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Abstract

Most academic disciplines have a strong fo-
cus on theories. In software engineering and
software evolution however, there is a distinct
lack. We propose a new methodology to con-
struct and validate theories of software evolu-
tion. This methodology utilises causal infer-
ence to define and test causal relations. We
explore this iterative methodology by exercis-
ing it and reflect on the utility.

1 Introduction

Software engineering is a complex discipline of
engineering. It involves the process of creating
and maintaining complex and evolving products
of software. This is done using different tools
and processes, but also involves extensive social
and cognitive processes [ESSD08, ZR96]. This
means that empirical software engineering research,
is about both technical products and human activities.

A significant amount of exploratory research is done
into these processes. This type of research generally
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focuses on finding correlations in data and analysing
these using statistical inference techniques. Jørgensen
and Sjøberg find that only 3 out of 47 studies in
the Journal of Empirical Software Engineering which
applied a statistical inference technique, were able
to base their statistical testing on well-defined pop-
ulations and random samples from those populations
[SDAH08]. Additionally, when using correctly but nar-
rowly defined populations, it may be difficult to gen-
eralise. An example of this is research done by re-
searchers at automotive company Daimler. A 78.3%
accuracy is reached in software fault prediction by
analysing static code measures. This is based on 8
software projects of automotive head unit control sys-
tems [OMS18]. An issue arises when we attempt to
aggregate knowledge, for example for software systems
that are not automotive head unit control systems.
Aggregation of knowledge in science is generally done
through theories. Isolated, exploratory studies do not
commonly result in new theories.

Early works by Lehman aimed to established a the-
ory of software evolution based on qualitative data
[Leh79, Leh80]. Not much work in theory building
has been done since. This is described by Johnson
et al. in their 2012 paper on the lack of consensus
on any theories in software engineering [JEJ12]. In re-
cent years, there has been significant interest in theory
building for software engineering; we refer to the work-
shop series ‘General Theories of Software Engineering’
(GTSE) in 2012-2015 as a major forum for this interest
[RJJ13, HW13, REN+14, SGJ16]. This workshop se-
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ries has extensively motivated the need for, and bene-
fits of, theory building for software engineering. There
are several types of theories, but most interest exists
in theories that both explain and predict, where the
aspect of explanation includes the notion of causality
[SDAH08].

A change of focus, away from specific contexts and
into more generalised theories is required. Lehman
had very limited access to software systems and their
evolution data to analyse back in his day. Nowadays,
source code evolution data in the form of source code
repositories and issue tracking systems is available for
many systems. In other fields, such as the epidemiolog-
ical [RGL08], medical [SS19, YB15] and econometric
[SK15], observational data is used to establish causal
effects through causal inference [Pea09]. Recent early
stage work is investigating methodological issues to
consider when performing observational studies in soft-
ware engineering [Saa19]. This paper presents ideas on
the practical use of observational data for theory con-
struction in software engineering.

We propose and investigate a new methodology.
This methodology is intended to provide a practical
and actionable framework to iteratively create, ex-
plore, test and expand theories. We show some pre-
liminary experiences and share results from the first
experiments.

We define one main research question.

Research Question: How can causal inference be
used as a methodology to create and validate theories
on software evolution?

2 Background

We discuss theory building and causal inference with
observational data in empirical software engineering.

2.1 Theory Building in Software Engineering

A large part of current research is based on statistical
hypothesis testing [Jor04], a form of statistical infer-
ence. In this method a null hypothesis is tested against
an alternative hypothesis [LR05]. A key step in this
process is the selection of random sample from a pop-
ulation. The nature of conclusions drawn from these
tests can only be as solid as the sample upon which
they are based.

In many scientific disciplines it is the norm to pro-
duce theories and test these. As described earlier a
strong focus lies on exploratory research in software
engineering [SDAH08, JEJ12]. Jørgensen and Sjøberg
propose a stronger focus on theories, specifically a
change in focus from “generalizing from a random
sample to a larger population” to “generalizing across
populations through theory-building” [Jor04]. Theories

are well-confirmed, before they are we refer to them as
hypotheses. Some argue that a long deferred beginning
of theorising is worse than any number of failures, be-
cause (1) it encourages the blind accumulation of infor-
mation that may turn out to be mostly useless, and (2)
a large bulk of information may render the beginning
of theorising next to impossible [BUN12, SDAH08].

