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SUMMARY

Evaluation of the causal effect of a baseline exposure on a morbidity outcome at a fixed time point is
often complicated when study participants die before morbidity outcomes are measured. In this setting,
the causal effect is only well defined for the principal stratum of subjects who would live regardless
of the exposure. Motivated by gerontologic researchers interested in understanding the causal effect of
vision loss on emotional distress in a population with a high mortality rate, we investigate the effect
among those who would live both with and without vision loss. Since this subpopulation is not readily
identifiable from the data and vision loss is not randomized, we introduce a set of scientifically driven
assumptions to identify the causal effect. Since these assumptions are not empirically verifiable, we embed
our methodology within a sensitivity analysis framework. We apply our method using the first three rounds
of survey data from the Salisbury Eye Evaluation, a population-based cohort study of older adults. We also
present a simulation study that validates our method.
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1. INTRODUCTION

In studies of older individuals, researchers are often interested in evaluating the effect of exposure on
morbidity as well as mortality outcomes. When analyzing morbidity outcomes, the competing risk of
death must be taken into account. Any meaningful analysis must recognize that a participant’s morbidity
outcome at a specified point in time is not defined if he/she died before that time.
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An analysis which compares morbidity outcomes for study participants who are observed to live in ex-
posed and nonexposed groups is problematic, since the survivors in the exposed group are not necessarily
exchangeable with the survivors in the nonexposed group. Further, participants who would live when they
have the exposure might not live when they do not have the exposure, in which case even a poor morbidity
outcome with exposure might be better than the mortality outcome without exposure.

There are numerous examples in the gerontologic literature in which researchers are interested in com-
paring non-mortality outcomes across treatment or exposure groups in panel surveys but find inferences
complicated by the death of study participants between panels. Common approaches to this problem are
to examine outcomes across observed survivors, considering those who died to be cases lost to follow-up,
with occasional discussions about how inferences are affected by the fact that those who died differed
from those who survived (Avlund and others, 2004; Gilley and others, 2004; van Hooren and others,
2005; Chen and Wilmoth, 2004; Steunenberg and others, 2005; Boerner and others, 2005). An alternative
method, which changes the inferential objective, is to create a composite end point including death and
morbidity (Avlund and others, 2004). The use of traditional survival analytic techniques that allows for
the modeling of death as a competing risk are not necessarily applicable to these studies, since the time of
death is often observed but the time of an incident morbidity outcome is not.

An additional limitation of traditional techniques is that they are generally not causally interpretable.
When an exposure’s effect on a non-mortality outcome is examined among the observed survivors at
a fixed time point, it is not possible to disentangle the effect due to the exposure’s impact on the non-
mortality outcome from the exposure’s impact on mortality among those at high risk of having the non-
mortality outcome. If the propensity to have the non-mortality outcome is linked to the propensity to die,
then it is possible that a harmful exposure will kill off a vulnerable population, leaving only healthy sur-
vivors. At the end of the study, the effect of the exposure might appear beneficial on the non-mortality
outcome, when the effect is an artifact of the exposure’s impact on mortality. The crux of the prob-
lem is that the non-mortality outcome is not defined if someone dies. It is not meaningful to compare
a person’s functional outcomes under two exposure categories if the person dies when they have one
exposure but not the other. This limits the interpretability of effect estimates among study survivors.
The growth of gerontologic analyses based on longitudinal panel surveys (Ferraro and Kelley-Moore,
2003) only heightens the need for interpretable estimands and inferential techniques for non-mortality
outcomes.

Using the potential outcomes formalization of causal inference, developed by Neyman (1923), Rubin
(1974), and Holland (1986), Frangakis and Rubin (2002) introduced a meaningful causal estimand: The
causal effect of exposure on the morbidity outcome among participants who would live regardless of their
exposure. Rubin (2000) and Hayden and others (2005) referred to this estimand as the survivors average
causal effect (SACE). Robins (1995) proposed a conceptually similar estimand in the context of semi-
competing risks, while Robins and Greenland (2000) described an estimand identical to SACE. SACE
falls into a general class of estimands, called principal stratum causal effects, where a principal stratum
is defined by potential outcomes (Frangakis and Rubin, 2002). In this context, the principal stratum is the
set of participants who would survive regardless of their exposure.

The identification of SACE and other principal stratum causal effects usually rely on untestable as-
sumptions. There has been a flurry of recent methodological work regarding inference about SACE and
SACE-like estimands in the context of randomized studies. Table 1 compares and contrasts some of the
key aspects of these works. Gilbert and others (2003) and Hudgens and others (2003) discussed inference
about the causal effect of exposure among the participants who would become HIV infected regardless
of whether they received a vaccine or placebo. While Hudgens and others (2003) focused on conditions
for testing the null hypothesis of no causal effect, Gilbert and others (2003) discussed estimation under
a class of identifiability conditions, indexed by an interpretable sensitivity analysis parameter. These au-
thors assumed monotonicity, which states that “no subject would be infected if randomized to vaccine,

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/3/526/279867 by guest on 20 August 2022



528 B. L. EGLESTON AND OTHERS

Table 1. Comparison of sensitivity analysis methods used for drawing inference about S AC E or
SACE-like estimands

Gilbert and others (2003) Randomized study, monotonicity,
nonparametric estimation, bootstrap standard errors

Zhang and Rubin (2003) Randomized study, population-level bounds
Hayden and others (2005) Randomized study, assumptions conditioned on covariates,

provides identification of the joint distribution of all
the potential outcomes, maximum likelihood estimation,
addresses missing non-mortality outcomes

Proposed method Observational study, monotonicity,
most assumptions conditioned on covariates,
does not provide identification of the joint distribution
of all the potential outcomes, estimating equations, large
sample theory, addresses missing non-mortality outcomes

but would be uninfected if randomized to placebo.” Zhang and Rubin (2003) discuss population bounds
for SACE under no assumptions and under monotonicity, which in their context means that if a subject
lives when given a placebo, he/she would also live when given a treatment. Hayden and others (2005)
developed a likelihood-based sensitivity analysis procedure for estimating SACE. Their methodology in-
corporates covariates, does not impose monotonicity, and assumes a cumulative proportional odds model
restriction. Their model admits identification of a joint distribution of the potential outcomes. They also
address how their method can be adjusted to handle missing outcomes and, for this situation, propose
using the bootstrap to obtain standard errors.

