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Abstract

Characterizing the intermediate phenotypes, such as gene expression, that mediate genetic effects on complex dis-
eases is a fundamental problem in human genetics. Existing methods utilize genotypic data and summary statistics
to identify putative disease genes, but cannot distinguish pleiotropy from causal mediation and are limited by overly
strong assumptions about the data. To overcome these limitations, we develop Causal Multivariate Mediation within
Extended Linkage disequilibrium (CaMMEL), a novel Bayesian inference framework to jointly model multiple medi-
ated and unmediated effects relying only on summary statistics. We show in simulation that CaMMEL accurately
distinguishes between mediating and pleiotropic genes unlike existing methods. We applied CaMMEL to Alzheimer’s
disease (AD) and found 206 causal genes in sub-threshold loci (p < 10−4). We prioritized 21 genes which mediate
at least 5% of local genetic variance, disrupting innate immune pathways in AD.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that evolves over decades and involves multiple molecular
processes including accumulation of amyloid beta1, propagation of neurofibrillary tangles in the brain, and ultimately
cognitive decline2. However, the precise gene-regulatory mechanisms and molecular pathways involved in AD
progression remain to be elucidated. Case-control studies of differential gene expression in large postmortem brain
cohorts have identified multiple genes and regulatory elements associated by AD3–5. The gene regulatory networks
of these differentially-expressed genes have revealed promising associated genes for AD3,4, However, interpretation
of case-control differential expression is challenging because it requires accounting for reverse causation of disease
on gene expression, biological confounding, and technical confounding.

Large-scale meta analysis of genome-wide association studies (GWAS) for AD have identified 21 loci that influence
AD susceptibility6. Unlike case-control differential expression, GWAS can in principle reveal causal relationships,
because there is no possibility of reverse causation: late-onset complex disorders cannot change the genotypes at
common genetic variants. However, the fundamental challenge in interpreting GWAS is that 90% of GWAS tag SNPs
lie in noncoding regions7, making it difficult to identify the target genes and the causal mechanisms with relevant cell
type information. Causal genes are not necessarily closest to the GWAS tag SNP, but may instead be distal to the
causal genetic variant and linked by long-ranged chromatin interactions8–10.

Mendelian randomization11,12 resolves causal directions by using genetic variants as instrumental variables (IV) in
causal inference. However, MR assumes no unmediated effecs on phenotype, no horizontal pleiotropy11,13 (the SNP
affects both genes and phenotypes), and no LD-level linkage (two causal SNPs affecting genes and phenotypes
in LD)14. A recent meta-analysis method, MR-Egger, partly relaxes these assumptions by modeling unmediated
effects as a bias in regression of GWAS effect sizes on molecular QTL effect sizes15. However, it still assumes that
genetic variants are not in LD (to perform meta-analysis) and that the estimated effect sizes reflect the true effect
sizes of the variants (rather than being inflated by LD).

Recent methods for transcriptome-wide association studies (TWAS) have made important advances in identifying
genes which could be causal. Unlike MR, TWAS aggregates information of multiple SNPs in LD to find genes whose
cis-regulatory variants have correlated effect sizes for both gene expression and downstream phenotypes16–18.
However, TWAS methods are fundamentally limited because they cannot distinguish between causal mediation,
pleiotropy, linkage between causal variants, and reverse causation (Fig 1b), which could lead to inflated false posi-
tives as pleiotropy is quite prevalent in genetics14. Moreover, TWAS often finds multiple genes within a locus due to
statistical correlations rather than independent biological effects because analysis is performed one gene at a time,
ignoring gene-gene correlations19.

Here, we present Causal Multivariate Mediation within Extended Linkage disequilibrium (CaMMEL), a new method
for causal mediation analysis to find target genes from large-scale GWAS and molecular QTL trait association
summary statistics (Fig 1a). With CaMMEL we address three aspects of the causal gene inference problem. First,
CaMMEL leverages multiple SNPs in cis-regulatory window to account for LD. Second, CaMMEL explicitly models
mediation effect of multiple genes in close proximity to select a sparse set of causal genes that explains away
non-causal correlated genes. Finally, CaMMEL models mediation effects while adjusting for unmediated effects. In
simulation we found that CaMMEL correctly distinguishes mediating genes from pleiotropic genes, achieving higher
statistical power than TWAS17,18 and Mendelian randomization with Egger regression (MR)15.

We applied CaMMEL to identify mediating genes for AD, combining GWAS of 74,046 individuals (25,580 cases and
48,466 controls)6 and brain gene expression of 356 individuals from the Religious Orders Study and the Memory and
Aging Project (ROSMAP)4,20. We found 774 protein-coding genes with significant non-zero effect (FDR < 10−4), of
which 206 are located in proximity of subthreshold GWAS SNPs (p < 10−4; Supp Tab 1), of which 66 explain at least
5% of local genetic variance. We further discussed 21 genes in subthreshold / GWAS loci that explain 5% of local
variance, which includes the peroxisome regulator and cytochrome complex genes (RHOBTB121–23, CYP27C1 and
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CYP39A1) and several microglial genes (LRRC2324,25, ELMO126–28, RGS1729, CNTFR30) which support functional
roles of innate immune response in AD progression2,31.

