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It has been argued that epidemiology is currently going through a methodological revolution 

involving the ‘causal inference’ movement [1 2]. This proposes that observational studies 

should mimic key aspects of randomized trials, since this allows them to be rooted in 

counterfactual reasoning, which is said to formalize the natural way that humans think about 

causality [3-5]. These new methods have many merits, particularly for conducting studies of 

interventions; they have also led to technical analytic innovations [6-9].  

However, we and others have argued that causal inference needs integration of a wider range 

of methods to answer the complex questions needed to improve population health[6-12]. 

Causal inference almost never hinges on a single method or a single study, but rather involves 

considering a wide variety of evidence[13]. Thus, we consider it  unfortunate that the term 

‘causal inference’ is being used to denote a specific set of newly developed methods rather 

than taking a pluralistic approach which encompasses both the older traditional methods that 

we continue to use as well as the newer ones that have become available [9] (we use 

quotations marks to denote this RCT mimicking set of ‘causal inference’ methods, in contrast 

to the broader field of causal inference of which it is a part).  

Environmental epidemiologists have always attempted to make inferences about causality 

from imperfect data and have discovered many major environmental causes of disease (e.g., 

contaminated water and cholera [14], air pollution and respiratory disease[15], Balkan 

nephropathy [16], and many more[17]), using ‘traditional’ methods, i.e., those existing before 

the new ‘counterfactual based’ methods.  These traditional methods reflect the nature of 

population level exposures that are fundamental to environmental epidemiology. The purpose 

of this commentary is to describe the challenges of making causal inferences in 

environmental epidemiology and to describe complementary causal inference methods (both 

old and new). In particular, we describe how several methods can be integrated in a 

triangulation framework to improve causal inference in this field.   

Challenges to causal inference in environmental epidemiology 

The term ‘environmental exposure’ is sometimes used loosely to mean any exposure that is 

not genetic. However, the field of environmental epidemiology is typically restricted to 

‘physical, chemical and (noninfectious) biological factors in our everyday environment’[18], 

although some approaches may also include the global eco-environment[19] and the local 

social environment; many environmental exposures (e.g. pesticides) can also occur in the 

occupational environment, so the two fields overlap considerably. On the other hand, it does 
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not usually consider individual behavioural factors. For example, environmental tobacco 

smoke exposure would be considered as an environmental epidemiology problem, whereas 

individual smoking behavior typically would not.  

Environmental epidemiology has some relatively unique characteristics that have often made 

causal inference difficult, since it is inherently focused on exposures which occur in dynamic 

and evolving populations, with their particular societal characteristics. This is typified by 

issues such as climate change, urban design, public transportation, air pollution, and water 

and soil contamination, all of which usually affect individuals across entire communities. The 

implication of this is that it is often difficult to mimic an RCT, with specific well-defined 

interventions, and (conditional) exchangeability of exposure groups. An extreme but 

increasingly urgent example, is to determine the effects of climate change on health:  

mimicking an RCT would require the existence and availability of similar societies that could 

be (cluster) randomized; this would require at least two planets for a study to be conducted 

successfully [20 21].  

A related issue is that confounders will also often affect entire communities.  For example, 

the association of population-level exposure to contaminated water with health outcomes, is 

likely to be confounded by other population-level factors such as the level of economic 

development, poor housing and indoor air pollution. Some sources of confounding so closely 

co-occur with the specific toxicants or pollutants that are the exposures of interest, such that 

methods dealing with collinearity and identifiability need to be considered[22]. This has been 

a particular issue in air pollution studies where it has been difficult to validly estimate the 

effects of individual components of PM2.5 pollution [23]. 

These methodological difficulties mean that some environmental epidemiology questions 

cannot be answered simply by doing ‘better’ studies that more closely mimic RCTs. A 

pluralistic approach is required, with the integration of evidence provided by a variety of 

study designs and approaches. Therefore, we briefly describe different approaches to causal 

inference that we feel have value in environmental epidemiology, and discuss the possibility 

of integrating findings in a triangulation framework. We group these methods into three 

general categories: (i) ‘traditional’ methods; (ii) extensions of these traditional approaches; 

and (iii) triangulation of evidence. 

Table 1 summarizes methods that we consider have specific value for causal inference in 

environmental epidemiology.  
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-------------------------------------TABLE 1 NEAR HERE------------------------------------- 

‘Traditional’ methods 

As noted above, environmental epidemiology is often concerned with population level 

exposures. Thus, time trends and geographical differences, often disparaged as implying a 

lower level of causal evidence (‘old-fashioned’ descriptive epidemiology), may be 

particularly useful, both in generating new ideas and as a check on existing explanations[24]. 

