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Abstract. Extracting causal relationships from observed correlations is
a growing area in probabilistic reasoning, originating with the seminal
work of Pearl and others from the early 1990s. This paper develops a
new, categorically oriented view based on a clear distinction between
syntax (string diagrams) and semantics (stochastic matrices), connected
via interpretations as structure-preserving functors.

A key notion in the identification of causal effects is that of an interven-
tion, whereby a variable is forcefully set to a particular value independent
of any prior dependencies. We represent the effect of such an intervention
as an endofunctor which performs ‘string diagram surgery’ within the syn-
tactic category of string diagrams. This diagram surgery in turn yields
a new, interventional distribution via the interpretation functor. While
in general there is no way to compute interventional distributions purely
from observed data, we show that this is possible in certain special cases
using a calculational tool called comb disintegration.

We showcase this technique on a well-known example, predicting the
causal effect of smoking on cancer in the presence of a confounding com-
mon cause. We then conclude by showing that this technique provides
simple sufficient conditions for computing interventions which apply to
a wide variety of situations considered in the causal inference literature.

Keywords: Causality · String diagrams · Probabilistic reasoning

1 Introduction

An important conceptual tool for distinguishing correlation from causation is
the possibility of intervention. For example, a randomised drug trial attempts to
destroy any confounding ‘common cause’ explanation for correlations between
drug use and recovery by randomly assigning a patient to the control or treat-
ment group, independent of any background factors. In an ideal setting, the
observed correlations of such a trial will reflect genuine causal influence. Unfor-
tunately, it is not always possible (or ethical) to ascertain causal effects by means
of actual interventions. For instance, one is unlikely to get approval to run a clin-
ical trial on whether smoking causes cancer by randomly assigning 50% of the
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patients to smoke, and waiting a bit to see who gets cancer. However, in certain
situations it is possible to predict the effect of such a hypothetical intervention
from purely observational data.

In this paper, we will focus on the problem of causal identifiability. For this
problem, we are given observational data as a joint distribution on a set of
variables and we are furthermore provided with a causal structure associated
with those variables. This structure, which typically takes the form of a directed
acyclic graph or some variation thereof, tells us which variables can in principle
have a causal influence on others. The problem then becomes whether we can
measure how strong those causal influences are, by means of computing an inter-
ventional distribution. That is, can we ascertain what would have happened if
a (hypothetical) intervention had occurred?

Over the past 3 decades, a great deal of work has been done in identifying
necessary and sufficient conditions for causal identifiability in various special
cases, starting with very specific notions such as the back-door and front-door
criteria [20] and progressing to more general necessary and sufficient conditions
for causal identifiability based on the do-calculus [11], or combinatoric concepts
such as confounded components in semi-Makovian models [25,26].

This style of causal reasoning relies crucially on a delicate interplay between
syntax and semantics, which is often not made explicit in the literature. The
syntactic object of interest is the causal structure (e.g. a causal graph), which
captures something about our understanding of the world, and the mechanisms
which gave rise to some observed phenomena. The semantic object of interest is
the data: joint and conditional probability distributions on some variables. Fixing
a causal structure entails certain constraints on which probability distributions
can arise, hence it is natural to see distributions satisfying those constraints as
models of the syntax.

In this paper, we make this interplay precise using functorial semantics in the
spirit of Lawvere [17], and develop basic syntactic and semantic tools for causal
reasoning in this setting. We take as our starting point a functorial presentation
of Bayesian networks similar to the one appearing in [7]. The syntactic role is
played by string diagrams, which give an intuitive way to represent morphisms of
a monoidal category as boxes plugged together by wires. Given a directed acyclic
graph (dag) G, we can form a free category Syn

G
whose arrows are (formal)

string diagrams which represent the causal structure syntactically. Structure-
preserving functors from Syn

G
to Stoch, the category of stochastic matrices,

then correspond exactly to Bayesian networks based on the dag G.
Within this framework, we develop the notion of intervention as an oper-

ation of ‘string diagram surgery’. Intuitively, this cuts a string diagram at a
certain variable, severing its link to the past. Formally, this is represented as
an endofunctor on the syntactic category cutX : Syn

G
→ Syn

G
, which propagates

through a model F : Syn
G

→ Stoch to send observational probabilities F(ω) to
interventional probabilities F(cutX(ω)).