Results

Overview of causal mediation analysis with multiple genes and SNPs

The goal of causal mediation analysis is to disentangle mediated (indirect) and unmediated (direct) effects from total
effects between exposure and outcome variables32. Here, we define the mediated effect as causal transcriptomic
regulatory mechanism of the available eQTL data, and broadly define the unmediated effects to include non-causal
horizontal pleiotropy11, LD-level linkage14, and unidentified mediated effects of other regulatory mechanisms. Unlike
conventional approaches, we assume phenotype data (AD) are generated with multiple mediators33,34 with coeffi-
cients β and the unmediated genetic effect with multivariate effect size γ; expression mediators are generated from
multivariate eQTL effects α with unwanted reverse causation effect δ (Fig 1c).

A standard method is to perform regressions in two stages33: First, estimate the multivariate regression of the medi-
ators (genes) on the genotypes adjusting for reverse causation and other types of mediator-exposure confounding;
then estimate the multivariate regression of phenotype on imputed mediators (potential outcome) with putative un-
mediated genetic effects. We can independently correct for the confounding effects in gene expression matrix by
half-sibling regression (Online methods)35, but the estimation of mediation effect sizes is fundamentally challenging
because the mediator, e.g., gene expression, is usually not measured in the GWAS cohort, and imputation is not
possible because the individual level genotypes required to impute the mediator are not available.

Model specification of summary-based causal mediation analysis

CaMMEL explicitly models the probabilities of multivariate mediation effects and unmediated effects on traits by refor-
mulating the multivariate mediation models into the equivalent summary statistic-based model based on Regression
with Summary Statistics (RSS)36. The key idea of RSS is to reformulate a individual-level multivariate regression to
a generative model of the observed univariate effect size vector θ̂ with the multivariate mean vector θ and the covari-
ance matrix estimated from LD matrix R (Online methods; eq. 5). We developed an efficient approximate inference
algorithm for the RSS model and validated that it performed competitively with regression models on individual-level
genotype data such as Bayesian Sparse Linear Mixed Model37 (Supp Fig 3).

In CaMMEL, we model the total multivariate effect size vector θ by decomposing it into a linear combination of
multivariate eQTL effect sizes αk for each gene k with the coefficients βk, and a multivariate effect size vector γ for
the unmediated genetic effects:

θ =

K
∑

k=1

αkβk + γ. (1)

The true multivariate eQTL effects, αk, are a priori unknown, but can be inferred from the univariate eQTL effect
sizes using RSS. In CaMMEL, we directly incorporate the RSS model for the univariate eQTL effect size vectors:

θ̂ ∼ N
(

K
∑

k=1

α̂kβk + SRS−1γ, SRS

)

(2)
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where S is a diagonal matrix of standard errors (Online methods). We assume the spike-and-slab prior on the vector
of mediation effect sizes β in order to find a sparse set of non-zero effects from the correlated mediators38–41, but we
assume a normal prior on direct effects γ to prevent the background unmediated effects from completely diminishing
to zero.

CaMMEL generalizes the MR and TWAS methods in theory

To gain mathematical insights into the CaMMEL model, we derived the coordinate-wise maximum likelihood estimate
(MLE) of mediation coefficient on gene k, β̂k with estimated standard error τ̂k using the delta method42:

β̂MLE
k =

α̂⊤
k S

−1R−1S−1θ̂

(τ̂MLE
k )−2

− α̂⊤
k S

−2γ

(τ̂MLE
k )−2

−
∑

l 6=k

βl

(

α̂⊤
k S

−1R−1S−1α̂l

)

(τ̂MLE
k )−2

(3)

where estimated standard error τ̂MLE
k =

(

α̂⊤
k S

−1R−1S−1α̂k

)−1/2
. We describe technical details and the derivation

in the supplementary texts.

With a large sample size and consistent minor allele frequency between GWAS and eQTL cohorts, we can interpret
the first term as covariance between GWAS trait and gene k, the second term as covariance between unmediated
effect and gene k, and the third term as summation of influence from all the other genes. Under the asymptotic
normality, the Wald test statistic on βk converges to the standard normal distribution, β̂MLE

k /τ̂MLE ∼ N (0, 1).

TWAS17 is a special case of CaMMEL where there is no directional bias in unmediated effect, E[γ] = 0, and there
there is no directional bias in mediated effects, E[βl] = 0 for all l 6= k. MR15 is a special case of CaMMEL where
there is no LD, R = I, no directional bias in mediated effects, but there could be directional bias of unmediated
effects (which is modeled as a scalar parameter). As a consequence, TWAS and MR will only accurately estimate
causal effect sizes if these conditions hold.

CaMMEL performs well in simulations and correctly controls unmediated effect

We simulated gene expression data and Gaussian phenotypes using genotypes of 1,709 individuals on 66 real
extended loci (Online methods). We compared the performance of CaMMEL with TWAS18 and the multi-SNP MR
method15. Here, we show simulation results with two causal genes and two causal QTLs per gene as a representa-
tive example (Supp Fig 1), but we found similar trends with different number of causal genes and eQTLs per gene.
When simulating with unmediated effects, we found CaMMEL achieved highest power and accuracy compared to
TWAS and MR. At fixed FDR 1%, CaMMEL achieves 60% power to detect mediating genes when mediation explains
20% of genetic variance, and achieves nearly 50% power when mediation explains 10% of genetic variance (Supp
Fig 1a). To investigate the robustness of methods against infused horizontal pleiotropy, we computed the percentage
of falsely discovered genes at the threshold where each method achieved best precision and recall (maximum F1
score) in causal gene discovery (Supp Fig 1b). We found almost no evidence of spuriously associated genes in the
discoveries made by CaMMEL, maintaining the fraction of false discoveries below 1%.

