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Abstract

Observational epidemiologic studies are prone to con-
founding, measurement error, and reverse causation, under-
mining robust causal inference. Mendelian randomization
(MR) uses genetic variants to proxy modifiable exposures to
generate more reliable estimates of the causal effects of these
exposures on diseases and their outcomes. MR has seen
widespread adoption within cardio-metabolic epidemiology,
but also holds much promise for identifying possible inter-
ventions for cancer prevention and treatment. However, some
methodologic challenges in the implementation of MR are
particularly pertinent when applying this method to cancer
etiology and prognosis, including reverse causation arising
from disease latency and selection bias in studies of cancer

progression. These issues must be carefully considered to
ensure appropriate design, analysis, and interpretation of such
studies. In this review, we provide an overview of the key
principles and assumptions of MR, focusing on applications
of this method to the study of cancer etiology and progno-
sis. We summarize recent studies in the cancer literature that
have adopted a MR framework to highlight strengths of
this approach compared with conventional epidemiological
studies. Finally, limitations of MR and recent methodologic
developments to address them are discussed, along with the
translational opportunities they present to inform public
health and clinical interventions in cancer. Cancer Epidemiol
Biomarkers Prev; 27(9); 995–1010. �2018 AACR.

Introduction
Obtaining reliable evidence of causal relationships from obser-

vational epidemiologic studies remains a pervasive challenge
(1–3). While observational studies have made fundamental con-
tributions to understanding the primary environmental causes of
various cancers (e.g., smoking and lung cancer, hepatitis B and
liver cancer, asbestos and mesothelioma; refs. 4–6), recent dec-
ades have seen numerous instances of apparently robust obser-
vational associations being subsequently contradicted by large
chemoprevention trials (7–15). Notable translational failures
include the ineffectiveness of beta-carotene supplementation to
prevent lung cancer among smokers in the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention Study and vitamin E supple-
mentation to prevent prostate cancer in the SeleniumandVitamin
E Cancer Prevention Trial (SELECT). Contrary to expectations
from observational data, findings from both trials suggested
that supplementation may increase rather than reduce the
incidence of cancer (8, 16).

Part of the difficulty in translating observational findings into
effective cancer prevention and treatment strategies lies in the
susceptibility of conventional observational designs to various
biases, such as residual confounding (due to unmeasured or
imprecisely measured confounders) and reverse causation (17,
18). These biases frequently persist despite energetic statistical
and methodologic efforts to address them (19–21), making it
difficult for observational studies to reliably conclude that a risk
factor is causal, and thus a potentially effective intervention target.
This issue is likely further compounded by the modern epidemi-
ologic pursuit of risk factors that confer increasingly modest
effects on disease risk, which can contribute to a ubiquity of
spurious findings in the literature (22–24).

Despite these challenges, observational studies remain crucial
for informing cancer prevention and treatment policy given issues
in translating basic science to human populations and because
intervention trials are expensive, time-consuming, and often
unfeasible in a primary prevention setting. The development of
novel analytic tools that can help address some of the limitations
of conventional observational studies therefore remains an
important field of research. One such approach known as Men-
delian randomization (MR), which uses genetic variants to proxy
potentially modifiable exposures, has seen increased adoption
within population health research and offers much promise to
generate a more reliable evidence base for cancer prevention and
treatment.

What is MR?
MR uses germline genetic variants as instruments (i.e., proxies)

for exposures (e.g., environmental factors, biological traits, or
druggable pathways) to examine the causal effects of these expo-
sures on health outcomes (e.g., disease incidence or progression;
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refs. 25–31). The use of genetic variants as proxies exploits their
random allocation at conception (Mendel's first law of inheri-
tance) and the independent assortment of parental variants at
meiosis (Mendel's second law of inheritance). These natural
randomization processesmean that, at a population level, genetic
variants that are associated with levels of a specific modifiable
exposure will generally be independent of other traits and
behavioral or lifestyle factors, although several caveats exist
(see Table 1). Analyses using genetic variants as instruments to
examine associations with outcomes have a number of advan-
tages: (i) effect estimates should be less prone to the confound-
ing that typically distorts conventional observational associa-
tions (32), (ii) because germline genetic variants are fixed at
conception, they cannot be modified by subsequent factors,
thus overcoming possible issues of reverse causation, and (iii)
measurement error in genetic studies is often low as modern
genotyping technologies provide relatively precise measure-
ment of genetic variants, unlike the substantial (and at times
differential) exposure measurement error that can accompany
observational studies (e.g., due to self-report).

Comparison of MR to randomized controlled trials
Because of the randomallocation of alleles at conception, it can

be useful to compare the structure of aMRanalysis to the design of
a randomized trial, where individuals are randomly allocated at
baseline to an intervention or control group (Fig. 1). Groups
defined by genotype should be comparable in all respects (e.g.,
approximately equal distribution of potential confounding fac-
tors) except for the exposure of interest. It follows that any
observed differences in outcomes between these genotypic groups
can be attributed to differences in long-term exposure to the trait
of interest. This latter point is an important distinction when
interpreting results from a MR analysis as compared with a
randomized controlled trial (RCT): MR will generally estimate
the effect of life-long "allocation" to an exposure on an outcome,
unless an exposure typically occurs only from a certain age—for
example, alcohol consumption and smoking—and the genetic
proxy affectsmetabolism of that exposure (33). If the effect of this
exposure on an outcome is cumulative over time, a MR analysis
may generate a larger effect estimate than that which would be
obtained from a randomized trial examining an intervention over
a limited duration of time. In addition, if the effect of an exposure
on an outcome operates primarily or exclusively over a critical or
sensitive period of the life course (e.g., early childhood), a MR
analysis should be able to "capture" a causal effect of this exposure
but will not be able to distinguish such period effects. In contrast,
a randomized trial will have the flexibility to test certain inter-
ventions over restricted periods of follow-up and in individuals
who may be within narrow age ranges. These distinctions are
discussed in more detail in the "Cancer latency and reverse
causation—benefits of MR" section of this review.

More formally, MR is a form of instrumental variable (IV)
analysis that relies on three key assumptions: the IV (here, one or
more genetic variants) should (i) be reliably associated with the
exposure of interest; (ii) not be associated with any confounding
factor(s) that would otherwise distort the association between the
exposure and outcome; and (iii) should not be independently
associated with the outcome, except through the exposure of
interest (known as the "exclusion restriction criterion"; Fig.
2A). If all assumptions are met, MR can provide an unbiased
causal estimate of the effect of an exposure on disease or a health-

related outcome. Violation of one or more of these assumptions
means that instruments are invalid and, consequently, that find-
ings from such an analysis may yield a biased effect estimate.

Previous success of MR approaches and potential for cancer
research

Over the past decade, MR has been increasingly adopted as an
analytic approach within population health research, particularly
the fields of metabolic and cardiovascular disease (CVD), where
there are several notable examples of important causal inferences.
For example, MR has suggested a likely causal role of statins on
type 2 diabetes (T2D) risk (34, 35); likely noncausal roles of
circulating levels of high-density lipoprotein cholesterol (HDL-C)
in myocardial infarction (36) and C-reactive protein (CRP) in
T2D (37); pointed to the efficacy of proprotein convertase sub-
tilisin/kexin type 2 (PCSK9) inhibitors for CHD prevention prior
to the publication of confirmatory long-term trial results (34, 38);
and prioritized further examination of apolipoprotein B (39, 40),
lipoprotein(a) (41), and IL6 (42) and deprioritized fibrinogen
(43) and secretory phospholipase A(2)-IIA (44) as intervention
targets for CVD. Although this approach has scope to test the
effects of an increasing number of exposures relevant to cancer
through the continued growth in large-scale genome-wide asso-
ciation study (GWAS) output, to date there remains a noticeable
gap in the MR literature with regard to cancer compared to other
outcomes (Supplementary Fig. S1).