The cutX endofunctor gives us a diagrammatic means of computing interven-
tional distributions given complete knowledge of F . However, more interestingly,
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we can sometimes compute interventionals given only partial knowledge of F ,
namely some observational data. We show that this can also be done via a tech-
nique we call comb disintegration, which is a string diagrammatic version of
a technique called c-factorisation introduced by Tian and Pearl [26]. Our app-
roach generalises disintegration, a calculational tool whereby a joint state on two
variables is factored into a single-variable state and a channel, representing the
marginal and conditional parts of the distribution, respectively. Disintegration
has recently been formulated categorically in [5] and using string diagrams in [4].
We take the latter as a starting point, but instead consider a factorisation of a
three-variable state into a channel and a comb. The latter is a special kind of map
which allows inputs and outputs to be interleaved. They were originally studied
in the context of quantum communication protocols, seen as games [8], but have
recently been used extensively in the study of causally-ordered quantum [3,21]
and generalised [15] processes. While originally imagined for quantum processes,
the categorical formulation given in [15] makes sense in both the classical case
(Stoch) and the quantum. Much like Tian and Pearl’s technique, comb factorisa-
tion allows one to characterise when the confounding parts of a causal structure
are suitably isolated from each other, then exploit that isolation to perform the
concrete calculation of interventional distributions.

However, unlike in the traditional formulation, the syntactic and semantic
aspects of causal identifiability within our framework exactly mirror one-another.
Namely, we can give conditions for causal identifiability in terms of factorisation a
morphism in Syn

G
, whereas the actual concrete computation of the interventional

distribution involves factorisation of its interpretation in Stoch. Thanks to the
functorial semantics, the former immediately implies the latter.

To introduce the framework, we make use of a running example taken from
Pearl’s book [20]: identifying the causal effect of smoking on cancer with the help
of an auxiliary variable (the presence of tar in the lungs). After providing some
preliminaries on stochastic matrices and the functorial presentation of Bayesian
networks in Sects. 2 and 3, we introduce the smoking example in Sect. 4. In Sect. 5
we formalise the notion of intervention as string diagram surgery, and in Sect. 6
we introduce the combs and prove our main calculational result: the existence
and uniqueness of comb factorisations. In Sect. 7, we show how to apply this
theorem in computing the interventional distribution in the smoking example,
and in 8, we show how this theorem can be applied in a more general case which
captures (and slightly generalises) the conditions given in [26]. In Sect. 9, we
conclude and describe several avenues of future work.

2 Stochastic Matrices and Conditional Probabilities

Symmetric monoidal categories (SMCs) give a very general setting for studying
processes which can be composed in sequence (via the usual categorical composi-
tion ◦) and in parallel (via the monoidal composition ⊗). Throughout this paper,
we will use string diagram notation [24] for depicting composition of morphisms
in an SMC. In this notation, morphisms are depicted as boxes with labelled input
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and output wires, composition ◦ as ‘plugging’ boxes together, and the monoidal
product ⊗ as placing boxes side-by-side. Identity morphisms are depicted simply
as a wire and the unit I of ⊗ as the empty diagram. The ‘symmetric’ part of the
structure consists of symmetry morphisms, which enable us to permute inputs

and outputs arbitrarily. We depict these as wire-crossings: . Morphisms whose

domain is I are called states, and they will play a special role throughout this
paper.

A monoidal category of prime interest in this paper is Stoch, whose objects
are finite sets and morphisms f : A → B are |B| × |A| dimensional stochastic
matrices. That is, they are matrices of positive numbers (including 0) whose
columns each sum to 1:

f = {f
j
i ∈ R

+ | i ∈ A, j ∈ B} with
∑

j f
j
i = 1, for all i.

Note we adopt the physicists convention of writing row indices as superscripts
and column indices as subscripts. Stochastic matrices are of interest for proba-
bilistic reasoning, because they exactly capture the data of a conditional prob-
ability distribution. That is, if we take A := {1, . . . , m} and B := {1, . . . , n},
conditional probabilities naturally arrange themselves into a stochastic matrix:

f
j
i := P (B = j|A = i) � f =







P (B = 1|A = 1) · · · P (B = 1|A = m)
...

. . .
...