In contrast, TWAS, the statistical power and accuracy of TWAS degrade as we increase the level of unmediated
effect. As expected by our analytical result, we found that TWAS had comparable power and AUPRC to CaMMEL
only in the absence of unmediated effects (Supp Fig 1a). We confirmed weakened power of TWAS occurred when it
confuses mediation with unmediated associated effect (Supp Fig 1b). We found unmediated associated genes are
more frequently included in the top TWAS discoveries (5-10%) than CaMMEL (5%) and MR (2%). MR had essentially
zero power in all of the simulated scenarios because the SNPs included in the model violate the independence
assumption of the method (Supp Fig 1a).
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Transcriptome-wide mediation analysis in AD

We applied CaMMEL to AD GWAS and postmortem brain gene expression from the ROSMAP project to detect
causal mediating genes in AD. We analyzed 2,077 independent, extended loci containing at least 100 well-imputed
SNPs in the GWAS and ROSMAP. We allowed genes to span multiple LD blocks (based on SNPs within 1 Mb of the
gene body) and empirically calibrated the null distribution of mediation by parametric bootstrap43–46. We controlled
false discovery rate of the multiple hypothesis testing problem, estimating prior probability of alternative hypotheses
from data47. Here, we defined cis-regulatory eQTLs and target genes with p-value < 0.05. We only considered
genes with at least one eQTL after the p-value cutoff to avoid weak instrument bias in MR48. We included all GWAS
SNPs in the background unmediated effect model if they appeared in the imputed genotype matrix, thus providing a
conservative estimate of mediation effect, by allowing unmediated effect to explain away mediated effect.

We found 774 unique protein-coding genes with significant non-zero mediation effects (FDR < 10−4). Of them, we
found 43 are located in genome-wide significant loci, 163 in subthreshold loci (p < 10−4; Fig 2a), and 568 in weakly
associated regions (p > 10−4). Of the 43 genes in GWAS loci, in 9 cases we found the lead SNPs from GWAS
agree with cis-eQTL effects, indicating the primary genetic effects are found in the postmortem brain tissues. In the
remaining cases strongest effects may exist in different tissues and may only become visible in single cell eQTL
data.

We found on average the significant 774 genes each explain more than 2% of local genetically-driven phenotypic
variance (proportion of variance explained, PVE). This proportion was similar for the 206 genes in the subthresh-
old/GWAS loci. However, the remaining genes explain essentially zero variance (Fig 2b). We found no clear evidence
of correlation between GWAS significance with the proportion of local variance explained by mediation effects (Fig
2c) or the posterior probability of non-zero mediation effects (Fig 2d). Our results can be interpreted through om-
nigenic perspective49 that a large number of causal genes accounting for weak polygenic effects do not yet reach
genome-wide significance with current cohort size, suggesting causal variants of mediation genes located in the
subthreshold regions can eventually reach genome-wide significance level as we increase sample size.

CaMMEL recapitulates known Alzheimer’s disease genes

The 774 identified mediating genes include several known AD genes that are significant mediators and co-localized
in genome-wide significant loci (p < 5e-8). COPS6 accounts for nearly 9% of the variance (Fig 3a) and the overall
eQTL effect sizes are negatively correlated with AD susceptibility (-0.21 ± 0.012; Tab 1). COPS6 constitutes the
COP9 signalosome (CSN) complex, and the biological function of CSN was explored regarding innate immunity.
The CSN complex is evolutionary conserved, and plays a key role in plant innate immunity50. Recently conditional
knock-out experiments on the other subunit COPS5 conducted in macrophages show highly correlated activities
with anti-inflammatory pathways51.

CLU explains nearly 6% of the local variance in the genome-wide significant locus (Fig 3b), and its mediation effects
are positively correlated with AD susceptibility (mediation coefficient 0.18 ± 0.014; Tab 1). It is shown that CLU

(clustrin) expression is elevated in AD brain and directly interacts with amyloid beta plaques, and interferes with
clearance of neuritic plaques52–55.

MS4A4A explains 3% of the local variance with negative correlation with AD risk (Fig 3c). Although the functional
role of MS4A complex is largely unknown52,53, recently MS4A4A was characterized as a novel surface marker for
immature dendritic cells56.
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CaMMEL finds new genes in AD GWAS loci

We found 21 genes that explain high local genetic variance (at least 5%) in the GWAS / subthreshold regions (Fig
2a and Tab 1), of which 8 are located in the GWAS regions. A read-through gene ATP5J2-PTCD1 mediates 12% of
the local variance. The gene body is displaced from the strong GWAS peak in chromosome 7, but cis-eQTLs are
located within the peak and share strong correlation within the LD (Fig 3a). Function of the readthrough protein is not
well-understood, but PTCD1 modulates mitochondrial precursor RNA and tRNA57 and the related protein PTCD2

was already recognized as a biomarker due to its elevated expressions in AD58,59.

DPYSL2 is distal from the strong GWAS peak in chromosome 8, but its cis-eQTLs show a large degree of overlap
with the GWAS region in LD (Fig 3b). DPYSL2 was up-regulated in cortex, striatum and hippocampus after ischemic
stroke60, and it was listed among genes that modulate activation of microglial cells61. In fact, CaMMEL found that
DPYSL2 is positively correlated with AD progression.