In this paper, we propose a sensitivity analysis procedure for drawing inference about SACE in the
context of observational studies with missing outcomes among observed survivors. Our sensitivity anal-
ysis parameterization is similar to that of Gilbert and others (2003). While we impose monotonicity, our
modeling approach does not yield identification of the entire joint distribution of potential outcomes,
just features of the joint distribution which are necessary for estimating SACE. In contrast, Hayden and
others (2005) seek identification of the entire joint distribution of the counterfactuals and as a con-
sequence require more assumptions (even if monotonicity were imposed). The advantage of their
approach is that it admits identification of other functionals of the joint distribution of the potential
outcomes, although these functionals are not discussed in either the paper of Hayden and others or this
paper.

The paper is organized as follows. In Section 2, we introduce our motivating observational study,
the Salisbury Eye Evaluation (SEE), in which gerontologic researchers are interested in the effect of
vision loss on emotional distress. In Section 3, we introduce the data structure and notation for the SEE
study. In Section 4, we mathematically define SACE and present our two alternative sets of identifiability
assumptions, indexed by sensitivity analysis parameters. We also discuss additional testable models for our
estimation procedure. In Section 5, we introduce our estimators and derive their large sample properties.
In Section 6, we apply SACE to the SEE study. We finish with a discussion in Section 7.

An R program to implement our method is available from the authors.

2. THE SEE

Visual impairment is a common problem in older adults, as 15–20% of adults in their 80s are afflicted
(Munoz and others, 2000). Loss of vision can result in increased dependence on others, less social
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interaction, and increased disability. Therefore, these individuals may be at an increased risk of emotional
distress, which may lead to further deterioration in health.

Some studies have found an association between visual impairment and the emotional distress symp-
tom of depression, but to our knowledge almost all have been cross-sectional (Rovner and others, 1996;
Scott and others, 2001; Rovner and Ganguli, 1998; Jorm and others, 1995; Carabellese and others, 1993).
One problem with investigating this relationship longitudinally in older individuals is that death is a com-
peting risk that is associated with both visual impairment and depression (McCarty and others, 2001;
Klein and others, 1995; Thompson and others, 1989; Blazer and others, 2001; Schulz and others, 2000;
Stern and others, 2001; Black and Markides, 1999).

To investigate if incident vision loss increases the risk of emotional problems, we used data from
the SEE project, a population-based cohort study of older adults (West and others, 1997). In this study,
visual acuity was assessed using the Early Treatment Diabetic Retinopathy Study eye chart, and emotional
distress symptoms were assessed using the General Health Questionnaire (GHQ) which rates emotional
distress on a scale of 0 to 28 (Goldberg and Hillier, 1979). Incident vision loss was defined as a loss of two
or more lines on an eye chart of the best visual acuity possible with glasses at the second round, 2 years
after the baseline round. Those with severe baseline visual impairment who were not able to have at least
two lines of vision loss were excluded from the study. The outcome of interest was incident worsened
emotional distress at the third round, which occurred 4 years later. Worsened emotional distress is defined
by a worsening of four or more points in the total GHQ score. The total GHQ score has been found to
have strong correlation with clinically relevant depression (Goldberg and Hillier, 1979).

Table 2 presents summary statistics of our sample. In the second and fourth columns of Table 2, we
present summary statistics for each of these baseline characteristics, stratified by vision loss status. The
third and fifth columns present summary statistics for the subgroup who survived past the third round,
stratified by vision loss status. As shown in the table, a significant proportion of individuals died before
emotional distress could be assessed at the last round (24.7% of those with vision loss versus 15.4% of
those without vision loss). These high mortality rates underline the importance of accounting for death as
a competing risk in these data.

In addition to death, loss to follow-up and worsening emotional distress symptom rates were higher
for those with vision loss as compared to those without vision loss in our study. Within each vision loss
stratum, the baseline characteristics for the entire stratum versus the subgroup who survived to round 3 and

Table 2. Summary statistics for covariate and outcome data, stratified by vision loss status

No vision loss No vision loss Vision loss Vision loss
Round 2 Survived past round 3 Round 2 Survived past round 3

N (% within group) 1998 1691 (84.6%) 162 122 (75.3%)
Survivors lost to follow-up 328 (19.4%) 33 (27.0%)
Worse emotional distress 142 (10.4%) 11 (12.4%)
Age* (SD) 75.02 (4.91) 74.67 (4.77) 76.23 (5.21) 75.88 (5.23)
Comorbidities* (SD) 2.71 (1.71) 2.60 (1.66) 3.06 (1.90) 2.90 (1.90)
Men (%) 40.9 39.2 48.1 46.7
White (%) 74.5 74.9 72.8 73.8
Diabetes (%)* 12.8 11.6 22.8 23.0
Hypertension (%) 41.0 40.5 48.1 46.7
Lowest quartile BMI (%)* 27.2 25.1 35.2 31.1
Ever smoked 59.7 57.7 67.3 64.8
<12 years education (%) 50.3 49.3 46.3 41.8

* P < 0.05 for comparisons of baseline characteristics (columns 2 and 4). SD, standard deviation.
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were not lost to follow-up were comparable. However, there were differences between vision loss strata.
Those with vision loss tended to (a) be older, (b) have more comorbidities, (c) be more likely to be male,
(d) be more likely to be nonwhite, (e) be more likely to have diabetes, (f) have lower body mass index
(BMI), which is often clinically worse in older persons compared with a higher BMI, (g) smoke more,
and (h) be better educated. Thus, those with vision loss tended to be less healthy. Not all these differences
were statistically significant, however, as shown in Table 2. We designed our proposed estimator of SACE
to correct for bias that could result from such loss to follow-up and baseline differences between those
with and without vision loss in the data set.