P (B = n|A = 1) · · · P (B = n|A = m)







States, i.e. stochastic matrices from a trivial input I := {∗}, are (non-
conditional) probability distributions, represented as column vectors. There is
only one stochastic matrix with trivial output: the row vector consisting only of
1’s. The latter, with notation as on the right, will play a special role in this
paper (see (1) below).

Composition of stochastic matrices is matrix multiplication. In terms of con-
ditional probabilities, that is multiplication followed by marginalization over the
shared variable:

∑

B P (C|B)P (B|A). Identities are thus given by identity matri-

ces, which we will often express in terms of the Kronecker delta function δ
j
i .

The monoidal product ⊗ in Stoch is the cartesian product on objects, and

Kronecker product of matrices: (f ⊗ g)
(k,l)
(i,j) := fk

i gl
j . We will typically omit

parentheses and commas in the indices, writing e.g. hkl
ij instead of h

(k,l)
(i,j) for an

arbitrary matrix entry of h : A ⊗ B → C ⊗ D. In terms of conditional probabil-
ities, the Kronecker product corresponds to taking product distributions. That
is, if f represents the conditional probabilities P (B|A) and g the probabilities
P (D|C), then f ⊗g represents P (B|A)P (D|C). Stoch also comes with a natural
choice of ‘swap’ matrices σ : A⊗B → B⊗A given by σkl

ij := δl
iδ

k
j , making it into

a symmetric monoidal category. Every object A in Stoch has three other pieces
of structure which will play a key role in our formulation of Bayesian networks
and interventions: the copy map, the discarding map, and the uniform state:

( )jk

i
:= δ

j
i δ

k
i

( )

i
:= 1

( )i

:=
1

|A|
(1)
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Abstractly, this provides Stoch with the structure of a CDU category.

Definition 2.1. A CDU category (for copy, discard, uniform) is a symmetric

monoidal category (C,⊗, I) where each object A has a copy map : A → A⊗A,

a discarding map : A → I, and a uniform state : I → A satisfying the

following equations:

= = = = (2)

CDU functors are symmetric monoidal functors between CDU categories pre-
serving copy maps, discard maps and uniform states.

We assume that the CDU structure on I is trivial and the CDU structure
on A ⊗ B is constructed in the obvious way from the structure on A and B. We
also use the first equation in (2) to justify writing ‘copy’ maps with arbitrarily

many output wires:
...

.

Similar to [2], we can form the free CDU category FreeCDU(X,Σ) over a
pair (X,Σ) of a generating set of objects X and a generating set Σ of typed
morphisms f : u → w, with u,w ∈ X⋆ as follows. The category FreeCDU(X,Σ)
has X⋆ as set of objects, and morphisms the string diagrams constructed from
the elements of Σ and maps : x → x ⊗ x, : x → I and : I → x for each
x ∈ X, taken modulo the equations (2).

Lemma 2.2. Stoch is a CDU category, with CDU structure defined as in (1).

f =

A

B

B (3)

An important feature of Stoch is that I = {⋆}
is the final object, with : B → I the map pro-
vided by the universal property, for any set B.
This yields Eq. (3) on the right, for any f : A →
B, justifying the name “discarding map” for .

We conclude by recording another significant feature of Stoch: disintegra-
tion [4,5]. In probability theory, this is the mechanism of factoring a joint prob-
ability distribution P (AB) as a product of the first marginal P (A) and a condi-
tional distribution P (B|A). We recall from [4] the string diagrammatic rendition
of this process. We say that a morphism f : X → Y in Stoch has full support if,
as a stochastic matrix, it has no zero entries. When f is a state, it is a standard
result that full support ensures uniqueness of disintegrations of f .

Proposition 2.3 (Disintegration). For any state ω : I → A ⊗ B with full
support, there exists unique morphisms a : I → A, b : A → B such that:

b
=

a

ω

A

A B

B

(4)
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Note that Eq. (3) and the CDU rules immediately imply that the unique a : I →

A in Proposition 2.3 is the marginal of ω onto A: BA

ω
.

