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Background: Previous researches have implicated a vital association between

gut microbiota (GM) and diabetic retinopathy (DR) based on the association of

the “gut-retina” axis. But their causal relationship has not been elucidated.

Methods: Instrumental variables of 211 GM taxa were obtained from genome

wide association study (GWAS), and Mendelian randomization study was

carried out to estimate their effects on DR risk from FinnGen GWAS (14,584

DR cases and 202,082 controls). Inverse variance weighted (IVW) is the main

method to analyze causality, and MR results are verified by several sensitive

analyses.

Results: As for 211 GM taxa, IVW results confirmed that family-

Christensenellaceae (P = 1.36×10-2) and family-Peptococcaceae (P = 3.13×10-2)

were protective factors for DR. Genus-Ruminococcaceae_UCG_011

(P = 4.83×10-3), genus-Eubacterium_rectale_group (P = 3.44×10-2) and genus-

Adlercreutzia (P = 4.82×10-2) were correlated with the risk of DR. At the phylum,

class and order levels, we found no GM taxa that were causally related to DR

(P>0.05). Heterogeneity (P>0.05) and pleiotropy (P>0.05) analysis confirmed the

robustness of MR results.

Conclusion: We confirmed that there was a potential causal relationship

between some GM taxa and DR, which highlights the association of the “gut-

retina” axis and offered new insights into the GM-mediated mechanism of DR.

Further explorations of their association are required and will lead to find new

biomarkers for targeted prevention strategies of DR.
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diabetic retinopathy, gut microbiota, Mendelian randomization, causality, gut-
retina axis
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1 Introduction

Diabetes is one of the metabolic disorders with increasing

incidence and is predicted to globally affect more than 578

million individuals by 2030 (1). As a microvascular diabetic

complication, diabetic retinopathy (DR) is one of the most

preva lent metabol ic and bl inding eye diseases in

ophthalmology (2). Current research indicates that the

complex mechanism of DR involves the interaction of multiple

factors, including genetics, angiogenesis, immunity,

inflammatory injury, and neurodegeneration (3). Therefore,

researchers have proposed and developed more targeted

treatment and prevention approaches. Based on these

mechanisms, DR presents a significant burden on global

health, and the current therapeutic strateg ies are

unsatisfactory. Interestingly, not all diabetic patients develop

DR, and underlying mechanisms remain unexplained. Besides,

whether there exist other factors than the documented metabolic

factors contributing to individual differences remains unclear.

Individual differences could be attributed to changes in the

dynamic balance of gut microbiota (GM) in the human body (4).

Reports indicate that the ecological dysregulation of GM in the

human body could trigger the development of inflammatory,

metabolic, mental, and immune diseases (5–8). Studies have

reported a relationship between GM and eye diseases (9).

Therefore, whether GM is likely to affect individuals with DR

remains elusive. Rowan et al. (10) proposed the concept of a

“gut-retina” axis and revealed that GM modulates retinal

disease. Prasad et al. (11) assessed plasma, retina, and fecal

from diabetic mice and discovered that intestinal flora promotes

damage and inflammation in the retina. Beli et al. (12) disrupted

the ecological profile of GM in mice by intermittent fasting (IF)

and discovered that it exhibited a preventive effect against DR

and prolonged their survival period. In a cross-sectional study of

patients with DR, Khan et al. (13) noted that the relative

abundance ratio of Bacteroidetes to Firmicutes was linked to

DR. However, Khan did not identify differences in the

abundance of specific GM taxa in DR patients compared to

the controls.

Meanwhile, research on the mechanisms of the “gut-retina”

axis in DR patients has been significantly suppressed by various

GM. The human gastrointestinal tract is affected by multiple

factors, including diet and rest. Therefore human studies that

have established the relationship between specific GM and DR

are inadequate.

In contrast to randomized controlled studies, Mendelian

randomization (MR) studies prevent the possible effects of

confounding factors (e.g., diet) and reverse causality, using

genetic variation instead of exposure to assess causal

associations with outcomes. Studies using MR analysis to

explore the causal relationship between GM and autoimmune

diseases (14) and neuropsychiatric conditions have matured
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(15). Nonetheless, the mechanisms by which DR applies MR

analysis remain unexplored.