Here, we provide an overview of some recent studies that have
applied MR to cancer outcomes, highlighting both the potential
strengths comparedwith conventional epidemiologic studies and
the unique challenges of performing MR studies in cancer. Recent
methodologic extensions to the original MR paradigm are pre-
sented,with emphasis on the translational opportunities that they
may offer to inform drug target validation and public health
strategies to reduce the burden of cancer.

Considerations for MR in cancer
Both the principal strengths of MR and important limitations

of this method have been discussed in detail previously (25–31,
45–49). The latter are presented in Table 1 with some methodo-
logic and statistical approaches that have been developed to
address them outlined in Tables 2 and 3. Considerations which
are specific to investigating causality in the setting of cancer are
outlined below.

Cancer latency and reverse causation–benefits of MR
Given long latency periods for many cancers, spurious findings

resulting from reverse causation are an important concern in
cancer epidemiology. Reverse causation has been suspected in
several instances of ambiguous (74–76) or paradoxical findings
(77) in the cancer literature. For example, early studies document-
ing an association between higher circulating cholesterol and
lower cancer incidence were variably interpreted as plausible
evidence of a protective effect of raised cholesterol on cancer
risk or as latent cancer leading to a reduction in cholesterol levels
(78–80). With the introduction and widespread usage of low-
density lipoprotein cholesterol (LDL-C)–lowering medications
for the prevention and treatment of CVD, concern arose that such
measures could thus be increasing cancer rates (81, 82).

In an early proposal of the use of genetics as a tool to cir-
cumvent issues of reverse causation in observational data,
Katan (83) suggested examining the association of genetic
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Table 1. Limitations of MR and techniques available to address them

Limitation Description Techniques to address limitation

Limitations to robust causal inference
Horizontal
pleiotropy

A genetic variant affecting an outcome via a biological pathway
independent of the exposure under investigation, violating the
"exclusion restriction criterion"

Assessment of heterogeneity across individual SNP estimates
MR-Egger regression and intercept test
Median-based approaches
Mode-based approaches
Sensitivity analysis removing potentially pleiotropic SNPs
Restrict risk score to SNPs in well-characterized genes
Stratification by exposure status (e.g., ALDH2 and self-reported
alcohol intake)

Linkage
disequilibrium

Linkage disequilibrium (LD) is the nonrandom association of alleles at
different loci that are close in proximity on a chromosome. If a
certain SNP is being used as an instrument for an exposure in a MR
analysis, and this SNP is in LD with another SNP that affects the
outcome via an independent pathway, then the assumptions forMR
will be violated.

LD pruning of SNPs prior to MR analysis
Weighted generalized linear regression
Perform studies in populations with different LD structures

Population
stratification

Allele frequencies vary among populations of different genetic
ancestry, and similarly, disease risk often varies among populations
of different genetic ancestry, which could introduce genetic
confounding into a MR analysis, potentially resulting in spurious
causal estimates.

Restricting analyses to individuals of a homogenous genetic
ancestry

Genomic inflation factor calculation
Adjusting MR analysis by genetic ancestry or ancestry-informative
principal components

Trait
heterogeneity

For a given trait (e.g., adiposity), SNPs may influence various
dimensions of this trait (e.g., both overall and visceral adiposity)
but GWAS have only examined associations with a subset of these
dimensions (e.g., solely BMI). This may produce misleading
inferences if the aimof an analysis is to ascertain the causal effect of
a particular dimension of a trait.

Better understanding of complex phenotypes
Multivariable MR

Limitations that complicate interpretation
Canalization Developmental compensation against the effect of a genetic variant

being used as an instrument that could attenuate themagnitude of
an observed MR association towards the null

Knowledge of the period of life when the influence of a genetic
variant(s) on an exposure may emerge can help guide whether
developmental compensatory processes are plausible. For
example, behavioural exposures that typically occur after fetal
development (e.g., alcohol, smoking) will be unlikely to be
influenced by canalizationwhereas in utero exposuremay. There
are currently no approaches for evaluating suspected
canalization in MR analyses.

Complexity of
association

Misinterpretation of MR results can arise from limited biological
understanding of genetic variants utilised as IVs. Examples include
interpretation of the effect of the heterozygous ALDH2 genotype
on esophageal cancer risk (discussed in "Illustrative examples")
and previous MR analyses that have examined the effects of
interleukin-6 (42) and extracellular superoxide dismutase (175) on
CHD risk (discussed in more detail elsewhere; ref. 49).

Improved biological understanding of genetic variants with
functional annotation, pathway analysis, and gene set
enrichment

Dynastic effects In certain circumstances, it is possible that parental genotype can
confound an association of offspring genotype with offspring
disease risk. For example, genetic variants influencing parental
height will not only influence offspring height genotype but could
also influence offspring disease risk via an independent effect of
maternal height-raising alleles on the in utero environment of the
offspring (176, 177).

Between-sibling MR design
Within-family MR design

Critical period
effects

If a biomarker primarily influences disease risk over a critical or
sensitive period of the life course, aMR estimate should capture the
causal effect of this biomarker but may not be able to distinguish
period effects

Negative exposure control design

Weak instrument
bias

If the IV is not robustly associatedwith the exposure, estimateswill be
biased toward the observational estimate in a one-sample setting
and toward the null in a two-sample setting with little
or no participant overlap between samples.

Increase sample size

Genetic risk scores or combining summarized data from multiple
genetic variants

Two-sample MR analysis
"Winner's Curse" Chance correlation between genetic variants and confounders can

introduces an overestimation of the effect of a "lead" genetic variant
onanexposureof interest in thediscovery stageof aGWAS.Theeffect
of this phenomenon will depend on the degree of overlap of
participants in the GWAS discovery dataset and subsequent MR
analyses. In a one-sample MR setting with a binary outcome, winner's
curse should not lead to bias if control participants were used in the
discoveryGWAS. If both casesandcontrolswereused in thediscovery
dataset, this will lead to weak instrument bias. If the instrument is
identified in a sample independent to the one in which MR analysis is
performed, this will lead to an underestimate of the causal effect.

Two-sample MR analysis
Split-sample MR analysis

(Continued on the following page)
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variants in APOE, determinants of circulating cholesterol levels,
with cancer risk. As germline APOE genotype was fixed at con-
ception, it was argued that it would not be influenced by subse-
quent cancer development and could therefore be used to estab-
lish whether cholesterol had a causal effect on cancer incidence.
Subsequent MR analyses testing the effect of lifelong elevated
cholesterol through genetic variation in APOE, NPC1L1, PCSK9,
and ABCG8 have reported null associations with overall cancer
risk (84–86). These findings alongside secondary analyses of
statin trials showing no effect on cancer rates (87) suggest that,
a potential explanatory role of confounding aside, early observa-
tional findings supporting a protective effect of cholesterol on
cancer risk likely reflected undiagnosed cancer or early carcino-
genic processes causing a reduction in cholesterol levels in pre-
diagnostic samples.

