from causality but
already provide a close contact with standard positivity
bounds and new compact positivity bounds.

E. Causality in Galileon theories

Besides the shift-symmetric theory considered through-
out this paper, one can impose a more constraining,
spacetime-dependent, shift symmetry given by

ϕ → ϕþ cþ bμxμ; ð4:41Þ

where c is a constant and bμ a constant vector. This is the
Galileon symmetry [96] which arises in various contexts
such as massive gravity theories, brane-world models,
accelerating universes, inflationary models, and alterna-
tives to inflation [105]. Imposing this new symmetry
requires that we set g8 ¼ 0 in Eq. (2.3). Note that any
scalar low energy EFT that enjoys a Galileon symmetry
(with no other light degrees of freedom) is forbidden by
positivity bounds. Setting g8 ¼ 0 the positivity bounds
(2.2) then impose g10 ¼ g12 ¼ 0. This means that when
viewed as a low energy scalar EFT, a Galileon cannot have
a Wilsonian UV completion that is local, unitary, causal,
and Poincaré invariant. Here, we would like to understand
whether we can obtain similar stringent bounds from
infrared causality alone with no further input on the UV
completion.
The analysis follows in a similar way as the shift-

symmetric case above, with the only modification arising
from the requirements for the validity of the EFT which
now read

ϵ1ϵ2 ≪ 1; and Ωϵ2 ≪ 1: ð4:42Þ
The validity of the WKB approximation and the above EFT
requirements imply that ϵ2 ≪ Ω ≪ 1=ϵ2. In order to have a
well-defined ϵ expansion, we require slightly tighter lower
bounds given by

ffiffiffiffiffi
ϵ2

p ≪ Ω. While in the shift-symmetric
case we had ϵ1 ∼ ϵ2, here ϵ1 can in principle be larger since,
thanks to the Galileon symmetry, all operators are always
suppressed by some power of ϵ2. The LO or Oðϵ4Þ
corrections simply include the ϵ21ϵ

2
2 terms.

As in the previous case, we consider propagation around
the background profile in Eq. (4.38). When computing the
time delay for l ¼ 0modes, we require that the NLO result
differs from the LO only by a 3% for g14 of order 1. As in
the shift-symmetric case, we can only get lower bounds on

FIG. 2. The blue and orange regions represent the EFTs
satisfying causality bounds from higher multipoles and positivity
bounds respectively. The regions are computed as in Fig. 1 with
g8 ¼ 1, but the causality constraints are those arising from higher-
order multipole modes.
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g10 in this regime. Note that the monopole constraint for the
Galileon symmetry gives g10 ≳ 0, which is nearly as good
as it can be for a one-sided bound. Meanwhile, in the higher
multipoles case, i.e., l > 0, we only consider the leading-
order WKB results as in the previous case. For this case, we
closely reproduce the l ¼ 0 left-sided bound and get a new
maximal right-sided bound as seen in blue in Fig. 3.

V. DISCUSSION AND CONCLUSIONS

We have seen that requiring that the effective field theory
only leads to causal propagation around a given spherically
symmetric background allows us to put tight bounds on the
Wilson coefficients of a low energy EFT, independently of
its ultimate high energy completion. Remarkably, there are
two physical regimes that give rise to different bounds. The
propagation of zero angular momentum partial waves gives
rise to lower bounds while the propagation of high lmodes
imposes both lower and upper bounds, although the lower
bounds are in general not competitive with those arising
from l ¼ 0 modes. We can summarize our findings by
combining both results from the monopole and the higher-
order multipoles. This is shown in the blue causal regions
depicted in Fig. 4.
On the left pane of Fig. 4 we observe the causality

bounds (blue) compared to the positivity bounds (orange).
While our causality bounds are not as constraining as the
positivity ones, we note two important points. First,
contrary to the positivity bounds, causality bounds do
not require any assumptions of the UV completion (includ-
ing notably, unitarity and locality) they arise purely from
infrared physics that is well described by the EFT. Second,
positivity bounds have by now been optimized using
various techniques allowing to probe features of the EFT
beyond its forward limit, while ours were so far obtained
using a simple static and spherically symmetric profile with
a simple extremization procedure. It is likely that tighter
bounds could be derived by allowing for more generic and
less symmetric profiles.
More importantly, we highlight that the precise numeri-

cal values of the causal bounds should not be the main

FIG. 4. Infrared causality constraints on the Wilson coefficients of two scalar low energy EFT, a shift-symmetric one with g8 ¼ 1 on
the left and a Galileon-symmetric one with g8 ¼ 0 on the right. In both cases, the white areas are regions in the Wilson coefficients space
where a violation of causality can be observed at low energy, whereas the orange one is derived from positivity bounds requiring
assumptions in the UV. To obtain these results, we combined lower and upper bounds derived respectively in the l ¼ 0 and l > 0 cases.