This work selected GM taxa as exposure and DR as an

outcome for MR analysis to explore the causal relationship and

provide a theoretical basis for further research into the complex

DR mechanisms. Moreover, novel biomarkers and diagnostic

and therapeutic strategies could be provided by identifying the

relationship between specific GM and DR patients.
2 Materials and methods

2.1 The assumptions and study design of
MR

A two-sample MR analysis was used to evaluate the causal

relationships between GM taxa and DR. Summary-level data

from the genome-wide relationship studies (GWASs) were

obtained for GM and DR. Figure 1 shows the flowchart of the

MR study between GM taxa and DR. Additionally, to obtain

reliable results, MR analysis satisfied the following 3

assumptions (16) (Figure 1): (1) The instrumental variables

(IVs) eventually incorporated for use must be closely related

to GM taxa; (2) The included IVs and confounders (affecting

GM taxa and DR) were independent of each other; (3) No

horizontal pleiotropy: IVs affected DR only through GM taxa.

Meanwhile, our findings were reported in adherence to the MR-

STROBE guidance (17).
2.2 Ethics statement

The summary-level data used in this study are de-identified

public data and are available for download. Each GWAS

involved in this study was ethically approved by the

respective institutions.
2.3 Exposure sources of GM taxa

Based on the MiBioGen consortium, Kurilshikov et al. (18)

obtained 16S rRNA gene sequencing profiles and genotyping

data from 18,340 samples to investigate the relationship between

genetic variation and GM. All the subjects of the MiBioGen

consortium were of European ethnicity from 25 cohorts in 11

countries. The GWAS study eventually yielded 122,110 variant

sites from 211 taxa (from genus to phylum level) by analyzing

the GM taxa variation across different populations. We extracted

IVs of GM taxa at 5 levels from this large-scale GWAS. In

addition, considering that Kurilshikov et al. did not analyze at

the species level, we extracted IVs of GM taxa at the species level

from the GWAS study of the TwinsUK Registry (19). The 16S
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rRNA sequencing data of Goodrich et al. (19) was obtained from

1126 twin pairs (average age, 59 years), and finally defined 4

eligible species. More details on the GM data can be found in the

original articles (18, 19).

To ensure data robustness and the accuracy of results, the

SNPs were quality checked to obtain compliant IVs: (1) SNPs

associated with GM taxa reached genome-wide significance

threshold (P<5×10-8). Since the number of eligible IVs

(P<5×10-8) was extremely small , a relatively more

comprehensive threshold (P<1×10-5) (20, 21) was selected to

obtain a more comprehensive result. (2) To meet the MR

assumptions, we performed a linkage disequilibrium (LD)

analysis (R2 <0.001, clumping distance = 10,000kb) based on

European-based 1,000 Genome Projects and removed the SNPs

that did not meet the requirements. (3) The palindromic SNPs

were removed to prevent the effect of alleles on the outcome of

causality between GM taxa and DR.
2.4 Outcome sources of DR

The DR GWAS summary statistics were extracted from the

FinnGen research project (https://r5.finngen.fi/). This GWAS

analyzed 16,962,023 variables from 218,792 subjects through

SAIGE (https://github.com/weizhouUMICH/SAIGE). After

adjusting for age, sex, genetic relatedness, genotyping batch,

and first 10 principal components, 14,584 DR cases and 202082

controls were used for DR analysis.
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2.5 Statistical analysis

All statistical analyses were performed using the R software

(Version 4.1.1). The R package “TwoSampleMR” was used to

performMR analysis of the causal relationship between GM taxa

and DR. P<0.05 was considered the statistical significance of

evidence for potential causal effect (22, 23).

2.5.1 MR analysis
The Wald ratio (WR) method was utilized to examine the

effect of individual IVs on the causal estimates. In the absence of

horizontal pleiotropy, the inverse variance weighted (IVW) test

was used as the primary method for calculating the causal effect

values to obtain unbiased estimates. A fixed/random effects

model was selected for the IVW test based on the presence or

absence of heterogeneity. OR and 95% confidence interval (CI)

showed the effect size. The weighted median (WM) method (24)

and the MR-Egger test (25) were utilized as additional methods

for MR analysis. WM results were used as the significant causal

effect values if the number of SNPs with heterogeneity exceeded

50%. MR Egger’s results remained valid if SNPs with pleiotropy

were above 50%.

