AUTHOR
"TITLE
SPONS AGENCY
PUB DATE
GRANT
nOTE.

Hollánd, paul W.; Rubin, Donald B. \&
Causal Inference in Prospective and Retrospective Stưdies.
 National. Inst. of Education (ED), Washingtion, DC. Aug 80
NIE-G-78-0157
47p.
EDRS PRICE.
DESCRIPTORS.

IDENTIFIERS
MF01/PCO2 Plus Pöstage.
*Mathematical Models; Research Design; Research, Methodology; Statistical Analysis; *Statistical Studies
*Causal Inferences
ABSTRACT/
Emphasizing the measuremen't of causal effects to arrive at a better understanding of the causal mechanisms involved in statistical theory, a mathematical model for causal inferences in prospective studies is develloped and then applied to retrospective case-control studies. Before developing the model, causal agents are . délineated, and causal effects are distinguished from "gains over time". The formal model is presented considering indirect measurement of causal effects, homogeneous populations, intermediate-level causal effects, the selection variable, randomization and the.role. of covariates. In the retrospective case-control studies, retrospective and prospective probabilities and matching are discussed. A loglinear model for a case-control study problem is presented. (Author/CM)

* $:$ Reproductions supplied by EDRS re' the best that can be made from the original document.

reproduction quality
- Points of view or opinions stated in this doicu mint do not necessantiy represent official NIE position or policy

Causal Inference in Pro\$pective

and Retrospective Studies

This work was partially supported by the Program o Statistics Research Project at Educational Testing Service. Paul Holland wats partiadly supported by grant NIE-G-78-0157 from the National Institutive for Education. Donald Rubin's work was facilitated by a John..Simoh Guggenheim Fellowship.

1. Introduction

Philosophical discussions of causality can be far ranging and touch upon an enormous variefy of subjects. The reason is' the emphasis; 'in the philosophy of science, on the understanding of causal mechanisms. Statistical díscussions of calusality are substantially more limited in scope because the contributions of statistics are to the measurement of the size causal effects and not to the understanding of causal mechanismsi This, distinctiontsone sometimes expressed as "statistics can establish correlation but not causation." We feel our emphasis on
measurement versus"understanding is more appropxiate because it focuses on the things that statistical theory can çontribute to discussions of causality: rather tiran on what it can not. It is perfectly possible to ${ }^{\circ}$ measure a caúsal effect accurately without any understanding, whatsoeven, of the causal mechanisms involved. The measurement of causal effects without understanding the causal mechanism is; of gourse, a commplace experience - of everyay life, i.e., -people are quitè capable of using automobiles, ovens, calchators and typewriters safely and effectively without detailed or', in some casés; any knowledge of how these devices, work. On the othèr hànd, precise measurement of causal effects often leads to a better understanding of the causal meethanisms involved.

In, this paper we develop a mathematical model for causal inferences iń prospective studies that is based on the work. of $f^{-R u b i n}$ (1978) and we, then apply it to causal inference in retrospective'case-control studies. Before déveloping this model, we shall bridefly delineate what. wéconsider to be properiy called causai agents in a statist"ical discussion, and shall also sharply distinguish causal effects from" "gains over time" -- two ideas that our experience sliggests are often confused

Consider 5 he，following two statements：
（a）＂That perṣon didn＇t do well on the exam because she did not study first．＂
（b）＂That ferson didn＇t do well on the exam because she is a w＠man．＂
In statement（a），the implied causal agent is the amount of studying＇，that is，had the person studied harder，she could have done better on the test．In other words，there．was à point in time when a choice was pade either tọ study or not to study and the comparison between the subsequent scores，on the exam is the causal effect of． studying versus not studying．

Statement（b）is statistically very diffevent from statement ${ }^{\hat{\prime}}(\mathrm{a})$ ． in＇that there is no choice of levels of a causal agent possible，i．e．， thé perṣon＂cannot choose or be assigned to be a ⿳⺈⿴囗十一 male or female． Consequently，there is no logical comparison possible for a single individual between their score on the test as a female and their score on the test as a male．The use of eause fin statement（b）reflects only the correlation between attributes of individuals．In medical stùdies the term ＂risk factor＂is＂sometimes used broadly to encompass both causal agents like smoking which can be altẹed and individuall attributes like age ． and sex which can thot．The identification of gender or＂other individual attributes such as race as a causal agent in such questions is statistically meaningless．：It may also distract scientists from the study
of causph agents that can have beneficial effects, e.g., finding programs of soudy that are partieularly effective for women and others that are particularly effective for men.

It is common usage to say that the lievels of causal agent are treatments, especially when their assignment is under an experimentef's' control.

Our definition of causal agent is much styicter than some definitions commonly
 to lable any successfóul predictor a-causal"agent not only misusés the language aydd thius is deceptive, but also may lead researchers away from study of the relevant, scientific questions of the effect of manipulations that are possible.

Gains versus. causal effects

YIn order to distinguish between gains and ciausal effects'; cotisider a student who was coached for the Scholastic Aptitude. Test (SAT) between the first administration of the SAT, and the second Let the two scores be SAT ${ }_{1}$ and ${ }_{4} S A T_{2 C}$. the subscript C° indicating the coaching that took place between administrations of the SAT. The causal.effect of coaching is, hot SAT $2 C$ SAT 1 : This difference is the gain (or loses) over tifie in SAT scores. The causal effect of coaching is the difference between the SAT
 score at administration $\dot{2}$ given no exposure to coaching, say $\operatorname{SAT}_{2 N}$. The \dot{f} pre-coaching SAT score, SAT 1 , may be useful in estimating the causal effect
 unless we assume that $S_{S} T_{1}=S A T_{2 N}$, irae: , a "no chánge withou't coaching": assumption. TThe tenability of such "nowange" as\$umptions in general depends a great deal on the pariticalar sybstantive problem under study. It is probably false in thís SÃ example.

