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Abstract
This article links the structural equation modeling (SEM) approach with the principal stratification
(PS) approach, both of which have been widely used to study the role of intermediate
posttreatment outcomes in randomized experiments. Despite the potential benefit of such
integration, the 2 approaches have been developed in parallel with little interaction. This article
proposes the cross-model translation (CMT) approach, in which parameter estimates are translated
back and forth between the PS and SEM models. First, without involving any particular
identifying assumptions, translation between PS and SEM parameters is carried out on the basis of
their close conceptual connection. Monte Carlo simulations are used to further clarify the relation
between the 2 approaches under particular identifying assumptions. The study concludes that,
under the common goal of causal inference, what makes a practical difference is the choice of
identifying assumptions, not the modeling framework itself. The CMT approach provides a
common ground in which the PS and SEM approaches can be jointly considered, focusing on their
common inferential problems.
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Embedding intended mediational processes is popular in randomized experiments for
several reasons, including its usefulness in testing theories and improving future programs
(Brown, 1991; MacKinnon & Dwyer, 1993). In addition, information about mediators might
be used for screening individuals at risk into the intervention to make the intervention more
effective (Emery, 1991; Pillow, Sandler, Braver, Wolchik, & Gersten, 1991). The common
theory behind randomized experiments with mediational processes is that treatments change
the status of mediators and that these changes in mediators improve the condition of final
outcomes of interest. Naturally, this theory implies two different effects of treatment
assignment—the effect of treatment assignment on the outcome through mediators (indirect
effect) and the effect of treatment assignment on the outcome without going through (or,
conditioning on) mediators (direct effect). In this article, I treat treatment assignment and the
treatment actually received as being identical (i.e., full treatment compliance). It is also
assumed that outcome information is available for every individual at posttreatment
measurement.
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This article was particularly motivated by the Job Search Intervention Study (JOBS II;
Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997), which is a theory-driven
randomized field experiment intended to prevent poor mental health and to promote high-
quality reemployment among unemployed workers. One of the hypothesized mediators in
JOBS II was sense of mastery that might be triggered by the intervention and have an
influence on key outcomes, such as reemployment and depression. However, beyond
randomized intervention/prevention studies, the idea of mediation has been widely utilized
in randomized experiments to test and generate theories. For example, DeSteno, Valdesolo,
and Bartlett (2006) performed a randomized experiment in support of a theory that
threatened self-esteem functions as a principal mediator of jealousy. In Milling, Reardon,
and Carosella (2006), the mediating role of response expectancies was evaluated in the
treatment of pain through a randomized experiment. Meyer and Gellatly (1988) conducted
randomized experiments to show that assigned goals affect performance expectancy and
performance valence, which, in turn, would affect personal goal and task performance.

To explore the plausibility of a mediational process theory in randomized experiments, we
randomly assign individuals to different experimental or treatment conditions and then
observe how individuals' mediator status changes given assigned treatment conditions and
how these changes affect the ultimate outcome. From this design, strong causal inferences
are possible regarding the overall effect of treatment, in which groups randomized to
different treatment conditions are compared regardless of differences in mediator status.
However, because individuals are not randomly assigned to different mediator values, strong
causal inferences are not warranted for the effect of treatment assignment on the outcome
through mediators and for the effect of treatment assignment on the outcome conditioning
on mediators. Therefore, mediation analyses are regarded as exploratory analyses to
generate hypotheses that ideally can be tested in future trials (Kraemer, Wilson, Fairburn, &
Agras, 2002). However, the distinction between showing association and causal inferences
is often ignored in practice.

While methods to improve estimation and inferential procedures for mediation analyses
have continued to develop (e.g., Kraemer, Kiernan, Essex, & Kupfer, 2008; MacKinnon,
2008; MacKinnon & Dwyer, 1993; MacKinnon, Lockwood, Hoffman, West, & Sheets,
2002; Shrout & Bolger, 2002; Sobel, 1982, 1988), various efforts have been made to clarify
the underlying assumptions necessary to make causal inferences in the mediation analysis
context (e.g., Holland, 1988; Mealli & Rubin, 2003; Pearl, 2001; Robins & Greenland, 1992,
1994; Rubin, 2004; Sobel, 2008; Ten Have, Elliott, Joffe, Zanutto, & Datto, 2004; Ten Have
et al., 2007). The latter movement, led particularly by the potential outcomes approach (e.g.,
Angrist, Imbens, & Rubin, 1996; Frangakis & Rubin, 2002; Holland, 1986; Neyman,
1923/1990; Robins, 1986; Rosenbaum & Rubin, 1983; Rubin, 1974, 1978, 1980, 2005),
improved our general understanding of causal modeling. In the potential outcomes approach,
causal effects are defined on the basis of individual-level treatment assignment effect. In
general, one individual can be assigned to only one of the all treatment conditions
considered, and therefore his or her potential outcome is observed in one treatment condition
and unobserved in the other conditions. In the potential outcomes approach, we consider
both the observed and unobserved (potential) outcome values in defining causal effects. The
advantage of this approach is the high level of clarity in underlying assumptions, which also
makes model comparisons and sensitivity analyses more feasible. Unfortunately, however,
there has been little communication between the structural equation modeling (SEM) and
the potential outcomes approaches, hindering collaboration and understanding between the
two approaches

Mediation analyses in the SEM approach have been largely motivated by theory-based
experiments. The focus of this approach has been given to testing the fit of the data to