2.5.2 Sensitivity analysis
Cochrane’s Q test was applied to test for heterogeneity. IVs

with P<0.05 were considered heterogeneous. The intercept of

MR Egger regression assessed the presence of potential

pleiotropy in IVs. Horizontal pleiotropy was deemed to be
FIGURE 1

Overview of MR analyses process and major assumptions.
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non-existent if P >0.05. To ensure the accuracy of results for GM

taxa causally related to DR (based on IVW results), the

multipotency was further analyzed using the MR-Pleiotropy

RESidual Sum and Outlier (MR-PRESSO) test (R package “MR-

PRESSO”), and possible outliers were removed. Additionally, the

leave-one-out method (23) was used to validate data robustness

further. A reverseMRanalysiswas not performed due to the lack of

SNPs (related to DR) fitting the hypothesis of the MR study.
3 Results

3.1 Selection of IVs related to GM

After quality control steps by LD effects and palindromic,

2,249 SNPs (based on the MiBioGen consortium) were identified

as IVs associated with 211 bacterial taxa for DR (P<1×10-5).

These taxa comprised 9 phylum (102 SNPs), 16 class (178 SNPs),

20 order (215 SNPs), 35 family (382 SNPs) and 131 genera (1372

SNPs). Based on the TwinsUK Registry, 15 SNPs were identified

as IVs associated with 4 species. Each SNP revealed adequate

validity (ranged between 14.59 and 88.43, all F>10) (Table 1).

Supplementary Table 1 details the major information of the IVs.

When the GMwas considered as a whole, only 15 SNPs passed

quality control to be applied as IVs (P<5×10-8). Each SNP revealed

adequate validity (ranged between 29.81 and 85.38, all F>10). 24

SNPs were identified as IVs associated with 211 bacterial taxa for

DR (P<5×10-8). These taxa comprised 1 phylum (1 SNP), 1 class (1

SNP), 2 order (3 SNPs), 5 family (6 SNPs) and 12 genera (13 SNPs).

Based on the TwinsUK Registry, 3 SNPs were identified as IVs

associated with 2 species. Each SNP revealed adequate validity

(ranged between 29.35 and 88.43, all F>10). Supplementary Table 2

details the major information of the IVs.
3.2 Results of MR analysis (locus-wide
significance, P<1×10-5)

3.2.1 MR results at 5 levels from the
MiBioGen consortium

Based on MR analysis, Figure 2A shows the relationship

between 211 bacterial taxa and DR; comprehensive results are
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shown in Supplementary Table 3. Among the MR results, we

found a genetically predicted relative abundance of 2 families

and 3 genera. As for the biological family classifications, the

IVW results demonstrated a protective effect of the host-genetic-

driven increase in Christensenellaceae (OR, 0.87; 95% CI, 0.77–

0.97; P = 1.36×10-2) and Peptococcaceae (OR, 0.88; 95% CI, 0.77–

0.99; P = 3.13×10-2) on the risk of DR (Figures 2A, B). As for the

genus , the MR es t imates o f IVW indica ted tha t

Ruminococcaceae_UCG_011 (OR, 1.12; 95% CI, 1.03–1.21; P =

4.83×10-3), Eubacterium_rectale_group (OR, 1.22; 95% CI, 1.01-

1.46; P = 3.44×10-2) and Adlercreutzia (OR, 1.14; 95% CI, 1.00-

1.29; P = 4.82×10-2) were risk factors for DR (Figures 2A, B).

Also, the relationships between Ruminococcaceae_UCG_011 and

DR (OR, 1.12; 95% CI, 1.00–1.24; P = 4.09×10-2) were supported

by WM (Figure 2B). Nevertheless, the other 4 GM taxa did not

show a relationship with DR by WM (Figure 2B).