ELMO1 is not co-localized with the strong GWAS peak in chromosome 7, yet cis-eQTLs are located within LD with
GWAS SNPs (Fig 3d). This gene confers risk of immune disorders such as multiple sclerosis in previous GWAS27,28,
and triggers phagocytosis in microglia interacting with other proteins26. Our mediation analysis demonstrates that
brain tissue-specific causal mechanism of ELMO1 is negatively correlated with AD risk, and implicates mitigated
activity of clearing neuritic plaques.

We note several cases where CaMMEL points to biologically important genes which are not captured by GWAS.
For instance, cis-eQTLs of CLP1 are located almost independent of the significant GWAS region on chromosome
11, but the gene’s effect explains 11% of local variance (Fig 3c). CLP1 is an interesting gene to follow up validation
for neurodegenerative disorders; its mutation leads to damages in peripheral and central nervous systems altering
tRNA synthesis62,63, which conveys consistent implication as ATP5J2-PTCD1.

Two cytochrome P450 complex genes64, CYP27C1 (chr2) and CYP39A1 (chr6) explain 15% and 7% of the local
variance. CYP27C1 is closely located with well-known BIN1, but the gene body does not overlap with strong GWAS
signals. Instead, cis-eQTLs within 1Mb window cover that region and extend through non-zero LD effect of CYP27C1

to nearly 2Mb around the GWAS locus (Fig 3e). The contribution of BIN1 to AD is somewhat controversial65–67, and
we expect follow-up mediation analysis with cell type-specific eQTLs will further clarify the mechanisms.

The gene body of CYP39A1 does not overlap with GWAS SNPs; however, cis-eQTLs are in LD with the GWAS vari-
ants (Fig 3f). CYP27C1 is involved in lipid metabolism68 and plays an important role in photoreceptors69. CYP39A1

is involved in the generation of 25-hydroxy cholesterol from cholesterol. A regulatory role of hydroxy cholestrol in in-
nate immunity is increasingly recognized by recent studies70, and a murine experiment showed that inflammation in
central nervous system due to disrupted lipid metabolism down-regulated activities of cytochrome P450 complex71.

CaMMEL finds strong mediators in subthreshold loci

Of the 21 strong mediators, 13 are located in the subthreshold regions. We highlight three examples in the sub-
threshold regions. SH3YL1 is located at the tip of chromosome 2 containing small number of genes and gene body
is enclosed within subthreshold GWAS region (Fig 4a). SH3YL1 was found significant in GWAS with attempted
suicide and expressed in brain, but underlying mechanisms are unknown72. Interestingly this gene was also found
robustly associated height in previous TWAS17,18. Several previous researches noted subtle relationship between
AD and suicide attempt73,74 and height75. However we think joint analysis with multiple GWAS traits will further edify
detailed causal directions.

LRRC23 has cis-eQTLs in chromosome 12 between 7Mb and 8Mb that explain 7.8% of local genetic variance,
followed by CLSTN3 explains 1.6% (Fig 4b). Both mediation effects of LRRC23 and CLSTN3 are significantly non-
zero. LRRC23 and its cis-eQTLs were suggested as a modulator of innate immune network in mouse retina in
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response to optic neuronal injury24 and enriched in ramified microglial cells76. CLSTN3 (calsyntenin-3) interacts
with neurexin and forms synpatic adhesion77 and up-regulated by increase of amyloid beta protein and accelerated
neuronal death78.

CNTFR explains 9.9% of genetic variance within 5Mb region (from 33Mb to 38Mb on chromosome 9) and multiple
gene expression mediators are found (Fig 4c). Interestingly GWAS signals are also widely distributed with sporadic
narrow peaks. CNTFR, interacting with CNTF and interferon gamma, stimulates murine microglia and increases
expression of CD40 on the cell surface30. Second best gene in the region, EXOSC3 (RNA exsosome component
3), is also interesting. Exome sequencing followed by functional analysis in zebra fish identified that mutations
in EXOSC3 is causal to hypoplasia and spinal motor neuron degeneration79, and expression of EXOSC3 was
differentially regulated in human monocyte and macrophage induced by lipopolysaccharide, suggesting functional
roles in inflammatory bowel disease80.

Discussion

We developed novel Bayesian machine learning approach to causal mediation analysis that infers regulatory mech-
anisms from summary statistics of GWAS and eQTLs. Our approach borrows great ideas from two existing statistical
approaches, MR-Egger regression and TWAS. MR-Egger adjust for unmediated effects by meta-analysis of effect
sizes15, and TWAS correctly aggregate multiple SNP information taking into accounts of LD. However, these methods
only provide partial solution of causal gene discoveries, posing strict assumptions such as independence between
SNPs (MR-Egger) or giving up identifiability between mediated and unmediated effects (TWAS). On the contrary,
CaMMEL addresses overall aspects of the causal mediation analysis in tight LD structure36, by explicitly modeling
both mediated and unmediated effects of multiple genes in a unified Bayesian framework and to identify causal path-
ways by carrying out Bayesian variable selection38 between potentially collinear mediators40,41. Our direct Bayesian
approach poses computational challenges on posterior probability calculation, but our efficient implementation made
the method generally applicable to other related summary-based mediation and regression analysis.