2. Causal inference in próspective studies

The logic of measuring the size of causal effects is clearest in prospective studies, and so we shall begin with that case. The essential elements of a prospective study are the following:
(a) a population of units, Q
(b) a set of well-defined levels of a causal agent (or treatments)
to which each unit Q could'be exposed. (For notational simpíicity, we consider only two treatments denoted by $\ell=1$, or $\ell=2$)
(c) a response Y which can be, recorded for each unit after exposure to a treatment:

In a prospective study, a sample of units from \dot{Q} is obtained and the units are assigned to treatments: The treatments are then applied, and later 'the response of each unit in the 'study' is recorded. The intuftive notion of causal effect that we wish to describe with our model is the difference between, the response measured on a unit that is exposed to treatment \dot{I} and the response that would have been measured on the same unit had it been exposed to treatment 2.' Thus, our notion of the causal effect of a treatment will always be relative to another treatment, and is defined for each unjit in Q.

This meaning of causal effect is not foreign to statistical thinking and is evident in the writings of R.A. Fisher (1925), Kemp.thorne (1952), Cockran (1965), and cox (1958), for example. Although this, notion of a causal effect can be defined for each unit in \bar{Q}, in general,, we are not able to directly measure a causal effect for a single unit because having given treatment ${ }_{1}$; we cannot return in time to give treatment 2 anstead. This is the fundamental problem of causal inference, and our

Formal model will show how its solution is related to the use of randomization and of covariates.

Before turning to. the formal model we need to define the nature of the response Y. For our discussion we wíll assume that Y is dichotomous, taking on only the values $k=0$ or $k=1$: The extension to Y taking values in an arbitrary finite set, is sṭaightforward. We have chosen tó restrict Y to be discrete in order to emphasize the fundamental ideas behind the measurement of causal effects without being distracted by the special mathematical baggage that is.automatically associated with continuous.

The formal model and definition of unitelevel causal effect
In our model, instead of a single dependent variable. Y, we have a. dependent variable, Y_{ℓ} for each of the'treatments to which the unit could have been exposed. Thus, if the unit is exposed to treatment 1 , "then , we will record the value of Y_{1} for that unit. . If that same unit had been exposed to treatment 2 instead of treatment 1 , then we will record the value of Y_{2} for that unit and not the value of \dot{Y}_{1}. More formally, for two treatments, with each unit in Q we associate the fallowing partially observable vector of information:

$$
\begin{equation*}
\left(Y_{1}, Y_{2}\right) \tag{1}
\end{equation*}
$$

where
$Y_{\ell}=$ response made by the unit if it is exposed to treatment ℓ. The novel feature of this model is the introduction of several versions
of the response variable, Y. There is a version of Y for each level of the causal agent because our definition of causal effect compares Y_{1} (the response made if ekposed to level 1) to Y_{2} (the response made if. exposed to : level 2). The fact that each unit has a value for both Y_{1} and Y_{2}. is very important because it allows us to define causal, effects. at "the level of $j_{\text {individual }}$. units. If $Y_{\frac{1}{2}}^{\dagger}=1$ and $\dot{Y}_{2}=0$ for a particulare unit, then the causal effect of treatment i relative to 2 for that unit ís, to change the response for that unit from 0 to 1. Rubin (1980) refers to a the assumption that the vector (1) fully represents the possible values of Y under all treatment assignments as the "stable. unit-treatment value" assumption.

A question that immediately arises is whether or not. it is ever possible to expose a unit to mơre than one treatment and thereby directly observe more than one component of the vector in (1). One can argue that, this Is never possible in principle, because once a unit has been exposed to \mathbf{p} treatment, the unit is different from what it was before. ${ }^{\text {a }}$

However, the reasonableness of this extreme position depends on the nature of the treatments and on the units under study. We will not pursue this issye further here but will simply make the "worst case" assumption that: a unit can be exposed to at most one treatment condition. For our application to retrospegctive studies this assumption is adequate :since in these studies units are only exposed to one leyel of treatment.

In going from the partially observable vector in (1) to the observable data we must introduce the variable S where $S=\ell$ if
the, unit is exposed to.treatment ℓ; S is the "selection" or "assignment", variable that indicates to which treatment the individual is exposed.

The observable data from unity in Q is the vector
$\left(X_{S}, S\right) \div$

The notątion' X_{S}, is used because it indicates that we can observe only the response of a unit to the treatment to which it is exposed, i.e.,

$$
\begin{equation*}
Y_{S}=Y_{\ell} \text { if } S=\ell, \quad \ell=: 1,2 \tag{3}
\end{equation*}
$$

'The quantity Y_{S} is the observed value of the response, and is therefore what is usually called the "dependent variable" in statistic̣al discussions We never get to observe- Y_{ℓ} ifr $S \neq l$.. Since we can observe oniy the , vilue of Y_{1} or \tilde{Y}_{2}, but not both, it is consequence of the model lthat causal effects for individual units are not directly measurable. Indirect measurement of the "causal effects ' is sometimes possible, and our purpose here is to analyze this possibility for both prospective and retrospecive studies.

In sumary, our idealized model for a prospective causal study can be viewed as based on the following sequence of steps.
(A) Determination of the population Q under study:
(B) Determination of the treatments under study.
(C) Determination of the response variable Y to be observed.
(D) Consequent definition of the vector (Y_{1}, Y_{2}) for every unit in Q.
:(E) Determination of the assignment variable. S for every ufft in the study:
 study.
(G) Observation of $\left(Y_{S}, S\right)$ for each unit in. the study:

Indidrect measurement of causal effects

Although our definition of causal effect. at the uniti-level corresponds to most everyday uses of the term "cause" (é.g.; I didn't do well on the exam because I didn't study) scientific studies of ten mult be content with measuring a" weaker notion of "causal effect، • In the population Q, suppose there are $n_{k}{ }^{2}(l)$ units for which $Y_{\ell}=k \cdot \ell=1, \dot{2} ;{ }^{\prime}{ }^{2}=0, I$. That is, $\ddot{n}_{2}(1)$ is the number ρf units for whifh $Y_{1}=0$. If n_{+}denotes the total number of units in Q, then the vector

$$
\begin{equation*}
q(l)=\left(q_{0}(l),, q_{1}(l)\right)=\left(n_{0}(l) / n_{+}, n_{\underline{l}}(l) / \pi_{+}\right) \tag{4}
\end{equation*}
$$

gives-the distribution of responses under treatment ℓ-for the entire population \bar{Q}. A weaker définition of causal effect of treaturient 1 relative, to 2 is based on the comparison of the two response distributions $\underline{q}(1)$ and $\underset{\sim}{q}(2)$. If, for example, $q_{1}(1)>q_{1}(2)$, then the populiationlevél causal effect of $\dot{1} /$ relative to 2 is to increase ṭ̂he proportion of units in Q for which $Y=1$. We shall call $q(\dot{l})$ the causal parameters. \therefore of the study. In terms of the distribution of Y_{ℓ} over $Q \dot{q}_{k}^{(}(\ell)$ may be expressed as

$$
\begin{gather*}
\mathrm{a}_{k}(\ell)=P\left(\dot{Y}_{\ell}=k\right) . \tag{4a}\\
\quad-11
\end{gather*}
$$

Consider a simple randomized experiment. A randoulsample of units from Q are exposed to treatment $Y_{\text {a }}$ and the values of Y_{1} are obtained for them. This gives us an estimate of $q(1)$ which has accuracy that depend ${ }^{\prime}$ on the size of the random sampler. A second random sample of units from Q is exposed to treatment 2 and the values of Y_{2} are obtained
 estimated causal parameters is a form of causal inference because it -allows us to say that treatment 1 causes a change in the entire distributi of 'responses 'for the units in Q relative to the distribution of responses under treatment 2 by a given estimated amount.

Homogeneous populations
A^{*} pöpulation-level causal inference is'weaker than a unit-leveí "causal inference because it does not allow us'to say how treatments. change the response of any single unit in' Q except in one very special and" important circumstance which we now discuss. If Q is such that ${ }^{\circ}{ }_{1}$ takes or ra single value for all units and Y_{2} also takes on a single value (that is possibly different from that of Y_{1}) then Q will be said. - to have homogeneous responses for treatments 1 and 2 . We shall refer i to such a "as a "homogeneous population". When \dot{Q}. is a homogeneous population, then the population-level causal inference"is equivalent to unit-lèvel 'causal inferences for all the units in \dot{Q}. "For example, if
and if i
$q(1)=\left(q_{0}(1), q_{1}(1)\right)=(0,1)$
0,

$$
\underline{q}(-2)=\left(q_{0}(2), q_{1}(2 \downarrow)=(1,0)\right.
$$

then treatment 1 changes the responses of every unit in Q from $Y=0$ under
treatment 2 to $Y=1$.
Earller we distinguished between individual attributes ahd .causal agents.. Attributes, can bê used to partition.

Q into subpopulations. Finding homogeneous subpopulations plays an essential role in much of scientific research. In the physical sciences the search for "identical initial conditions" is really the search for collectipns of units (i.e., populations) with homogeneous responses. An "ideal covariate". is an attribute (or set of attributes) which may be observed for each unit in Q prior to the onset oftere treatments and which defines subpopulations of ϕ, each of which has homogeneous responses to the relevant treatment condifions. In practice, of course, we must. often settle for less-than ideal covariates which only define subpopulations that are relatively homogeneous.

Intermediatelevel causal effects

There is an intermediate level between unit- and population-level causal inferences. Consider allof the units in Q which respond with the vaiue k under treatment 2 . Whe may ask, in what way does treatment Hichange the responses of these units? That is, what is the distribution
 of yalues of Y_{1} for the units in. Q with Y Sk? The answer to this question is a more detaided causal Irference than a population-level causal Inference, and yet it aggregates unit's in Q so that it is less detailed than a unithlevel causal inference. This intermediate-ievel causal
inference leads naturally to the notion of a causal-effect table for Q. Let
$n_{k, k^{\prime}}=$ number of units $\operatorname{in}^{\circ} Q$ for which $Y_{1}=k$ and $Y_{2}=k^{\prime}$.
Since n_{+}is the total number of unitis in Q,

$$
\begin{equation*}
q_{k, k^{\prime}}=n_{k, k^{\prime}} n_{+} \tag{5}
\end{equation*}
$$

is the proportion of units in Q for which $Y_{1}=k$ and $Y_{2}=k$ '. In terms of the joint distribution of Y_{1} and Y_{2} over $Q q_{k, k}$, maỳ be expressed as

$$
\begin{equation*}
q_{k, k^{\prime}}=P\left(Y_{1}=k, Y_{2}=k^{\prime}\right) \tag{5a}
\end{equation*}
$$

Let q be the 2×2 matrix with entries $q_{k, k^{\prime}}$. Then the row totals of q yield the distribution of responses under treatment 1 , i.e., $q(1)$, and the column totals of q yield the distribution of responses under treatment. 2 , i.e., $q(2)$. We call q the caùsal-effect table for treatments 1 and 2 in Q, Table 1 is a causal-effect table.

Table wabout here

As discussed earlier it is often"possible to estimate the marginal distributions $q(\ell), \ell=1,2$ using randomization. However', it is generally not possible, to estimate the joint distribution q. This problem arises because of our fundamentai assumption that \dot{Y}_{1} and Y_{2} can never be simultaneously observed on any unit. The one situation in which q can be estimated arises when Q is a population with homogeneous responses. The causal-effect table for a homogeneous population is illustrated In Table 2 and we see there that \dot{q} is uniquely ${ }^{\text {determined }}$ by the marginal distrubutions $\underset{\sim}{q}(1)$ and $\underline{q}(2)$.

Table 2 about here :
 \qquad
Causal -effect Table for Treatments 1 and 2 in a population

- D.
\qquad

Table 2
Causal-effect table for a population that has homogeneous responses under treatments 1 and $2 ; Y_{1}=0, y_{2}=F$.

When Q is not homogeneous, it may be possible to decompose it 'into homogeneous subpopulations', and compute the causel'effect table for" each of these subpopulations. It is then posibie to accumulate these subpopulation causal-effect tables to obtain the overall causaleffect, table for Q. If it, is pot posisible to find homogeneous subpopulations of Q then it is not possible to, form the causal-effect table for Q from its margins because the entries are not-determined by $q(1)$ and q(2).