3.2.2 MR results at the species level from the
TwinsUK Registry

Table 2 shows the relationship between 4 GM taxa at the

species level and DR. Among the MR results at the species level,

Eggerthella lenta (IVW : OR, 1.00; 95% CI, 1.00–1.00; P = 0.98),

Akkermansia muciniphila (IVW: OR, 0.99; 95% CI, 0.95–1.04;

P = 0.73), Faecalibacterium prausnitzii (IVW: OR, 0.99; 95% CI,

0.97–1.01; P = 0.41; WM: OR, 1.00; 95% CI, 0.97–1.03; P = 0.91;

MR Egger: OR, 1.01; 95% CI, 0.98–1.04; P = 0.58) and Veillonella

dispar (WR: OR, 0.99; 95% CI, 0.99–1.00; P = 0.71) have no effect

on the risk of DR (Table 2).
3.3 Sensitivity analysis

Supplementary Table 4 shows the pleiotropy and heterogeneity

test results for all bacterial taxa (from species to phylum level),

respectively. In sensitivity analysis, we confirmed the effects of

accurate MR results in 2 families and 3 genera on DR. No

horizontal pleiotropy was observed in Christensenellaceae

(P=0.89), Peptococcaceae (P=0.24), Ruminococcaceae_UCG_011

(P=0.90), Eubacterium_rectale_group (P=0.10) and Adlercreutzia

(P=0.46) for DR (Table 2). Meanwhile, no heterogeneity was found

in Christensenellaceae (IVW: P=0.47; MR Egger: P=0.38),
TABLE 1 Selection of IVs after quality control.

Taxonomies Taxa NSNP Palindromic IVs

Phylum 9 117 15 102

Class 16 213 35 178

Order 20 263 48 215

Family 35 455 73 382

Genus 131 1626 254 1372

Total 211 2674 425 2249
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Peptococcaceae (IVW: P=0.38; MR Egger: P=0.43),

Ruminococcaceae_UCG_011 (IVW: P=0.46; MR Egger: P=0.35),

Eubacterium_rectale_group (IVW: P=0.35; MR Egger: P=0.66) and

Adlercreutzia (IVW: P=0.81; MR Egger: P=0.80) for DR (Table 2).

The statistically significant MR results were further verified

using MR- PRESSO to ensure the accuracy of MR Egger

regression; the absence of horizontal pleiotropy was confirmed

in family-Christensenellaceae (P=0.523), family-Peptococcaceae

(P=0.439), genus-Ruminococcaceae_UCG_011 (P=0.520), genus-

Eubacterium_rectale_group (P=0.088) and genus-Adlercreutzia

(P=0.960) (Table 2). Moreover, the leave-one-out results further

validated data robustness (Supplementary Figures 1A–1E). In

the absence of heterogeneity and pleiotropy, the results of IVW

were reliable. Therefore, Christensenellaceae, Peptococcaceae,

Ruminococcaceae_UCG_011, Eubacterium_rectale_group, and

Adlercreutzia were causally related to DR.
Frontiers in Immunology 05
3.4 Results of MR analysis (genome-wide
statistical significance, P<5×10-8)

MR results of GM as a whole and DR did not reveal a

significant causal relationship with DR (IVW: OR= 1.01,95%CI,

0.94-1.09, P=0.70; WM: OR= 1.00,95%CI, 0.91-1.10, P=0.0.96;

MR Egger: OR= 0.98,95%CI, 0.77-1.26, P=0.0.88) (Table 3). The

heterogeneity analysis results (IVW: P=0.64; MR Egger: P =0.56)

and pleiotropy analysis (MR Egger: P=0.79; MR-PRESSO:

P=0.64) confirmed the accuracy of the results (Table 4).

Meanwhile, the leave-one-out results further validated data

robustness (Supplementary Figure 1F).

Due to the limited number of IVs that met the requirements,

none of the MR results for individual classifications of bacterial

taxa at 5 levels revealed a significant causal relationship with DR

(P>0.05) (Figure 3; Supplementary Table 5). At the species level,
TABLE 2 MR results between GM at the species level and DR.

GM Method IVs OR 95%CI P

locus-wide significance, P<1×10-5

E. lenta IVW 2 1.00 1.00-1.00 0.98

A. muciniphila IVW 2 0.99 0.95-1.04 0.73

F. prausnitzii IVW 9 0.99 0.97-1.01 0.41

F. prausnitzii WM 9 1.00 0.97-1.03 0.91

F. prausnitzii MR Egger 9 1.01 0.98-1.04 0.58

V. dispar WR 1 1.00 0.99-1.01 0.71

genome-wide statistical significance, P<5×10-8

E. lenta WR 1 1.00 1.00-1.00 0.33

F. prausnitzii IVW 2 1.00 0.96-1.03 0.92
frontiersin
MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median; WR, Wald ratio; E. lenta, Eggerthella lenta; A. muciniphila, Akkermansia muciniphila; F.
prausnitzii, Faecalibacterium prausnitzii; V. dispar, Veillonella dispar.
BA