Jo Page 2

Psychol Methods. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



analysis models that resemble the mediation theory, with less emphasis being given to
clarification of assumptions that support causal interpretations of the analysis results. The
key drawback of this approach is that a well-fitting model may or may not prove causal
relations because alternative models may show equally good fit. Given that, unless
individuals are randomized to both treatment assignment status and mediator status
(Spencer, Zanna, & Fong, 2005), mediation analyses conducted in this approach might be
misleading when the results are used to make causal claims. Among the potential outcomes
community, the SEM approach is generally not regarded as a tool for causal inferences,
partly because necessary assumptions to support causal interpretations are not clarified,
partly because known assumptions are considered unrealistic, and partly because the SEM
approach itself is not well understood. When it comes to the topic of mediating variables,
development of the potential outcomes approach methods has been mainly driven by
complications in randomized clinical trials, such as noncompliance. These mediating
variables commonly dealt with in the potential outcomes approach are somewhat controlled
by study designs. For example, treatment receipt behavior can be somewhat controlled by
preventing individuals assigned to the control (or placebo) condition from taking the active
treatments. In the potential outcomes approach, assumptions to identify causal effects have
been developed to reflect these specific situations in clinical trials. Among the SEM
community, the potential outcomes approach is, first of all, not well known. Further,
frequently used assumptions to identify causal effects in the potential outcomes approach
seem very unrealistic in the context of theory-based intervention trials. Given that, there is
currently little motivation for the researchers in the SEM community to utilize the potential
outcomes approach in their mediation analyses.

The main goal of this article is to improve communication between the SEM and potential
outcomes approaches in the context of mediation analysis. In particular, the article focuses
on bridging the SEM approach with the principal stratification (PS) approach (Frangakis &
Rubin, 2002), which has been developed to specifically deal with causal inference problems
associated with mediating variables in the potential outcomes framework. PS refers to
classification of individuals on the basis of potential values of mediating variables under all
treatment conditions compared. Because the resulting categories (principal strata) are
unaffected by treatment, treatment effects conditioning on these categories can be
interpreted as causal effects (i.e., as evidence that the difference in the outcome is caused by
treatment assignment). In line with the potential outcomes tradition, the primary emphasis is
given to clarification of assumptions to identify causal effects in the PS framework.
Although the PS and SEM approaches have been developed in different contexts, both
approaches explicitly deal with mediators, and therefore the SEM approach is likely to
benefit from the methods used in the PS approach to identify causal effects. Clarifying the
assumptions that permit causal inferences and checking sensitivity of the results to deviation
from these assumptions are likely to lead to better use of data at hand and to improve the
design of future trials. Similarly, from the PS perspective, mediation processes dealt with in
the SEM approach tend to be more general than mediation processes commonly dealt with
in the PS approach, so that the PS approach is likely to benefit from broadening its modeling
practice and facilitating development of alternative models and sensitivity analysis methods.

Table 1 summarizes some differences between the SEM and PS approaches that will be
further discussed in the following sections. In this article, these differences are viewed as
different preferences, not as relative strengths and weaknesses of one approach compared
with the other. It is not surprising that the two approaches have different emphases and
preferences given their separate development in different contexts with different
motivations. However, when we deal with the same context (i.e., same data) with the
common motivation of causal inference, the difference between the two approaches
becomes minimal, which is in fact the main message of this article.
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SEM Approach
Data from intervention trials with embedded mediational processes have been largely
analyzed using the SEM approach (Baron & Kenny, 1986; Bollen, 1987; Judd & Kenny,
1981; MacKinnon, 2008; MacKinnon & Dwyer 1993; MacKinnon, Fairchild, & Fritz,
2007), which naturally reflects the mediational process theory. A simple mediational process
shown in Figure 1 depicts the key idea common to the conceptual mediation model and the
analytical model in the SEM approach. Figure 1 illustrates that treatment assignment (X)
changes the status of a mediator (M), and that this change in the mediator improves the
condition of final outcome (Y). In this framework, the mediated effect of treatment on the
outcome is evaluated in terms of whether the intervention targeted mediators are highly
associated with the outcome and whether the intervention successfully improved the
mediator status of individuals.

Identification of Causal Effects in the SEMBK Model
In the conventional mediation analysis model, widely known as Baron and Kenny's (1986)
model (SEMBK will be used to refer to this model), the total effect of treatment assignment
is seen as the sum of the direct and indirect effect. The three key parameters in this model
are (1) the effect of treatment assignment on the mediator (a), (2) the effect of mediator on
the outcome conditional on treatment assignment status (b), and (3) the effect of treatment
assignment on the outcome conditional on the mediator status (c). Ultimately, the indirect
effect is obtained as a product of the two effects a and b. Although the indirect effect is of
main interest, this approach does not exclude the possibility that the intervention may
directly influence outcomes without going through mediators (direct effect c). In many
randomized experiments, treatments are likely to include various elements that do not
necessarily target the change of mediators and measures of all mediators may not be
available. Therefore, in the SEM approach, the total effect of treatment assignment is
thought to be the combination of direct and indirect effects of treatment assignment (T = ab
+ c). This relation can be formally expressed by two linear equations.

For individual i, the mediator M is regressed on treatment assignment X:

(1)

where the residual εmi is usually assumed to be normally distributed. The intercept
parameter αm is the mean of M in the control condition, and a is the effect of X on M (i.e.,
mean shift because of the treatment). We compare the SEM and PS approaches focusing on
a setting where both X and M are binary. In that case, αm can be directly interpreted as one
of PS parameters. Centering of X does not affect the a estimate in this model, although it
affects αm.