FIG. 3. Causality bounds for the Galileon EFT (g8 ¼ 0). The
green region represents the monopole causality bounds [for the
profile considered in Eq. (4.38)]. The blue region represents
causality bounds from higher multipole, leading to two-sided
bounds. Only the intersection of the blue and green regions is so
far causally viable.
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focus of our results. The fact that by simply requiring
causal propagation in the infrared we can obtain such
semicompact bounds is in itself remarkable. A naive
version of the right-sided positivity bound is given by g10 <
2g8 and can be derived simply using the s ↔ u dispersion
relation [33]. This bound is slightly optimized when using
triple crossing symmetry s ↔ t ↔ u. Note that in our
causality bounds, we only produce an upper bound for
g10 and lower bound for g12 when looking at higher
multipoles. On the other hand, the left-sided positivity
bounds are fully coming from triple crossing symmetry. In
our analysis this lower bound can be reproduced by looking
at both high l and l ¼ 0 scattering, but the stronger bound
comes from the monopole bound. This suggests that our
analysis approximately reproduces bounds purely from
s ↔ u dispersion relation in the UV when looking at higher
multipoles and triple crossing symmetry when looking at the
monopole. However, this seems to be the opposite behavior
of the one observed in [33,34], where the upper bound is
obtained at l ¼ 0 and the lower one at l ≥ 2.
Correspondingly, in the right pane of Fig. 4 we see that

requiring infrared causality of the Galileon theory allows us
to recover a very similar result to the recently derived full-
crossing symmetric positivity bounds that entirely rule out
the quartic Galileon by assuming properties of the UV
completion. Thus, we effectively rule out the quartic
Galileon as a causal low energy scalar effective field theory
with no other light degrees of freedom. This does not imply
that we rule out the quartic Galileon coupling that would
arise in a gravitational setting. For example, the Galileon
theory is a meaningful decoupling limit of massive gravity
theories, but can never be considered as a low energy
description without the inclusion of other modes. Moreover
the Galileon field would generically couple to the trace of
the stress-energy tensor, which must obey some consis-
tency conditions of its own. We discuss this point in
Appendix F and leave for future work the analysis of
the situation where we have a gravitational coupling in
which one has to impose conditions on the sources to be
physical. Instead, our analysis holds if we assume that we
are dealing with a scalar EFT in its own right that can be
coupled to an arbitrary external source so that causal
propagation is required for any possible external source
configuration.
Over the past few years, remarkable progress has been

made in deriving new sets of nonlinear, compact positivity
bounds that make use of full s ↔ t ↔ u crossing sym-
metry. This work serves as proof of principle that low
energy causality arguments alone can go a long way in
making contact with known positivity bounds. This extends
the earlier observation of [2] (for a more recent discussion
connecting time delays and positivity bounds see
Appendix A of [31]). It would be interesting to understand
how constraining low energy causality is when optimizing
the bounds derived in this paper across more general

backgrounds similar to that considered in [85,86,89].
One might expect that fewer symmetries could lead to
stronger bounds. Similarly, one could use this approach to
constrainWilson coefficients of higher derivative terms that
arise in the EFTwhich have been previously bounded using
positivity arguments. One appeal of these constraints is that
they can easily be generalizable to include operators that
are higher order in the field and hence would not contribute
at tree level to known 2 → 2 positivity bounds. Further-
more, the requirement of low energy causality can be
imposed on gravitational theories and curved backgrounds
without running into problems related to the lack of an S-
matrix or broken Lorentz symmetries, which would make
them particularly appealing for instance for cosmological
[56,57,62] or black hole gravitational bounds [85,86]. In
future work, we will explore how causality can give rise to
bounds in such situations.
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APPENDIX A: CAUSAL TIME ADVANCES AND
LORENTZ INVARIANT UV COMPLETIONS

As noted by Wigner and Eisenbud [69,70], for scattering
in a potential of finite range a, it is natural to obtain a
scattering time advance of 2a=v for spherical wave scatter-
ing since this reflects the time advance that a wave which
scatters directly off the hard boundary at r ¼ a, relative to a
wave which makes it to r ¼ 0. Clearly this does not violate
causality, and so the causality condition of Wigner-
Eisenbud for monopole (l ¼ 0) scattering is

ΔT > −
2a
v

−
Oð1Þ
ω

; ðA1Þ

with v the group velocity of the wave. Given this, one may
wonder whether we have been too strict in our
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consideration of monopole scattering by not allowing any
time advance. The key difference is that we are interested in
the scattering of essentially massless particles in the
relativistic limit for which ω is large in comparison to
the potential V, and the scale of variations of the potential
r0. More precisely we assume Max½VðnÞðrÞ� ≪ ωnþ1 for all
n ≥ 0. In this limit, no resolvable time advance is consistent
with Lorentz invariant causality.
To understand why this is the case, let us consider the

case of relativistic scattering off of a (quasi)hard sphere. To
make comparison with the nonrelativistic problem, con-
sider a complex massive scalar field Φ of mass m, which is
charged under aUð1Þ gauge field whose Coulomb potential
qA0 ¼ VðrÞ takes the form

VðrÞ ¼ V0θða − rÞ: ðA2Þ

The equation of motion for the complex scalar is

m2Φ −∇2ΦþD2
tΦ ¼ 0; ðA3Þ

where Dt ¼ ∂t þ iV. For a given frequency and multipole
we have

ðω − VðrÞÞ2Φ ¼ m2Φ −
1

r2
∂

∂r

�
r2
∂Φ
∂r

�
þ lðlþ 1Þ

r2
Φ:

ðA4Þ

The nonrelativistic problem is obtained as usual by replac-
ing ω ¼ mþ ωNR and neglecting ω2

NR and V2 terms.
Focusing on the monopole case l ¼ 0 for simplicity, the
solution for r < a which is regular at r ¼ 0 is

ΦðrÞ ¼ A
r
sin ðκ0rÞ; ðA5Þ

with κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω − V0Þ2 −m2

p
. Denoting k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
,

the solution for r > a can be parametrized as

ΦðrÞ ¼ A0

2ir
ðe2iδeikr − e−ikrÞ: ðA6Þ

Matching at r ¼ a determines the relativistic phase shift
to be

e2iδ ¼ e−2iak
κ0 cosðaκ0Þ þ ik sinðaκ0Þ
κ0 cosðaκ0Þ − ik sinðaκ0Þ

: ðA7Þ

Now in the true hard sphere limit jV0j → ∞ for which the
field vanishes for r < a the phase shift reduces to

e2iδ ¼ e−2iak; ðA8Þ

and as expected this gives the relativistic version of the time
advance noted by Wigner and Eisenbud

ΔT ¼ 2
∂δ

∂ω
¼ −

2a
v
; ðA9Þ

with v ¼ dω
dk ¼ k=ω, and a similar behavior occurs even at

finite V0 consistent with the bound (A1).
Crucially however this effect occurs because the poten-

tial is sharper than the frequencies being considered. If we
consider rather the situation where the frequencies are large
in comparison to the typical scale of variation of the
potential, we may use the WKB approximation for which
the phase shift will take the approximate form

δ ¼
Z

∞

0

dr
�
κðrÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p 	
; ðA10Þ

where now

κðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω − VðrÞÞ2 −m2

q
: ðA11Þ

For ω > MaxðjVðrÞjÞ in the massless case m ¼ 0, the
leading WKB correction to the time delay vanishes for
m ¼ 0 since the leading contribution to the phase shift is
frequency independent. The first order correction to the
WKB phase shift gives a frequency-dependent term which
gives rise to a time delay

ΔT ∼
V 0ð0Þ
ω3

þ… ðA12Þ

In the high frequency limit we are working in where ω2 ≫
jV 0ðrÞj this time delay/advance is unresolvable jωΔTj ≪ 1
and higher order WKB corrections are similarly negligible.
The massive case is slightly more subtle. The leading

WKB term gives a correction

ΔT ≈
Z

∞

0

dr
m2ð2ω − VðrÞÞVðrÞ

ω2ðω − VðrÞÞ2 ≈
Z

∞

0

dr
2m2VðrÞ

ω3
;

ðA13Þ

where in the first step we assumedm2 ≪ ððω − VðrÞÞ2;ω2Þ
and in the last step we assumed ω ≫ MaxðjVðrÞjÞ. At first
sight, it looks like we can easily obtain a time advance from
a region of negative potential. However, for the situations
considered in the main text, any background configuration
can be parametrized by an overall amplitude and scale in
terms of a dimensionless function. Similarly consider a
potential of the form VðrÞ ¼ V0fðr=r0Þ, where fðxÞ is a
dimensionless function. The maximum time advance rel-
ative to a freely propagating massive particle we can create
in this region is then of order

jΔTj ∼m2V0r0
ω3

: ðA14Þ
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By assumption, for the WKB approximation to be valid we
need ω ≫ r−10 . Furthermore we have assumed V0 ≪ ω.
Thus we have the bound

ωjΔTj ≪ m2r20: ðA15Þ

For the theories considered in the paper, we assume the
fundamental field is massless and any effective mass
generated for fluctuations around a given background
solution will be bounded in the sense m2 ≲Oð1Þr−20 ,
and hence these potential time advances are unresolvable
ωjΔTj ≪ 1. Thus provided we consider the region ω ≫
ðr−10 ;MaxðjVðrÞjÞÞ we do not expect to obtain any resolv-
able time advance.
In summary, although time advances for monopole

scattering are allowed in the nonrelativistic and low
frequency region without contradicting causality, for the
scattering of massless or light (in the scale of the

background) high frequency scattering is not expected to
lead to any resolvable time advance and this is implicit in
our use of this criterion in the main text.

1. Positivity of Lorentz invariant UV completions

The previous example was particularly trivial since it
does not lead to any interesting time delay at high
frequencies. To make it more interesting, and to generate
a resolvable time delay, consider now a UV theory of two
charged scalars, whose fluctuations may be described by
one light field Φ and one heavy field H with mass M.
Integrating out the heavy scalar will give EFT corrections
to the previously considered theory which describe the
scattering and will give rise to a time delay. Focusing on
monopole fluctuations, it is natural to rescale Φ ¼ φ=r and
H ¼ h=r. We will assume the quadratic action for the
monopole fluctuations in the UV completion takes the
Uð1Þ invariant form