For example, global asthma prevalence comparisons have provided strong evidence that 

‘established’ asthma risk factors such as allergen exposure, air pollution, and environmental 

tobacco smoke do not explain the population patterns, and are likely to be secondary rather 

than primary causes of asthma itself[25]. Ecologic studies have played a key role in 

identifying that arsenic in drinking water is a cause of cancer[26]. Similarly, international 

comparisons of the prevalence of chronic kidney disease of unknown cause (CKDu) are 

playing a crucial role in the search for the causes of this major public health problem[27]. 

Furthermore, findings from environmental epidemiology can be more convincing if they are 

replicated in different populations with different underlying patterns of confounding (an 

approach known as cross-context comparisons) [12]. For example, exposure to air pollution 

from truck traffic primarily occurs in poor people in high income countries (HICs) whereas it 

is often more common in rich urban-dwellers in low-and-middle income countries (LMICs); 

thus it is reassuring that findings for air pollution from truck traffic and asthma symptoms are 

similar in HICs and LMICs.[28] The effects of environmental exposures can also be 

investigated in specific occupational populations where exposures are often higher, and 

confounding is often minimal, because there are usually few socio-economic and behavioural 

differences between different groups of workers [29]. Thus, risks from low-level 

environmental exposures are rarely studied directly; rather, the effects of occupational 

exposures (which are higher and less subject to confounding) are studied, and the risks to 

exposed communities are estimated by extrapolation. 

Extensions of traditional approaches 

In this section we consider several extensions of traditional approaches, many of which have 

been used for decades in econometrics, but only applied to epidemiology more recently.  

Instrumental variable (IV) analyses utilize variables that robustly relate to the exposure of 

interest in a way that they can be seen as ‘as good as randomizing the exposure’.  Such 

variables, like any technique used for proper randomization, should not be related directly to 
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the outcome, nor to potential confounders (i.e. other risk factors for the outcome). If such a 

variable is found, it has the potential to improve causal inference[30]. For example, one 

study, using wind speed and height of the planetary boundary layer as IVs that determine air 

pollution (and are not direct causes of mortality, nor likely to be associated with other risk 

factors for mortality), found evidence for an effect of local air pollution (at levels below the 

US standards) on daily death rates.[31] In another study, differences in the order that piped 

water was supplied to houses and the water company providing water, in Yemen, were used 

as IVs to test the effect of piped water supply on childhood diarrhea.[32 33] The results 

suggested that piped water increased childhood diarrheal diseases due to water rationing or 

broken pipes resulting in its contamination.   

Mendelian randomization (MR), the use of genetic variants as IVs is increasingly used to 

explore causal effects in epidemiology.[34 35] Whilst genetic IVs may be less prone than 

non-genetic IVs to violations of the assumptions of IV analyses,[35] they do not reflect the 

population level exposures that are the focus of this commentary. However, an extension of 

MR that uses gene-environmental interactions to explore causality could have value in 

establishing underlying mechanisms in environmental epidemiology. The assumption is that 

genetic variants that are known to influence the metabolism of, for example, pollutants would 

only be associated with the relevant health outcomes in populations exposed to that pollutant. 

For example, trichloroethylene has been found to be associated with renal cancer risk in 

workers with at least one intact GSTT1 allele (OR=1.88), but not among workers with two 

deleted alleles (OR=0.93)[36]. Similarly, active GSTT1 genotype was associated with renal 

cancer risk in those exposed to TCE, but not in those unexposed to TCE. Such analyses are 

also particularly relevant to studies which explore mechanisms through which population 

level exposures might act [37]. 

There are two types of ‘negative control’ studies: outcome and exposure negative controls. 

Negative control outcome studies use associations between the exposure of interest and a 

condition thought to be unaffected by the exposure to highlight potential residual or 

uncontrolled confounding.[12] Negative outcome control studies are widely used in 

pharmacoepidemiology, where the control outcomes are known as ‘prespecified falsification 

outcomes’[38] We have found few examples of this approach in environmental studies of 

physical or chemical exposures, but we found one example used in social environmental 

epidemiology. Numerous studies have shown associations between social networks (i.e. 

where persons with social ties are more likely to have a similar outcome than two random 
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people from the same population) and the spread of complex health related outcomes (e.g. 

smoking, obesity, and depression). The assumed causal mechanism here is that social 

networks influence behavior, such that (for example) people of a healthy weight who change 

their social networks towards groups who are overweight or obese, may increase their own 

risk of becoming overweight or obese (because of moderating their ideas of what constitutes 

a healthy weight, and changing behaviours to those of the new social network which are more 

obesogenic). However, a prespecified falsification/negative outcome control study suggested 

that such hypothesized mechanisms were unlikely, since they found similar associations with 

outcomes that the authors a priori assumed could not be explained by these mechanisms 

(acne, height, and headaches).[39] On the other hand, negative control exposure studies have 

been widely used in studies of the developmental origins of disease, typically by using the 

association between paternal exposures (negative control) and outcomes to highlight potential 

uncontrolled confounding (see eg [40]). Population level exposures in environmental 

epidemiology make negative control exposure studies less plausible in environmental 

epidemiology, but we would encourage the greater use of negative control outcome studies. 