For individual i, the outcome Y is regressed on treatment assignment X and the mediator M:

(2)

where the residual εyi is usually assumed to be normally distributed. We can interpret b as
the effect of M on Y conditioning on X, and c as the effect of X on Y conditioning on M. The
parameter αy is not of particular interest either in the SEM approach or in the PS approach.

The effect of treatment assignment on mediator status (a) can be interpreted as causal on the
basis of random assignment of treatment conditions. However, causal interpretation is not
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readily warranted for the other two components of mediation effects defined in the SEM
approach. These effects include the effect of mediator status on the outcome (b) and the
direct effect of treatment assignment on the outcome that is not mediated by the intended
mediator (c). Further, direct and indirect effects, which are defined in a unique way in the
SEM approach, are not readily identifiable solely relying on observed data. To identify these
effects and to interpret them as causal mediation effects in the SEM approach, a particular
set of assumptions is necessary.

1. Ignorability of observed mediator status—This is the most critical assumption in
the SEM approach. Under this assumption, individuals have the same observed and
unobserved individual characteristics regardless of their mediator status as if they were
randomly assigned to different mediator values. On the basis of this assumption,
comparisons in the outcome across individuals with different mediator values lead to the
interpretation that differences in mediator status caused differences in the outcome (i.e., b
effect is interpreted as causal), conditioning on treatment assignment status (X). Also, we
can interpret the difference in treatment assignment status as having caused the difference in
the outcome (i.e., c effect is interpreted as causal), conditioning on mediator status (M).
Without ignorability, the b effect is not necessarily causal: Individuals are not randomly
assigned to different mediator values, and therefore, when we compare the outcome across
individuals with different mediator values, we cannot be sure whether the difference is due
to the difference in the mediator or is due to differences in characteristics other than
mediator status. For example, in JOBS II, among individuals assigned to the intervention
condition, individuals who substantially improved their sense of mastery are likely to have
different characteristics from those of individuals who showed little change in their sense of
mastery. Therefore, when we compare their outcomes, we cannot exclude the possibility that
the difference may be due to characteristics of the individuals other than their mediator
status. Causal interpretation of the effect of X on the outcome (c) conditional on M is also
problematic because M is a posttreatment variable affected by treatment assignment. For
example, in JOBS II, individuals who improved their sense of mastery by one point in the
intervention program may have different observed and unobserved characteristics from
those of individuals who equally improved their sense of mastery in the control condition. In
other words, these two groups of individuals may not be comparable even though they have
the same mediator status. Randomization of individuals to a second set of treatment
conditions designed to affect the mediator will meet this assumptions (Spencer et al., 2005).
For further discussions regarding inferential problems associated with analyses conditioning
on measured posttreatment variables, see, for example, Rosenbaum (1983).

The ignorability assumption can be somewhat relaxed by allowing heterogeneity among
individuals in terms of observed characteristics (i.e., ignorability conditional on observed
variables). Under conditional ignorability, we assume that individuals have the same
unobserved (unmeasured) characteristics regardless of their mediator status, but they may
have different observed characteristics, in particular in terms of pretreatment covariates.
Conditional ignorability is weaker than ignorability, although it is still an unverifiable
assumption.

2. Constant effect—In conjunction with the ignorability assumption, this assumption
plays a key role in identifying unique direct (c) and indirect (ab) effects of treatment
assignment in the SEM approach. Under the assumption of constant effect, the direct effect
of treatment assignment on the outcome (c) is the same across individuals with different
mediator values, which simultaneously implies that the effect of mediator status on the
outcome (b) is the same across individuals assigned to different treatment conditions. In
other words, to uniquely identify the direct and indirect effects, this assumption implies that
the interaction between X and M has no effect on the outcome. This assumption is also
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referred to as the additivity (Holland, 1988; Sobel, 2008) or the no-interaction (Ten Have et
al., 2004) assumption. When both ignorability and constant effect assumptions are satisfied,
unique b and c effects are identified and can be interpreted as causal.

3. Linearity—In conjunction with the ignorability and constant effect assumptions, this
assumption makes it possible to uniquely identify direct and indirect effects in the presence
of continuous mediators. Under this assumption, the outcome value linearly increases (or
decreases) as the mediator value increases (or decreases).

Figure 2 illustrates these key identifying assumptions in the SEM approach. Let us assume a
simplified illustration, in which six individuals are randomly assigned either to the treatment
or to the control condition. Each individual has one of the three different mediator M values
(0, 1, 2). Panel A in Figure 2 shows the assumption of ignorability, which is the backbone
assumption in the SEM approach. Six individuals with different M values are displayed in
the same graph. After conditioning on X, they are assumed to be comparable on all other
measured and unmeasured covariates at baseline. In this case, comparisons between any
pairs of these individuals will lead to causal interpretations. In Panel B, in addition to
ignorability, a constant effect is also assumed. Now these six individuals follow a pattern
that the treatment effect given M (distance in Y between the treatment and control conditions
given M) is the same across different values of M. This also means that the relation between
Y and M is the same across different treatment conditions. In Panel C, in addition to
ignorability and constant effect, linearity is assumed. The relation between Y and M is linear
in both the treatment and control conditions. The condition described in Panel C is necessary
in the SEM approach to identify unique direct and indirect effects and to interpret them as
causal effects. Panel D demonstrates, under the condition shown in Panel C, how the total
effect can be partitioned into the direct (c) and indirect (ab) effects, which exactly
corresponds to the mediation process described in Figure 1. In Panel D in Figure 2, it is
assumed that the direct effect of treatment assignment c is 1.0 regardless of different M
values. Also, it is assumed that the effect of the mediator on the outcome (b) is 1.0
regardless of different X values. If the a effect is 1.0, meaning that the value of mediator
increases by one unit as individuals are assigned to the treatment condition instead of to the
control condition, the total effect would be 2.0 (i.e., T = c + ab = 1.0 + 1.0 × 1.0). If the a
effect is 2.0, the total effect would be 3.0 (i.e., T = c + ab = 1.0 + 2.0 × 1.0).