For the analysis in Section 6, our reference population was drawn from the set of subjects who (a)
survived through round 2; (b) had measures of visual acuity and emotional distress at round 2; (c) had
information on covariates such as age, gender, race, diabetes, hypertension, number of comorbidities,
BMI, smoking status, and education at round 2; and (d) had information on mortality through round 3.
Missing measures of emotional distress among survivors at round 3 were due to loss to follow-up.

3. DATA STRUCTURE AND NOTATION

In the potential outcomes framework, it is assumed that, associated with each individual, there are out-
comes under two states of nature: one when a person has vision loss and the other when the same person
does not have vision loss. Only one of these states of nature is actually observed. Our data structure reflects
this assumption.

Let X be the vector of covariates and let Z be an indicator of vision loss (1 if vision loss, 0 otherwise).
Let D(1) indicate a person’s mortality outcome when they have vision loss (1 if death, 0 otherwise);
similarly, define D(0) to be the same person’s mortality outcome when they do not have vision loss. Let
Y (1) be the emotional distress outcome when a person has vision loss and Y (0) be the outcome when the
same person does not have vision loss (1 if worsened emotional distress symptoms, 0 otherwise). Y (0)
and Y (1) are only defined if a person survives with the respective vision loss.

Let D = D(Z) and Y = Y (Z) be the observed mortality and worsened distress outcomes. Let R be
an indicator of whether a survivor is interviewed at the final survey round in our study (1 if not lost to
follow-up, 0 otherwise). We assume that we observed n i.i.d. copies of the observed data,

O = {Oi = {Xi , Zi , Di , (Ri if Di = 0), (Yi if Di = 0 and Ri = 1)}, i = 1, . . . , n}.

Figure 1 is a graphical representation of the relationship between the observed and the potential data.
The goal is to use the observed data to draw inference about SACE, the odds ratio (OR) of worsening

emotional distress in the group that would survive either with or without vision loss. Specifically, we
define

SACE = odds P[Y (1) = 1|D(0) = 0, D(1) = 0]

odds P[Y (0) = 1|D(0) = 0, D(1) = 0]
. (3.1)

Note, however, that SACE could also have been defined as, say, a relative risk (RR) or risk difference.
In identifying SACE, we will find it useful to define the following quantities which are identifiable

from the distribution of the observed data for z = 0, 1:

gz(X) = P[D = 0|Z = z, X],

hz(X) = P[Y = 1|D = 0, Z = z, R = 1, X].
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Fig. 1. Relation of observed to potential data.

4. IDENTIFICATION OF SACE

In this section, we present assumptions to identify SACE from the observed data distribution. Before
turning to these assumptions, we introduce an example, which will be used to demonstrate (a) the difficulty
of drawing valid causal inferences from the observed data and (b) how the assumptions are used to identify
SACE.

4.1 Illustrative example

Table 3 displays the potential outcomes and a binary covariate (X ) for a hypothetical population of 4500
individuals. Within each level of X , the individuals are spread equally across the three principal strata:
those who live regardless of their vision loss (S1) where {D(0) = 0, D(1) = 0}, those who would die
if they had vision loss but survive if they did not (S2) where {D(0) = 0, D(1) = 1}, and those who
would die both with and without vision loss (S3) where {D(0) = 1, D(1) = 1}. No individuals are in the
stratum who would die without vision loss but survive with vision loss (S4) where {D(0) = 1, D(1) = 0}.
Among the 1000 who would always be alive with X = 0, there is no emotional distress whatever be their
vision loss. Among the 500 who would always be alive with X = 1, there is emotional distress whatever
be their vision loss. For the individuals who would die only if they have vision loss, we see that their
potential emotional distress outcomes when they have vision loss are not defined and two-thirds would
have emotional distress when they do not have vision loss. For the individuals who die regardless of
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Table 3. Potential outcome and covariate data for a hypothetical population

No. Principal stratum X D(0) D(1) Y (0) Y (1)

0 1 0 1

1000 Always survivors (S1) 0 0 0 1000 0 1000 0
500 Always survivors (S1) 1 0 0 0 500 0 500

1000 Diers only with vision loss (S2) 0 0 1 0 1000 — —
500 Diers only with vision loss (S2) 1 0 1 500 0 — —

1000 Always diers (S3) 0 1 1 — — — —
500 Always diers (S3) 1 1 1 — — — —

0 Diers only with/without vision loss (S4) 0 1 0 — — 0 0
0 Diers only with/without vision loss (S4) 1 1 0 — — 0 0

their state of vision, their potential emotional distress outcomes are undefined. The causal effects among
these latter strata are undefined. Causal inferences are only meaningful in the stratum of those who would
always remain alive. In this stratum, the causal OR of emotional distress for vision loss versus no vision
loss is 1 (i.e. no causal effect).

Only a coarse version of Table 3 is observable. In Table 4, we present the observed data. As in Table 3,
there are 3000 subjects with X = 0 and 1500 with X = 1. Within levels of X , subjects are spread equally
across the vision status stratum. Regardless of X , subjects who have vision loss have an odds of dying of
two and subjects without vision loss have an odds of dying of 0.5. Among the survivors, half of the subjects
have mental health assessments. For subjects who survive, and have mental health assessments, the OR of
emotional distress between subjects with and without vision loss is 0.5. An incorrect interpretation of this
analysis would suggest that, overall, vision loss is protective against emotional distress and the protection
holds only for the subgroup with X = 0. Why do we see this result? For subjects who survive and have
mental health assessments, the subgroup with no vision loss (see lines 1–4 of Table 4) is a mixture of
those who would always remain alive and those who would die only if they had vision loss (half S1 and
half S2), while the subgroup with vision loss (see lines 7–8 of Table 4) consists of subjects who would
always remain alive (S1). Thus, these subgroups are not comparable with regard to their principal strata.
Since the rate of emotional distress in S2 is higher than that in S1 as illustrated in Table 3, we see why
vision loss “looks” protective.

4.2 Assumptions

We introduce the following non-identifiable assumptions in order to identify SACE from the distribution
of the observed data. To identify SACE, we can separately identify (a) P[Y (1) = 1|S1] and (b) P[Y (0) =
1|S1]. We make the common Stable Unit Treatment Value Assumption (Rubin, 1980) which states that an
individual’s potential outcomes are unrelated to both the vision loss status of other study participants and
the mechanism by which the individual lost their vision. Below, we list the assumptions specific to our
estimator and label them using terminology common to the field of causal inference where appropriate
(Rosenbaum and Rubin, 1983).