Stace we rarely encounter perfectly homogeneous populations in practicén we may raise the question of how constrained is q if we only know (or can estimate) the causal parameters $\underset{\sim}{q}(1)$ and $\underset{\sim}{q}(2)$; The kinds. of constraints that exist are easily conveyed by a few examples; thesé are given in Table 3 . The margins of these causal effect tables are. considered to be known and fixed, and the range of possible values for the cell entries are given in parentheses. It is: evident that if one of the cell's in each margin is near one, q is highly constrained. "When. "; none of the proportions in $q(1)$ and $q(2)$ is large, in less constrained. The general rule for calculáting the iranges of vaiues for these tables is given by:

$$
\begin{equation*}
\left.\max \left(0, q_{k}(1)+q_{k}(2)-1\right) \leq \dot{q}_{k, k} \leq \leq \min _{k}(1), q_{k}(2)\right) \tag{6}
\end{equation*}
$$

The selection variable and the role of randomization

The causal-effect tablegives the joint distribution of Y_{1} and Y_{2}

:not determine the joint distribution of $\left(Y_{1}, \bar{Y}_{2}\right)_{0}^{\prime \prime}$ We may decompose the joint distributcion of ${ }^{\prime}\left(Y_{S}, S\right)^{r}$ into the conditional distribution. of Y_{S} given S and the marginal distribution of S. The comitional distribution of Y_{S} given' s is specified by the following probabilitines:

The marginal distribution of S is specified by the following probabilities

$$
\begin{equation*}
\therefore \quad, \quad P(S=\ell), \ell=1,2 \tag{8}
\end{equation*}
$$

The fundamental problem in a population-level causal inference (and therefore of all stronger forms of causal inferences) is the estimation of $q(\ell)$ for $\ell=1,2$. However, the only data we can obfain in a causal sțudy allows us to estimate the conditional probabilities given in (7). Thus, a question of paramount importance in çausal inference is: when are $q_{k}^{\prime}(\ell)=P\left(\Psi_{\ell}=k\right)$ and $t_{k \ell}=P\left(Y_{\ell}=k \mid S=\ell\right)$ equal? That is, we are 1ed to seek condiftions under which the following equation holds:

$$
\begin{equation*}
\dot{P}_{0}^{\prime}\left(Y_{\ell}=k \mid S=\ell\right)=P\left(Y_{\ell}=k\right) \tag{9}
\end{equation*}
$$

There are two very important cases where equation (9) holds - random assignment and homogeneous populations. We discuss eachoof these brieflyin turn.

限 Random assignment: If S is statistićaliy independent of Y_{ℓ}; then equation (9) must hold by definition of statistical independence. How can S be made to be independent of \bar{Y}_{ℓ} ? There is no way to be absolutely sure that \dot{S}^{\prime} is independent of Y_{ℓ} However, "the process of "random" assignmenter of the values of S to the units $n n$ makes $i t^{t}$ plausible to assume that equation
(9) holds lif Q is Läxge, Thus, under randomization we have

$$
\begin{equation*}
\quad: \dot{P}\left(Y_{1}=k, Y_{2}=k^{\prime} \mid S=\dot{\ell}\right)=P\left(Y_{1} / k_{2} Y_{2}=k^{\prime}\right) \tag{10}
\end{equation*}
$$

and equation (9) follows. The statistical independence expressed in. (10) is a very important point in the justification of randomization but it is apparently not appreciated by numerous writers on the subject. For example, "it is often asserted that, there is a "difficulty" in resolving randomization and the Bayesian/likelihood/modelling framework (Basu, 1980;

Kempthorne; 1976; Kruṣkal; 1980). However, equation (9) is a fundamental one for botḥ Bayesians and frequentists beçause it makes a parameter that can be estimated from data (i.e. $P\left(Y_{\ell}=k \mid S=\cdot \ell\right)$) equal to the. causal parameters of interest, $q_{k}(\ell)$.

One source of confusion is that equation (10) does not imply that the observed, value Y_{S} is independent of. S. That is, the following equation does not hold "In' general:

$$
\begin{equation*}
P\left(Y_{S}=k \mid S\right)=m^{\prime} P\left(Y_{S}=k\right) \tag{11}
\end{equation*}
$$

Equation (11) does hol under the null hypothesis that $\left.\mathrm{P}^{\prime} \mathrm{Y}_{\ell}=\mathrm{k}\right)$ dpes not depend on the level of exposure, ℓ " Of course, this fact is usualy not of much tnterest to the Bayesian who wants to sumarize eyedence in tite data about causal effects by the posterior distribution of causal parametexs

Homogeneous population: If Q is a homogeneous population, then equation '(9) holds trivially without any assumption about the dependence or independence of S and X_{ℓ} "This is because in a homogeneous population Y_{ℓ} is constant over units and constants are always independent of every random variable. Thus, for homogeneous populations randomization is for necessary for drawing population-level causal inferences.

In a nonrandomized study, it is of ten not believeable that-S is

* statistically independent of $Y_{\dot{\ell}}$ so that equation ($\dot{9}$) may not hold. Thus, in a nonrandomized study the observed values of Y_{ℓ} are'not representative of the marginal distribution of Y_{ℓ} quer alíi of Q. Howeve ${ }^{2}$, if Q is a homogeneous population, then equation (9) must hold trivially. Covariates defining subpopulations play a crucial. role in nonrandomized studies of causal effects. First, the subpopálatịons defined by them. can be nearly homogeneous in which case equation (9) almost holds within each. Second, within each subpopulațion it may be plausible to accept the assumption of conditional independence، between Y_{l} and S; at, best, "thef"e may be no, data to contradict this assumption. The next section addresses this issue in more detail.