S ¼
Z

dt
Z

∞

0

dr
Z

dΩðjDtϕj2 − j∂rϕj2 −m2jϕj2 þ jDthj2 − j∂rhj2 −M2jhj2

þ αh�∂rϕþ βh�Dtϕþ α�h∂rϕ� þ β�hðDtϕÞ�Þ; ðA16Þ

where we have dropped any mass mixing terms which can be traded for derivative interactions by a field redefinition. This is
manifestly relativistically causal by virtue of the Lorentz invariant two derivative terms which dominate the dynamics at
high energy and determine the causal support of the retarded propagators. Integrating out the heavy field gives a low energy
effective theory whose cutoff is Λ ¼ M and whose full effective action is

S ¼
Z

dt
Z

∞

0

dr
Z

dΩ
�
jDtϕj2 − j∂rϕj2 −m2jϕj2 þ ðα∂rϕþ βDtϕÞ�

1

M2 þD2
t − ∂

2
r
ðα∂rϕþ βDtϕÞ

�
:

The effective dispersion relation is

ððω − VÞ2 − k2r −m2Þððω − VÞ2 − k2r −M2Þ − jαkr − βðω − VÞj2 ¼ 0: ðA17Þ

Due to the presence of odd powers of kr in the dispersion relation, the outgoing and ingoing waves have different
magnitudes for their momenta k�r and the WKB scattered wave may be parametrized as

ϕ ¼ AðrÞðei
R

r

0
kþr dr − ei

R
r

0
k−r drÞ; ðA18Þ

which is matched against the asymptotics

ϕ ¼ A0ðe2iδei
ffiffiffiffiffiffiffiffiffiffi
ω2−m2

p
r − e−i

ffiffiffiffiffiffiffiffiffiffi
ω2−m2

p
rÞ; ðA19Þ

to give the WKB phase shift

δ ¼
Z

∞

0

dr

�
1

2
ðkþr ðrÞ þ k−r ðrÞÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p �
: ðA20Þ

In the regime of validity of the low energy EFT, the leading two derivative terms in the effective action are

S ¼
Z

dt
Z

∞

0

dr
Z

dΩ
�
jDtϕj2 − j∂rϕj2 −m2jϕj2 þ 1

M2
jα∂rϕþ βDtϕj2 þ…

�
; ðA21Þ
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and the time delay takes the form

ΔT ¼ ΔTM¼∞ þ ΔTEFT; ðA22Þ

where ΔTM¼∞ is the delay obtained previously and the leading EFT correction is

ΔTEFT ¼ 2
∂

∂ω

Z
∞

0

dr

�
1

2
ðkþr ðrÞ þ k−r ðrÞÞ − κðrÞ

�
;

¼ 1

M2

∂

∂ω

Z
∞

0

dr

�
1

2κðrÞ jακðrÞ − ðω − VÞβj2 þ 1

2κðrÞ jακðrÞ þ ðω − VÞβj2
�
þ…

¼ 1

M2

∂

∂ω

Z
∞

0

dr

�
jαj2κ þ jβj2 ðω − VÞ2

κ

�
þ…

¼ 1

M2

Z
∞

0

dr

�
jαj2 ðω − VÞ

κ
þ jβj2 ðω − VÞ

κ

�
1 −

m2

κ2

��
þ…: ðA23Þ

In the WKB region considered, κ ≫ m, and ω ≫
Max½VðrÞ� and so both terms are manifestly positive.
Since in this example we know the UV completion, we
can directly infer the cutoff in ω of the low energy EFT by
asking at what energy scale does the dispersion relation
depart from that implied by the two derivative action (A21).
This is when ðω − VÞ ∼M2=ðjαj þ jβjÞ and so we infer that
the largest time delay calculable within the low energy EFT
we could create is bounded by

jωΔTEFTj≲ ðjαj þ jβjÞr0: ðA24Þ

Since the RHS can be made arbitrarily large by increasing
r0, remaining in the region of validity of the low energy
EFT, this positive time delay can be made resolvable. Thus
as anticipated, a consistent unitary Lorentz invariant UV
completion of an EFT for a massless or light field gives rise
to a positive, generally resolvable, time delayΔT > 0 in the
WKB region, and the EFT contribution itself is by itself
positive ΔTEFT > 0.

APPENDIX B: CONVENTIONS

In this appendix, we summarize some of our relations
and conventions. For completeness, we consider the EFT
including up to dimension-14 operators and work with the
following form of the Lagrangian,

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 þ g8

Λ4
ð∂ϕÞ4

þ g10
Λ6

ð∂ϕÞ2½ðϕ;μνÞ2 − ð□ϕÞ2� þ g12
Λ8

ððϕ;μνÞ2Þ2

þ g14
Λ10

ðϕ;μνÞ2ðϕ;αβγÞ2: ðB1Þ

The dimension-14 operator is constrained by the following
positivity bounds

−2g12 < g14 <
27

5
ð2g8 − g10Þ: ðB2Þ

The relations between the parameters considered here and
those included in [33,34] are given in the Table I below.
In order to extremize the causality bounds, it is conven-

ient to work with dimensionless parameters. The relations
between the dimensionless parameters and their dimen-
sionfull counterparts are provided in Table II below. It is
worth noting that Φ̄0 carries the scale of the background
field ϕ̄, r0 is its typical scale of variation, whereas ω is the
frequency of the scattered perturbation. The cutoff of the
scalar EFT in Eq. (2.1) is given by Λ if the dimensionless
couplings gi are all considered to be at most of order 1.
Finally, b and rt are respectively the impact parameter of
the free theory and the turning point of the higher-multipole
scattering events.