Previous MR analysis on DNA methylation81 used stringent FWER cutoff on instrument variable selection to avoid
weak instrument bias observed in MR on individual-level data48. Here we retained cis-regulatory eQTLs and target
genes with lenient p-value cutoff (0.05) for several reasons. Since CaMMEL estimates the RSS model and it reduces
the risk of double counting evidences from multiple weak IVs. Forever, unlike endophenotypes in epidemiological
studies such as Body Mass Index, strong genetic association of molecular QTL include effects from neighboring
SNPs, and therefore stringent p-value cutoff does not make the QTL a strong IV27,82,83. In fact, our approach to
analyze multiple mediators make causal mediators tested in more strict settings when we include as many competitor
genes as possible.

We established top priority list of 21 genes as strong causal mediators of AD. Our results suggest contribution of
innate immunity in AD progression pointing to a specific set of genes with proper brain tissue contexts. We expect
our analysis framework can provide more complete pictures by combining with cell-type and tissue specific eQTL
summary statistics. Currently we assume mediators (genes) act independently conditioned on genotype information,
but extensions of LD blocks to pathways and multiple tissues would need more parsimonious models, for instance,
by sharing information across tissues and genes of through factored regression models84.
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Online methods

Review of regression with summary statistics

A summary association statistic refers to a univariate effect size (a regression slope of a simple regression or log-
odds ratio in case-control studies) measured on each SNP without taking into account of LD structure. On a single
trait GWAS, we normally have a vector of p summary statistics, effect size θ̂j and corresponding variance σ̂2

j for
each SNP j ∈ [p]85. However, due to LD (correlations between neighboring SNPs), an effect size measured on
each single variant contains contributions from the neighboring SNPs. Unless we estimate causal variants by fine-
mapping, inferring the multivariate effect from the univariate one, the univariate effect size of a SNP should not be
interpreted as unbiased estimation of SNP-level signals85,86.

Here our interest is on the multivariate (true) effect size vector θ across all SNPs in the locus of interest. In principle,
fixed effects can be modeled by a multivariate regression model, and parameters of this large regression model
correspond to the multivariate effect θ. We assume an n-vector of individual-level phenotypes y was generated from
n× p genotype matrix G on p SNPs with the multivariate effect sizes θ, and isotropic Gaussian noise parameter σ2.
More precisely,

y ∼ N
(

Gθ, σ2I
)

. (4)

The regression with summary statistics (RSS) model87,88 provides a principled way to describe a generative model of
the GWAS summary data. We assume the observed GWAS summary effect sizes θ̂ ≡ (θ̂1, . . . , θ̂p)

⊤ were generated
from the same multivariate effects θ of individual-level multivariate GWAS model (eq. 4).

θ̂ ∼ N
(

SRS−1θ, SRS
)

, (5)

where we denote the p×p linkage disequilibrium (LD) matrix R and the diagonal matrix of expected squares, S with

each element Sjj =
√

E[θ̂2j ] =
√

θ̂2j/n+ σ2
j . In practice we estimate the LD matrix R̂ from a standardized genotype

matrix of reference cohort by taking crossproduct, R̂ = G⊤G/(n − 1). While other methods regularize R̂ matrix by
adding ridge regression penalty on the diagonal matrix89, here we regularized R̂ by dropping variance components
corresponding to small eigenvalues (λ)90. We use a fixed cutoff λ < 10−2, but our results were robust to the different
cutoff values such as λ < 10−3 and λ < 10−1.

Derivation of the causal mediation model in RSS

We derive the mediation model (eq. 2), assuming that the observed univariate eQTL effects on a mediator k, α̂k ≡
(α̂1k, . . . , α̂pk)

⊤ are generated from the RSS model with mean E[α̂k] = SαRS−1
α αk with expected squares Sα of

eQTL effects. Here we assume standard errors of GWAS effects can be substituted with standard errors of QTL
effects up to some scaling factor, i.e., Sα = cS with some real number c > 0, because association statistic is
mainly determined by the underlying minor allele frequencies and samples sizes, and this allows us to rewrite the
expectation of mediation effect (eq. 1):

E[θ̂] =

K
∑

k=1

(

SαRS−1
α αk

)

βk + SRS−1γ

where the constant factor c cancels. With no measurement error, i.e., E[α̂] = α̂, we can reasonably assume:
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E[θ̂] ≈
∑

k

α̂kβk + SRS−1γ.

Substitution of this mean effect to the RSS model (eq. 5) yields the probabilistic model for CaMMEL (eq. 2).

Variational Bayes inference of the mediation model

A key challenge in fitting the causal mediation model (eq. 2) is dealing with the covariance matrix in the likelihood.
We exploit the spectral transformation of the LD matrix to make the model inference more amenable91. We take
singular value decomposition of standardized genotype matrix, (n)−1/2G = UDV ⊤, and decompose LD matrix
into R̂ = V D2V ⊤, exposing that the effective number of sample size ñ is bounded by the sample size of reference
panel, ñ < n, after the regularization R̂. Defining ỹ ≡ V ⊤S−1θ̂ we obtain equivalent, but fully factorized, multivariate
Gaussian model

ỹ ∼ N
(

K
∑

k=1

V ⊤S−1α̂kβk +D2V ⊤S−1γ, D2

)

. (6)

We efficiently fit the model using black box variational inference92,93 with a novel reparameterization trick84,94. Nor-
mally a high-dimensional multivariate regression is intractable problem since the total amount of model variance
blows up as a function of dimensions (p). However, instead of dealing with large number of parameters (p SNPs),
we deal with smaller ñ-dimensional aggregate random variables (ñ < n ≪ p), a linear combination of p-dimensional
effects. More precisely we define

ηi ≡
p
∑

j=1

VjiS
−1
j γj , ξi ≡

p
∑

j=1

VjiS
−1
j

K
∑

k=1

α̂jkβk

to rewrite the transformed log-likelihood of the model for each eigen component i:

lnP (ỹi|ηi, ξi) = −1

2
ln d2i −

1

2d2i
(ỹi − d2i ηi − ξi)

2 − 1

2
ln(2π).