The Role of Covariates

Suppose that Q can be partitioned into strata on the basis of a covariate X. We'may then consider the possibility that equation (9) holdṣin each -X-stratum even though equation (9) does not hoid for all of Q. Thatis we may ask whether or-not

$$
\begin{equation*}
P\left(Y_{\ell}=k \mid S=\ell, X=x\right)=P\left(Y_{\ell}=k \mid X=x\right) \tag{i1}
\end{equation*}
$$

象 why we may be willing to assume (11) even "if we are not willing to assume (9). "The first occurs when X is an ideal covariate and all the X-strata are themiselves populations with homogeneous responses. Then we know that (iz) holds automaticalily. The second oc̣curs"when we knọw or aré "wili'ing, tolassume that. S and" Y are independent given X. Wi.e mà be willing to make this assumption for one of two reasons. The first is that we açtually ràndomly assignex the values of wis within each stratum. The second is that we may be willing to make this assumption because there nothing in the data that will contradict it. This is a subtle - point and one that needs to be elaborated. If we assumed that S had been randomly assigned and was therefore independent of Y_{ℓ} then this assumption couid be immediately contradicted by looking at the distribution of X given S. If S had been randomly assigned, then X and S would be independent so that

$$
\begin{equation*}
P(X=x \mid S=l)=P(X=x) \tag{-12}
\end{equation*}
$$

If we examined the distribution of X given $S=\ell^{\prime}$ and ρ aw that it did vary with the value of $\ell \ell$, then we would have evidence that S was not randomly assigned over all of Q fand therefore that equation. (9) does not hold. However, if we assumed that S was rañdomly assigned , within each X -stratum we could nothen use the observed distributions of \dot{x} given $S=l$ to disptoye this assumption,

- Now suppose that equation (11) holds. We may use it to obtaịn a basic formula for the causal parameter, $q_{k}(\ell)$. We have

$$
\begin{equation*}
q_{k}(\ell)=P\left(Y_{\ell}=k\right)=\sum_{\ell x} P\left(Y_{\ell}=k \mid X=x\right) P(X=x) \tag{13}
\end{equation*}
$$

so that

$$
\begin{equation*}
q_{k}(\ell)=\sum_{x} P\left(Y_{\ell}=k \mid S=\ell, X=x\right) P(X=x) \ldots \tag{14}
\end{equation*}
$$

Equation (13) is a basic fact of probabilities. Equation (14) relates two quantities that can be estimated, i.e., $P\left(Y_{\ell}=k \mid S=y, X=x\right)$ and $P(X=x)$ to the causal parameters. Thus, if equation (11) holds we can estimate the causal parameters and draw population-level causal inferences.
*)

3. Causal Inference in Retrospective Case-Control Studies

The structure of a retrospective case-control study is conisiderably different from the general prospective study difcussed in Section $2 .$. . In a ca'secontrol study a population of perople is divided into those who have a particular symptom or disease of interest (i.e., the "çases") and those who do not have the symptom or disease (i.e., the "controls"). Samplés of cases and controls are selected from this population and information about each selected person is obtained to ascertain: (a) the level of exposure to the particular causal agent of interest and (b) other medtcally relevant information which may be used to define subpopulations of unition

The response variable for a cäse-control study it the dichotomous variable that indicates whether or not the. unit is a "case" or a "control", i.e.,

$$
Y_{S}^{\cdot}=\left\{\begin{array}{l}
1 \text { if unit is a, case } \\
0 \text { if uṇit is a control. }
\end{array}\right.
$$

Case-control studies are retrospective because they begin at the endpoint of a prospective study (i.e., observations of the response variable for each unit in the stuidy) and then look bachin time to diseover the level of causal agent tot which each unit has been. exposed (i, e., the value of the selection indicator S). In addition to this.fundamentàl difference between case-control and prospective studiẹs, there are two: other differences that should be mentioned. First, since the investigator can only collect data on prior exposure to the causal agents of Interest, it is impossible to employ randomization to, assign units to levels of the causal agent : Thus case-control studies are, never randomized. Prospective studies, on the "ther, hand, may or may not employ randomization depending on Yhe amount of control that is possible. Second, the populations studied in case-control studies usually consist of survivors only, becácuse it is often impossible to obtain comparable data on . individuals who are deceased. This limitation can have áserious effect on the interpretability of the results of a case-control study. We shall assume for the moment that the populations considered are not subject to mortality. We shall return to this point. in the discussign of the example in section 4.
agent. Before examining this table of sample, data, le us consider the population table that underlies it* This population table gives the population proportion of people for, which $\$=\ell$ among all those for which $Y_{S}=k, k=\Omega, 1, \ell=1,2$. These population values are denoted \dot{b}
and arrayed as a population table Table 5. The sample ratio

$$
\begin{equation*}
\hat{r}_{k \ell}=\mathrm{m}_{\mathrm{k} \ell}^{\mathrm{r}_{0}} / \mathrm{m} \cdot \mathrm{~m} \tag{16}
\end{equation*}
$$

estimates $r_{k e}$.
 the study.

Table 5 about here

${ }^{\circ}$

In this development we must emphasize the importance of representing the 'observed value of the response as Y_{S}. For example in (15) it would be incorrect to condition $Y_{\ell}=k$ since Y_{ℓ} is the response ${ }^{\prime}$ made if exposed, to treatment level $\&$ whereas Y_{S} is the observed response, , Because Y_{S} its being conditioned on in Table- 5, it is sometimes said that in a case control study exposure is the dependent variable and diagnosis (i.e: case orr control) is the independent variable. Th's description confuses the "scientific question of interest, and we will not describe the situation in these terms.