For example, exposure to pesticides from aerial spraying often affects whole districts, and a 

number of different health outcomes may be affected by these pesticides, but showing 

associations with one or more outcomes where a confounded association is likely but a causal 

effect not plausible (e.g. deaths from violence) would raise questions as to whether the 

observed associations for other outcomes might be also due to confounding.  

Regression discontinuity designs[41-43] can be applied when exposure is assigned at a 

threshold, as is often the case in medicine, particularly if the threshold is a continuously 

measured variable. The assumption is that people just above or just below the threshold will 

be assigned different exposures, but that these people are in fact very much alike – given the 

likely random errors in measuring the variable used for the assignment. An example is the 

assignment of antiretroviral therapy according to CD4 count, where the idea is that the 

persons just below or above the threshold may differ little; another is the study of the effect 

of mailing of a warning letter by a health authority to general practitioners who prescribed an 

inordinate amount of a particular drug (say, a painkiller or sleeping drug) where the idea is 

that the general practitioners just above and just below the threshold for mailing the letter 

might be similar.  The design has been applied in a variety of other contexts, including a 

study of ozone, smog warnings, and asthma hospitalizations [44]. 
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Difference in differences analyses require that the outcome is measured repeatedly over time. 

They compare the mean change in outcome over time between exposed and unexposed 

groups (or between different levels of exposure). In all categories of exposure there must be 

at least one measure of the outcome before, and at least one measure after, exposure occurred. 

The assumption is that baseline differences in outcome (i.e. prior to exposure) reflect 

differences in confounders and that rates of change in outcome are similar until the exposure 

occurs (parallel slope assumption). Under this assumption, the differences in outcome 

between those exposed and those unexposed, ‘before’ versus ‘after’, reflects the causal effect 

of exposure. In one example, this method was used to explore the impact of greening vacant 

urban spaces  (in comparison with urban spaces which were not greened), finding some 

evidence of benefits on criminal behavior, but limited effects on health outcomes[45]. 

Triangulation of evidence 

The idea of ‘triangulating’ evidence from different methods and data sources has been 

proposed and used implicitly for decades, often without explicitly describing it as 

triangulation.[10 12 46] In fact, the term ‘triangulation’ has been used in at least two different 

ways in health research: (i) to refer to multiple lines of evidence from different research 

approaches, including integrating epidemiological findings with other forms of evidence; (ii) 

to refer within the field of epidemiology to different analytical approaches/populations which 

have been chosen because they have differing key sources of bias (ideally in different 

directions)[12]. 

The first type of triangulation is routinely used in environmental, e.g. by the International 

Agency for Research on Cancer (IARC) Monographs Programme which integrates 

epidemiological, animal and mechanistic evidence to infer causality for various potential 

carcinogens, including environmental carcinogens. One application was the assessment of the 

health effects of environmental tetrachlorodibenzo-p-dioxin (TCDD; dioxin) exposure. The 

main health effects are likely to occur due to exposure to low-levels which are near-

ubiquitous across populations, but these were difficult, if not impossible, to elucidate. 

However, by integrating evidence from different study designs and methods (occupational 

studies in a number of different countries, animal studies, and mechanistic studies showing 

that TCDD increases the risk of cancer through its action at the Aryl hydrocarbon (Ah) 

receptor), IARC has concluded that there is sufficient evidence in human (i.e. 

epidemiological) studies that dioxin is a cause of cancer[47]. A similar example is that of 

Balkan Endemic Nephropathy (BEN)[16], for which a wide variety of evidence 
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(epidemiological, genetic, toxicological) was required before it was established that the likely 

cause was chronic dietary exposure to aristolochic acid (AA), a contaminant of wheat in the 

endemic regions. These can be regarded as examples of triangulation in that different 

methods were brought to bear on the issue, with studies being conducted in a number of 

different populations; however, the term ‘triangulation’ was not used in either.  

As noted above, the second type of ‘triangulation’ refers to triangulation of different types of 

evidence within epidemiology, which might be called ‘epidemiologic triangulation’. We have 

had difficulty in finding examples of the latter approach within environmental epidemiology, 

and we propose that this approach be used more systematically in this field to improve causal 

inference and understanding in human populations. Criteria for its use in causal inference in 

epidemiology have been proposed recently, and these specify that results from at least two 

(but ideally more) methods that have differing key sources of unrelated bias be 

compared[12]. If evidence from such different epidemiological approaches all point to the 

same conclusion, this strengthens confidence that that is the correct causal conclusion, 

particularly when the key sources of bias of some of the approaches would predict that the 

findings would point in opposite directions.  