Identification of Causal Effects in the SEMMac Model
In the SEMBK model, direct and indirect effects are defined assuming that the direct effect of
treatment assignment (c) is constant across different levels of the mediator. However, under
the ignorability condition, a constant effect is not an essential assumption to identify and
causally interpret mediation parameters. Without assuming the constant effect assumption,
Equation 2 can be rewritten as

(3)

where d represents how much the effect of M increases (or decreases) as the value of X
increases by one unit (i.e., interaction effect). Given that, we can interpret b as the effect of
M on Y in the X = 0 (control) condition, and b + d in the X = 1 (treatment) condition. The
parameter d can also represent how much the effect of X increases (or decreases) as the
value of M increases by one unit. When M is binary, which is focused on in later sections of
this article, we can interpret c as the effect of X on Y in the M = 0 condition, and c + d as the
effect of X on Y in the M = 1 condition. To be able to interpret b as the average effect of M
on Y, centering is necessary (Aiken & West, 1991; Kraemer & Blasey, 2006). We do not
center X and M in this study because using the original scores with binary variables permits
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SEM parameters to be directly translated to PS parameters. PS parameters can also be
directly translated to SEM parameters.

The model described in Equation 3 has been used to check deviation from the constant effect
assumption (Judd & Kenny, 1981), and more recently, it has been formally introduced as the
MacArthur model (Kraemer et al., 2008). In this article, SEMMac will be used to refer to this
model. By including the interaction effect d, a constant direct effect is no longer assumed in
the SEMMac model. In this framework, mediation effects are conceptualized as the main
effect (reflected in b) and the interaction effect (reflected in d) under the condition that X
and M are correlated. In both the SEMBK and SEMMac models, Equation 1 is used to
identify the effect of treatment on the mediator (a). However, there is no path analytic
component in the SEMMac model because it does not aim to capture the indirect effect (ab).
The conceptualization of mediation effects is quite different in the SEMBK and SEMMac
models. Technically, however, the SEMBK model can be thought of as the SEMMac model
with the restriction that the interaction parameter equals zero. In this article, the two models
are categorized into the same category because (a) both models focus on observed mediator
status of individuals only under the condition they are assigned to (as opposed to potential
values of mediator status under all conditions that are compared), and (b) the two models
share ignorability of the mediator status as the central assumption to identify causally
interpretable mediation parameters given observed mediator status.

PS Approach
Potential Outcomes

Assume a randomized trial, where treatment assignment (X) has two values (1 = treatment, 0
= control). If an individual i is assigned to the treatment condition, his or her outcome under
the treatment condition is observed, but outcome under the control condition is not observed.
Let Yi(1) denote the potential outcome for individual i when assigned to the treatment
condition, and Yi(0) when assigned to the control condition. In this setting, the effect of
treatment assignment for individual i can be defined as Yi(1) − Yi(0). This definition
considers an idealized (potential) situation, in which each individual's outcome is
simultaneously observed under all compared conditions in the same context. This way of
defining treatment effects on the basis of potential outcomes is often referred to as Rubin's
causal model, or more broadly as the potential outcomes approach (Holland, 1986; Neyman,
1923/1990; Rubin, 1978, 1980).

The individual-level treatment effect Yi(1) − Yi(0) is interpreted as causal given that the only
cause of the difference between Yi(1) and Yi(0) is the treatment assignment status. Similarly,
the causal effect of treatment assignment can be defined at the average level. Let μ1 denote
the mean potential outcome for the population when assigned to the treatment condition, and
μ0 when assigned to the control condition. The average causal effect of treatment
assignment can be defined at the population level as μ1 − μ0. The fundamental problem of
causal inference (Holland, 1986) in practice is that we can observe only one of Yi(1) and
Yi(0). Therefore, the individual level causal effect Yi(1) − Yi(0) cannot be identified unless
we assume that the effect of treatment assignment is constant across different individuals
(Holland, 1986). However, the average causal effect μ1 − μ0 can be identified under the
following conditions.

Randomization (ignorability of treatment assignment)—Treatment assignment is
random (Holland, 1986; Rubin, 1974, 1978, 1980). Under this assumption, individuals
assigned to different treatment conditions have similar pretreatment characteristics.
Therefore, we can treat mean outcomes of individuals assigned to different treatment
conditions as if they were obtained from the same individuals under different treatment
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conditions. Given a single randomization, it is not possible to jointly observe mean
outcomes of the same individuals under different treatment conditions. However, it is
possible to observe the mean outcomes of individuals assigned to different treatment
conditions. In other words, under this assumption, the quantities that cannot be observed can
be replaced by the quantities that can be observed. This is a key assumption that opens up
possibilities for making causal inferences at the average level on the basis of observed data.