Johnson et al. describe theories as sharing three
characteristics: they attempt to generalise local ob-
servations and data into more abstract and universal
knowledge; they typically represent causality (cause
and effect); and they typically aim to explain or pre-
dict a phenomenon [JEJ12]. Sjøberg et al. define a
framework for theories with four archetypes: Actor,
Technology, Activity and Software system [SDAH08].
This reflects the notion that software engineering re-
search involves social processes, as well as technical
data. They also references three levels of complexity
of theories. Because theory construction is such an
early stage we consider the first two: “Minor working
relationships that are concrete and based directly on
observations” and “Theories of the middle range that
involve some abstraction but are still closely linked to
observations”.

In this research we limit the scope to theories of
software evolution.

2.2 Causal Inference & Observational Data

Statistical inference is the process of using data anal-
ysis to learn about distributions and associations be-
tween variables. Causal inference differs from statis-
tical inference in that it defines causal relations be-
tween variables [Pea09, PGJ16]. A simple initial def-
inition causality is proposed by Pearl: A variable X
(exposure) is a cause of a variable Y (outcome) if Y
in any way relies on X for its value [PGJ16]. We see
that causal relations are directed. An example of an
exposure-outcome pair in medicine could be smoking
and lung cancer; an example in software engineering
could be code smells and bugs [Saa19].

Causal inference considers the potential outcomes
of an exposure. The potential outcomes describe what
can happen or could have happened. The fundamental
problem of causal inference is that we cannot observe
the counterfactual; the potential outcome that did not
happen. The best type of data to use for causal infer-
ence is data from a randomised trial. Using observa-
tional data we can simulate randomised experiments,
under certain conditions. We can then use this to cal-
culate the average causal effect of an exposure [Her04].

Covariates, like exposures and outcomes, are char-
acteristics of a unit in the population. A covariate
is considered a confounder if it influences both the
exposure and the outcome [PBV12]. Confounders are
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an essential part of causal inference. By controlling for
confounders, which can be elements in our theories,
we improve exchangeability, with which we strengthen
our randomisation [Her04, SSC+02]. Selection of
exposures, outcomes and confounders is not at all
trivial. Causality is directional, but also temporal.
The outcome happens after the exposure. To ensure
the validity of research using observational data, this
temporal aspect has to be taken into consideration.

There are several requirements for validity in this
type of research. In a book on experimental design
for causal inference several methods are described to
increase the power of relationships [SSC+02]. Con-
founders are of high importance, reiterating the impor-
tance of well-considered selection of variables. Using
larger sample sizes is also mentioned. This paper does
not explicitly list guidelines for observational studies
in empirical software engineering, but such research is
being done [Saa19].

Since we aim to generalise across populations
through theory building, population selection is im-
portant. We propose using conventional data extrac-
tion methods to extract code metrics at a large scale.
Instead of looking at one software repository, we can
look at a large set. Observational data mimics a ran-
domised trial, we control for confounders to improve
exchangeability. Large populations aid in this effort;
the more group membership is randomised, the more
“comparable” they are [Her04].

Causal effects can be visualised through causal di-
agrams. Causal diagram are directed acyclic graphs
(DAGs). These diagrams facilitate theory building by
offering an intuitive and easy-to-understand overview
of involved concepts. Because this visual representa-
tion also allows for easy extension of the ideas un-
der investigation, theories can iteratively be expanded.
This incremental and iterative approach strikes a bal-
ance between pure theory construction and pure ex-
ploratory research. This in combination with a work-
able terminology emphasises research design and the-
ory building over correlation in data.
Data collection for this type of research should be done
with care. When extracting source code data from
repositories or commits for example, it is important to
clearly define how data is extracted and consider this
for the relevant theory.

3 Experiment Design

3.1 Theory Construction

The theory construction process is made actionable
through causal diagrams. We list some ways to go
about theory construction. Experts in the field of soft-
ware evolution might have ideas about how software

evolves. This information can be extracted through
surveys, formal plenary sessions and interviews. An-
other source of initial theories can be literature. A
literature study of the topic of interest can yield ini-
tial theories. Finally, the reader may have intuitions
or ideas that could form theories of software engineer-
ing. This approach means that theories can be of low
granularity initially. The process of theory building
becomes incremental. This low granularity means ini-
tial complexity and costs are low which may promote
theory investigation.