The difference between ‘epidemiologic triangulation’ and the systematic review approach of 

trials or epidemiological studies is that a systematic review seeks similar studies, which are 

expected to yield similar findings, and hence can be grouped in a meta-analysis to obtain a 

more precise estimate of an exposure. Epidemiological triangulation, in contrast, looks for 

different types of studies, which might be expected to yield different findings, because they 

involve different potential biases, or biases in different directions; this allows one to assess 

the likely existence or absence of the biases that one might be concerned about in one 

particular type of study.   

Conclusions 

Where does this leave us? It is opportune to write this commentary in Epidemiology which 

has published many of the successes of the ‘causal inference’ movement, and which is also 

the official journal for the International Society of Environmental Epidemiology (ISEE). We 

are not arguing that ‘causal inference’ methods that mimic randomized controlled trials are 

not useful; for example, they can improve individual studies with individual-level exposures 

that can be seen as interventions. Rather, we are arguing that they form only part of the larger 

set of causal inference methodologies. There have been older methods, as well as other 
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developments in methodology, which are complementary to, and in some instances superior 

to ‘causal inference methods’, at least for some risk factors or in some contexts. All methods 

have assumptions that are often not possible to (fully) test. We believe that all valid methods 

should be part of the (environmental) epidemiology toolkit and that integrating the resulting 

evidence in a framework that acknowledges the key sources of bias of each will provide for 

better causal inference.  
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Table 1: Summary of selected epidemiological approaches that could be triangulated to 

improve causal inference in environmental epidemiology (Note: This is illustrative rather 

than exhaustive) 

 

Approach Assumptions Examples 

‘Traditional’ methods 

Cross population 

comparisons[12 48] 

Populations being 

compared have different 

confounding structures; 

Beyond confounding, the 

effect of the  exposure is the 

same in populations being 

compared 

Findings for truck traffic air 

pollution and asthma are 

similar in high-income 

countries and low-and-

middle income 

countries[28] 

Occupational (homogeneous) 

cohorts[29] 

Different jobs result in 

different environmental 

exposures 

Distributions of 

confounders are similar in 

groups doing different jobs 

There is little or no 

confounding by smoking in 

studies of occupational 

causes of lung cancer[29], 

many of which may also be 

considered as environmental 

exposures 

Extensions of traditional approaches 

Instrumental variable (IV) 

analyses 

IV robustly relates to 

exposure of interest 

IV is not related to 

confounders of exposure 

outcome association 

IV is not related to other 

(independent of the 

exposure of interest) risk 

factors of the outcome 

Use of wind speed and 

height of the planetary 

boundary layer as IVs to test 

the effects of local air 

pollution on death.[31] 

Gene*environment interactions 

(as an extension of Mendelian 

randomization) 

Genetic variants would only 

be associated with the 

outcome in those who have 

the environmental exposure 

Groups can be accurately 

stratified into those exposed 

and unexposed 

Active GSTT1 genotype is 

associated with renal cancer 

risk in those exposed to 

TCE, but  not in those not 

exposed to TCE [36] 

Negative control outcome (also 

known as pre-specified 

falsification) 

There is no plausible causal 

effect of the real exposure 

on the negative control 

outcome 

Confounding structures are 

similar for the real and 

negative control outcome 

Similar patterns of 

associations of social 

networks with acne, height 

and headaches (negative 

control outcomes) to those 

seen for, e.g., obesity and 

smoking, suggest that the 

assumed mechanisms of 

developing ‘new norms’ for 

obesity and smoking , and 

behaviours related to these, 

are not causal mechanisms. 

[39] 
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Regression discontinuity Exposure is assigned on the 

basis of a threshold of a 

continuous variable 

Exposure assignment is 

judged to be essentially 

random close to the 

threshold 

Smog alerts cause 

individuals to take 

substantial action to reduce 

exposure, thus reducing the 

risk of asthma  

hospitalizations[44] 

Difference in differences Baseline differences in 

outcome reflect 

confounding 

Rates of change in outcome 

are similar before exposure 

occurs 

Differences in differences 

are due to the exposure and 

no new confounding was 

introduced at the time of 

exposure 

Greening vacant urban 

spaces (in comparison with 

urban spaces that have not 

been greened) reduces 

criminal behavior but has 

limited effects on health 

outcomes[45] 

Triangulation of epidemiological evidence 

Comparison and integration of 

evidence from different  

epidemiological methods 

which have differing key 

sources of bias 

Bias is in different 

directions in the 

populations and/or methods 

that are being compared 

Thus, if the findings are 

similar in different 

populations, or using 

different methods, this 

indicates that bias is not a 

major problem 

Researchers have used this 

spontaneously in some 

epidemiological fields for 

some decades, though we 

could not find examples in 

environmental 

epidemiology. We 

recommend that it should be 

used and formalized more in 

environmental 

epidemiology.  
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