Stable unit treatment value assumption (SUTVA)—Potential outcomes for each
person are unrelated to the treatment status of other individuals (Rubin, 1978, 1980, 1990).
This is another critical assumption that makes identification of causal treatment effects
possible. In randomized trials that deal with clusters of individuals who are highly likely to
interact with one another, SUTVA is unlikely to hold. For example, let us assume a situation
in which a mother and her daughter participate in the same intervention trial. This cluster of
participants could be assigned to the same treatment condition or to different conditions. In
either case, their outcomes are likely to be contaminated (influenced) by interaction between
them. A less cited, but another important, implication of SUTVA is that potential outcomes
for each person under a given treatment do not depend on the person who delivers the
treatment, that is, there are no hidden variations of the treatment. For example, in a school
intervention setting, students who received intervention treatments from their teachers may
have better outcomes than students who received treatment from the research staff. For more
recent discussions on SUTVA, see, for example, Hong and Raudenbush (2006), Rosenbaum
(2007), and Sobel (2006).

Let  denote the observed sample mean outcome obtained from the treatment condition, and
 from the control condition. If randomization and SUTVA hold, and if the sample is a

good representation of the population,  and  are approximately unbiased estimates of μ1
and μ0. Then, an approximately unbiased estimate of the average causal effect of treatment
assignment is identified as

(4)

The advantage of approaching treatment effect estimation (although the results are the same)
using potential outcomes is that underlying assumptions necessary for causal interpretation
are explicitly clarified. The usefulness of the potential outcomes approach becomes more
evident as we deal with more complex problems in randomized trials. Mediation analysis
with data from randomized trials is a good example in which clarification of underlying
assumptions that underlie causal interpretation may benefit from the potential outcomes
approach. The disadvantage of the potential outcomes approach is having to deal with
quantities that cannot be observed at the same time, which may seem awkward and may
require cumbersome notations in expressing causal effects and their underlying assumptions
as we deal with more complex problems. Despite its usefulness and decades of history, the
potential outcomes approach is still not routinely practiced, particularly in the social,
psychological, behavioral, and educational research fields. Some introductory discussions on
the potential outcomes approach are provided in Gelman and Hill (2007); West, Biesanz,
and Pitts (2000); Morgan and Winship (2007); and Winship and Morgan (1999).

Potential Outcomes and Potential Mediators
The need for handling mediators in the potential outcomes approach arises when we are
interested in estimating causal treatment effects that vary across different mediator values.
One way to reflect this causal relation among treatment assignment, mediator, and outcome
in the potential outcomes approach is to use PS (Frangakis & Rubin, 2002), although other
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methods are also possible (e.g., Holland, 1988; Sobel, 2008; Ten Have et al., 2007). PS
refers to classification of individuals on the basis of potential values of intermediate
posttreatment outcomes under every treatment condition compared. The resulting categories
(principal strata) provide an informative map for exploring possible sets of assumptions that
will support causal inference taking into account the effect of mediators.

Let us extend the setting discussed above and assume that we are now interested in
estimating causal treatment effects considering an intermediate outcome M. Assume that M
can take only two values (1 = if the mediator status improves after treatment, 0 = otherwise).
In this setting, the individual-level causal effect involves potential values of M in addition to
potential values of Y. Let Mi(1) denote the potential mediator for individual i when assigned
to the treatment condition, and Mi(0) when assigned to the control condition. Because Mi(0)
and Mi(1) are potential values, each individual has both of them. However, only one of them
is observed under the condition individual i is actually assigned to. The combination of
potential values Mi(0) and Mi(1) represents the type of individual i. Types of individuals
defined this way are called principal strata. The reason that both values are considered is that
the PS approach makes a distinction between the mediator value obtained under the
treatment condition and the mediator value obtained under the control condition, which is a
key difference of the PS approach from the SEM approach. For example, individuals who
improve their mediator status under the treatment condition might have different
characteristics from individuals who improve their mediator status under the control
condition (e.g., individuals who improve their mediator status despite being assigned to the
control condition are likely to be more motivated people). Therefore, the difference in the
outcome between the treatment and control condition conditioning on observed mediators
(i.e., ignoring under which treatment condition mediator values are obtained) does not
necessarily represent a causal effect.

Given two possible treatment assignment status (1 = treatment, 0 = control) and two possible
mediator values (1 = improved, 0 = not improved), four possible principal strata are defined
as shown in Table 2. A new notation Ci is used to represent which principal stratum each
individual belongs to. For convenience, let us label these four types of individuals as never-
improvers (n), forward-improvers (f), backward-improvers (b), and always-improvers (a).
Never-improvers are individuals whose mediator status does not improve no matter which
condition they are assigned to; forward-improvers are individuals whose mediator status
improves only if they are assigned to the treatment condition; backward-improvers are
individuals whose mediator status improves only if they are assigned to the control
condition; and always-improvers are individuals whose mediator status always improves no
matter which condition they are assigned to. As the numbers of values M and X can take
increases, the number of principal strata also increases. For example, if M can take three
values, and X can take two values, the number of possible strata is nine (i.e., 3 × 3 = 9).