Long-term exposure–benefits of MR
The advantages of exploiting the fixed nature of germline

genotype extend beyond addressing reverse causation in obser-
vational studies. Large cancer prevention trials are often con-

strained to examining interventions over a limited duration in
time and over a particular period in the life-course (e.g., middle
and/or late adulthood; ref. 88). Given the length of time required
for solid tumor development (89), randomized trials will often
not allow sufficient follow-up for the effect of an intervention to
be detected. In turn, long-term chemoprevention trials that are
conducted may suffer from issues of noncompliance in the
intervention arm, contamination in the control arm, and attrition
during follow-up.

Furthermore, the optimal timing of an exposure to prevent
cancer may be early in the life-course and therefore may not be
adequately addressed in randomized trials (90). For example, it
has been proposed that certain carcinogenic agents or processes
may confer an effect, or a particularly pronounced effect, only over
"critical periods" of early life or adolescence (e.g., the influence of
inadequate childhood nutrient intake on adult cancer risk or the
pubertal period as a window of breast cancer susceptibility;
refs. 91–95). Interrogating the long-term effect on cancer of a
given intervention in a prevention trial among children or ado-
lescents would be unfeasible.

Table 1. Limitations of MR and techniques available to address them (Cont'd )

Limitation Description Techniques to address limitation

Low statistical
power

Genetic variants typically explain a small amount of variance for a
given exposure; thus, MR requires large sample sizes to test
hypotheses with adequate power. Furthermore, in finite samples,
confounders may not be perfectly balanced between genotypic
groups.

Large GWAS and GWAS consortia
Genetic risk scores or combining summarized data from multiple
genetic variants

Two-sample MR analysis

Randomization method

Mendelian randomizationRandomized controlled trial (SELECT)

Random segregation of alleles

Exposed: Selenium
supplementation

Exposed: Higher
selenium alleles

Control: Reference
alleles

Plasma selenium
+ 114 µg/L

Plasma selenium
+ 114 µg/L

Plasma selenium
(Baseline)

Plasma selenium
(Baseline)

Control: Placebo

Confounders equal

Prostate cancer risk: Prostate cancer risk:

Confounders equal
between groups between groups

HR 1.04 (95% CI, 0.91 – 1.19) OR 1.01 (95% CI, 0.89 – 1.13)

Figure 1.

Schematic comparison of the structure of a randomized controlled trial (SELECT) and a Mendelian randomization analysis (PRACTICAL). In SELECT (left),
individuals were randomly allocated to the intervention (200 mg daily selenium supplementation, which lead to a 114mg/L increase in blood selenium) or control group
(placebo). In PRACTICAL (right), the additive effects of selenium-raising alleles at eleven SNPs, randomly allocated at conception, were scaled to mirror a 114 mg/L
increase in blood selenium. If an RCT trial is adequately sized, randomization should ensure that intervention and control groups are comparable in all respects (e.g.,
distribution of potential confounding factors) except for the intervention being tested. In an intention-to-treat analysis, any observed differences in outcomes
between intervention and control groups can then be attributed to the trial arm to which they were allocated. Likewise, in a MR analysis, groups defined by genotype
should be comparable in all respects (e.g., distribution of both genetic and environmental confounding factors) except for their exposure to a trait of interest. Any
observed differences in outcomes between groups defined by genotype can then be attributed to differences in lifelong exposure to the trait of interest under study.
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Examining the effect of genetic variants allocated at conception
can therefore offer an importantfirst step in identifying risk factors
thatmay be sensitive to duration or timing of an exposure over the
life course. Inferences made from promising MR findings to
plausible intervention effects in a subsequent randomized trial
would then need to carefully consider the possibility that effect
estimates obtained in a MR analysis could be sensitive to critical
period effects (in which case intervening on an exposure outside
of this period may not alter disease risk) or represent the cumu-
lative effect of lifelong exposure to a biomarker (in which case a
relatively short-term trial may generate a smaller effect estimate
than that obtained from MR). Adopting a "triangulation" frame-
work where evidence from different epidemiologic approaches
with nonoverlapping sources of bias are integrated can then be
used to further examine durations of intervention necessary to
confer an effect or "pinpoint" possible critical windows of sus-
ceptibility to carcinogenic agents (96). For example,multivariable
regression analyses examining the association of an exposure,
with some evidence of causality from MR studies, over different
lengths of follow-upmayhelp to identify theduration of exposure
required to confer an effect. A negative control study with repeat
measures of an exposure bothwithin andoutside of hypothesized
critical periods (e.g., dietary fat intake before, during, and after
pubertal development), in relation to subsequent disease risk
(e.g., breast cancer; ref. 97) could be used to help refine periods of
increased vulnerability to cancer-causing exposures.

Cancer latency and reverse causation–limitations of MR
Genetic variants known to directly affect an exposure will in

some cases be well-characterized (e.g., variants in APOE), and it
will be established whether or not the variant–exposure associa-
tions are influenced by the outcome of interest. The biological
understanding of other variants associated with risk factors that
are identified in GWAS, however, is often more limited. In some
situations in which genetic variants are associated with both an
exposure and outcome of interest, the association between a
variant and outcome might be via the exposure (i.e., a valid IV
analysis) but it is also possible that, under certain circumstances,
theremay be a primary effect of the variant on the outcomewhich
in turn causes a change in the exposure.

This situation has been illustrated previously in the context of
bodymass index (BMI) and CRPwhere an erroneous causal effect
can be generated if a genetic variant that primarily influences BMI,
which in turn influencesCRP levels becauseBMIhas a causal effect
onCRP, ismistaken as being a variant with a primary influence on
CRP (25). Use of such a variant as an instrument for CRP in a MR
analysis of the effect of CRP on BMI would then lead to biased
results.

This introduction of reverse causation into a MR analysis may
be problematic for common cancers with long latency periods
between tumor initiation and diagnosis (e.g., breast and prostate;
ref. 98). Reverse causation in this context could be mitigated by
obtaining gene–exposure estimates in ahealthypopulationwhere
the prevalence of undiagnosed, latent cancer is likely to be low.
These estimates could then be used to generate IV estimates in a
two-sample MR framework. In addition, steps could be taken to
construct an instrument solely consisting of genetic variants that
plausibly act directly on a trait. For example, in constructing an
instrument for CRP levels, this could include solely using variants
withinCRP itself as these variants aremore likely to be exclusively
associated with CRP levels than variants in other genes (99).
However, it should be noted that a trade-off of using few,
biologically informed SNPs as an instrument is that sensitivity
analyses examining horizontal pleiotropy, when feasible to per-
form, will have limited statistical power.

Selection bias in cancer progression analyses
A particular concern in cancer epidemiology is that exposures

that influence cancer incidence may not influence cancer pro-
gression or survival. For example, although smoking is a robust
risk factor for breast cancer incidence, smoking cessation upon
development of breast cancer seems to have little effect on
subsequent survival (100). There has been some suggestion
that folate may play a dual role in prostate and colorectal
carcinogenesis: protective against DNA damage prior to the
development of neoplasia, but promoting tumor progression
via enhanced tumor proliferation and tissue invasion once
cancer has developed (101, 102).

Some MR studies have begun to examine the effect of risk
factors on both cancer incidence and progression (103). In a
recent analysis examining the effect of alcohol on prostate
cancer risk in 46,919 men in the PRACTICAL consortium,
alcohol consumption was not associated with overall prostate
cancer risk but increased risk of prostate cancer mortality
among men with low-grade disease (104). Such MR studies
exploit the fact that GWAS are being increasingly used to
identify genetic variants associated with cancer progression or
survival (105, 106).