This reformulation not only achieves faster convergence by reducing variance94,95, but we also gain computational
efficiency that we can sample all the eigen components independently in parallel taking full accounts of the underlying
LD structure between SNPs.

The overall algorithm proceeds as follows: We first update surrogate distributions of q(ξ) ≈ N (µξ, νξ) and q(η) ≈
N (µη, νη) by minimizing Kullback-Leibler (KL) divergence between the surrogate q and true distribution P , DKL(q‖P ),
by taking stochastic gradient steps with respect to the mean ∇µξ

,∇µη and variance ∇νξ ,∇νη
93; we then then back-

propagate this gradient to the gradient with respect to the original mean ∇µβ
,∇µγ and variance parameters ∇νβ ,∇νγ

to eventually find q(β) ≈ N (µβ , νβ) and q(γ) ≈ N (µγ , νγ). We formulate the variational mean µβ and variance νβ
of the spike-slab distribution following the previous derivations39 (see our technical paper84 for details).

Calculation of proportion of variance explained

We measured explained variance according to the definition of Shi et al.90 Total variance can be decomposed into
mediated component, (αβ)⊤R(αβ) and unmediated component (γ)⊤R(γ). We checked this provides a reasonably
tight lower-bound of actual model variance through simulations. Parameters, α, β, γ, are estimated by posterior
mean of variational Bayes inference.
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Parametric bootstrap

Variational inference may only capture one mode of the true posterior, and so tends to underestimate posterior
variances. Therefore, we do not rely on the Bayesian posterior variance to assess confidence in the estimated
mediated and unmediated effect sizes. Moreover, the effects tend to correlate with each other then can lead to
a severe collinearity problem. Instead, we use the parametric bootstrap to estimate the null distribution of these
parameters and calibrate false discovery rates43,44,46.

Confounder correction in gene expression matrix

We learn and adjust for unobserved non-genetic confounders in gene expression by half-sibling regression (Supp Fig
2)35. For each gene we find 105 control genes, selecting the most correlated 5 genes from each other chromosome.
We assume cis-regulatory effects only occur within each chromosome and that inter-chromosomal correlations are
due only to shared non-genetic confounders. This assumption is invalid when cis-regulatory variants under consid-
eration have trans-effects on the control genes. Therefore, we regress out genetic effects on the established control
genes. Half-sibling regression simply takes residuals after regressing out the control gene effects on observed gene
expressions.

Establishing the extended LD blocks

We establish independent LD blocks of SNPs within a chromosome and restrict mediation analysis within each block.
We computed pairwise correlations between pairs of variants in the Thousand Genomes European samples within
1 megabase and with r2 > 0.1. We pruned to a desired threshold by iteratively picking the top-scoring AD GWAS
variant (breaking ties arbitrarily) and removing the tagged variants until no variants remained. At convergence each
small block is tagged by its top-scoring variant, and merge LD blocks overlapping in genome.

Simulation framework

We used 66 real extended loci, randomly sampling 3 per chromosome that each harbored more than 1,000 SNPs.
Within each region, we assigned each non-overlapping window of 20 SNPs to a synthetic gene. For each gene,
we varied the number of causal nq SNPs (per gene) and generated ng gene expression data from a linear model
with proportion of variance mediated through expression (PVE) from τ = 0.01 to 0.2. For each region, we selected
nd SNPs to have a direct (unmediated) effect on the phenotype and selected genes to have a causal effect on the
phenotype, varying the variance explained by the direct effect δ (horizontal pleiotropy13). For simplicity we used
nd = nq, meaning direct effect contributes variance of one gene, and gene expression heritability was fixed to
ρ = 0.17 as used in our previous work96. We carefully selected pleiotropic SNPs from the eQTLs of non-mediating
genes. We evaluated the statistical power of each method at fixed FDR 1% and the precision by the area under the
precision recall curve (AUPRC).

We used a generative scheme proposed by Mancuso et al.18 with a slight modification that includes unmediated
genetic effects on the trait. Let nq be number of causal SNPs per each genetic gene; ng be number of causal
mediation genes; nd be number of SNPs driving unmediated effect on trait. For each simulation, three PVE (a
proportion of variance explained) parameters are given between 0 and 1. (1) ρ: PVE of gene expression; (2) τ : PVE
of mediation; (3) δ: PVE of unmediated effect.

For each mediator k on individual i: Mik =
∑nq

j=1Gi(j)αjk + ǫik where (j) is j-th causal SNP index for this gene,
α ∼ N (0, ρ/nq) and ǫ ∼ N (0, 1− ρ).