	$\begin{gathered} \text { Lev } \\ \mathrm{S}=\mathrm{I}^{\prime} \end{gathered}$	$\begin{aligned} -0 f-\operatorname{expo} \\ \vdots \\ \vdots \end{aligned}$	Total
\because "cases" ${ }_{\text {P }}$	$\mathrm{man}_{11}^{\prime \prime}$	$\mathrm{m}_{12}{ }^{\text {. }}$	${ }^{1+}$
"controis" ${ }^{*}{ }^{\prime} Y_{S}=0$	${ }^{\text {m }} 01$	m_{02}	${ }^{1} 0+$
. Total	${ }^{m}+1$	${ }^{m}+2$	${ }^{\text {m }}+$

If we consider the weakest level of causal inference, ie., a populationlevel of causal inference, then the causal parameters are the marginal probabilities $P\left(Y_{1}=1\right)$ and $P\left(Y_{2}=1\right)$. Thus, the retrospective probabilities* , in (15) are not, in themselves, of any causal interest, because, at the very least; they describe the wrong events. However, by applying ${ }^{n-l}$ the usual rules of probability, we may reverse the roles of S and Y_{S} in (15) and obtain more interesting probabilities. This reversal is the usual justification for ever looking at Table ${ }^{4}$.
ξ
Relating retrospective and prospective probabilities
To reverse the roles of S and Y_{S} we make futile of Bayes theorem to obtain

$$
\begin{equation*}
P\left(Y_{S}=k \mid S=\ell\right)=P\left(S=\ell \mid Y_{S}=k\right) \frac{P P\left(Y_{S}=k\right)}{P(S=\ell)} \tag{17}
\end{equation*}
$$

However;

这

$$
\begin{equation*}
P\left(Y_{S}=k \mid \dot{S}=\hat{\ell}\right)=P\left(Y_{\ell}=k \mid S=\ell\right) ; \tag{18}
\end{equation*}
$$

so it follows that;

```
```

or

```
```

```
```

or

```
```

$$
\begin{equation*}
P(S=k \mid S=\ell) \quad P\left(S=\ell \mid Y_{S}=k\right) \frac{P\left(Y_{S}=k\right)}{P(S=\ell)} \tag{19}
\end{equation*}
$$

the te

$$
\begin{aligned}
& \mathrm{k}+\mathrm{P}=\mathrm{k}) \\
& \mathrm{k} \\
& \mathrm{~L} / \mathrm{P}(\mathrm{siv})
\end{aligned}
$$

Hence, in order to transform the retrospective probabilities $r_{k \ell}$ in
(15) and Table 5 into the more interesting "prospective" probabilities, $t_{\text {el }}$, we need only multiply the entries in Table 5 by a_{0} rowfactor (i.e., a_{k}) and a column, factor (i.e., b_{ℓ}). We have illustrated the array of "prospective" probabilities of (18) $\therefore \quad$ in Table 6.
. Note that

$$
P(S=\ell)=\sum_{k} P\left(S=\ell \mid Y_{S}=k\right) P\left(Y_{S}=k\right)=\sum_{k \ell} a_{k}
$$

so that the" prospectige probabilities in (19') can be calculated from knowledge of a) the retrospective probabilities $r_{k l}$ and b) the overall proportions of cases and controls in the population ${ }^{a_{k}}=P\left(Y_{S}=k\right)$.

The cross-product ratio for Table 5 may be expressed, as:

$$
\begin{equation*}
\alpha *=\frac{r_{12}}{r_{11}} / \frac{r_{02}}{r_{01}}=\frac{P\left(S=2 \mid Y_{S}=1\right)}{P\left(S=1 \mid Y_{S}=1\right)} / \frac{P\left(S=2 \mid Y_{S}=0\right)}{P\left(S=1 \mid Y_{S}=0\right)} \tag{20}
\end{equation*}
$$

and the cross-product ratio for Table 6 may be expressed as:

$$
\begin{equation*}
\alpha * *=\frac{P\left(Y_{2}=1 \mid S=2\right)}{P\left(Y_{2}=0 \mid S=2\right)} \tag{21}
\end{equation*}
$$

\therefore Because tabies 5 and 6 are related anda row and column multiplication, it is well-known (e.g: Bishop, Flenberg, Holland (1975)) that

Population-level causal inferences

Now let wis return to the question of making a population-level causal inference about the effect of the causal agent ion the probability of becoming. a "case." The parameters of interest in such a causal inference are tire causal parameters $q_{k}(\ell)=P\left(Y_{\ell}=k\right)$ or, equivalently, the odds associated with these probabilities; ie.

$$
\begin{equation*}
B(l)^{\prime}=\frac{P\left(Y_{\ell}=1\right)}{P\left(Y_{\ell}=0\right)} \tag{23}
\end{equation*}
$$

$\ell=1,2$. The odds in (2,3). for $\ell=2^{3}$, relative to $\ell=1$ gives the 'odds ratio

$$
\begin{equation*}
\alpha=\frac{B(2)}{B(1)}=\frac{P\left(Y_{2}=1\right)}{P\left(Y_{2}=0\right)} / \frac{P\left(Y_{1}=1\right)}{P\left(Y_{1}=0\right)}=\frac{q_{1}(2)}{q_{0}(2)} / \frac{q_{1}(1)}{q_{0}(1)} . \tag{24}
\end{equation*}
$$

Even though α represents less information than both $\beta(1)$ and $\beta(2)$, interest often focuses on the odds ratio in case-control studies. Certainly α does give a measure of the change in $q^{\prime}(2)$ relative $t o(1)$.

If we could assume that S and $\left(Y_{1}, Y_{2}\right)$ were independent, then it would follow from (21) that α and α^{*} would be equal. This would justify examining Table 4 , because the cross-product ratios directly estimated by this table (i.e., α^{*}) would be equal to the cross-product ratio of the causal parameters (ie. α). However, case -control studies are nonrandomized studies so that randomization can not be a generally satisfactory basis for assuming that S and $\left(Y_{1}, Y_{2}\right)$ are independent Furthermore, by examining the distribution of a covariate X given $S=\ell$, we can of ten convince ourselves in a case-controí, study that S was not even approximatelyrapdomized.. Thus it is essential in case-control
. 4.
studies to examine more detailed aspects of the daẗa than those which are sumarized by Table 4 in order, to haver some hope of drawing reasonable conclusions $\underset{\sim}{*}$

The odds ratio $\alpha * \cdot i n$ a casemicontrol study may not equal α due to the self-selection of individuals into exposure categories. We conclude that basing the analystis of a case-control study on Table 4 is potentially misleading because it ignores the possibility of bias due to self-selection into the edposure conditions. .We. hasten to point ou't that since population-level-causal inferences are the weakest of the three types of causal inferences 'we discussed in section 2, it' follows that if population-level causale inferences are impossible from the data in Trab-le-4; so are: "all "other types of causal inferences.