3 Bayesian Networks as String Diagrams

Bayesian networks are a widely-used tool in probabilistic reasoning. They give
a succinct representation of conditional (in)dependences between variables as a
directed acyclic graph. Traditionally, a Bayesian network on a set of variables
A,B,C, . . . is defined as a directed acyclic graph (dag) G, an assignment of sets to
each of the nodes VG := {A,B,C, . . .} of G and a joint probability distribution
over those variables which factorises as P (VG) =

∏

A∈VG
P (A |Pa(A)) where

Pa(A) is the set of parents of A in G. Any joint distribution that factorises
this way is said to satisfy the global Markov property with respect to the dag
G. Alternatively, a Bayesian network can be seen as a dag equipped with a set
of conditional probabilities {P (A |Pa(A)) | A ∈ VG} which can be combined
to form the joint state. Thanks to disintegration, these two perspectives are
equivalent.

Much like in the case of disintegration in the previous section, Bayesian net-
works have a neat categorical description as string diagrams in the category
Stoch [7,13,14]. For example, here is a Bayesian network in its traditional depic-
tion as a dag with an associated joint distribution over its vertices, and as a
string diagram in Stoch:

A

B D

C E

P (ABCDE) =
P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

A B EC D

In the string diagram above, the stochastic matrix a : I → A contains the
probabilities P (A), b : B → A contains the conditional probabilities P (B|A),
c : B ⊗ D → C contains P (C|BD), and so on. The entire diagram is then equal
to a state ω : I → A ⊗ B ⊗ C ⊗ D ⊗ E which represents P (ABCDE).

Note the dag and the diagram above look similar in structure. The main
difference is the use of copy maps to make each variable (even those that are
not leaves of the dag, A, B and D) an output of the overall diagram. This
corresponds to a variable being observed. We can also consider Bayesian net-
works with latent variables, which do not appear in the joint distribution due to
marginalisation. Continuing the example above, making A into a latent variable
yields the following depiction as a string diagram:
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A

B D

C E

P (BCDE) =
∑

A P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

B EC D

In general, a Bayesian network (with possible latent variables), is a string
diagram in Stoch that (1) only has outputs and (2) consists only of copy maps
and boxes which each have exactly one output.

By ‘a string diagram in Stoch’, we mean not only the stochastic matrix itself,
but also its decomposition into components. We can formalise exactly what we
mean by taking a perspective on Bayesian networks which draws inspiration
from Lawvere’s functorial semantics of algebraic theories [16]. In this perspective,
which elaborates on [7, Ch. 4], we maintain a conceptual distinction between the
purely syntactic object (the diagram) and its probabilistic interpretation.

Starting from a dag G = (VG, EG), we construct a free CDU category Syn
G

which provides the syntax of causal structures labelled by G. The objects of
Syn

G
are generated by the vertices of G, whereas the morphisms are generated

by the following signature:

ΣG =

⎧

⎨

⎩

A

a

B1 Bk

. . .

∣

∣

∣

∣

∣

∣

A ∈ VG with parents B1, . . . , Bk ∈ VG

⎫

⎬

⎭

Then Syn
G

:= FreeCDU(VG, ΣG).1 The following result establishes that models
(à la Lawvere) of Syn

G
coincide with G-based Bayesian networks.

Proposition 3.1. There is a 1-1 correspondence between Bayesian networks
based on the dag G and CDU functors of type Syn

G
→ Stoch.

We refer to [12] for a proof. This proposition justifies the following definition
of a category BNG of G-based Bayesian networks: objects are CDU functors
Syn

G
→ Stoch and arrows are monoidal natural transformations between them.

4 Towards Causal Inference: The Smoking Scenario

We will motivate our approach to causal inference via a classic example, inspired
by the one given in the Pearl’s book [20]. Imagine a dispute between a scientist
and a tobacco company. The scientist claims that smoking causes cancer. As
a source of evidence, the scientist cites a joint probability distribution ω over
variables S for smoking and C for cancer, which disintegrates as in (5) below,

1 Note that EG is implicitly used in the construction of Syn
G
: the edges of G determine

the parents of a vertex, and hence the input types of the symbols in ΣG.
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with matrix c = ( 0.9 0.7
0.1 0.3 ). Inspecting this c : S → C, the scientist notes that the

probability of getting cancer for smokers (0.3) is three times as high as for non-
smokers (0.1). Hence, the scientist claims that smoking has a significant causal
effect on cancer.

c

=

s

ω

S

S C

C

(5)

An important thing to stress here is that the
scientist draws this conclusion using not only the
observational data ω but also from an assumed
causal structure which gave rise to that data,
as captured in the diagram in Eq. (5). That is,
rather than treating diagram (5) simply as a cal-
culation on the observational data, it can also be
treated as an assumption about the actual, physical mechanism that gave rise
to that data. Namely, this diagram encompasses the assumption that there is
some prior propensity for people to smoke captured by s : I → S, which is both
observed and fed into some other process c : S → C whereby an individuals
choice to smoke determines whether or not they get cancer.