TABLE II. Parameters dictionary relating the dimensionless
and dimensionfull ones.

Dimensionless parameter fðrÞ R ϵ1 ϵ2 Ω B Rt

Definition ϕ̄ðrÞ
Φ̄0

r
r0

Φ̄0

r0Λ2

1
r0Λ

ω
Λ

b
r0

rt
r0

TABLE I. Parameters dictionary relating the conventions used
in this work, defined in Eq. (B1) and others presented in the
literature.

EFT Tolley et al., [33] Caron-Huot et al., [34]

g8 1
4
ã1;0

1
2
Λ4g2

g10 − 1
3
ã0;1

1
3
Λ6g3

g12 ã2;0 4Λ8g4
g14 4

5
ã1;1 − 8

5
Λ10g5
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APPENDIX C: NLO CORRECTIONS TO THE TIME DELAY AT l= 0

In this appendix, we provide the explicit expressions required for computing the time delay at the next order in the EFT,
which we refer to as next-to-leading order (NLO). At NLO, the equation of motion for the monopole l ¼ 0 is
given by,

Ŵ0ðRÞjNLO ¼ 1152g38ϵ
6
1f

0ðRÞ6 þ 224g8g12Ω2ϵ41ϵ
2
2f

0ðRÞ2f00ðRÞ2

þ 144
g28
Ω2

ϵ41ϵ
2
2

�
2
f0ðRÞ3f00ðRÞ

R
þ 2f0ðRÞ2f00ðRÞ2 þ fð3ÞðRÞf0ðRÞ3

�
− 96g8g10ϵ41ϵ

2
2

�
f0ðRÞ4
R2

− 3
f0ðRÞ3f00ðRÞ

R

�

− 8g12ϵ21ϵ
4
2

�
2
f0ðRÞ2
R4

þ ∂R

�
4
f0ðRÞf00ðRÞ

R2
− 2

f00ðRÞ2
R

þ fð3ÞðRÞf00ðRÞ
��

− 4g14Ω2ϵ21ϵ
4
2

�
12

f0ðRÞf00ðRÞ
R3

þ 4
fð3ÞðRÞf0ðRÞ− 3f00ðRÞ2

R2
þ 2

fð3ÞðRÞf00ðRÞ
R

þ ∂Rðfð3ÞðRÞf00ðRÞÞ
�

− 12
g10
Ω2

ϵ21ϵ
4
2

�
f0ðRÞ2
R4

þ ∂R

�
f0ðRÞf00ðRÞ

R2

��
: ðC1Þ

The sound speed square and effective potential are given by

c2sðω2; RÞjNLO ¼ −128g38ϵ61f0ðRÞ6 − 96g8g12ϵ41ϵ
2
2

ω2

Λ2
f0ðRÞ2f00ðRÞ2 þ 96g8g10ϵ41ϵ

2
2

�
f0ðRÞ4
R2

þ f0ðRÞ3f00ðRÞ
R

�

þ 8g12ϵ21ϵ
4
2

�
2
f0ðRÞ2
R4

þ ∂R

�
4
f0ðRÞf00ðRÞ

R2
− 2

f00ðRÞ2
R

þ fð3ÞðRÞf00ðRÞ
��

þ 4g14ϵ21ϵ
4
2

ω2

Λ2

�
12

f0ðRÞf00ðRÞ
R3

þ 4
−3f00ðRÞ2 þ f0ðRÞfð3ÞðRÞ

R2
þ 2

f00ðRÞfð3ÞðRÞ
R

þ ∂Rðfð3ÞðRÞf00ðRÞÞ
�
;

ðC2Þ

and

VeffðRÞjNLO ¼ −48g28ϵ41

�
2
f0ðRÞ3f00ðRÞ

R
þ 4f0ðRÞ2f00ðRÞ2 þ fð3ÞðRÞf0ðRÞ3

�
þ 12g10ϵ22ϵ

2
1

�
f0ðRÞ2
R4

þ ∂R

�
f0ðRÞf00ðRÞ

R2

��
:

ðC3Þ

The integrand of the time delay at NLO is given by

I0ðω2; RÞjNLO ¼ 8ðωr0Þϵ21
�
104g38ϵ

4
1f

0ðRÞ6 − 2
g28
Ω2

ϵ21ϵ
2
2

�
3
f0ðRÞ4
R2

− 4f0ðRÞ2f00ðRÞ2
�
− 6g8g10ϵ21ϵ

2
2

f0ðRÞ4
R2

þ72g8g12Ω2ϵ21ϵ
2
2f

0ðRÞ2f00ðRÞ2 − 45

4
g14Ω2ϵ42

�
f0ðRÞ2
R4

þ fð3ÞðRÞf0ðRÞ − f00ðRÞ2
R2

�

þ
�
g12 −

3

4

g10
Ω2

�
ϵ42

�
f0ðRÞ2
R4

−
fð3ÞðRÞf0ðRÞ þ f00ðRÞ2

R2

��
þ total derivatives: ðC4Þ

We do not write the total derivative terms explicitly since they vanish upon integration in the l ¼ 0 case considered here.
Note that the total derivatives include terms like f0ðRÞ2=R3; f0ðRÞf00ðRÞ=R2 and f00ðRÞ2=R that diverge when evaluated at
the origin. In this analysis, we have been careful to cancel the divergences so that the total derivatives in the last line of
Eq. (C4) actually vanish upon integration from 0 to ∞.
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APPENDIX D: HIGHER-ORDER MULTIPOLES