FIGURE 2

Causal analysis of GM and DR (locus-wide significance, P<1×10-5). (A) All results of MR analysis and sensitivity analysis between GM and DR; (B)
MR results of GM taxa with a causal relationship to DR.
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Lenta and Prausnitzii did not show the causal relationship with

DR (P>0.05) (Table 2). Regretfully, the number of eligible IVs

was too small to allow for sensitivity analysis.
4 Discussion

Research progress in the “gut-retina” axis has been hindered

by several confounding factors (e.g., dietary habits); hence

difficult to cross-sectionally examine the relationship between

GM and DR. Using MR analysis, we assessed the potential causal

relationship between GM taxa and DR from a host genetic

perspective and confirmed the effect in modifying susceptibility

to DR.At the phylum, class, order and species levels, no

association between GM taxa and DR risk was found.

However, 2 family taxa were linked to a low DR risk and 3

genus taxa were associated with a high risk of DR, which may

promote the discovery of novel biomarkers in future DR

experiments. Meanwhile, our findings provide novel ideas for

future DR prevention and therapeutic approaches: targeted

regulation of dysbiosis of specific GM taxa to prevent and

treat DR.

Over 90% of GM comprises 4 bacterial phyla, including

Firmicutes and Actinobacteria (26). When GM dysbiosis occurs,

it causes metabolic, immune, and neurological-related disorders

(14, 27, 28). Nonetheless, the role of GM dysbiosis in the

pathogenesis of DR remains elusive. Larsen et al. (29)

discovered a significantly lower proportion of phylum

Firmicutes from the fecal bacteria of 18 diabetic patients
Frontiers in Immunology 06
compared to the controls. As one of the most prevalent

complications of diabetes, DR has similar relationships with

diabetes. Beli et al. (12) revealed that IF minimizes the risk of DR

by reducing immune infiltration of retinal capillaries through

increased levels of Firmicutes in diabetic mice. At the same time,

Beli et al. (12) suggested that the GM intervention will be a novel

approach for DR prevention and treatment.

Interestingly, 4 GM taxa, including Christensenellaceae,

Peptococcaceae Ruminococcaceae_UCG_011, and Eubacterium

_rectale_group of our results belong to phylum Firmicutes;

which are consistent with the findings of Beli et al.

Nonetheless, despite considering the GM taxa as a whole or at

the phylum level, we did not discover the causal relationship

between GM and DR. Ye et al. (30) compared 45 patients with

proliferative DR and 90 diabetes patients. Consequently, no

significant difference in GM was found between the two

groups at the phylum level, which is in line with our findings.

The difference in results was attributed to several reasons. First,

this work and Ye et al. were performed on human samples,

whereas Beli et al. were mice models, which inevitably caused

differences in GM abundance. Furthermore, similar to our

consideration of GM as a whole, GM at the phylum level

covered too many taxa. The interplay of effects between the

different taxa in the refinement (e.g., level of family and genus)

could have affected the observation of the impact.

Fernandes et al. (31) revealed that diabetes-associated GM

disrupts the inflammation level, influencing DR progression.

The abundance of Christensenellaceae was higher in the healthy

population, and its abundance was inversely correlated with
TABLE 4 MR results between GM and DR (P<5×10-8).

GM Method IVs OR 95%CI P Q Q-P Intercept P MR-PRESSO

Total IVW 15 1.01 0.94-1.09 0.70 11.63 0.64 3.78×10-3 0.79 0.64

Total WM 15 1.00 0.91-1.10 0.96

Total MR Egger 15 0.98 0.77-1.26 0.88 11.55 0.56
MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median.
TABLE 3 Sensitivity analysis between GM and DR.