=
s

ω

S

S C

C
c

h

H
(6)

The tobacco company, in turn, says that the
scientists’ assumptions about the provenance of
this data are too strong. While they concede that
in principle it is possible for smoking to have
some influence on cancer, the scientist should
allow for the possibility that there is some latent
common cause (e.g. genetic conditions, stressful
work environment, etc.) which leads people both
to smoke and get cancer. Hence, says the tobacco company, a ‘more honest’
causal structure to ascribe to the data ω is (6). This structure then allows for
either party to be correct. If the scientist is right, the output of c : S ⊗ H → C

depends mostly on its first input, i.e. the causal path from smoking to cancer.
If the tabacco company is right, then c depends very little on its first input,
and the correlation between S and C can be explained almost entirely from the
hidden common cause.

So, who is right after all? Just from the observed distribution ω, it is impos-
sible to tell. So, the scientist proposes a clinical trial, in which patients are
randomly required to smoke or not to smoke. We can model this situation by
replacing s in (6) with a process that ignores its inputs and outputs the uniform
state. Graphically, this looks like ‘cutting’ the link s between H and S:

=
s

ω

S

S C

C
c

h

H
� =: ω′

S

S C

C
c

h

H
(7)

This captures the fact that variable S is now randomised and no longer depen-
dent on any background factors. This new distribution ω′ represents the data
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the scientist would have obtained had they run the trial. That is, it gives the
results of an intervention at s. If this ω′ still shows a strong correlation between
smoking and cancer, one can conclude that smoking indeed causes cancer even
when we assume the weaker causal structure (6).

Unsurprisingly, the scientist fails to get ethical approval to run the trial, and
hence has only the observational data ω to work with. Given that the scientist
only knows ω (and not c and h), there is no way to compute ω′ in this case.
However, a key insight of statistical causal inference is that sometimes it is possi-
ble to compute interventional distributions from observational ones. Continuing
the smoking example, suppose the scientist proposes the following revision to
the causal structure: they posit a structure (8) that includes a third observed
variable (the presence of T of tar in the lungs), which completely mediates the
causal effect of smoking on cancer.

ω

S T C

=

s

S C

c

h

H

t

T

(8)

As with our simpler structure, the
diagram (8) contains some assumptions
about the provenance of the data ω.
In particular, by omitting wires, we are
asserting there is no direct causal link
between certain variables. The absence of
an H-labelled input to t says there is no
direct causal link from H to T (only medi-
ated by S), and the absence of an S-
labelled input wire into c captures that
there is no direct causal link from S to C (only mediated by T ). In the tradi-
tional approach to causal inference, such relationships are typically captured by
a graph-theoretic property called d-separation on the dag associated with the
causal structure.

We can again imagine intervening at S by replacing s : H → S by ◦ .

Again, this ‘cutting’ of the diagram will result in a new interventional distribu-
tion ω′. However, unike before, it is possible to compute this distribution from
the observational distribution ω.

However, in order to do that, we first need to develop the appropriate cate-
gorical framework. In Sect. 5, we will model ‘cutting’ as a functor. In 6, we will
introduce a generalisation of disintegration, which we call comb disintegration.
These tools will enable us to compute ω′ for ω, in Sect. 7.

5 Interventional Distributions as Diagram Surgery

The goal of this section is to define the ‘cut’ operation in (7) as an endofunctor
on the category of Bayesian networks. First, we observe that such an operation
exclusively concerns the string diagram part of a Bayesian network: following
the functorial semantics given in Sect. 3, it is thus appropriate to define cut as
an endofunctor on Syn

G
, for a given dag G.
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Definition 5.1. For a fixed node A ∈ VG in a graph G, let cutA : Syn
G

→ Syn
G

be the CDU functor freely obtained by the following action on the generators
(VG, ΣG) of Syn

G
:

– For each object B ∈ VG, cutA(B) = B.

– cutA(
A

a

B1 Bk

. . .