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 1, 2017. ; https://doi.org/10.1101/219428doi: bioRxiv preprint 

https://doi.org/10.1101/219428


Combining stochastically generated mediator variables, we generate phenotypes

yi =

ng
∑

k=1

Mi(k)βk +

nd
∑

j′=1

Gi(j′)γj′ + ǫi

where (k) is k-th causal mediator index, mediation effect sizes are sampled independently β ∼ N (0, τ/ng), and
unmediated effect sizes are also sampled independently γ ∼ N (0, δ/nd) and we infused irreducible noise to take
into account of the residual variance ǫ ∼ N (0, 1− τ − δ).

Calculation of TWAS test statistics from summary z-scores

For simplicity we used completely summary-based approach18 that need not pretrain multivariate regression model.
TWAS statistics can be derived from two sets of summary z-score vectors–one for GWAS zG and the other for
eQTL zT using the fact that multivariate QTL effect size vector α can be approximated by LD-adjusted effect, α ≈
R−1

zT /
√
n.

T =
z
⊤
Gα√

α⊤Rα+ λ
(7)

Test statistics T asymptotically follow N (0, 1). We set λ = 10−8 to avoid zero divided by zero.

Data preprocessing

We used genotypes of 672,266 SNPs in 1,709 individuals from the Religious Orders Study (ROS) and the Memory
and Aging Project (MAP)97. We mapped hg18 coordinates of SNPs (Affymetrix GeneChip 6.0) to hg19 coordinates
matching strands using publicly available information (http://www.well.ox.ac.uk/~wrayner/strand/GenomeWideSNP_6.na32-
b37.strand.zip). We imputed the genotype arrays by prephasing haplotypes based on the 1000 genome project
phase I version 398 using SHAPEIT99, retaining only SNPs with MAF > 0.05. We then imputed SNPs in 5MB windows
using IMPUTE2100 with 100 Markov Chain Monte Carlo iterations and 10 burn-in iterations. After the full imputation,
6,516,083 SNPs were considered in follow-up expression and methylation QTL analysis.

We used gene expression data generated by RNA-seq from dorsolateral prefrontal cortex (DLPFC) of 540 individuals4.
We retained 436 samples by first removing potentially poor quality 84 samples with RIN score below 6 (suggested
by the GTEx consortium) and further removing 20 samples with no amyloid beta measurements. Of 436 samples,
we used 356 samples with genotype information for eQTL analysis. Gene-level quantification was conducted by
RSEM101 and we focused on 18,461 coding genes out of 55,889 according to the GENCODE annotations (v19 used
in the GTEx v6p102).

Original gene-level quantification data follows negative binomial distribution. We adjusted variability of sequencing
depth across samples following previous methods103,104. We then converted over-dispersed count data to Normal
distribution data while fitting gene by gene null model of negative binomial regression that only includes intercept
term, equivalent to rlog transformation105. We used custom-designed inference algorithm to speed up the in-
ference of models (https://github.com/ypark/fqtl). We found residual values inside the inverse link function follow
approximately Normal distribution in most genes.
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GWAS summary statistics

International Genomics of Alzheimer’s Project (IGAP) is a large two-stage study based upon genome-wide asso-
ciation studies (GWAS) on individuals of European ancestry. In stage 1, IGAP used genotyped and imputed data
on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-analyse four previously-published GWAS datasets
consisting of 17,008 Alzheimer’s disease cases and 37,154 controls (The European Alzheimer’s disease Initiative –
EADI the Alzheimer Disease Genetics Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic
Epidemiology consortium – CHARGE The Genetic and Environmental Risk in AD consortium – GERAD). In stage 2,
11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases
and 11,312 controls. Finally, a meta-analysis was performed combining results from stages 1 & 2.
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Tables

Table 1. CaMMEL identified 21 genes explains at least 5% of local variance in subthreshold / GWAS regions. All
genes in the list passed stringent p-value threshold < 3e-06 (FDR < .007%) and GWAS regions contain at least
one subthreshold or more significant SNP (p-value < 10−4). Gene: gene symbol in hg19; chr : chromosome name;
TSS: transcription start site with respect to strand (kb); TES: transcription end site (kb); Mediation: gene expression
mediation effect size with standard deviation and posterior inclusion probability (first and second numbers in the
bracket). Best GWAS: best GWAS ID in the LD block with z-score and location in kb. Best QTL: best eQTL SNP ID
with z-score and location in kb. PVE : proportion of local genetic variance explained by gene expression mediation
(in %).

Gene chr TSS TES Mediation Best GWAS Best QTL PVE

SH3YL1 2 266 218 0.22 (0.016, 1) rs75141812 (-4, 290) rs1474053 (-5.4, 224) 8.3
CYP27C1 2 127,978 127,942 0.33 (0.017, 1) rs6733839 (14, 127,893) rs6430934 (-3.8, 128,001) 15
CYP39A1 6 46,621 46,518 -0.27 (0.032, 1) rs10948363 (6.6, 47,488) rs9296505 (-4.1, 46,630) 7
RGS17 6 153,452 153,326 0.21 (0.035, 1) rs9479690 (4.2, 154,072) rs12526771 (-3, 153,783) 7.4
ELMO1 7 37,489 36,894 -0.28 (0.016, 1) rs2718058 (-5.9, 37,842) rs80195177 (2.8, 37,637) 7.6