However, there are important methodologic considerations in
investigating factors causing cancer progression. This is because
prognostic studies can suffer from selection bias due to the fact
that any factors that cause disease incidence (or diagnosis) will
tend to be correlated with each other in a sample of only cases,
even when they are not correlated in the source population. Thus
if at least one factor causes both incidence and disease survival
(hypothetically, insulin resistance in Fig. 3), all the other factors
which cause disease incidence (hypothetically, smoking in Fig. 3)
will appear to be associated with survival, unless the true prog-
nostic factor is conditioned upon. Thus, the estimated effect on
progression for any factor that is associatedwith incidence is likely
to be biased. However, any factor that is not associated with

Figure 2.

Illustration of MR methodology. A genetic variant (G) is used as a proxy for a
modifiable exposure (E) to assess the association between E and an outcome
of interest (O) without the issues of reverse causation, and confounding (U).
MR methodology relies on three main assumptions, in that G must (i) be
reliably associated with E; (ii) not be associated with U; and (iii) not be
independently associated with O, except through E. This method is exemplified
in the context of assessing the association of smoking and lung cancer, using
the CHRNA5-A3-B4 SNP as a genetic instrument for heaviness of smoking.
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incidencewill not suffer from selection bias by studying only cases
in a MR analysis.

When conducting prognostic studies, care should be taken to
examine and (where possible) overcome the selection bias due to
studying only cases (103). First, the observed data could also be
used to help identify plausible directed acyclic graphs (DAG)
including both disease incidence and progression. For example, if
a risk score for a phenotype, and an environmental variable, are
correlated in cases, but not in the source population this would
suggest that both factors influence disease incidence, diagnosis, or

self-selection into the study. However, lack of evidence for such
correlations does not imply that there is no selection bias, and
expert or external knowledge should be used in constructing the
DAG, as is usual practice. The DAG can then be used to help
inform sensitivity analyses. Additional data on factors that predict
incidence could be combined with observed data in cases, to
minimize selection bias, either by conditioning or by inverse
probability weighting. If more than one DAG are considered
plausible a priori, then they can be used to conduct sensitivity
analyses by examining how robust the conclusions are to the

Table 2. Summarized data and two-sample MR

Methodologic approaches and related
considerations

Description

Two-sample MR Historically, both gene-exposure and gene-outcome estimates in MR analyses had to be obtained from a single
sample, which relied upon the availability of information on genotype, exposure, and outcome among all
participants in that dataset. In practice, this not only posed a challenge in that large-scale measurement of a given
exposure of interest (e.g., many molecular traits) may not only be prohibitively expensive but also that
measurement of certain exposures may not be possible (e.g., if adequate blood sample collection or preservation
has not taken place; ref. 50). An extension to the original MR paradigm that has allowed MR analyses to overcome
some of these challenges is the integration of gene-exposure and gene-outcome estimates from two independent
(nonoverlapping) datasets into a single analysis, an approach called "two-sample MR" analysis (50, 51).

Two-sample MR with summarized genetic
association data

It is possible and increasingly common practice to perform MR analyses exclusively using summarized data on gene-
exposure and gene-outcome estimates (51, 52). A strength of two-sample MR with summary data is that the scope
of possible MR analysis can be expanded significantly by exploiting the growing amount of publicly available
summary data from large genome-wide association study (GWAS) consortia (53) and is aided by the development
of a harmonized MR platform that has collated these datasets (MR-Base; ref. 54). Utilizing data from separate
exposure and outcome samples can help to bolster statistical power inMR analyses by increasing the overall sample
size of an analysis, particularly when testing effects on binary disease outcomes like cancer, and also reduces the
likelihood of "winner's curse" bias (see Table 1; ref. 51). This increased power also means that sensitivity analyses to
test pleiotropy assumptions (see Table 3: Genetic risk scores and pleiotropy) which are often statistically inefficient
are better-powered to detect violations of these assumptions. Furthermore, whereas in a one-sample MR setting
weak instruments can bias effect estimates towards the observational effect, resulting in potential false positive
associations, in a two-sample settingweak instrument bias distorts findings towards the null. Thus, conducting both
analyses is a form of sensitivity analysis that provides bounds to a possible causal effect.

To testwhether height has a causal effect on risk of colorectal, lung, and prostate cancer, Khankari and colleagues used
a two-sample MR approach. This employed: (i) summarized gene-exposure estimates from a panel of 423 single-
nucleotide polymorphisms (SNPs) previously found to be associated with height in a large GWAS meta-analysis
(GIANT consortium; N ¼ 253,288) and collectively explaining approximately 16% of variance in height; and (ii)
summarized gene-outcome estimates from a total of 47,800 cancer cases (across the three outcomes ascertained)
and 81,533 controls from the Genetic Associations and Mechanisms in Oncology (GAME-ON) consortium (55). This
approach allowed robust causal inference with adequate statistical power. While Khankari and colleagues did not
examine the effects of height across stage/grade or histologic subtype of the three cancers examined, two-sample
approaches enable statistically efficient examination of risk factors across such stratified groups which may have
limited sample sizes.

Limitations of two-sample MR While two-sample MR offers some clear advantages over a conventional one-sample approach, it also introduces
additional assumptions. One important assumption is that the separate datasets from which gene-exposure and
gene-outcome associations are obtained are representative of the same underlying population, for example with
regard to sex, age, ethnicity, or genetic profile. While most GWAS that have examined sex-specific associations of
traits have often reported at most modest evidence of sexual dimorphism (56, 57), given the sex-specific nature of
certain cancers, care should be taken to ensure that instruments are obtained from sex-stratifiedGWAS for analyses
of these cancers when available. For example, in examining the effect of waist-hip-ratio (WHR) on endometrial or
ovarian cancer this could involve using the 34 SNPs associated with WHR in women exclusively as a primary
instrument, then comparing results with those obtained using the 47 SNPs associated withWHR across both sexes
as a sensitivity analysis (58, 59). Concordance of findings between both approaches may suggest that directionally
consistent SNPs associated with WHR at genome-significance in women, but not men, simply reflected reduced
statistical power in sex-stratified GWAS analyses and not genuine heterogeneity in SNP-effects between sexes. A
second challenge when performing two-sample MR using summary data is the difficulty in examining the IV
assumption that an instrument used is independent of exposure–outcome confounders. While restriction of
analyses to ethnically homogenous gene-exposure and gene-outcome datasets will reduce the possibility of
confounding through population stratification, in lieu of data on measured potential confounders, this assumption
cannot be directly tested. While one way of approximately testing this assumption is performing look-up of
associations of SNPs with suspected potential confounders in curated GWAS databases, this would not preclude
chance confounding relationships arising in the dataset(s) from which summary data were obtained. Third,
with the use of summary data from large GWAS consortia, it is possible that there may be some participant overlap
in the datasets from which gene–exposure and gene–outcome associations are obtained. If overlap is small,
this should not substantially bias effect estimates, however substantial overlap will bias MR toward the
observational effect (60).
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Table 3. Genetic risk scores and pleiotropy