) =
A

B1 Bk

. . .

and cutA(
B

b

C1 Cj

. . .

) =
B

b

C1 Cj

. . .

for any other
B

b

C1 Cj

. . .

∈ ΣG.

Intuitively, cutA applied to a string diagram f of Syn
G

removes from f each
occurrence of a box with output wire of type A.

Proposition 3.1 allows us to “transport” the cutting operation over to
Bayesian networks. Given any Bayesian network based on G, let F : Syn

G
→

Stoch be the corresponding CDU functor given by Proposition 3.1. Then, we
can define its A-cutting as the Bayesian network identified by the CDU functor
F ◦ cutA. This yields an (idempotent) endofunctor CutA : BNG → BNG.

6 The Comb Factorisation

Thanks to the developments of Sect. 5, we can understand the transition from
left to right in (7) as the application of the functor CutS applied to the ‘Smoking’
node S. The next step is being able to actually compute the individual Stoch-
morphisms appearing in (8), to give an answer to the causality question.

= =

In order to do that, we want to work in a
setting where t : S → T can be isolated and
‘extracted’ from (8). What is left behind is a
stochastic matrix with a ‘hole’ where t has been
extracted. To define ‘morphisms with holes’, it is convenient to pass from SMCs
to compact closed categories (see e.g. [24]). Stoch is not itself compact closed,
but it embeds into Mat(R+), whose morphisms are all matrices over positive
numbers. Mat(R+) has a (self-dual) compact closed structure; that means, for
any set A there is a ‘cap’ ∩ : A⊗A → I and a ‘cup’ ∪ : I → A⊗A, which satisfy
the ‘yanking’ equations on the right. As matrices, caps and cups are defined by
∩ij = ∪ij = δ

j
i . Intuitively, they amount to ‘bent’ identity wires. Another aspect

of Mat(R+) that is useful to recall is the following handy characterisation of the
subcategory Stoch.

Lemma 6.1. A morphism f : A → B in Mat(R+) is a stochastic matrix (thus
a morphism of Stoch) if and only if (3) holds.

A suitable notion of ‘stochastic map with a hole’ is provided by a comb. These
structures originate in the study of certain kinds of quantum channels [3].

Definition 6.2. A 2-comb in Stoch is a morphism f : A1 ⊗ A2 → B1 ⊗ B2

satisfying, for some other morphism f ′ : A1 → B1,

f = f ′

A1

B1

A2

B2

A1

B1

A2

(9)
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This definition extends inductively to n-combs, where we require that dis-
carding the rightmost output yields f ′ ⊗ , for some (n − 1)-comb f ′. However,
for our purposes, restricting to 2-combs will suffice.

The intuition behind condition (9) is that the contribution from input A2 is
only visible via output B2. Thus, if we discard B2 we may as well discard A2. In
other words, the input/output pair A2, B2 happen ‘after’ the pair A1, B1. Hence,
it is typical to depict 2-combs in the shape of a (hair) comb, with 2 ‘teeth’, as
in (10) below:

f

A2

B1

A1

B2

� f

A1

B1

A2

B2

(10)
f

A1

B1

A2

B2

g :=

f

A2

B1

A2

g

A1

B2

(11)

While combs themselves live in Stoch, Mat(R+) accommodates a second-order
reading of the transition � in (10): we can treat f as a map which expects as
input a map g : B1 → A2 and produces as output a map of type A1 → B2.
Plugging g : B1 → A2 into the 2-comb can be formally defined in Mat(R+) by
composing f and g in the usual way, then feeding the output of g into the second
input of f , using caps and cups, as in (11).

Importantly, for generic f and g of Stoch, there is no guarantee that form-
ing the composite (11) in Mat(R+) yields a valid Stoch-morphism, i.e. a mor-
phism satisfying the finality Eq. (3). However, if f is a 2-comb and g is a Stoch-
morphism, Eq. (9) enables a discarding map plugged into the output B2 in (11)
to ‘fall through’ the right side of f , which guarantees that the composed map
satisfies the finality equation for discarding. See [12, § ??] for the explicit diagram
calculation.

With the concept of 2-combs in hand, we can state our factorisation result.