In this appendix, we provide the leading-order expres-
sions to the various functions entering the computation of
the time delay for l > 0, as defined in Sec. IV C. Note that
since we are focusing on a regime where ωr0 ≫ 1 in order

to safely ignore all WKB corrections, we will ignore all
1=Ω corrections for consistency. Furthermore, such a
regime also allows us to forget about NLO corrections,
hence they will be omitted here. The functionWlðRÞ reads,
at leading order,

WlðRÞjLO ¼
�
1 −

B2

R2

�
ð1þ 8g8ϵ21f

0ðRÞ2 þ 96g28ϵ
4
1f

0ðRÞ4Þ þ 8g12Ω2ϵ21ϵ
2
2


�
1 −

B2

R2

��
f00ðRÞ − f0ðRÞ

R

�
þ f0ðRÞ

R

�
2

þ 12g10ϵ21ϵ
2
2

B2

R2

�
f0ðRÞ2
R2

−
f0ðRÞf00ðRÞ

R

�
: ðD1Þ

This means that the square sound velocity and the effective potential at leading order read

c2sðω2; RÞjLO ¼ 1 − 8g8ϵ21f
0ðRÞ2 − 32g28ϵ

4
1f

0ðRÞ4 − 8g12Ω2ϵ21ϵ
2
2

�
2
B2

R2

�
f0ðRÞf00ðRÞ

R
− f00ðRÞ2

�
þ f00ðRÞ2

�

− 24g10ϵ21ϵ
2
2

f0ðRÞf00ðRÞ
R

; ðD2Þ

VeffðRÞjLO ¼ L2

R2

�
1 − 8g12Ω2ϵ21ϵ

2
2f

00ðRÞ2 − 12g10ϵ21ϵ
2
2

�
f0ðRÞ2
R2

þ f0ðRÞf00ðRÞ
R

��
− 8

L4

R4
g12ϵ21ϵ

4
2

�
f0ðRÞ2
R2

− f00ðRÞ2
�
: ðD3Þ

We have decided to express the effective potential in terms
of the orbital number L rather than the reduced effective
impact parameter B in order to make contact with the free
theory where Veff;free ¼ L2=R2. It is worth mentioning
once again that the effective potential term is suppressed
by ðωr0Þ−2 ¼ ϵ22=Ω2 with respect to the speed of sound
term. Hence, the leading-order effective potential should
include terms up to Oðϵ21Þ. Note that the terms L2ϵ21ϵ

2
2

and L4ϵ21ϵ
4
2 seem to be higher-order and appear to be

unnecessarily taken into account. However, recalling
that L ¼ ΩB=ϵ2 implies ϵ2L ∼Oðϵ0Þ. This means that
L2ϵ21ϵ

2
2 ∼ L4ϵ21ϵ24 ∼Oðϵ21Þ, so all terms considered are

indeed leading order in the effective potential. To show
that this is indeed the correct functional form for the
potential, one could rewrite the term of interest, i.e.,
Veff=ðωr0Þ2 rather than just the effective potential, in
terms of the variable B that does not hide any dependence
on ϵi,

VeffðRÞ
ðωr0Þ2

����
LO

¼ B2

R2

�
1 − 8g12Ω2ϵ21ϵ

2
2f

00ðRÞ2 − 12g10ϵ21ϵ
2
2

�
f0ðRÞ2
R2

þ f0ðRÞf00ðRÞ
R

��
− 8

B4

R4
g12Ω2ϵ21ϵ

2
2

�
f0ðRÞ2
R2

− f00ðRÞ2
�
:

ðD4Þ

In this set up, the corresponding turning point is now Rt, which is given by

RtjLO ¼ B

�
1 − 4g12Ω2ϵ21ϵ

2
2

f0ðBÞ2
B2

− 6g10ϵ21ϵ
2
2

�
f0ðBÞ2
B2

þ f0ðBÞf00ðBÞ
B

��
: ðD5Þ

Moreover, we have

UlðRÞjLO ¼ 4

�
1 −

B2

R2

�
ðg8ϵ21f0ðRÞ2 þ 10g28ϵ

4
1f

0ðRÞ4Þ

− 6g10ϵ21ϵ
2
2


�
1 −

B2

R2

��
f0ðRÞ2
R2

−
f0ðRÞf00ðRÞ

R

�
−
�
f0ðRÞ2
R2

þ f0ðRÞf00ðRÞ
R

�
þ B2

R2

�
f0ðBÞ2
B2

þ f0ðBÞf00ðBÞ
B

��

þ 4g12Ω2ϵ21ϵ
2
2


��
1 −

B2

R2

��
f0ðRÞ
R

− f00ðRÞ
�
−
f0ðRÞ
R

�
2

−
B2

R2

f0ðBÞ2
B2

�
; ðD6Þ
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with UlðRtÞ ¼ 0. Having all the ingredients, the dimensionless time delay can now be expressed in the following form