Methodologic approaches and related
considerations

Description

Using multiple genetic variants as
an instrument

While GWAS over the past decade have been successful at identifying robust associations between common genetic
variants (usually SNPs) and thousands of phenotypes, the effects of individual variants on traits are often modest
(61). Consequently, statistical power for MRanalyses using single variants as instruments can be limited. A common
approach of overcoming limited statistical power is to combine multiple variants into a genetic risk score (GRS) or
combine summary data across multiple SNPs, which increases the variance explained for a trait of interest,
improving instrument strength (62, 63). AGRS or instrumentwith summarized data frommultiple SNPs can consist
of an unweighted summation of risk-factor increasing alleles across variants but, more commonly, a weighted
approach is used (e.g., weighted by the estimated SNP-exposure effect size or, in settings with summary data, by
the inverse of the standard error of the gene-outcome association—called the "inverse-variance weighted
method"). In a two-sample setting (see Table 2: Summarized data and two-sampleMR), an instrument consisting of
summarized data frommultiple variantswill typically be constructed by combining SNPs that are independent (i.e.,
not in LD with each other). However, it is also possible to combine correlated SNPs in low to moderate LD into an
instrument, usingweightedgeneralized linear regression for example (62). This requires the creation of aweighting
matrix which takes into account correlations between SNPs, oftenwith use of a reference panel like the Hapmap or
the 1,000 Genomes Project (64, 65), which is then used to correctly inflate standard error estimates. The latter
method may be preferable to overcome weak instrument issues when few independent SNPs are available.

Vertical vs. horizontal pleiotropy While construction of a GRS can help to enhance statistical power in MR analyses, increasing the number of variants
included in a score is accompanied by an increased probability that any of these variants could be pleiotropic (i.e.,
one variant having effects on two or more traits). In a genetic epidemiological context, an important distinction is
made between vertical and horizontal pleiotropy, each having different effects on the interpretation ofMR findings.
Vertical pleiotropy occurs when one variant has an effect on two or more traits that both influence an outcome
through the same biological pathway. For example, variants in FTO that not only associate with BMI, but also with
fasting insulin and glucose concentrations would be consistent with a causal effect of BMI on these downstream
traits (66). In this case, a MR analysis examining the effect of BMI on T2D risk using these FTO variants would be
consistent with an instrument (genetic variants associated with BMI) influencing an outcome (T2D) exclusively
through the exposure of interest (BMI). This form of pleiotropy would be expected in complex biological systems
and does not pose a threat to the validity of a MR analysis (67). In contrast, horizontal pleiotropy occurs when one
variant has an effect on twoormore traits that influence an outcome through independent biological pathways. For
example, genetic variants associatedwith triglyceride levels also show substantial overlapwith variants associated
with LDL-C and HDL-C (68). As a putative effect of triglyceride-increasing variants on CHD risk may not only
operate through elevation of triglycerides but through alternate cholesterol pathways, a na€�veMR analysis using all
triglyceride-increasing variants without addressing pleiotropy in this instance could invalidate the "exclusion
restriction criterion" IV assumption. The presence of horizontal pleiotropy thus poses a direct threat to the validity
of MR findings.

Assessment of horizontal pleiotropy When using either a single or a small number of genetic variants as IVs, the presence of horizontal pleiotropy for any
individual variant can be assessed through SNP look-ups in curatedGWAS databaseswith complete summary data
[e.g., MR-Base (54), PhenoScanner (69), dbGap (70)] to examine whether associations for a given SNP have been
reported for traits other than the exposure of interest. Sensitivity analyses can then be performed by dropping
variants that are suspected to be horizontally pleiotropic and then carefully interpreting pooled causal estimates
with and without suspected horizontally pleiotropic SNPs. When an instrument consists of multiple genetic
variants, an important first step in examining the presence of horizontal pleiotropy in analyses is to assess
heterogeneity in causal estimates across individual IVs (including visually examining heterogeneity using a funnel
plot). While substantial heterogeneity in causal estimates may be indicative of the presence of horizontal
pleiotropy, if there is overall symmetry in the funnel plot, pleiotropic effects will be balanced (termed "balanced
pleiotropy") and the overall causal estimate generated will be unbiased. In contrast, if there is considerable
asymmetry in a funnel plot, thiswill suggest that horizontal pleiotropic effects of individual IVs are not balanced and
that overall causal estimates will be biased (termed "directional pleiotropy"). MR-Egger regression and the
weighted median estimator (WME) are two widely implemented approaches for detecting and accounting for
directional pleiotropy, and are applicable to analyses utilizing individual-level and summary-level data (71, 72). An
additional approach called the mode-based estimate (MBE) has also recently been proposed as a method to
examine horizontal pleiotropy in MR analyses (73). All of these methods can help to detect IV violations while
making different assumptions about the nature of horizontal pleiotropy and thus, when feasible, using all
approaches as sensitivity analyses in a given MR analysis can serve as an important mechanism to assess the
robustness of findings to pleiotropic bias.

Sensitivity analyses to examine horizontal
pleiotropy when using multiple genetic
variants

MR-Egger regression provides a consistent causal effect estimate even when all genetic variants are invalid IVs
because they violate the exclusion restriction criterion. This approach performs a weighted linear regression of the
gene–outcome coefficients on the gene-exposure coefficients with an unconstrained intercept term. If the IV
assumption that the association of each variant with the outcome is mediated exclusively through the exposure of
interest is met, this intercept term should be zero. An intercept term that differs from zero would suggest the
presence of unbalanced pleiotropy, thus providing a test for directional pleiotropy. In turn, the slope coefficient in
MR-Egger regression will provide an estimate of a causal effect adjusted for directional pleiotropy. An important
consideration when using MR-Egger is that it works under the InSIDE (instrument strength independent of direct
effect) assumption. In essence, InSIDE assumes that no association exists between the strength of gene-exposure
associations and the strength of bias due to horizontal pleiotropy. Intuitively, if multiple genetic variants in an MR
analysis have horizontally pleiotropic effects through unrelated intermediate variables, it would be expected that
this assumption should hold. However, this assumption is unlikely to be satisfied in situations where all pleiotropic

(Continued on the following page)
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causal assumptions made. The DAG can also be used to identify
which assumptions are being made that are untestable given the
observed data, and then sensitivity analyses can be conducted by
examining plausible values for those relationships.

Illustrative examples
To illustrate the use of MR in analyses examining cancer out-

comes, we have outlined three studies that have employed this
approach to understand the causal role of various exposures on
cancer incidence.

Selenium and prostate cancer risk
Prospective studies reporting inverse associations of dietary,

blood, and toenail selenium with risk of prostate cancer (107–
113), along with findings from in vitro studies (114, 115), led to
development of SELECT (9). SELECT was a 2� 2 factorial trial of
35,533 healthymiddle-agedmen that examined the effect of daily
supplementation with selenium, vitamin E, or both agents com-
bined, as an intervention for prostate cancer prevention. The trial
was stopped after 5.5 of a planned 12 years follow-up due to a lack
of efficacy compounded by possible carcinogenic (increased rates
of high-grade prostate cancer) and adverse metabolic (some
evidence of increased rates of T2D) effects in the selenium
supplementation group (8, 9). It is plausible that residual con-
founding may have accounted for conflicting results between

prospective studies and SELECT (116, 117), although others have
suggested that these differences may have reflected differences in
baseline levels of selenium of participants in some observational
studies as compared with SELECT (118).

To test whether aMR approach could have predicted the results
of SELECT, a two-sample MR analysis (Table 2) was performed
using summary data on 72,729 individuals from the PRACTICAL
consortium (119, 120). Eleven SNPs robustly associated with
blood selenium in previous GWAS (refs. 121, 122; P < 5 � 10�8)
were combined into a genetic instrument (Table 3) to proxy
circulating levels of selenium (Fig. 1). To allow for direct com-
parison of effect estimates with SELECT, the authors investigated
the OR per 114 mg/L increase in circulating selenium, scaled to
match the measured differences in blood selenium between
supplementation and control arms in SELECT.