Assumption 1. D(0) � D(1) (Monotonicity).
Assumption 1 states that the development of vision loss does not improve the mortality outcome of an

individual. This assumption is similar to assumptions made by Gilbert and others (2003) and Zhang and
Rubin (2003). One might challenge this assumption if vision loss reduces mortality by restricting activities
(e.g. walking) that might cause death in older adults (e.g. falls). In our analysis, we believe that such a
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Table 4. Observed data for a hypothetical population

Line No. X Z D R Y No assumptions Assumption 1 Truth

1 250 0 0 0 1 0 S1 or S2 S1 or S2 S1
2 250 0 0 0 1 1 S1 or S2 S1 or S2 S2
3 125 1 0 0 1 0 S1 or S2 S1 or S2 S1
4 125 1 0 0 1 1 S1 or S2 S1 or S2 S2
5 500 0 0 0 0 ? S1 or S2 S1 or S2 250 S1 and 250 S2
6 250 1 0 0 0 ? S1 or S2 S1 or S2 125 S1 and 125 S2
7 250 0 1 0 1 0 S1 or S4 S1 S1
8 125 1 1 0 1 1 S1 or S4 S1 S1
9 250 0 1 0 0 ? S1 or S4 S1 S1

10 125 1 1 0 0 ? S1 or S4 S1 S1
11 500 0 0 1 — — S3 or S4 S3 S3
12 250 1 0 1 — — S3 or S4 S3 S3
13 1000 0 1 1 — — S2 or S3 S2 or S3 500 S2 and 500 S3
14 500 1 1 1 — — S2 or S3 S2 or S3 250 S2 and 250 S3

protective effect of vision loss is at most negligible since visual impairment and vision loss have been
shown to have a strong relationship with mortality (see Freeman and others, 2005, for a review). For the
illustrative example, this assumption implies that no subjects are in the principal stratum of subjects who
die only without vision loss (S4). In column 9 of Table 4, the stratum S4 is removed. Thus, for subjects in
lines 7–12, we know their principal stratum.

Assumption 2. Z⊥P|X (Strong ignorability).
Assumption 2 states that the development of vision loss is unrelated to the potential outcomes given the

covariates. Rosenbaum and Rubin (1983) referred to this assumption as “strong ignorability of treatment
assignment.” Since vision loss is not randomized, we assume that within strata of confounders there are
no unmeasured differences between those who lose vision and those who do not. One implication of this
assumption is that P[D(z) = 0|X] = gz(X) and P[Y (z) = 1|D(z) = 0, X] = P[Y = 1|D = 0, Z =
z, X]. Assumptions 1 and 2 imply that E[g0(X)] � E[g1(X)].

In the illustration, where X is a one-dimensional binary variable, g0(0) = 2/3, g0(1) = 2/3, g1(0) =
1/3, and g1(1) = 1/3.

Assumption 3. R⊥Y |D = 0, Z , X.
This assumption states that, for survivors, missingness of the morbidity outcome is independent of the

value of the outcome within levels of exposure and covariates. This is related to the “missing at random”
assumption of Rubin (1976). It allows one to identify the probability of emotional distress in the group of
survivors with missing emotional distress outcomes, within levels of Z and X. Together with Assumption
2, we have that P[Y (z) = 1|D(z) = 0, X] = hz(X).

In our illustrative example, h0(0) = 0.5, h0(1) = 0.5, h1(0) = 0, and h1(1) = 1. Further, we can
compute some key quantities that will be needed in the identification of SACE. In particular, E[g0(X)] =
2
3 , E[g1(X)] = 1

3 , E[h0(X)g0(X)] = 1
3 , and E[h1(X)g1(X)] = 1

9 . Here, we show how these assump-
tions can be used to identify SACE.

Under Assumptions 1–3,

P[Y (1) = 1|S1] = E[h1(X)g1(X)]

E[g1(X)]
. (4.1)
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To see this, note that

P[Y (1) = 1|S1] = P[Y (1) = 1|D(1) = 0]

= E[P[Y (1) = 1|D(1) = 0, X]P[D(1) = 0|X]]

E[P[D(1) = 0|X]]

= E[h1(X)g1(X)]

E[g1(X]
.

The first equality follows from Assumption 1. The second equality follows from the properties of condi-
tional and unconditional expectations. The third equality follows from Assumptions 2 and 3 and from the
definition of h1(X) and g1(X).

Application of this formula to our illustration yields P[Y (1) = 1|S1] = 1
9

/ 1
3 = 1

3 .
Assumption 4 contains two sub-assumptions, each of which can be used in the identification of

P[Y (0) = 1|S1]. These are motivated by the following key identity:

P[Y (0) = 1|D(0) = 0] = P[Y (0) = 1|S1]P[D(1) = 0|D(0) = 0]

+P[Y (0) = 1|S2]{1 − P[D(1) = 0|D(0) = 0]}. (4.2)

Such mixing equations are commonly used to identify causal estimands using observed data (Gilbert and
others, 2003; Zhang and Rubin, 2003). Under Assumptions 1–3, the left-hand side of (4.2) is identifiable
since

P[Y (0) = 1|D(0) = 0] = E[h0(X)g0(X)]

E[g0(X]
(4.3)

and the “mixing” probability P[D(1) = 0|D(0) = 0] is identifiable since

P[D(1) = 0|D(0) = 0] = P[D(1) = 0]

P[D(0) = 0]
= E[g1(X)]

E[g0(X)]
. (4.4)

These equalities can be proved using similar manipulations as in the proof of (4.1).
By specifying how P[Y (0) = 1|S2] relates to P[Y (0) = 1|S1] in (4.2), we can then solve (4.2) for

P[Y (0) = 1|S1].