Taxonomies GM Method Q P Intercept P MR-PRESSO

family Christensenellacea IVW 9.69 0.47 -1.44×10-3 0.89 0.523

MR Egger 9.67 0.38

family Peptococcaceae IVW 8.62 0.38 -0.02 0.24 0.439

MR Egger 6.96 0.43

genus Ruminococcaceae_UCG_011 IVW 6.74 0.46 -3.67×10-3 0.90 0.520

MR Egger 6.72 0.35

genus Eubacterium_rectale_group IVW 7.84 0.35 -0.04 0.10 0.088

MR Egger 4.15 0.66

genus Adlercreutzia IVW 3.72 0.81 -0.02 0.46 0.960

MR Egger 3.09 0.80
MR, Mendelian randomization; IVW, Inverse variance weighted; WM, Weighted median.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.930318
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.930318
inflammation (22). Although no studies on Christensenellaceae

in eye disease have found an effect on inflammation, studies on

Christensenellaceae in inflammatory bowel disease (IBD) have

laterally confirmed a possible effect on the retina via

inflammation. Similar to DR and IBD, Rosacea is considered

an inflammatory disease. Nam et al. (32) also found a lower

abundance of Peptococcaceae in rosacea patients, which follows a

similar trend to our results. Therefore, we speculate that

Christensenellaceae and Peptococcaceae might reduce

inflammatory damage to the retina through the “intestinal-

retinal axis,” thereby affecting disease progression in DR.

Unlike other GM and eye disease studies, we further identified

3 taxa at the genus level, increasing the DR risk. However, there is

a lack of ophthalmic research evidence to confirm the specific

mechanism by which these 3 GM taxa increase DR risk. By

inhibiting CD 83, Islam et al. (33) discovered that

Eubacterium_rectale_group could induce systemic inflammation

and activate dendritic cells. Also, Wang et al. (34) confirmed the

proinflammatory effect of Eubacterium_rectale_group. Therefore,

we speculate that the Eubacterium_rectale_group exacerbates

retinal vascular damage via systemic inflammation, thereby

increasing the risk of DR. Yuan et al. (35) discovered that

Adlercreutzia is associated with androgen levels. Interestingly,

increased androgen levels were linked to DR progression (36).

For Ruminococcaceae_UCG_011, no studies have yet reported its
Frontiers in Immunology 07
association with disease. For the first time, our findings confirm

the pathogenic potential of Ruminococcaceae_UCG_011 in

humans, implying that this taxon could be a novel biomarker.

Nonetheless, its specific should be further explored.

This study has several advantages. First, the current

relationship between GM and eye disease has primarily

focused on the family classification level. Our analysis further

provides refinement of the GM taxa, analyzing the causal effect

of each taxon on DR from the genus to the phylum level. This

provides a theoretical basis for the follow-up mechanisms of

specific strains of bacteria on DR and facilitates the discovery of

new biomarkers. Secondly, the latest large GWAS allows genetic

data to be obtained from large sample populations and analyzed,

hence cementing the reliability of findings compared to small

randomized controlled studies. On the other hand, the MR

analysis prevents confusion and provides a new approach to

investigating the “gut-retina axis” mechanisms.

This work also has compelling limitations. Similar to other

GM-related MR studies, there is still no guarantee of weak

instrumental bias despite satisfying the MR assumptions (IVs

are closely correlated with GM taxa). Secondly, although the

symptoms of DR were confined to the eye with subtle or even no

effects on GM, we were unable to identify a possible mutual

causal relationship between GM and DR due to the lack of an

adequate number of IVs for reverse MR analysis. Thirdly, since
FIGURE 3

MR analysis results of GM and DR (genome-wide statistical significance, P<5×10-8).
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the GWAS included subjects only of European descent, the

findings of this study may not be generalizable to other ethnic

groups. Fourth, multiple statistical corrections are too strict and

conservative and may ignore GM taxa with a possible causal

relationship with DR. Therefore, we did not consider the

multiple testing results given the biological plausibility. In

addition, this is the first time that we have used MR study to

analyze the relationship between GM taxa and DR risk at the

species level, butwe havenot founda causal relationshipwithDRat

the species level. Considering that the data source of species level is

different from the other five levels, and the GWAS sample size of

Goodrich et al. (19) is less than that of Kurilshikov et al. (18), the

number of IVs that could ultimately be selected remained limited.

Therefore, this discovery at the species level is only a preliminary

exploration. In future research, we will expand the sample as much

as possible to explore the relationship between GM taxa and DR at

the species level, to provide more theoretical support for the

mechanism research of the “gut-retina” axis.

In conclusion, we confirmed a causal relationship between

DR and GM taxa, including Christensenellaceae, Peptococcaceae,

Ruminococcaceae_UCG_011, Eubacterium_rectale_group, and

Adlercreutzia. These strains may become novel biomarkers

and provide insights for the treatment and prevention of DR.
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