The PS approach, illustrated in Table 2, is characterized by turning observed mediators that
are affected by treatment assignment into variables that are not affected by treatment
assignment. This is possible by using potential values of mediators. Whereas Mi(0) and
Mi(1) are affected by treatment assignment (only one of them is observed), the variable that
combines the two (i.e., Ci) is unaffected by treatment assignment. Given a mediator M, let Yi
(Mi(0), 0) denote the potential outcome for individual i when assigned to the control
condition and Yi(Mi(1), 1) when assigned to the treatment condition. Because Mi(0) and
Mi(1) constitute Ci, we can rewrite these potential outcomes using Ci. That is, Yi(Mi(0), 0) =
Yi(Ci, 0) and Yi(Mi(1), 1) = Yi(Ci, 1). The causal effect for individual i with the principal
stratum membership Ci is then Yi(Ci, 1) − Yi(Ci, 0). Individual-level potential outcomes and
corresponding causal effects given four principal strata are shown in Table 2.
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As with the overall average causal effect (γT), the causal effect of treatment assignment
conditional on principal strata can be defined at the average level. Average causal effects for
different strata and involved mean potential outcomes are shown in Table 3. Let μn1 denote
the mean potential outcome for never-improvers in the population when assigned to the
treatment condition, and μn0 when assigned to the control condition. Similarly, let μf1 denote
the mean potential outcome for forward-improvers when assigned to the treatment
condition, and μf0 when assigned to the control condition, μb1 for backward-improvers when
assigned to the treatment condition, and μb0 when assigned to the control condition, μa1 for
always-improvers when assigned to the treatment condition, and μa0 when assigned to the
control condition. Because we can only observe one of Mi(1) and Mi(0), Ci is also
unobservable, and therefore these mean potential outcomes conditional on principal strata
are not directly estimable. The average causal effect of treatment assignment can be defined
at the population level as μn1 − μn0 (i.e., γn) for never-improvers, as μf1 − μf0 (i.e., γf) for
forward-improvers, as μb1 − μb0 (i.e., γb) for backward-improvers, and as μa1 − μa0 (i.e., γa)
for always-improvers. Because Ci is unobserved, average causal effects conditional on
principal strata are not readily identifiable. To identify these effects, more assumptions are
necessary in addition to the earlier assumptions of randomization of treatment assignment
and SUTVA.

In the PS framework, mediation effects are captured by looking at characteristics such as a
high proportion of forward-improvers (πf), a large treatment assignment effect for forward-
improvers (γf), a low proportion of backward-improvers (πb), and no harmful effects of
treatment assignment on the outcome for any principal stratum.

Identification of Causal Effects in the PSAIR Model
In the SEM approach, in which inferences are made on the basis of observed values of
mediators, the assumption of ignorability is always necessary for causal interpretation of
mediation effects. In contrast, the definition of causal effects in the PS approach does not
directly suggest which identifying assumptions should be imposed. Therefore, without
knowing the specific assumptions utilized to identify causal effects in the PS approach,
comparing the quality of mediation effects defined in the two approaches as causal effects
would be unfair. In principle, there are no fixed rules to follow in identifying causal effects
in the PS approach. However, the development of the PS approach has been mainly driven
by complications in randomized clinical trials such as noncompliance, so that particular
assumptions to reflect these specific situations have been more frequently used.

The set of assumptions that will be discussed here was developed in Angrist et al. (1996), in
which the purpose was to identify average treatment assignment effects conditioning on
individuals' compliance types. These assumptions are applicable in randomized experiments
with mediational processes when it is reasonable to assume that (a) there are no harmful
effects of treatment assignment on mediators for any principal strata and that (b) the effect
of treatment assignment on the outcome is completely mediated through the intended
mediators (i.e., there is no direct effect of treatment assignment). In Angrist et al.'s study,
these assumptions are labeled as monotonicity and the exclusion restriction. Note that, in
this article, these assumptions are applied to handle general mediators. Therefore, full
treatment compliance is assumed unless compliance itself is the mediator of interest. It is
also assumed that outcome information is available for every individual at posttreatment
measurement.

1. Monotonicity—There are no backward-improvers. This implies that individuals'
mediator status always shows more (or at least the same) positive change when assigned to
the treatment condition than when assigned to the control condition, which excludes the

Jo Page 10

Psychol Methods. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



possibility of having individuals whose mediator status improves less when assigned to the
treatment condition (i.e., backward-improvers). Monotonicity is often a critical assumption
that supports the identifiability of causal inference models in the PS approach. Admitting the
existence of backward-improvers is the same as admitting that the treatment may have
harmful (iatrogenic) effects on the mediator status of some individuals. That is, some
individuals may do better if the treatment is not provided, which is not a desirable situation.
Monotonicity is considered a benign assumption in randomized clinical trials where we can
control the status of the posttreatment variables by study design. For example, compliance
can be controlled to some extent by disallowing individuals from receiving treatments other
than those they are assigned to receive. However, in more general situations, such as in
JOBS II, in which sense of mastery was a targeted mediator, we cannot prevent people from
improving (or not improving) their mastery status, no matter which condition they are
assigned to. Therefore, depending on the research context, we might not be able to exclude
the possibility of having backward-improvers.

2. Exclusion restriction—For never-improvers and always-improvers, there is no effect
of treatment assignment on the outcome. This implies that the effect of treatment assignment
on the outcome is completely mediated through the intended mediator (i.e., no direct effect
of treatment assignment). The exclusion restriction assumption is more likely to hold in
masked experiments because it is hard for study participants to tell which treatment
condition they are in. However, in randomized field trials, such as JOBS II, masking is not a
realistic option. Without successful masking, treatment assignment itself may have some
effect on the outcome (e.g., being assigned to the treatment condition may have a positive or
a negative effect on outcomes, and in particular, on psychological outcomes), resulting in
some direct effect that is not mediated by the intended mediators. Treatment or intervention
programs, such as JOBS II, also typically target multiple mediators. If all of the mediators
are not included in the analysis, which is quite common in the potential outcomes approach
because handling multiple mediators is extremely difficult, the effect of treatment through
mediators that are excluded from the analysis will take the form of a direct effect. Further,
treatment may affect unintended (or unobserved) mediators, creating another source of a
direct effect. Given that, the exclusion restriction might be violated frequently in practice.