The role of covariates in case-control studies,

- If there is a covarlate (or set of covariates). X which is measured on each unit in the study, then we may form a table like Table 4 for each value of \dot{X}. Let $m_{k l x}$ be the number of units in the "study for which $\underline{Y}_{S}=k, S=\ell$ and $X=x$. These are arrayed in Table 7 for $X=x$.

Table 7 about here

The ratios

$$
\begin{equation*}
{\hat{r_{k l x}}}_{:}=\dot{m}_{k l x} / \dot{m}_{k l x} \tag{25}
\end{equation*}
$$

estifmate the population retrospective probabilities

Value of $x=x$

"cases ${ }^{\prime} \mathrm{Y}^{\prime} \mathrm{S}^{1}$	$\mathrm{m}_{11 \mathrm{x}}$	- ${ }^{1} 12 \mathrm{x}$	
"controls" ${ }^{\prime} \mathrm{y}_{\mathrm{s}}=0$	\cdots	${ }^{\text {m }} 02 \mathrm{x}$:	${ }^{\text {m }}$ + \times
- total	${ }^{m}+1 \times$	${ }^{\text {m }}+2 \mathrm{x}$	${ }^{\text {m }}+\mathrm{m}$ x

We haply bayes theorem ito reverse the roles of s and Y in (26)

$$
\begin{equation*}
\left.A_{P}=k \mid Y_{l}=k=, X=x\right)=r_{k l x} a_{k x} b_{l x} \tag{27}
\end{equation*}
$$

- 2关
where

$$
\begin{equation*}
\dot{a}_{k x}=P\left(Y_{S}^{-}=k \mid X=x\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{\ell x}=1 / p(s=\ell \mid x=x) \tag{29}
\end{equation*}
$$

\therefore By the same argument given for α^{*} and $\alpha^{* *}$ we have

$\stackrel{\hat{3}}{\stackrel{\wedge}{\star}}$
Ében when (35) holds there is still no simple relationship between α_{0} and α : The general formularrelating α_{0} to α is given in (36).

"We nóte that the causal parameters $q_{k}(1)$ appear in (36) along with their conditional versions $q_{k}(1 \mid x)$. The example in Table 8 shows that α_{0}, and α need not be equal.

Table 8 about here

All is not lost however, becaúuse α_{0} is a causally interesting quantfty itselif It is the amount by which the odds for $Y_{2}=1$ is
 is a useful parameter to estmate because it has causal relevance in each of the subpopulations of R. Since α_{0} is spectfic to the X-strata * of Q, it provides cusual inferemes about the effects of the levels of the causal agent fin Q that are at a more detailed ievel than populations level causal. inferences. However it is not-as strong as the intermediatelevel, or the unt level causal inferences díscussed earlier? in section ${ }^{2}$.

Table 8: Example showing that α_{0}^{*} and
q. peed nat he equal

* takis on two values $X=1, X=2$
$\cdots=1,2 ; k=0,1, \cdot$

Out conclusion is that in a case-control study the simple 2-way. table (Table 4) usually holds no causal interest. The only hope is to stratify on covariates and to estimate the $\alpha_{\mathrm{x}}^{\star}$. If the stratified table exhibits constant cross-product ratios then the strongest form of causal inference appears to be to estimate α_{0}^{*} and assume that it equals α_{0}. These latter parameters give the amount that the second level of the causal agent increases the proportion of units in each X-stratum that "are "cases" relative to the first level of the causal agent. This "amour te of increase" is in terms of the odds corresponding to the proportions. "thus, for example, for a given value of the proportion $P\left(Y_{1}=1 \mid X=x\right)$, we calculate $P\left(Y_{2}=I \mid X=x\right)$ via the formula

Comparing this to the given value of $P\left(Y_{1}=1 \mid X=x\right)$ pads to a causal

$$
\begin{equation*}
{ }_{0} P\left(Y_{2}=1 \mid X=x\right) \quad \frac{\alpha_{0} P\left(Y_{1}=1 \mid X=x\right)}{\left(P\left(Y_{1}=0 \mid X=x\right)+\alpha_{0} P\left(Y_{1} \mid X=x\right)\right)} \tag{38}
\end{equation*}
$$

. Inference about the effect of the causal agent when $X=x$.

Prospective vo. retrospective matching
Another way to see the fundamental weakness in retrospective studies is to compare prospective matching, which matches an exposed and unexposed unit with respect to X and retrospective matching which matches a case and a control with respect to X Suppose that S and x_{1}, R_{2} are Independent -given x, so that at each level of x we have a randomized experiment,
1.e. the experiment 1 sa randomized block with blocks defined by X.

Prospective matching reconstructstte randomized o10ok experiment
by creating matched pairs of exposed and unexposed units: The average
matched pair difference $1 s$ an unbiased estimate of the treatment effect
for the populate ion defined by the values of x th the matched pairs; Thus

prospectiva matching on X perfectily controls for X whenever both members

 of each mater pair have the same values of X.In contrast, retrospéctive fratchtrig on X in general cannot perfećtly. control for X because it does rot reconstruct the randomized block experi--ment. . In eachematched pair; one member is a case and one member is a control; to reconstruct the randomized block experiment, one member must be exposed and one unexposed, which generally does not occur when one member is \dot{a} case and the pther a control thus summaries from the casecontrol matched sample such as the cross \rightarrow product ratio do not represent ni estinate for which x has been controlled, even when all matched pairs are exactly matched whth respect to x, With retrospective matches, we really need to estimate the cross-productionatio in each matched pair, and this -requires building a model relating Y_{1}, \dot{Y}_{2} to X and 8. We illustrate this in the-next section
4. An Example

The following data are taken from a case-control study of the relatíonship of coffee drinking and occurances of myocardial infarctions (MI) by Jick et al (1973) , We usesthese data for illustrative purposes onily. A toťal of 24941 patients' were classifiéd as "cases" (had an MI) or "controlst (did not have an MIt) Table 9 shows the standard 2 -way tablethat presents the cases and controls cross-classified by the potential causal agent under study - self reported daily coffee consumptior Athough our prevous notaton has considered only two levels of the causal agent, Table goresents, four levels; the extensions needed to handie this exra complexity are slmple. The cross-product ratios est imated Table gare deftied by