Assumption 4a.
P[Y (0) = 1|S2]

P[Y (0) = 1|S1]
= τRR, (4.5)

where τRR is a specified constant, interpreted as the RR of worsening emotional distress without vision
loss when comparing the group of individuals that would survive without vision loss but die with vision
loss (S2) to the group of individuals who would live regardless of vision loss (S1). The constant τRR is non-
identifiable from the observed data because we do not know to which principal stratum individuals who
are observed in our study to survive without vision loss belong. To identify the principal strata directly, we
would need to observe the counterfactual mortality outcomes that individuals would have had if they had
vision loss for those in the study who did not actually develop vision loss. Since we do not observe those
counterfactual outcomes, we need this assumption. Our final inferences about SACE will be displayed in
the form of a sensitivity analysis. That is, SACE will be estimated over a range of τRR considered plausible
by subject matter experts.
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Gilbert and others (2003) posed a similar assumption, while Hayden and others (2005) made one
based on covariates. From a sensitivity analysis perspective, this modeling decision is critical. If we did
condition on covariates and the covariates were high-dimensional, subject matter experts might find it
unreasonable to assume a constant RR across all levels of X. If τRR were chosen to depend on X, then the
sensitivity analysis would become too complicated to display. Under the conceptualization of the problem
of Hayden and others (2005), we would need many more τ -like parameters, even with our monotonicity
assumption, to identify our estimand, particularly when dealing with continuous outcomes. Hayden and
others (2005) reduce the dimension of the sensitivity parameters in their work by assuming proportionality
across all levels of X.

A possible drawback to our approach is that there may be no immediate “anchoring point” of τRR
which is considered plausible by scientific experts. For example, τRR = 1, which implies Y (0) is in-
dependent of D(1) given D(0) = 0, may be considered implausible. Instead, experts might be more
comfortable anchoring the sensitivity analysis at an assumption that states that Y (0) is independent of
D(1) given D(0) = 0 and X. This assumption is part of what Hayden and others (2005) call “explainable
nonrandom survival.” We refer to it as “counterfactual conditional independence” (CCI) to emphasize that
it is a conditional independence assumption involving two variables that we could never observe on the
same person (Y (0) is only observed if a person does not have vision loss, while D(1) is only observed
if a person does have vision loss). In our framework, τRR = 1 is simply “counterfactual independence,”
where we do not condition on any covariates to obtain independence. One can identify the unconditional
τRR which corresponds to CCI. Then, an expert can use this value of τRR as their anchoring point in the
sensitivity analysis. While anchoring might be a useful guide for scientific experts who desire a unique
point estimate around which to base the sensitivity analysis, it is not essential. A sensitivity analysis can
be performed over any range of τRR that is plausible, and this range of estimates can be reported. If
the anchoring point is not within the sensitivity range, then researchers will have to reconsider whether
the anchoring point assumption is scientifically meaningful or whether the range of τRR needs to be
expanded.

Under Assumptions 1–3 and 4a,

P[Y (0) = 1|S1] = E[h0(X)g0(X)]

E[g1(X)] + τRR E[g0(X) − g1(X)]
, (4.6)

provided

τRR � max

{
0,

E[h0(X)g0(X)] − E[g1(X)]

E[g0(X)] − E[g1(X)]

}
= τ †

RR. (4.7)

When E[g0(X)] > E[g1(X)], P[Y (0) = 1|S1] decreases to 0 as τRR →∞. When E[g0(X)] = E[g1(X)],
P[Y (0) = 1|S1] = E[h0(X)g0(X)]/E[g1(X)], for all τRR.

Equation (4.6) is derived by plugging (4.3) and (4.4) into (4.2), substituting τRR P[Y (0) = 1|S1] for
P[Y (0) = 1|S2], and solving for the unknown of interest, P[Y (0) = 1|S1]. The constraint in (4.7) is
imposed to guarantee that the solution is a proper probability.

Using (4.1) and (4.6), we can compute SACE as a function of τRR. We denote this function as
SACEτRR(·). This function, defined for τRR satisfying constraint (4.7), can be shown to be increasing
in τRR when E[g0(X)] > E[g1(X)].

In our illustration, the unknowable value of τRR is 2. Using this value, we see that P[Y (0) = 1|S1] =
1
3 . The bound in (4.7) equals ( 1

3 − 1
3 )

/
( 2

3 − 1
3 ) = 0. Above, we saw that P[Y (1) = 1|S1] = 1/3. So,

SACEτRR(2) = 1, indicating correctly that there is no causal effect of vision loss on emotional distress for
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those who would always survive regardless of vision loss. Figure 2 displays the function SACEτRR(·) for
τRR � 0 for our illustration. It is interesting to note that the unconditional τRR that is obtained under CCI
is 1, yielding incorrect inference.

Instead of modeling the relationship between P[Y (0) = 1|S2] and P[Y (0) = 1|S1] via RR, we can
also model the OR.

Assumption 4b.
odds P[Y (0) = 1|S2]

odds P[Y (0) = 1|S1]
= τOR, (4.8)

where τOR is a specified constant, interpreted in the same manner as τOR but on the OR scale.
Under Assumptions 1–3 and 4b,

P[Y (0) = 1|S1] = E[h0(X)g0(X)]

E[g0(X)]

when τOR = 1. When τOR �= 1,

P[Y (0) = 1|S1] = −b(τOR) + √
(b(τOR))2 − 4a(τOR)c

2a(τOR)
, (4.9)

where

a(τOR) = (1 − τOR)E[g1(X)],

b(τOR) = (τOR − 1)(E[h0(X)g0(X)] + E[g1(X)]) − τOR E[g0(X)],

c = E[h0(X)g0(X)].

Fig. 2. SACE for illustrative data under RR & OR parameterizations of τ .
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As τOR → ∞, P[Y (0) = 1|S1] converges to

E[h0(X)g0(X)] + E[g1(X)] − E[g0(X)] + |E[h0(X)g0(X)] + E[g1(X)] − E[g0(X)]|
2E[g1(X)]

.