ATP5J2-PTCD1 7 99,039 99,039 0.23 (0.012, 1) rs12539172 (-6.2, 100,092) rs2525546 (-3.3, 99,552) 12
COPS6 7 99,687 99,690 -0.21 (0.012, 1) rs12539172 (-6.2, 100,092) rs4308665 (-3.5, 99,667) 8.9
DPYSL2 8 26,372 26,516 0.39 (0.016, 1) rs7982 (-10, 27,462) rs6558007 (-2.4, 27,434) 7.7

CLU 8 27,473 27,454 0.18 (0.014, 1) rs7982 (-10, 27,462) rs11136000 (3.7, 27,465) 5.9
FSBP 8 95,449 95,449 0.26 (0.044, 1) rs7818382 (5.4, 96,054) rs79027703 (-2.9, 95,664) 7.5

C8orf37 8 96,281 96,257 0.16 (0.017, 1) rs7818382 (5.4, 96,054) rs2514558 (-5, 96,292) 5.4
CNTFR 9 34,590 34,551 0.14 (0.039, 1) rs7040732 (4.1, 38,488) rs149113257 (3.4, 33,670) 9.9

RHOBTB1 10 62,761 62,629 0.14 (0.019, 1) rs10761556 (-4, 62,518) rs1372711 (3.3, 62,431) 7.2
CLP1 11 57,424 57,429 0.16 (0.032, 1) rs983392 (-8.1, 59,924) rs7102963 (3.1, 57,027) 11

LRRC23 12 6,993 7,023 -0.096 (0.01, 1) rs11064497 (-4.5, 7,170) rs12315375 (8.1, 7,009) 7.8
FRS2 12 69,864 69,974 -0.091 (0.015, 1) rs4351896 (4.3, 69,353) rs2601007 (-3.5, 69,979) 9.7

PTPN21 14 89,021 88,932 -0.16 (0.016, 1) rs12433739 (4.2, 88,798) rs59261166 (2.6, 88,814) 6.7
EMC4 15 34,517 34,522 0.1 (0.018, 1) rs112929571 (3.9, 34,424) rs59209438 (-9.1, 34,536) 6.8
LEO1 15 52,264 52,230 0.13 (0.013, 1) rs8035452 (-5.1, 51,041) rs6493549 (-4.3, 52,528) 8

DENND4A 15 66,085 65,950 0.17 (0.02, 1) rs74615166 (5.1, 64,725) rs7178388 (-2.5, 66,957) 5.1
KLK5 19 51,456 51,447 -0.18 (0.023, 1) rs12459419 (-5.4, 51,728) rs7253829 (2.3, 51,754) 6.3
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Figures

Figure 1. Schematic of the CaMMEL method. (a) Transcriptome-wide causal mediation analysis overcomes limita-
tion of observed TWAS by taking advantages of large statistical power of Alzheimer’s disease GWAS statistics and
brain tissue-specific regulatory contexts of eQTL data. (b) Correlation between gene expression and disease status
can arise from mediation, pleiotropy and reverse causation. (c) CaMMEL jointly estimates two regression models
taking into account multiple sources of gene expression variation.
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Figure 2. Transcriptome-wide mediation analysis reveals causal target genes in AD. (a) Mediation effect sizes over
all the genes located in GWAS subthreshold region (p < 10−4). Size of dots are proportional to the proportion of local
genetic variance explained by mediation. Errorbars show 95% confidence intervals. Dots are colored according to
the GWAS significance. 21 genes (PVE > 5%) are annotated (Table 1). (b) Histogram showing proportion of variance
explained (PVE) by gene expression mediation. Gray bars: total histogram of PVE; green bars: histogram of PVE
for 774 significant mediation genes (non-zero mediation FDR < 10−4); blue line: histogram of PVE for 206 significant
mediation genes found in GWAS subthreshold regions (FDR < 10−4, GWAS p < 10−4). Green horizontal line:
average PVE for 774 genes. Red horizontal line: 5% cutoff for strong mediators. (c) Density estimation showing
relationship between PVE (y-axis) and GWAS significance level (x-axis). The 21 strong mediators are shown as red
dots. Red horizontal line: 5% cutoff. (d) Density estimation showing relationship between posterior probability of
mediation (y-axis) and GWAS significance level (x-axis). We marked 21 strong genes with red dots. Red horizontal

line: posterior probability corresponding to FDR < 10−4 cutoff. (e) Density estimation showing relationship between
best eQTL (y-axis) and best GWAS significance level (x-axis) within LD.
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Figure 2: Genome-wide patterns of gene expression mediation in AD.
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Figure 3. Local views of significant gene expression mediation on GWAS significant regions. In each plot, proportion
of gene expression mediation (%) and GWAS Manhattan plot (upside down) are aligned according to genomic
locations. eQTL links are colored based on z-score of effect sizes (blue = negative; red = positive). Ranges of
correlation due to LD were covered with green shades. Gene bodies are marked by dark green bars in genomic
location. Numbers within brackets denote mediation test p-value.
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Figure 4. Local views of significant gene expression mediation on subthreshold regions. In each plot, proportion
of gene expression mediation (%) and GWAS Manhattan plot (upside down) are aligned according to genomic
locations. eQTL links are colored based on z-score of effect sizes (blue = negative; red = positive). Ranges of
correlation due to LD were covered with green shades. Gene bodies are marked by dark green bars in genomic
location. Numbers within brackets denote mediation test p-value.
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