Theories are generally presented in natural lan-
guage. A problem that can be encountered when using
natural language is ambiguity. It is therefore impor-
tant to clearly define terms used in these theories. Ad-
ditionally, great care should be taken when choosing
confounders. Consider what the effect of a confounder
is, why it may influence something. Selection of these
is of high importance to the validity of final results.

3.2 Data Collection & Causal Inference

To collect data from software repositories we use Py-
Driller, a Python framework that facilitates repository
mining [SAB18]. PyDriller has functionality to look at
commits and changes made in those commits. Because
time is explicit it aids in considering the temporal ele-
ment of what we researching. We do not yet cover any
variables that are not extractable from source code.

Causal diagram construction is facilitated through
DAGgity, an environment forcreating, editing, and
analysing causal diagrams. It is also available as a
R package.

Data analysis is done in R. For the second exper-
iment, the Match library is used to match the two
groups with different exposures. The tableone package
is used to estimate the causal effect [AS15]. Finally we
t-test the results. Further work on what other meth-
ods to apply causal inference exist and analysis of these
methods is still in progress.

4 Intermediate Results and Discussion

This research consist of several investigations into soft-
ware evolution phenomena. The first case is largely
exploratory and serves as a learning instrument to be-
come familiar with the method. The second case is
ongoing and preliminary results are presented.

4.1 Case 1: CC & SLOC

The first experiment is based on research by Landman
et al. in which they investigate the notion that the
code metrics Cyclomatic Complexity (CC) and Source
Lines of Code (SLOC) are linearly correlated in Java
methods [LSV14]. We chose this research because it
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has very clear definitions on how to prepare the corpus,
which is the population, for analysis. Additionally, the
corpus is large. How to measure the variables that are
used in the research is also clearly defined.

Landman et al. investigate the hypothesis that
there is a strong linear (Pearson) correlation between
CC and SLOC metrics. Additionally they investigate
if the inclusion of the %% and || operators influence
this correlation. The third hypothesis looks into
whether or not a higher level of aggregation of CC
(over multiple units) correlates with aggregated
SLOC. The fourth hypothesis investigates what the
effect is of a power transform on the CC and SLOC
data. Finally, the effect of zooming in on quantiles of
data is investigated.

We started investigation into what happens here
and came up with fig. 1, the causal diagram for this
case. For an explanation of the variables we refer to
Landman et al. [LSV14].

Figure 1: Causal diagram describing the CC & SLOC
case

4.1.1 Discussion

The goal of the first case is to learn about the process
of theory- and causal diagram construction in practice.
Initially this case seems to have many aspects that are
required when we want to apply causal inference: a

well-defined, large population and clear definitions of
what variables are relevant and how to measure them.
Without much prior understanding, it was possible to
draw up a causal diagram. We can make several ob-
servations.

We see that this diagram does not describe any par-
ticular evolution of software metrics. Although CC
and SLOC both are valid software metrics, this di-
agram tells us nothing about how software evolves.
In this diagram, the exposure dictates a way data is
transformed. The diagram describes what influences
the correlation between the metrics, it shows us that
the manner in which data is processed can impact how
data is interpreted. This observation aligns with the
original study [LSV14].

Taking a step back we consider that this experiment
was not theory oriented. The causal diagram shows us
this. Instead, we want the code metrics to be exposure
variables. We want to learn about the effect of these
exposures.

4.2 Case 2: Co-evolution of code clones

The second case explores the effect of clone co-
evolution on future changes to those clones. Code
clones are a common occurrence. There are differ-
ent ways to classify code clones, to start out with a
small scope we only look at type 1 clones. A type
1 code clone is defined as: “code fragments [that] are
identical except for variations in white space, layout,
and comments” [RCK09]. Krinke explores the evolu-
tion of code clones and defines two different types of
clone evolution, consistent and inconsistent. We refer
to clone co-evolution as a consistent change to a group
of code clones [Kri07]. Co-evolution does not occur
if the clones change inconsistently. Krinke finds that
roughly half of the code clone groups are changed con-
sistently. He also finds that code clone groups rarely
become consistent after inconsistently changing.