This result is derived by plugging (4.3) and (4.4) into (4.2), substituting

P[Y (0) = 1|S1]τOR

P[Y (0) = 1|S1]τOR + 1 − P[Y (0) = 1|S1]

for P[Y (0) = 1|S2], and solving for the unknown of interest, P[Y (0) = 1|S1]. The solution is trivial
when τOR = 1. When τOR �= 1, the solution is found by solving a quadratic equation, of which only
the above solution is a proper probability. The solution is a decreasing function of τOR. There are no
constraints on τOR. Using (4.1) and (4.9), we can compute SACE as a function of τOR. We denote this
function as SACEτOR(·). This function can be shown to be increasing in τOR.

In the illustration, the true τOR = 4. In (4.9), a(4) = (1 − 4) × 1
3 = −1, b(4) = (4 − 1) × ( 1

3 +
1
3 ) − 4 × 2

3 = − 2
3 , c = 1

3 . So, P[Y (0) = 1|D(0) = 0, D(1) = 0] = (− 2
3 +

√
4
9 + 4

3 )/2 = 1
3

and SACEτOR(4) = 1. This correctly indicates that there is no causal effect of vision loss on emo-
tional distress for those who would always survive. Figure 2 displays the function SACEτOR(·) for all
τOR � 0. As above, the unconditional τOR that is obtained under CCI is also 1, leading to invalid
inference.

Study specific assumption. τRR � 1 and τOR � 1.
This assumption encodes a plausible belief about the direction of the RR of emotional distress in a

world in which no one has vision loss when comparing two principal strata. The direction implies that the
risk in such a world of no vision loss would be larger among the group who would live without vision loss
only (but would die if they had vision loss) than in the group who would live both with and without vision
loss. This assumption seems reasonable in that the group that would die if they had vision loss is likely
less healthy and more frail than the group that would survive if they had vision loss. However, those who
see this belief as arbitrary could estimate effects over any range of appropriate sensitivity values. In our
example, the true values of τRR and τOR are 2 and 4, respectively. In other studies, researchers might use
scientific information to obtain different bounds on the sensitivity parameter.

4.3 Models for gz(X) and hz(X)

In the identification formulas above, we see that P[Y (z) = 1|S1] can be expressed as a function of
ν∗

0 = P[D(0) = 0] = E[g0(X)], ν∗
1 = P[D(1) = 0] = E[g1(X)], ξ∗

0 = P[D(0) = 0, Y (0) = 1] =
E[h0(X)g0(X)], and ξ∗

1 = P[D(1) = 0, Y (1) = 1] = E[h1(X)g1(X)]. This implies that SACE is a
function of these quantities (see (4.6) and (4.9)). Thus, we need to compute gz(X) and hz(X). When X
is high-dimensional, it is not possible to estimate these quantities non-parametrically, due to the curse of
dimensionality. To achieve an estimator of SACE which converges at

√
n rates, we will need to impose

some lower-dimensional restrictions on these quantities. Specifically, we assume that, for z = 0, 1,

logit gz(X) = g†
z (X; ααα∗

z ), (4.10)

logit hz(X) = h†
z (X; βββ∗

z ), (4.11)

where g†
z (X; αααz) and h†

z (X; αααz) are specified functions of X and parameter vectors αααz ( jz × 1) and
βββz (kz × 1), respectively; ααα∗

z and βββ∗
z denote the true parameter values. Under these models, we then
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see that

ν∗
z = E[gz(X)] = E[expit{g†

z (X; ααα∗
z )}],

ξ∗
z = E[hz(X)gz(X)] = E[expit{h†

z (X; βββ∗
z )} × expit{g†

z (X; ααα∗
z )}],

where expit{x} = exp{x}/(1+exp{x}). Note that ν∗
z and ξ∗

z depend on ααα∗
z and βββ∗

z as well as the distribution
of X.

5. ESTIMATION AND LARGE SAMPLE THEORY

Here we present the methods for estimating SACE. First, define

ψψψ∗ = (ααα∗′
0 , ααα∗′

1 , βββ∗′
0 , βββ∗′

1 , ν∗
0 , ν∗

1 , ξ∗
0 , ξ∗

1 )′.

We assume that ψψψ∗ ∈ ���, where

��� = {ψψψ = (ααα
′
0, ααα

′
1, βββ

′
0, βββ

′
1, ν0, ν1, ξ0, ξ1)

′ : αααz ∈ R jz , βββz ∈ Rkz ,

νz ∈ (0, 1), ξz ∈ (0, 1), νz > ξz, ν0 > ν1, z = 0, 1}.

Under this notation and assumption, τ †
RR in (4.7) is equal to max

{
0, ξ0−ν1

ν0−ν1

}
< 1.

5.1 ψψψ∗

To estimate ψψψ∗, we first estimate ααα∗
z and βββ∗

z via maximum likelihood using logistic regressions that
include all the confounding covariates. We denote these estimators by α̂ααz and β̂ββz . Then, it is natural to
estimate ν∗

z and ξ∗
z by

ν̂z = En[expit{g†
z (X; α̂ααz)}],

ξ̂z = En[expit{h†
z (X; β̂ββz)} × expit{g†

z (X; α̂ααz)}],

where, for a random variable U on which we have n i.i.d. observations, En[U ] = 1
n

∑n
i=1 Ui . In words,

we are using the results from the logistic regressions to estimate for each individual the probability
of survival and the conditional probability of worsened emotional distress given survival for both po-
tential vision loss categories. We then average the estimated survival probabilities within each vision
loss category to obtain marginal estimated probabilities, ν̂0 and ν̂1. Similarly, we average the product
of the estimated probabilities of survival and the estimated probabilities of worsened emotional dis-
tress given survival within each vision loss category to get estimated marginal probabilities of surviv-
ing with worsened emotional distress, ξ̂0 and ξ̂1. These estimators form the estimates needed for ψψψ∗
which we call ψ̂ψψ . Obtaining estimators in this way is equivalent to solving the following unbiased
equation:

n∑
i=1

U(Oi ; ψψψ) = 0,
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where

U(O; ψψψ) = [
Uααα0(O; ψψψ)′, Uααα1(O; ψψψ)′, Uβββ0

(O; ψψψ)′, Uβββ1
(O; ψψψ)′,Uν0(O; ψψψ),

Uν1(O; ψψψ),Uξ0(O; ψψψ),Uξ1(O; ψψψ)
]′

,

Uααα0(O; ψψψ) = ∂g†
0(X; ααα0)