Under these two assumptions, identification of the average causal effect of treatment
assignment defined in Table 3 is straightforward. Let us call this particular PS model the
PSAIR (Angrist, Imbens, & Rubin) model. On the basis of the mean potential quantities in
Table 3, these two assumptions can be unfolded into three specific restrictions. That is, as a
result of monotonicity, πb = 0 (no backward-improvers). As a result of the exclusion
restriction, μn1 − μn0 = 0, and μa1 − μa0 = 0 (no effect of treatment on outcome for never-
improvers and always-improvers).

Consider first the model in which the two identifying assumptions above are not imposed.
First, individuals in the four principal strata form the population of interest. That is,

(5)

Second, the observable mean potential outcome under each treatment condition can be
expressed in terms of the mean potential outcomes and proportions of principal strata as

(6)
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(7)

I now impose monotonicity, πb = 0. Then, from Equation 5, πf is derived as

(8)

where πf is identifiable because πn and πa have corresponding sample statistics. That is, if
monotonicity holds, we can distinguish always-improvers from other types in the control
condition, because always-improvers are the only type of individuals who would improve
their mediator status when assigned to the control condition (i.e., Mi(0) = 1). In the treatment
condition, we can distinguish never-improvers from other types, because never-improvers
are the only type of individuals who would not improve their mediator status when assigned
to the treatment condition (i.e., Mi(1) = 0). Therefore, at the average level, we observe πn in
the treatment condition and πa in the control condition. Because treatment assignment is
randomized, we assume that the proportions of three strata are the same regardless of
treatment conditions.

From Equations 6 and 7 and imposing monotonicity, πb = 0, γf can be derived as

(9)

I now impose the exclusion restriction, μn1 = μn0, and μa1 = μa0. Then, γf in Equation 9 can
be rewritten as

(10)

where γf is identifiable, given that μ1 and μ0 have corresponding sample statistics, and πf is
identifiable as shown in Equation 8. Also, note that the numerator μ1 – μ0 is the overall
(total) effect of treatment assignment (γT) as defined in Equation 4.

Identification of Causal Effects in the PSIg Model
In the SEM approach, ignorability of mediator status is an essential assumption that cannot
be separated from causally interpretable mediation parameters. One clear advantage of the
PS approach is that the true (or potential) status of parameters of interest before applying
any identifying assumptions can be explicitly presented, as shown in Tables 2 and 3. In other
words, in the PS approach, there are no fixed identifying assumptions that must be present to
define causal effect parameters. In the PSAIR model, for example, monotonicity and the
exclusion restriction are used to identify causal effect parameters. However, these two
assumptions can be replaced with other alternative assumptions (especially if they are more
plausible). This open structure is possible due to the fact that the PS approach considers
potential mediator status instead of observed values of the mediator. One interesting
alternative identifying assumption that will be considered to identify PS parameters in this
article is ignorability, which is the backbone assumption in the SEM approach.

Recall that ignorability in the SEM approach means that individuals have the same
unmeasured (unobserved) characteristics regardless of their mediator status. On the basis of
this assumption, comparisons in the outcome across individuals with different mediator
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values lead to the interpretation that differences in mediator status (M) caused differences in
the outcome conditioning on treatment assignment status (X). From the PS perspective, this
assumption can be interpreted that individuals have the same potential outcome conditional
on the observed mediator (M) and the treatment assignment condition (X). In other words,
individuals with the same M and X values have the same potential outcome values regardless
of their principal stratum membership.

Let us apply ignorability to four principal strata defined in Table 3 to see which strata
contribute to each possible observable outcome. As a direct result of ignorability, μn0 = μf0 =
μ0,0, where μ0,0 is the conditional mean potential outcome of individuals whose mediator
status does not improve under the control condition. Similarly, μb0 = μa0 = μ1,0, where μ1,0
is the conditional mean potential outcome of individuals whose mediator status improves
under the control condition, and μn1 = μb1 = μ0,1, where μ0,1 is the conditional mean
potential outcome of individuals whose mediator status does not improve under the
treatment condition. Finally, μf1 = μa1 = μ1,1, where μ1,1 is the conditional mean potential
outcome of individuals whose mediator status improves under the treatment condition. Table
4 summarizes the mean potential outcomes and average causal effects redefined under
ignorability.

Under ignorability, unidentifiable mean potential outcomes and average causal effects
conditional on principal stratum membership can be replaced by identifiable quantities. That
is, whereas the eight mean potential outcomes μn0, μn1, μf0, μf1, μb0, μb1, μa0, and μa1 are not
identifiable, the four mean potential outcomes μ0,0, μ1,0, μ0,1, and μ1,1 are. The observed

means , , , and  are approximately unbiased estimates of μ0,0, μ1,0, μ0,1, and

μ1,1, where  denotes the observed sample mean outcome of individuals whose mediator

status did not improve when assigned to the control condition,  denotes the observed
sample mean outcome of individuals whose mediator status improved when assigned to the

control condition,  denotes the observed sample mean outcome of individuals whose

mediator status did not improve when assigned to the treatment condition, and  denotes
the observed sample mean outcome of individuals whose mediator status improved when
assigned to the treatment condition. Of importance, because observed outcomes replace
potential outcomes, the distinction between the SEM and PS approaches no longer exists
under the assumption of ignorability.