Theorem 6.3. For any state ω : I → A ⊗ B ⊗ C of Stoch with full support,
there exists a unique 2-comb f : B → A ⊗ C and stochastic matrix g : A → B

such that, in Mat(R+):

f

A B C

gω

A B C

= (12)

Proof. The construction of f and g mimics the one of c-factors in [26], using
string diagrams and (diagrammatic) disintegration. We first use ω to construct
maps a : I → A, b : A → B, c : A ⊗ B → C, then construct f using a and c

and construct g using b. For the full proof, including uniqueness, see [12]. �

Note that Theorem 6.3 generalises the normal disintegration property given
in Proposition 2.3. The latter is recovered by taking A := I (or C := I) above.
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7 Returning to the Smoking Scenario

We now return to the smoking sce-
nario of Sect. 4. There, we concluded
by claiming that the introduction of
an intermediate variable T to the
observational distribution ω : I →
S⊗T ⊗C would enable us to calculate
the interventional distribution. That
is, we can calculate ω′ = F(cutS(ω))
from ω := F(ω). Thanks to Theorem
6.3, we are now able to perform that
calculation. We first observe that our
assumed causal structure for ω fits
the form of Theorem6.3, where g is
t and f is a 2-comb containing every-
thing else, as in the diagram on the
side.

ω

S T C

=

s

S C

c

h

H

t

T

f

g

Hence, f and g are computable from ω. If we plug them back together as in
(12), we will get ω back. However, if we insert a ‘cut’ between f and g:

s

S C

c

h

H

t

T

=

S C

c

h

H

t

T

f

S T C

g
= (13)

we obtain ω′ = F(cutS(ω)).
We now consider a concrete example. Fix interpretations S = T = C = {0, 1}

and let ω : I → S ⊗ T ⊗ C be the stochastic matrix:

ω :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.5
0.1
0.01
0.02
0.1
0.05
0.02
0.2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

← P (S = 0, T = 0, C = 0)
← P (S = 0, T = 0, C = 1)
← P (S = 0, T = 1, C = 0)
← P (S = 0, T = 1, C = 1)
← P (S = 1, T = 0, C = 0)
← P (S = 1, T = 0, C = 1)
← P (S = 1, T = 1, C = 0)
← P (S = 1, T = 1, C = 1)
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Now, disintegrating ω:

=

T CS

ω

c

s

S C

gives c ≈

(

0.81 0.32
0.19 0.68

)

The bottom-left element of c is P (C = 1|S = 0), whereas the bottom-right
is P (C = 1|S = 1), so this suggests that patients are ≈3.5 times as likely to
get cancer if they smoke (68% vs. 19%). However, comb-disintegrating ω using
Theorem 6.3 gives g : S → T and a comb f : T → S ⊗ C with the following
stochastic matrices:

f ≈

⎛

⎜

⎜

⎝

0.53 0.21
0.11 0.42
0.25 0.03
0.12 0.34

⎞

⎟

⎟

⎠

g ≈

(

0.95 0.41
0.05 0.59

)

Recomposing these with a ‘cut’ in between, as in the left-hand side of (13), gives
the interventional distribution ω′ ≈ (0.38, 0.11, 0.01, 0.02, 0.16, 0.05, 0.07, 0.22).
Disintegrating:

=

T CS

ω′

c′

s′

S C

gives c′ ≈

(

0.75 0.46
0.25 0.54

)

.

From the interventional distribution, we conclude that, in a (hypothotetical)
clinical trial, patients are about twice as likely to get cancer if they smoke (54%
vs. 25%). So, since 54 < 68, there was some confounding influence between S

and C in our observational data, but after removing it via comb disintegration,
we see there is still a significant causal link between smoking and cancer.

Note this conclusion depends totally on the particular observational data
that we picked. For a different interpretation of ω in Stoch, one might conclude
that there is no causal connection, or even that smoking decreases the chance of
getting cancer. Interestingly, all three cases can arise even when a näıve analysis
of the data shows a strong direct correlation between S and C. To see and/or
experiment with these cases, we have provided the Python code2 used to perform
these calculations. See also [19] for a pedagocical overview of this example (using
traditional Bayesian network language) with some sample calculations.

8 The General Case for a Single Intervention

While we applied the comb decomposition to a particular example, this technique
applies essentially unmodified to many examples where we intervene at a single
variable (called X below) within an arbitrary causal structure.