∂ααα0
(1 − Z)(1 − D − expit{g†

0(X; ααα0)}),

Uααα1(O; ψψψ) = ∂g†
1(X; ααα1)

∂ααα1
Z(1 − D − expit{g†

1(X; ααα1)}),

Uβββ0
(O; ψψψ) = ∂h†

0(X; βββ0)

∂βββ0
(1 − Z)R(1 − D)(Y − expit{h†

0(X; βββ0)}),

Uβββ1
(O; ψψψ) = ∂h†

1(X; βββ1)

∂βββ1
Z R(1 − D)(Y − expit{h†

1(X; βββ1)}),

Uν0(O; ψψψ) = expit{g†
0(X; ααα0)} − ν0,

Uν1(O; ψψψ) = expit{g†
1(X; ααα1)} − ν1,

Uξ0(O; ψψψ) = expit{h†
0(X; βββ0)}expit{g†

0(X; ααα0)} − ξ0,

Uξ1(O; ψψψ) = expit{h†
1(X; βββ1)}expit{g†

1(X; ααα1)} − ξ1.

It is easy to show that E[U(O; ψψψ∗)] = 0. By the theory of M-estimation (Huber, 1964), it can be
shown that, for ψψψ∗ ∈ ���, √

n(ψ̂ψψ − ψψψ∗) D−→ Normal(0, 	∗),

where

	∗ = E

[
∂U(O; 
)

∂ψψψ

]−1

E[U(O; ψψψ)U(O; ψψψ)
′
]E

[
∂U(O; ψψψ)

∂ψψψ

]−1′

.

The covariance matrix 	∗ can be estimated by

	̂ = En

[
∂U(O; 
)

∂ψψψ

]−1

En[U(O; ψψψ)U(O; ψψψ)
′
]En

[
∂U(O; ψψψ)

∂ψψψ

]−1′

.

5.2 SACE(·)
Under Assumptions 1–3, 4a, (4.10) and (4.11), SACE becomes,

SACEτRR(τRR) = SACEτRR(τRR; ψψψ∗) = ξ∗
1

ν∗
1 − ξ∗

1
× ν∗

1 + τRR(ν∗
0 − ν∗

1 ) − ξ∗
0

ξ∗
0

.

For fixed τRR satisfying τRR > 1, this function is continuously differentiable for all ψψψ∗ ∈ ���. We esti-
mate SACEτRR(τRR) by SACEτRR(τRR, ψ̂ψψ). The large sample theory for this estimator can be found by

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/3/526/279867 by guest on 20 August 2022



540 B. L. EGLESTON AND OTHERS

employing the delta method. Specifically,

√
n

{
SACEτRR(τRR; ψ̂ψψ) − SACEτRR(τRR; ψψψ∗)

} D→ N
(
0, �τRR(τRR; ψψψ∗)

)
,

where

�τRR(τRR; ψψψ∗) = �SACEτRR(τRR, ψψψ∗)′	�SACEτRR(τRR, ψψψ∗)

and �SACEτRR(τRR, ψψψ) is the gradient of SACEτRR(τRR, ψψψ) with respect to ψψψ . The variance–covariance
matrix �τRR(τRR; ψψψ∗) is consistently estimated by �τRR(τRR; ψ̂ψψ).

Under Assumptions 1–3, 4b, (4.10) and (4.11), SACE becomes

SACEτOR(τOR) = SACEτOR(τOR; ψψψ∗)

= ξ∗
1

ν∗
1 − ξ∗

1
× (τOR − 1)(ξ∗

0 − ν∗
1 ) − τORν∗

0 + q(τOR, ψ∗)
(1 − τOR)(ξ∗

0 + ν∗
1 ) + τORν∗

0 − q(τOR, ψ∗)
,

where

q(τOR, ψ∗) = [{(τOR − 1)(ξ∗
0 + ν∗

1 ) − τORν∗
0 }2 − 4(1 − τOR)ν∗

1ξ∗
0 ]1/2.

For fixed τOR satisfying τOR > 1, this function is continuously differentiable for all ψψψ∗ ∈ ���. We esti-
mate SACEτOR(τOR) by SACEτOR(τOR, ψ̂ψψ). The large sample theory for this estimator can be found by
employing the delta method as above. Specifically,

√
n

{
SACEτOR(τOR; ψ̂ψψ) − SACEτOR(τOR; ψψψ∗)

} D→ N
(
0, �τOR(τOR; ψψψ∗)

)
,

where

�τOR(τOR; ψψψ∗) = �SACEτOR(τOR, ψψψ∗)′	�SACEτOR(τOR, ψψψ∗)

and �SACEτOR(τOR, ψψψ) is the gradient of SACEτOR(τOR, ψψψ) with respect to ψψψ . The variance–covariance
matrix �τOR(τOR; ψψψ∗) is consistently estimated by �τOR(τOR; ψ̂ψψ).

To guarantee that Wald-type confidence intervals for SACE are nonnegative, we recommend that the
confidence interval first be computed for log(SACE) and then exponentiated. The asymptotic distribution
of log(SACE) is found by the delta method.

We conducted a simulation study to evaluate the finite sample behavior of our estimation procedure
for SACE, the results of which are presented in the supplementary material available at Biostatistics online
(http://www.biostatistics.oxfordjournals.org). Overall, the results suggest that the inferences made using
our asymptotic theory are generally valid. Misspecifying the correct sensitivity parameter, τRR or τOR,
however, can lead to substantial bias. This underlines the importance of a sensitivity analysis approach to
presenting results when the true τRR or τOR is unknown.