ωΔTbðωÞ ¼ ðωr0Þ
�Z

∞

B

�
ϒð0Þ

l ðRÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

R2

q þϒð1Þ
l ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

B2

R2

r
þϒð2Þ

l

�
1 −

B2

R2

�
3=2

�
dRþϒð3Þ

l

�
; ðD7Þ

where

ϒð0Þ
l ðRÞ ¼ 12g10ϵ21ϵ

2
2



f0ðRÞ2
R2

þ f0ðRÞf00ðRÞ
R

−
B2

R2

�
f0ðBÞ2
B2

þ f0ðBÞf00ðBÞ
B

��
þ 24g12Ω2ϵ21ϵ

2
2

�
f0ðRÞ2
R2

−
B2

R2

f0ðBÞ2
B2

�
; ðD8Þ

ϒð1Þ
l ðRÞ¼8g8ϵ21f

0ðRÞ2þ80g28ϵ
4
1f

0ðRÞ4−48g12Ω2ϵ21ϵ
2
2

�
f0ðRÞ2
R2

−
f0ðRÞf00ðRÞ

R

�
−12g10ϵ21ϵ

2
2

�
f0ðRÞ2
R2

−
f0ðRÞf00ðRÞ

R

�
; ðD9Þ

ϒð2Þ
l ðRÞ¼24g12Ω2ϵ21ϵ

2
2

�
f0ðRÞ2
R2

−
2f0ðRÞf00ðRÞ

R
þf00ðRÞ2

�
;

ðD10Þ

ϒð3Þ
l ðRÞ ¼ 12g12πBΩ2ϵ21ϵ

2
2

f0ðBÞ2
B2

: ðD11Þ

Note that ϒð0Þ
l ðRÞ ¼ F ½fðRÞ� − B2=R2F ½fðBÞ�, where F

is a functional of the function f. This immediately shows

that ϒð0Þ
l ðR ¼ BÞ ¼ 0, hence avoiding any divergence

around the lower bound of the integral.

APPENDIX E: EXTREMIZATION METHOD

Themethod used to extremize the causality bounds for the
simple profile considered in (4.38) (with p ¼ 3) is summa-
rized below. In principle the samemethod could be applied to
more generic profiles and in less symmetric situations. The
dimensionless time delay is given as a function of

ðωΔTÞ ¼ ðωΔTÞðg10; g12;PÞ ðE1Þ

where the parameters are listed in the vector

P ¼ fg8; a0; a2; a4; a6; ϵ1; ϵ2;Ω; Bg: ðE2Þ

In our analysis g8 will be fixed to be either 0 or 1 but we
include it for completeness. In order to remain within the
regime of validity of the EFTwe only consider −5 < ai < 5
so that fðRÞ is Oð1Þ. More importantly, during the extrem-
ization procedure we constrain the parameters in P such that
the analysis remains in the regime of validity of the EFT as
given in Eq. (4.4) [Eq. (4.42) for the Galileons] by replacing
≪ 1 by < 1=2. Since the suppression of higher-order EFT
corrections always comes as the square of these parameters,
this ensures that the terms that we neglect are suppressed by at
least a factor of 0.25. Furthermore, we also need to ensure that
theWKB formula is valid up to the order that we compute it.

To do so, we explicitly compute corrections to the WKB
formula in the monopole case and check that they are
negligible. For higher multipoles however, we rely instead
on dimensional analysis to compute the order ofmagnitude of
the corrections that are being neglected. This requires
enforcing Eq. (4.8). For a more detailed discussion on the
validity of the EFT and WKB approximation we refer to the
analysis in Secs. IVB and IV C. Note that in our analysis, we
separated the case l ¼ 0 and l > 0, and also g8 ¼ 0 and
g8 ¼ 1, which gave four separate sets of causal regions.
However, the method used in each of them was identical and
will be detailed below.
The boundary of the causal region for a given set of

parameters is defined by ðωΔTÞ ¼ −1=2, which can be
solved for g12 to give the equation of a line in the ðg10; g12Þ-
plane

g12 ¼ mðPÞg10 þ pðPÞ≡ YPðg10Þ: ðE3Þ
Now, the extremization process differentiates between lower
and upper bounds. In both cases, let us define a vector G
corresponding to a set of discrete points in the interval
[0, 2.5]. The parameter g12 will take values drawn from G,
i.e., g12 ∈ G.
The tightest lower bound for g10 for a given value of

g12 ¼ Gi is achieved by finding the optimal set of param-

eters PðlowerÞ
i such that the negative value of g10 at the

intersection between the two lines defined by g12 ¼
Y

PðlowerÞ
i

ðg10Þ and g12 ¼ Gi is maximal. It can be defined as

PðlowerÞ
i ¼Maxfg10 < 0jg12 ¼ YPðg10Þ& g12 ¼ Gig; ðE4Þ

and the “causal” region10 RðlowerÞ
i would consist of all

points in the ðg10; g12Þ-plane that are “above” this line,
meaning

10This method does not “prove” causality, it simply indicates
the absence of obvious acausality.
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RðlowerÞ
i ¼ fðg10; g12Þjg10 ∈ R; g12 > Y