2 https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6.

https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6
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Theorem 8.1. Let G be a dag with a fixed node X that has corresponding gen-
erator x : Y1 ⊗ . . . ⊗ Yn → X in Syn

G
. Then, suppose ω is a morphism in Syn

G

of the following form:

ω

A B C

=

X

X C

g

A B

x

f1

f2

(14)

for some morphisms f1, f2 and g in Syn
G

not containing x as a subdiagram.
Then the interventional distribution ω′ := F(cutX(ω)) is computable from the
observational distribution ω = F(ω).

Proof. The proof is very close to the example in the previous section. Interpret-
ing ω into Stoch, we get a diagram of stochastic maps, which we can comb-
disintegrate, then recompose with ◦ to produce the interventional distri-

bution:

X C

g

A B

x

f1

f2

f

�

X C

g

A B

x

f1

f2

f

=

X C

g

A B

f1

f2

(3)

The RHS above is then F(cutX(ω)). �

This is general enough to cover several well-known sufficient conditions from
the causality literature, including single-variable versions of the so-called front-
door and back-door criteria, as well as the sufficient condition based on confound-
ing paths given by Pearl and Tian [26]. As the latter subsumes the other two, we
will say a few words about the relationship between the Pearl/Tian condition
and Theorem 8.1. In [26], the authors focus on semi-Markovian models, where
the only latent variables have exactly two observed children and no parents.
Suppose we write A ↔ B if two observed variables are connected by a latent
common cause, then one can characterise confounding paths as the transitive clo-
sure of ↔. They go on to show that the interventional distribution corresponding
cutting X is computable whenever there are no confounding paths connecting
X to one of its children.
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We can compare this to the form of expression ω in Eq. (14). First, note this
factorisation implies that all boxes which take X as an input must occur as sub-
diagrams of g. Hence, any ‘confounding path’ connecting X to its children would
yield at least one (un-copied) wire from f1 to g, hence it cannot be factored as
(14). Conversely, if there are no confounding paths from X to its children, then
we can we can place the boxes involved in any other confounding path either
entirely inside of g or entirely outside of g and obtain factorisation (14). Hence,
restricting to semi-Markovian models, the no- confounding-path condition from
[26] is equivalent to ours. However, Theorem8.1 is slightly more general: its
formulation doesn’t rely on the causal structure ω being semi-Markovian.

9 Conclusion and Future Work

This paper takes a fresh, systematic look at the problem of causal identifiability.
By clearly distinguishing syntax (string diagram surgery and identification of
comb shapes) and semantics (comb-disintegration of joint states) we obtain a
clear methodology for computing interventional distributions, and hence causal
effects, from observational data.

A natural next step is moving beyond single-variable interventions to the gen-
eral case, i.e. situations where we allow interventions on multiple variables which
may have some arbitrary causal relationships connecting them. This would mean
extending the comb factorisation Theorem6.3 from a 2-comb and a channel to
arbitrary n-combs. This seems to be straightforward, via an inductive exten-
sion of the proof of Theorem6.3. A more substantial direction of future work
will be the strengthening of Theorem8.1 from sufficient conditions for causal
identifiability to a full characterisation. Indeed, the related condition based on
confounding paths from [26] is a necessary and sufficient condition for computing
the interventional distribution on a single variable. Hence, it will be interesting
to formalise this necessity proof (and more general versions, e.g. [10]) within our
framework and investigate, for example, the extent to which it holds beyond the
semi-Markovian case.

While we focus exclusively on the case of taking models in Stoch in this paper,
the techniques we gave are posed at an abstract level in terms of composition
and factorisation. Hence, we are optimistic about their prospects to generalise to
other probabilistic (e.g. infinite discrete and continuous variables) and quantum
settings. In the latter case, this could provide insights into the emerging field
of quantum causal structures [6,9,18,22,23], which attempts in part to replay
some of the results coming from statistical causal reasoning, but where quantum
processes play a role analogous to stochastic ones. A key difficulty in applying
our framework to a category of quantum processes, rather than Stoch, is the
unavailability of ‘copy’ morphisms due to the quantum no-cloning theorem [27].
However, a recent proposal for the formulation of ‘quantum common causes’ [1]
suggests a (partially-defined) analogue to the role played by ‘copy’ in our for-
mulation constructed via multiplication of certain commuting Choi matrices.
Hence, it may yet be possible to import results from classical causal reasoning
into the quantum case just by changing the category of models.
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