Consistent with results from SELECT, a 114 mg/L life-long
increase in blood selenium in MR analyses was not associated
with overall prostate cancer risk [OR:1.01; 95% confidence inter-
val (CI): 0.89–1.13; P ¼ 0.93; SELECT: HR:1.04; 95% CI: 0.91–
1.19]. MR analysis of selenium on advanced prostate cancer (OR:
1.21; 95% CI: 0.98–1.49; P ¼ 0.07) was concordant with weak
evidence for an increased risk of high-grade prostate cancer in the
selenium supplementation arm of SELECT (HR: 1.21; 95% CI:
0.97–1.52; P ¼ 0.20). Likewise, the effect of selenium on T2D
(OR: 1.18; 95%CI: 0.97–1.43;P¼0.11)was consistentwithweak

Table 3. Genetic risk scores and pleiotropy (Cont'd )

Methodologic approaches and related
considerations

Description

effects are due to the presence of a single confounder. As such, in lieu of an established method of formally testing
the InSIDE assumption, interpretation of intercept terms and slope coefficients generated through MR-Egger
should be made with this assumption in mind. A complementary sensitivity analysis to MR-Egger is the weighted
median estimator. This approach provides an estimate of the weightedmedian of a distribution in which individual
IV causal estimates in a risk score are ordered andweighted by the inverse of their variance. UnlikeMR-Egger which
can provide an unbiased causal effect even when all IVs are invalid, WME requires that at least 50% of the
information in a risk score is coming from IVs that are valid to provide a consistent estimate of a causal effect in aMR
analysis. However, an advantage ofWME is that it provides improved precision as compared toMR-Egger and does
not rely on the InSIDE assumption. The mode-based estimator generates a causal effect using the mode of a
smoothed empirical density function of individual IV causal estimates in a risk score. This approach operates under
the assumption that themost common effect estimate of individual IVs in a risk score arises from valid instruments
(called the Zero Modal Pleiotropy Assumption, or ZEMPA). If this assumption holds, the mode can provide a
consistent causal estimate even if most of the (nonmodal) IVs are invalid. Both simple and weighted mode
approaches (weighted by the inverse variance of the SNP-outcome association) can be utilized. Mode-based
approaches have less power to detect a causal effect than the weighted median estimator but greater power than
MR-Egger regression under the condition of no invalid instruments. Similar to the weighted median estimator,
mode-based approaches are also (by default) less susceptible to bias from outlying variants in a risk score.

Figure 3.

Directed acyclic graph for selection bias in prognostic studies. In this example, the square bracket indicates that we are conditioning on pancreatic cancer
incidence in a survival study by only studying pancreatic cancer cases, thus inducing an association between smoking (a factor that is otherwise independent
of pancreatic cancer survival) and pancreatic cancer survival. This link is broken when conditioning on the factor that influences both cancer incidence and
survival (e.g., insulin resistance), which can otherwise be seen as a confounder of the association between smoking and cancer survival. If a factor appears to
influence pancreatic cancer survival but is not associated with pancreatic cancer incidence (e.g., treatment for pancreatic cancer), selection bias in such
an MR analysis would not be expected.
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evidence for an increased risk of T2D in the selenium arm of
SELECT (HR: 1.07; 95% CI: 0.97–1.18; P ¼ 0.16).

A limitation of this analysis is that the authors did not test
the hypothesis that the effect of selenium on prostate cancer
risk varied by baseline selenium status. One way to investigate
this in an MR framework would be to test for interaction in
effect estimates by study location—whether the study was
conducted in selenium replete (e.g., United States) versus
selenium deficient (e.g., Europe) countries. If differences in
baseline levels of selenium do impact on the effect of selenium
on prostate cancer, we would expect different effect estimates in
these different settings. The overall similarities in findings
between this MR analysis and that of SELECT, as compared
with results from conventional observational studies, thus
provides some support for the utility of an MR approach in
approximating experimental results using observational data.
Furthermore, these results suggest that performing a MR anal-
ysis may be an important time-efficient and inexpensive step in
predicting both efficacy and possible adverse effects of an
intervention before an RCT is performed.

Alcohol and esophageal cancer risk
Regular alcohol consumption is associated with a substantial

increased risk of esophageal squamous cell carcinoma in obser-
vational studies, with an approximate 2-fold increased risk for
moderate drinkers and 5-fold increased risk for heavy drinkers
when compared with occasional/nondrinkers (123). However,
alcohol consumption is often associated with other lifestyle and
behavioral factors (e.g., smoking and dietary intake), which may
themselves predispose toward esophageal cancer (124, 125).
Furthermore, most studies that examined this hypothesis have
used case–control designs, which may introduce reporting bias if
cases recall alcohol consumption differently from controls (123).

The ability to metabolize acetaldehyde, the principal metabo-
lite of alcohol and a carcinogen (126), is encoded by ALDH2,
which is polymorphic in some East Asian populations. Specifi-
cally, the ALDH2 �2 allele produces an inactive protein subunit
that is unable to metabolize acetaldehyde, resulting in markedly
higher peak blood alcohol levels in �2�2 homozygotes compared
with �1�1homozygotes (127). Individualswith the �2�2 genotype
experience a flushing reaction to alcohol, along with dysphoria,
nausea, and tachycardia, and therefore have very low levels of
alcohol consumption (128). Consequently, genetic variation in
ALDH2 is robustly associated with both acetaldehyde levels and
alcohol consumption (via differences in physiologic response to
levels of acetaldehyde). This satisfies the instrumental variable
assumption that an instrument is robustly associated with an
exposure of interest and ALDH2 can be utilized as an instrument
for examining both regular alcohol consumption and blood
acetaldehyde levels among alcohol consumers (129).

In a meta-analysis of seven studies with a total of 905 esoph-
ageal cancer cases of East Asian descent, individuals with the
ALDH2 �2�2 genotype were found to have an approximately 3-
fold reduced risk of esophageal cancer, as compared with the
ALDH2 �1�1 genotype (OR: 0.36; 95%CI: 0.16–0.80), suggesting
a protective effect of reduced alcohol on esophageal cancer (130).
However, when comparing individuals with a heterozygous �1�2
genotype to �1�1 individuals, the former were shown to have a
(seemingly paradoxical) overall increased esophageal cancer risk
(OR: 3.19; 95% CI: 1.86–5.47). A na€�ve interpretation of this
finding, without consideration of the effect of theALDH2 �2 allele

on blood acetaldehyde, would suggest that individuals with
moderate alcohol intake had thehighest risk of esophageal cancer.

When this association was stratified by self-reported alcohol
intake, the effect of �1�2 genotype on esophageal cancer was
shown to differ markedly by alcohol intake. Among nondrinkers,
there was no strong evidence for an increase in risk among
heterozygotes (OR: 1.31; 95% CI: 0.70–2.47) relative to �1�1
individuals. However, among heavy drinkers there was a 7-fold
increase in risk (OR: 7.07; 95% CI: 3.67–13.6). Similarly, meta-
regression analysis showed evidence that level of alcohol intake
influenced the effect of the �1�2 genotype on esophageal cancer
risk (P ¼ 0.008; i.e., the larger the amount of alcohol intake, the
greater theORof �1�2 versus �1�1 genotypes). As the possession of
an ALDH2 �2 allele only appeared to increase risk of esophageal
cancer among heterozygotes who reported alcohol intake, this
suggested that the substantially elevated acetaldehyde levels in
these heterozygotes may mediate the effect of alcohol intake on
esophageal cancer.