Through informal discussion with experts on soft-
ware evolution from the Software Improvement Group
we came up with the notion that some clone groups
do in fact become consistent after changing inconsis-
tently. To explore this we create a causal diagram to
represent the evolution of code clones, shown in Fig. 2.

We choose the evolution of a clone group as expo-
sure variable. Evolution of a clone is either consistent
or inconsistent. By analysing commits, we can find
commits that touch on any instance of a clone group.

The outcome variable, Correction, is a binary vari-
able that is counted when, after an inconsistent change
to a clone group, this change is applied to the other
clone(s) in that clone group. We introduce Test as con-
founder, a binary variable that shows us if the clone
group is a combination of test classes and non-test
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Figure 2: Causal diagram describing effect of a
changed clone group on a later correction

classes. Additionally we introduce #instances, a vari-
able that counts the number of instances in a clone
group. In Fig. 2 Test has been adjusted for, instances
is unobserved.

We start out with one repository, Apache commons-
collection package from version 4.2 onward. The initial
results on evolution distribution are: 116 clone groups
do not evolve, 31 clone groups consistently evolve and
37 evolve inconsistently. This supports data by Krinke
that there is roughly a 50/50 split in the way clones
evolve. In our data we also see 3 instances of a Cor-
rection.

4.2.1 Discussion

This case covers a much simpler example than the first
case. The initial population is very small: it consists
of the clones in one repository. For reasons mentioned
before it is important to use a bigger population for
this type of research. However, we still find some no-
tion that this causal diagram may provide interesting
information.

A correction can only happen when a clone changes
inconsistently, never when a clone has changed consis-
tently. This means that if a correction happens, the
fact that a clone changed inconsistently must have an
effect. However, as Krinke suggest, this effect may
be negligible. In our limited data we find occurrences
where such a correction happens. Although the lim-
ited amount of data means we cannot conclusively say
anything about the effect of a clone group evolving,
it warrants further investigation. When analysing the
data we find that the clones that require later correc-
tion are often clone groups that have both test and
regular classes. Seeing this, we introduce it as a po-
tential confounder. We also consider that the number
of instances in a clone group might affect the final re-
sults.

The next steps in this research are to gather a larger
population to select for, and run tests with these dif-
ferent confounders. This second experiment shows us
that we can start to incrementally build theories with
causal diagrams. We are investigating what the effect
of inconsistently changing clones is on a later correc-
tion. Further work is needed to determine if we can
start to conclusively define causal effects.

5 Related Work

There are other fields where causal inference is applied
to observational data to determine effects of exposure
[SS19, Her04]. In these fields the usage of causal infer-
ence is more mature and has been tried out for various
use cases. In their work, Saarimäki describes work-
ing towards a methodology for applying observational
studies in empirical software engineering [Saa19]. In
this paper we explore a practical way to work with ob-
servational data. If the field of empirical software en-
gineering is to adapt observational studies and causal
inference, guidelines are required. Causal inference is
clearly still new in the field of empirical software en-
gineering and more work is needed to determine its
utility.

6 Conclusion & Next Steps

These initial findings do not conclusively say if this
methodology is an effective way to build theories for
software evolution. Although the first case did not end
up proving adequate for this type of research, visualis-
ing what we are doing with a causal diagram allowed
us to understand why that was the case. The second
case is simple, but we do see that iteratively adding
information to a diagram as we learn from our data is
possible.

We reflect on the Research Question. We learn
that the visual aspect of causal diagrams can help us
quickly understand what we are looking at and itera-
tively build on that. It may be possible to construct
theories in this manner, or at least help to facilitate a
new type of thinking about theories. To conclusively
say anything more investigation is required. The cur-
rent case will have to be extended and tested exten-
sively. Additionally, new cases will have to be investi-
gated for more definite results. This researched has so
far been limited in scope to large scale technical data.
Causal inference allows for data to be added from dif-
ferent sources, including qualitative. Further investi-
gation into how this type of data can be included for
software engineering research is required.
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