6. DATA ANALYSIS

We used data from the SEE study to demonstrate our method. Of the 2520 subjects in the study, 32 were
not at risk of losing two lines of vision because of severe visual impairment, 137 died before their second
round interview, and 191 had missing information or were lost to follow-up at or before the second round.
These subjects were excluded. Of the remaining 2160 subjects, 162 had vision loss diagnosed at the
second interview. In this data set, the covariates, X, are age, gender, race, diabetes, hypertension, number
of comorbidities, BMI, smoking status, and education.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/3/526/279867 by guest on 20 August 2022

http://www.biostatistics.oxfordjournals.org


Causal inference for non-mortality outcomes 541

We first used a naive logistic regression to investigate the effect of vision loss on emotional distress
among the group observed to survive conditional on X. After adjusting for covariates, subjects with vision
loss have 1.26 times the odds of worsening emotional distress as compared to those without vision loss
(95% CI: [0.65, 2.46]). The increase in the odds of distress is of modest clinical relevance and is not
statistically different than 1 at the 0.05 Type-I error level.

Next, we employed our sensitivity analysis approach to estimate SACE. We fit models (4.10) and
(4.11), in which the functions g†

z (X; αααz) and h†
z (X; βββz) are assumed to be linear in age, sex, race, diabetic

and hypertensive status, number of comorbidities, lowest quartile BMI, having ever smoked, and having
a high school education.

Combining these results with Assumptions 1–3, we then estimated the key components needed to
identify SACE. The estimate of P[Y (1) = 1|D(1) = 0], the probability of emotional distress among
survivors if everyone had been “assigned” vision loss, is 14.8% (95% CI: [8.6%, 24.2%]), higher than
the (potentially) confounded estimate, from Table 2, of 12.4%. The estimate of P[Y (0) = 1|D(0) = 0],
the corresponding probability of emotional distress if everyone had been “assigned” no vision loss, is
10.6% (95% CI: [9.0%, 12.3%]), which is slightly higher than the (potentially) confounded estimate of
10.4%. The estimated conditional probability of surviving with vision loss given that one would also
survive without vision loss, P[D(1) = 0|D(0) = 0], is 93.5% (95% CI: [81.0%, 97.9%]). Plugging
these estimates into (4.2) and assuming that P[Y (0) = 1|S1] � P[Y (0) = 1|S2], we can see that the
estimated values of P[Y (0) = 1|S1] must lie between 0.044 and 0.106 and P[Y (0) = 1|S2] must lie
between 0.106 and 1. For fixed τOR between 1 and 15 (with associated τRR between 1 and 7.3), P[Y (0) =
1|S1] decreases from 0.106 to 0.075 and P[Y (0) = 1|S2] increases from 0.106 to 0.549. Hence, over
this range of τOR and τRR, we are ranging over very broad discrepancies between P[Y (0) = 1|S1] and
P[Y (0) = 1|S2].

Figure 3 presents the estimated values of SACE and associated confidence intervals over τOR ranging
from 1 to 15 and τRR ranging from 1 to 7. We see that when the probability of emotional distress is the
same regardless of whether an individual’s potential outcomes indicate that an individual always lives or
only lives without vision loss (τOR = τRR = 1), then the naive OR and SACE are similar. As τOR and τRR
get larger, the probability of emotional distress given an individual always lives gets much smaller than
the probability of emotional distress given that an individual only lives without vision loss. As a result,
SACE gets larger. The slopes are very shallow because the estimated proportion of subjects in S2 is small.
The unconditional τRR and τOR that correspond to CCI are both approximately 1.3 and 1.3, respectively.
Under CCI, SACE = 1.50 (95% CI: [0.80, 2.82]).

7. DISCUSSION

Our method of accounting for death as a competing risk provides a meaningful, readily interpretable, and
easy to implement causal estimand. In our data analysis, we found that the point estimate of SACE was
similar to that of the naive OR when there was no difference in the probability of worsening emotional
distress symptoms between those who die only with vision loss versus those who never die whatever be
their vision loss status. There were some changes in SACE over the specified range of τOR and τRR, but the
results were only marginally significant. Further, the magnitude of the effect of vision loss on emotional
distress seems modest in terms of clinical relevance except for large values of τOR or τRR.

SACE does not correct for bias of the naive OR; the two ORs are measuring different quantities. The
naive OR measures the effect of vision loss on emotional distress among those who are observed to live.
Under Assumption 1, some of those who we observed to survive without vision loss would have died with
vision loss; our causal estimand excludes this group. For this reason, even when τOR or τRR equals 1, the
interpretation of SACE and the naive OR are different and the point estimates can be expected to differ,
as was the case in our analysis.
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Fig. 3. Estimates of SACE. (a) SACE under RR parameterization of τ . (b) SACE under OR parameterization of τ .

Our method can be applied to continuous outcomes by replacing P[Y (0) = 1|S1] and P[Y (1) = 1|S1]
with E[Y (0)|S1] and E[Y (1)|S1] and examining the difference in the expectations. A few changes are
necessary for implementation in the continuous case. First, a model is needed for hz(X) = E[Y |D =
0, Z = z, R = 1, X] instead of the logit model specified above. While τOR is not applicable in the
continuous case, one can still use E[Y (0)|S2]/E[Y (0)|S1] in place of Assumption 4a for identification.
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If the continuous variable is bounded, a restriction similar to that presented in (4.7) is necessary to ensure
that E[Y (0)|S1] is within the appropriate bounds. One would also need to replace expit{h†

z (X; βββz)} with
h†

z (X; βββz) in the estimating equations presented in Section 5.
One potential criticism of this work is that vision loss is not manipulable in the same manner as

a randomized treatment. As Holland (1986) wrote, many have historically believed that Rubin’s causal
model is only applicable if one can conceptualize being able to manipulate the exposure. Under this
conceptualization, immutable attributes such as sex are not considered causes. Changing the sex changes
the person in too many ways to consider sex to be an underlying cause of anything. While vision loss
may not be as manipulable as a randomized treatment, vision loss is an increasingly preventable and
treatable condition; proper treatment can prevent vision loss due to glaucoma while laser-assisted in situ
keratomileusis (LASIK) and cataract surgery can be used to reverse vision loss. As demonstrated by
Freeman and others (2005), vision researchers are interested in causal effects of vision loss.

The methods described here should be of use to many researchers who examine outcomes when death
is a strong competing risk in observational studies. We are confident that scientists will increasingly use
estimators of SACE in their substantive work once they become more familiar with the concept of princi-
pal stratification, and once computer programs to estimate SACE are made more widely available.
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