More generally, this example illustrates how interpretation of
MR findings can be challenging when there is limited biological
understanding of the genetic variant used as a proxy for a given
exposure. MR results that appear to be strongly discordant with
underlying biology should be followed-up alongside available
functional understanding of genetic variants employed as instru-
ments to help resolve ambiguous or paradoxical results and avoid
na€�ve interpretation of findings.

BMI and lung cancer risk
In contrast to the relationship of adiposity with risk of most

cancers, BMI has shown consistent inverse associations with
incidence of lung cancer, particularly among current and for-
mer smokers (131, 132). As smoking is a robust risk factor for
lung cancer and has an inverse effect on BMI (133), some have
argued that residual confounding by smoking could account for
this apparent protective association (134). Reverse causation
(i.e., undiagnosed lung cancer or disease processes leading up
to lung cancer prior to study entry influencing subsequent
weight loss), especially in cohorts with insufficient follow-up
time, has also been proposed as an explanation for this obser-
vational finding (135).

Attempts to address these possible sources of bias have failed to
provide clarity. For example, studies that reported finely stratify-
ing associations across various dimensions and classifications of
smoking behavior (e.g., number of cigarettes smoked per day,
"cigarette-years" smoked, and time since quitting smoking) have
found little evidence to support residual confounding by smoking
influencing this association (131, 132). Furthermore, studies
removing individuals with inadequate follow-up have reported
little effect on overall findings (131, 132, 136, 137), interpreted as
suggesting that reverse causation is unlikely to be a major con-
tributor to this association.

Given that germline genetic variants associated with BMI can-
not be influenced by prevalent disease and should not be asso-
ciated with potential confounding factors, anMR approach could
be used to assess whether increased BMI is protective against lung
cancer (138, 139). For example, Carreras-Torres and colleagues
performed a MR analysis using GWAS results on 16,572 lung
cancer cases and 21,480 controls of European descent (140).
Ninety-seven SNPs previously associated with BMI in a GWAS
of 339,224 individuals were compiled into an instrument to
proxy for anthropometricallymeasured BMI. This instrument was
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associated withmeasured BMI but not with available measures of
tobacco exposure, including pack-years, cigarettes smoked per
day, or cotinine levels, providing some evidence against con-
founding through measured smoking variables (133). In two-
sample MR analyses, a 1-SD increase in genetically predicted BMI
was weakly associated with an increased risk of lung cancer (OR:
1.13; 95% CI: 0.98–1.30; P ¼ 0.10), with strong heterogeneity
across histologic subtypes (Pheterogeneity < 3 � 10�5). Notably,
genetically predicted BMI was positively associated with risk of
both squamous cell (OR: 1.45; 95% CI: 1.16–1.62; P ¼ 1.2 �
10�3) and small-cell carcinoma (OR: 1.81; 95% CI: 1.14–2.88;
P ¼ 0.01) but showed weak evidence for a protective effect for
adenocarcinoma (OR: 0.82; 95% CI: 0.66–1.01; P¼ 0.06). These
findings thus help to clarify a likely positive risk relationship of
BMIwith twomajor histosubtypes of lung cancer. Alongside some
genetic evidence to suggest that elevated BMI may influence
subsequent smoking uptake (141), which itself reduces BMIwhile
increasing lung cancer risk (133), these findings collectively
suggest a possible mechanism that could help to reconcile seem-
ingly conflicting MR and observational findings. Further interro-
gation of a possible mediating role of smoking on the causal
pathway between BMI and lung cancer risk using "two-step MR"
(discussed in "MR for mediation") may be able to help shed
further light on the possible intricate relationship between smok-
ing and BMI in the etiology of lung cancer.

Recent methodologic extensions and future applications
In recent years, the development of various methodologic

extensions to the original MR paradigm have helped to enhance
the scope of MR analyses, several of which are discussed below
with reference to possible applications in cancer epidemiology.

MR for mediation
Over the past decade, high throughput "omics" technologies

have begun to permit exhaustive profiling of the epigenome,
metabolome, and proteome (as examples), allowing the col-
lection of high-dimensional molecular data on increasingly
large numbers of individuals (142). Such omics measures may
serve as important mediators on causal pathways linking
macro-level risk factors with cancer incidence or progression.
While conventional mediation analyses exist to examine pos-
sible exposure–mediator–outcome relationships, the validity
of these approaches relies upon strong assumptions which are
unlikely to be met in practice, such as no measurement error
and no unmeasured confounding (143).

With the performance of GWAS on large collections of meta-
bolites and other omic measures (144, 145), this will create
opportunity to develop instruments for these traits. To establish
whether a particular molecular intermediate is on the causal
pathway between an exposure and cancer, genetic variants can
be used as instruments for both exposures and putativemediators
that influence a disease outcome in a two-step MR framework
(Fig. 4; ref. 146).

For example, a method of testing the mediating role of meth-
ylation changes on cancer outcomes would be to exploit the fact
that genetic variants (e.g., methylation quantitative trait loci,
mQTLs) are robustly associated with methylation at CpG sites
across the epigenome, providing possible instruments for MR
analyses (147). Two-step MR could then be used to examine the
potentialmediating role ofDNAmethylation sites associatedwith
exposures such as tobacco smoke (148), which have also been
found to be strongly associatedwith lung cancer risk (149). To test
whether methylation is causally mediating (some, or all of) the
effect of tobacco exposure on lung cancer risk, in the first step,
a SNP could be used to proxy smoking behavior to investigate
its effect on the intermediate phenotype (DNA methylation).
In the second step, an independent SNP could then be used to
proxy the intermediate phenotype (DNA methylation), which
could then be examined in relation to the disease outcome
(lung cancer; ref. 143). This approach has the potential to be
scaled upwithin the context of highdimensional 'omic datasets to
integrate multiple tiers of molecular data in a causal framework
(150, 151). While statistical and computational challenges arise
with increasingly complex networks of molecular mediators,
numerous data reduction and variable selection techniques may
be used to identify informative causal molecular pathways
to disease, including pathway analysis, penalized regression,
machine learning, and datamining techniques, which are increas-
ingly being applied in an automated fashion (refs. 152, 153; see
the "Hypothesis-free MR" section of this review).

Factorial MR
Akin to a factorial RCT, factorial MR is a method of testing the

independent and additive effects of two or more exposures on
disease outcomes. This approach was adopted by Ference and
colleagues, who performed a 2 � 2 factorial MR analysis to
examine the effect of the LDL cholesterol-lowering drug ezetimibe
on risk of coronary heart disease (CHD), as compared with the
effect of statins alone or when combined with statins (154).
Ference and colleagues examined the effect of genetically lower

Smoke exposure

Smoke exposure

DNA methylation

DNA methylation

Lung cancer

Lung cancer

Cis-SNP

CHRNA5-A3-B4

Figure 4.