Table 9: Cross-Tabulation of self-reported coffee intake (S) by cases and contrals (Y -) for 24,741 patients
$S=$ Selff-reported coffee consumption per day

Estimated raw cross-product ratios $\alpha^{*}(l)$ relative to $\quad \ddot{l}=1$.

for all x. Thus, we may Investigate the question of whether or not the cross-product ratios $\alpha_{x}^{*}(l)$ depend on x by testing three-way interactions of the various covariates in X and with Y and S. Furthermore, if a Model where $u_{123}=0$ is acceptable; the estimated u_{12} terms may be used to obtain estimates of $\alpha_{0}^{*}(l)$. If, wè are willing to make the assumptions necessary to insure that $\hat{\alpha}_{0}^{*}(\ell)=W_{0}(\ell)$, where $\alpha_{0}(\ell)$ is the causally relevant parameter discussed in Section 3 , then we may test $\alpha_{0}^{*}(l)=1$ (i.e., no effect of. different levels of the causal agent) by testing that $u_{12}=0$. This test will, adjust for the distribution of the covariares in the several exposure groups.

Stmplifying the analysis
As described above it may, seem' as though we are considering the whole 2x4xi728' table, but one important feature of the use of log-inear models is fhat they do not force this unless there is sufficient data to do so. Instead we bręak up̄ $\mathrm{X} *\left(\mathrm{~A}, \mathrm{G}, \mathrm{C}, 0, \mathrm{H}_{\phi}\right)$ intơ various märginà 1 distributions and expand the model in (39) to make use of them: In the present example we expandea the table to the fuill seven-dimensions, but only fit effects for the following pairs and triples of variables:
(H_{12}) -sí)
(u23) HS/AS/GCS/GOS/COS/
(U_{13}) $\mathrm{HY} / \mathrm{AGY} / \mathrm{ACY} / \mathrm{AOY/GCY/GOY/COY/}$ (u) $\mathrm{HA} / \mathrm{HG} / \mathrm{HC} / \mathrm{HO} / \mathrm{AGC/GGO/ACO} / \mathrm{GCO} /$ The urterms in parenthesif indicate which terms In (39) have been expanded 1n the 7 -way table.

Results

If we fit the log-1inear model indicated by the pairs and triples of variables in (44) and then delete the $\$ Y$ terms and refit the model, we obtain a likelihood ratio test of $\alpha_{0}(\mathcal{l}):=1$. The value of the likelihood ratio statistics is 12.3 which under the null hypothesis has 3 degrees of freedom: 'Thus, this analysis results in a, significant relationship between coffee-consumption"and myocardial infařctions. ${ }^{\circ}$. The estimated $\alpha_{0}(\ell)$ values are

$\hat{\alpha}_{0}(2)$	$\hat{\alpha}_{0}(3):$	$\hat{\alpha}_{0}(4)$
1.188,	$1.235:$	1.719

as opposed to the raw cross-product ratios given in Tabie $9 .$. . These adjusted cross-product ratios are monotonic in the amount of coffee consumed and the major effect is seen to be for high 1evels of coffee consumption.

To study the question of whether $\alpha_{x}(\ell)$ varies with x we fit 5 ' additional models each of whic eplaces $S Y$ in (44) by one of these triples of variables: HSY, ASY, GSY, CSY, or OSY The likelingod ratio statistics for these models; the degree of freedom and attained signiftcance levels, are given in Table 10 .

Table 10% bout here

None of these finteractions are strong enough to be statistically significant, This result contradicts previous analysisiof the se data that found an interaction With these varlables (Miettinen, $0.5 \cdot 1976$)

REFERENCES

Basu, D., "Randomization Analysís of Experimentaz Datá: The Fisher Randomization Test", Journal of the Amertean Statistical Association, 1980.

Bishop, Y.M.M., Fienberg, S.E., and Holland, P'W., Discrete Multivariate Analysis: Theory and Practice, The MT Press, Cambridge, Mass., 1975.
 - Journal. of the Royal Statistical Society, Series A, 128, Part 2; - 234r255, disc̣ussion 255-265, 1965.

Cornfield, "J." "A method of "estimating comparative rates from clinical data, application to cancer of the lung, breast and cervix", Journal of the National Cancer Fnstitute, 11, 1269-1275, 1951 :
Cornfield, J. "'A' statistical problem arising from'retrospective studies" Proceedinğs of the Third Berkeley:Symposium, 4, 135-148, 1956.

Cox, D.R.; Planning of Experiments, John Wiley \& Sons, •Inc.; New York, 1958.

- Fisher, R.A., The Design of Experiments, Oliver \& Boyd, Edinburgh, 1935.

Granger; C.W.J., :"Investigating Caupsal Relations by Econometric Models and Cross-Spectrall Methods," Econometrica, 37, 424-438,.1969. .

Jick, H. ett al. "Coffee and Mycardial Infarcation", New England Jourmal γ of Medicine, $-289, \quad 63-67$, 1973.
Kempthorne, $0 . ;$ The Design and Analysis of Experiments, John Wiley $\&$ Sons, Inc., New York, 1952.

Kempthorne, O., Distussion of "On rereading R.A. Fisher by Leonard J. Savage; \because : The Annals of Statistics, $4 ; 495-497$, 1976.

Kruskal, W.' TTe Significance of Fisher, Journaloof the Amer ican Statistical Assoc fation, 1980.

Mielthen, of. TStratification by multyariate confounder scorel., American Journal of Epldémiology, 104, 609-620; 197.6..

Rubin, D.B., TBayesian Inference far Causal Effects The Role of Randomization , The Anals of Statistics, 6, 1, 34258, 1978.

Rubin, D. B. Discusion of Randomization Analysis of Experdmental Data: The Fsisher Randomization Test, Journai of the American Statistical. Assoctation, 1980.