PðlowerÞ
i

ðg10Þg: ðE5Þ

Equivalently, the tightest upper bound for a given i is
given by

PðupperÞ
i ¼ Minfg10 > 0jg12 ¼ YðPÞ& g12 ¼ Gig; ðE6Þ

and the associated “causal” region

RðupperÞ
i ¼ fðg10; g12Þjg10 ∈ R; g12 < Y

PðupperÞ
i

ðg10Þg: ðE7Þ

Note that in the case where l ¼ 0, the method does not
identify any upper bound, as described previously. This
process is iterated for all values of i (and it could be
optimized further by exploring more values in the range
[0, 2.5] or by extending this range) and the final causal
region Rcausal is obtained by taking the union of all lower
and upper regions labeled by i,

Rcausal ¼ ∪i∪j¼lower;upper R
ðjÞ
i : ðE8Þ

APPENDIX F: GRAVITATIONALLY COUPLED
GALILEONS

In most of this work, we have considered the scalar field
EFT to describe a single low energy degree of freedom in
its own right in flat spacetime and in the absence of any
other light degrees of freedom. For such low energy EFTs,
one can in principle consider an arbitrary external source J
that would spontaneously generate an arbitrary (Lorentz-
violating) background profile for the scalar field.
We now explore a “Galileon” field which, in some

contexts, can be thought of as describing a degree of
freedom reminiscent of an infrared modification of gravity
(as is the case from instance in the Dvali-Porrati-Gabadadze
model [102] or massive gravity [103,104]). In this case the
EFT is not precisely a low energy description, and the
presence of other light degrees of freedom may not always
be safely ignored. Generating a nontrivial profile for the
field typically comes at the price of introducing a nontrivial
stress-energy tensor which would also be expected to ever-
so-slightly affect the geometry. The subtle issue of back-
reaction on the geometry can be put aside for now, but in
this appendix, we establish which source would be required
to generate the spherically symmetric background profile
we have considered so far. In particular we explore whether
there are any physical requirements to be imposed on that
source, and whether the source satisfies the null or weak
energy condition. In the present case, we consider the
coupling of the Galileon to matter through the trace of the
stress-energy tensor Tμ

μ which generically arises in mas-
sive gravity theories. Thus the source in Eq. (2.3) is now
given by

J ¼ 1

MPl
Tμ

μ: ðF1Þ

The Galileon interactions (and possible mass term) are
small corrections compared to the kinetic term and thus the
equation of motion for the source reads

□ϕ ¼ −
gmatter

MPl
Tμ

μ: ðF2Þ

The stress-energy tensor needs to respect the spherical
symmetry and hence can be written in the following form

Tμ
μ ¼ diagð−ρðrÞ; prðrÞ; pΩðrÞ; pΩðrÞÞ; ðF3Þ

where pr and ρ are respectively the radial pressure and
energy density of the fluid, and pΩ is the angular pressure.
For simplicity, we write pΩ ¼ Apr, where A is a constant
that will be constrained by requiring asymptotic flatness of
the spacetime. The trace of the stress-energy tensor is then
simply given by Tμ

μ ¼ prð1þ 2AÞ − ρ. Energy-momen-
tum conservation implies

p0
r þ 2ð1 − AÞpr

r
¼ 0: ðF4Þ

This first-order differential equation for the radial pressure
pr is solved by,

prðrÞ¼ p̄rr−2ð1−AÞ; ρðrÞ¼ p̄rð1þ2AÞr−2ð1−AÞ−Tμ
μðrÞ:
ðF5Þ

Asymptotically flatness (or “vacuum”), demands that at
large radius pr; ρ ∼ rn with n < −3, which effectively
provides the bound A < −1=2. Furthermore, for the source
to be physical, we should at the very least demand the weak
energy condition which requires

ρ > 0; ρþ pr > 0; and ρþ Apr > 0: ðF6Þ

Defining Tmax ¼ Maxr>0fr2ð1−AÞjTμ
μðrÞjg, then if one

were to choose

A < −1; p̄r <
Tmax

2ð1þ AÞ < 0; ðF7Þ

and as long as jTμ
μðrÞj is bounded and r2ð1−AÞTμ

μðrÞ → 0

when r → ∞, which is ensured for exponentially sup-
pressed background profiles as the one considered in
Eq. (4.38), then the weak energy condition is respected.
Note that if one is only interested in the null energy
condition, then ρ is unconstrained, but to satisfy the other
two conditions in Eq. (F6) we still require that Eq. (F7)
holds. We have thus proven that some fluids with negative
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pressure along some direction (and positive pressure along
others) can represent a physical source generating an
asymptotically flat spacetime, satisfying the weak energy
condition and leading to any bounded profile ϕ̄ðrÞ. Note

that this stress-energy tensor diverges at the origin, indicat-
ing that the source ought to be regularized but since the
scalar field remains finite, one would not expect the
regularization to impact the outcome of this study.
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