Two-step MR analysis examining the mediating effect of
methylation on the association between smoke
exposure and lung cancer. In the first step, a SNP within
CHRNA5-A3-B4 is used as an instrument for smoke
exposure to assess the causal association between
smoking and DNA methylation. In the second step, an
independent cis-SNP is used as an instrument for DNA
methylation to assess the causal association of DNA
methylation with lung cancer risk. The two-step method
allows interrogation of the mediation effect of DNA
methylation in the association between smoking and
lung cancer risk.
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LDL-C on the risk of CHD through SNPs in NPC1L1 (a target of
ezetimibe) alone,HMGCR (a target of statins) alone, or variants in
both gene regions combined. The authors reported that natural
randomization to lower LDL-C through SNPs in NPC1L1 and
HMGCR alone showed similar decreases in LDL-C and CHD and
that randomization to lower LDL-C in both groups combined had
a linearly additive effect on LDL-C lowering and a log-linearly
additive effect on CHD risk. These results were corroborated by
the Improved Reduction of Outcomes: Vytorin Efficacy Interna-
tional Trial, which allocated 18,144 participants to ezetimibe,
statins, both, or placebo (155).

An important caveat of this approach is that it relies on access to
individual-level data and requires very large sample sizes to have
adequate statistical power to reliably detect differences in effect
across groups.

Hypothesis-free MR
A novel extension to a conventional "hypothesis-driven" MR

analysis is a phenome-wide, "hypothesis-free" MR analysis
(termed "MR-PhEWAS"; ref. 152). This approach makes use of
genotyped datasets with high-dimensional phenotypic data or
summary GWAS association statistics to perform hundreds or
thousands of statistical tests simultaneously in an agnostic man-
ner. For example, the approach can be used to examine the effect
of a single exposure across multiple outcomes or multiple expo-
sures across a single outcome. In contrast to hypothesis-driven
analyses, hypothesis-free approaches allow for testing hypotheses
that may not have been considered or tested previously, thus
identifying novel risk relationships, and can help to address issues
of publication bias as all analyses are openly specified and all
results are presented (156).

For example, using a two-sample MR framework with sum-
mary data, Haycock and colleagues performed a MR-PheWAS
examining the effect of telomere length on risk of 35 cancers
and 48 noncancer diseases in 420,081 cases and 1,093,105
controls (157). After correction for multiple-testing, they found
that telomere length increased cancer risk across most sites and
histologic subtypes but reduced CVD risk. An important con-
sideration when performing hypothesis-free MR analyses using
summary data is the need to follow-up any putative findings in
subsequent independent datasets. This can be a challenge when
using summary GWAS data to perform such analyses if a large
proportion of the available GWAS literature was used to pro-
vide causal estimates in the original "discovery phase" of an
analysis.

MR for identifying causality of mutational signatures
Large-scale analysis of the genomes of thousands of patients

with cancer has helped to reveal somatic "mutational signatures"
(distinctive somatic mutational patterns left by unique carcino-
genic agents) involved in the development of their tumors (158,
159). To date, mutational signatures have been identified across
more than 30 different cancer types, with anywhere from two to
six distinct mutational processes for each cancer type. Knowledge
of the causes of somatic mutations within tumor tissue can
improve understanding of themechanisms bywhich endogenous
and exogenous exposures promote the development of a cancer.
Of the mutational signatures identified across cancer types, a
putative cause has been proposed for approximately half
(158); MR may offer particular promise in helping to identify
the etiology of other mutational signatures identified (160).

Robles-Espinoza and colleagues examined the effect of germ-
line MC1R status, associated with red hair, freckling, and sun
sensitivity, on somatic mutation burden in melanoma. Such an
analysis can be viewed as a MR appraisal of the effect of this
sensitivity phenotype on somatic mutation burden in melano-
ma (161). For all six mutational types assessed, there was
evidence of an increased burden of somatic single-nucleotide
variants in individuals carrying one or two MC1R R alleles
(disruptive variants). For one of the six mutational signatures
characterized by an abundance of somatic C>T single nucleotide
variants, each additional R allele at MC1R was associated with a
42% (95% CI:15–76%) increase in the C>T single-nucleotide
variant count. This approach therefore highlights the possibility
of testing the causal effect of suspected carcinogenic agents on
mutational burden for various mutational signatures across
cancer tissues and subtypes.

Drug repurposing and adverse drug effects
Drug repurposing, applying known drugs to novel indica-

tions, can provide a rapid, cost-effective mechanism for drug
discovery and may hold promise for the development of
pharmacologic interventions for cancer prevention (162,
163). In turn, for well-tolerated drugs that are considered
candidates for repurposing, MR may offer an attractive
approach for testing their potential chemopreventive efficacy.
For example, it is currently possible to reliably instrument drugs
for which there is a broad understanding of the biological
mechanism of action (e.g., HMG Co-A reductase inhibitors,
PCSK9 inhibitors, CETP inhibitors, and sPLA2 inhibitors in
cardiovascular disease; ref. 164). For the primary or tertiary
prevention of certain cancers, aspirin, metformin, and bispho-
sphonates have all been proposed as possible candidate phar-
maceutical agents for repurposing (165–167). Using MR as a
first step to test drug efficacy for novel cancer indications could
help to prioritize or deprioritize which drugs should be taken
forward to testing in RCTs for repurposing.

MR may also provide a useful approach for predicting adverse
effects of pharmaceuticals (168). Preapproval trials are often not
able to adequately capture development of adverse effects due to
the comparatively small number of individuals typically exposed
to a drug in such trials (unless drug effects are very common or
very large), the limited duration of most trials, and unknown
generalizability of trial participants to the broader population.
While many of these issues can be addressed post-approval of a
drug through spontaneous reporting systems, these introduce
their own limitations including confounding, for example by
indication, environmental factors, or lifestyle traits. MR studies
should be able to overcome these limitations and have been
employed in some instances to test or anticipate adverse effects of
interventions in ongoing trials (e.g., adverse effects of statins on
T2D as proxied by variants in HMGCR; refs. 34, 35, 169–171).

While knowledge of biological pathways can help to anticipate
some adverse drug effects pre-approval of a drug, it may not be
possible to correctly predict all such effects (172). One possible
approach to resolve this would be to use MR-PhEWAS to perform
a phenotypic scan of a genetically instrumented drug exposure
across hundreds or thousands of potential outcomes, as outlined
previously. The identification of possible adverse effects of a drug
through this approach could then be used to prespecify and
adequately power secondary outcome measures or, alternately,
to deprioritize further investigation of a therapeutic target.
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Conclusion
Observational epidemiologic studies are prone to various

intractable biases that can undermine robust causal inference.
MR offers a promising approach to generate a more reliable
evidence-base for cancer prevention and treatment. The advent
of MR methods using summarized data means that such
analyses can now be performed more efficiently, rapidly, and
with greater statistical power than previously possible. Further-
more, the range of methodologic extensions to the original MR
paradigm now available have greatly expanded the scope of this
approach, enabling increasingly sophisticated causal questions
to be interrogated (173). Despite this, there are inherent con-
straints on the types of epidemiologic questions that can be
answered with this approach as compared with conventional
observational analyses. For example, MR is restricted to exam-
ining exposures that have a heritable component and suitable
genetic proxies for these exposures; MR cannot isolate critical
period effects for exposures; and MR will usually only represent
the effect of lifelong exposure to a biomarker. These limitations
mean that inferences made from MR will be most informative
when integrated alongside insights gained from other epide-
miologic approaches and study designs. Given optimism sur-

rounding use of the method in helping to strengthen evidence
for public health and pharmacologic interventions (174), it is
likely that there will be a continued proliferation of MR
analyses in the literature in the near future. Careful design,
analysis, and interpretation of such studies with consideration
of the limitations of the method will provide the greatest
opportunity for such studies to inform cancer prevention and
treatment strategies.
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