Given that both treatment assignment X and the mediator M are binary, estimates of the four

means , , , and  can be expressed in terms of the SEM parameter estimates from
Equation 3, or from Equation 2 if the constant effect assumption holds, as

(11)

(12)

(13)

Jo Page 13

Psychol Methods. Author manuscript; available in PMC 2010 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(14)

where , , , and , can be obtained from a simple ordinary least squares regression
analysis or from more efficient large sample estimation methods, such as a maximum
likelihood (ML) estimation, although the results will be practically identical given the
simple structure of the model.

Then, approximately unbiased estimates of the average causal effects defined in Table 4 are
identified as

(15)

(16)

(17)

(18)

which shows that the PSIG model and the SEMMac model (or the SEMBK model if the
constant effect assumption holds) merges into the same model if the same ignorability
assumption is used to identify causally interpretable parameters.

Whereas ignorability is sufficient to identify average causal treatment effects, a further
restriction is necessary to identify principal strata proportions (πn,πf,πb,πa). Although the
PSIg model (or the SEM models) does not provide a complete picture regarding the principal
strata proportions, it allows us to relax the exclusion restriction and allows us to learn
whether treatment assignment had any harmful effects on any subpopulations under the
assumption of ignorability. If the γb estimate is negligible or does not indicate any harmful
effects, existence of some backward-improvers becomes less problematic. It is also possible
to construct reasonable ranges of principal strata proportions. That is, we may estimate
proportions assuming monotonicity, as explained with Equation 8, and then adjust these
proportions given a reasonable range of deviation from monotonicity. In fact, the
monotonicity assumption leads to the lower bound estimate of πf, which provides us with a
good rough estimate of the effect of treatment assignment on the mediator.

A Common Ground: Cross-Model Translation (CMT) Approach
The equality between the PS and SEM parameter estimates shown in Equations 15–18 exists
because of an identifying assumption that is common to both models (i.e., ignorability). In
contrast, this equality is unlikely to hold if the two compared models employ different
assumptions to identify causal parameters. Regardless of identifying assumptions employed,
translation between PS and SEM parameters is possible as we focus on the substantive
meaning of these parameters. When the PS and SEM approaches rely on different
identifying assumptions, it is unclear how different results from the two approaches should
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be compared. Translation between PS and SEM parameters is critical here to put these
different findings into the same metric so that we can interpret and compare them. Further,
translation between PS and SEM parameters provides multiple perspectives. The same
phenomenon may look very different from different perspectives. Having different
perspectives is useful because it is likely to lead to better sensitivity analyses, and therefore
a better understanding of the phenomenon.

From the SEM approach perspective, translatability between PS and SEM parameters is a
convenient property, which allows the SEM approach to borrow the open structure of the PS
approach. In other words, it is possible to identify SEM parameters using various other
assumptions than the ones typically used in the SEM approach. Translatability is also a
useful property from the PS approach perspective because it allows the PS approach to
borrow assumptions from the SEM approach. For example, there is no reason to completely
exclude the possibility of employing the ignorability assumption when other alternative
assumptions such as monotonicity and the exclusion restriction are likely to be violated. The
CMT approach will be used to refer to the method of obtaining PS parameter estimates on
the basis of the SEM approach and the method of obtaining SEM parameter estimates on the
basis of the PS approach. These methods are possible on the basis of translatability between
PS and SEM parameters.

A Single Binary Mediator
When making a causal inference with mediators, it is necessary to make assumptions about
something we do not observe. For example, in identifying causal mediation effects in the
SEM approach, we assume ignorability, which involves information we cannot collect from
the observed data. In this case, linearity is also an unverifiable assumption because it has a
meaning only under the condition that ignorability holds (and we do not know whether
ignorability holds) as illustrated in Figure 2. However, in the conventional SEM approach,
linearity has been viewed as an assumption about observed data. In this framework, when
linearity approximately holds given observed data, there is little need to dichotomize (or
stratify) continuous mediator values especially given negative consequences of
dichotomizing, such as loss of information (MacCallum, Zhang, Preacher, & Rucker, 2002)
and attenuated estimates, even when the hypothesized model is true (Kenny, 1979;Judd &
Kenny, 1981). In the PS approach, in which causal inference has been the focus, mediators
have not generally been handled as continuous variables. As shown in the PSAIR and PSIg
models, strong identifying assumptions are often necessary even with a single binary
mediator. To accommodate continuous mediators, we need to impose more and stronger
assumptions that are unverifiable, which makes causal inference modeling extremely
difficult. Therefore, despite its possible pitfalls, dichotomizing or categorizing continuous
mediators has been commonly practiced in the PS approach. Similarly, to make causal
inferences given multiple mediators, we need to impose more and stronger assumptions that
are typically unverifiable. Therefore, multiple mediators are not generally handled
simultaneously in the PS approach.

In the current article, we will establish a close connection between the PS and SEM
approaches focusing on a situation in which both treatment assignment and the mediator are
binary. As briefly discussed above, in terms of handling continuous and/or multiple
mediators, the two approaches have developed different preferences. However,
disagreement between the two approaches becomes minimal under the same goal of making
causal inferences. Therefore, making a close connection between the PS and SEM
approaches given continuous and/or multiple mediators is a feasible task, which should be
continued in future studies.
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Translatability Between the SEM and PS Parameters
The PS and SEM approaches are similar in the sense that it considers change in mediator
status due to treatment assignment. The mediational process theory that underlies the SEM
approach implies both direct and indirect effects of treatment assignment. In the PS
approach, what can be considered as direct effects are the effects of treatment assignment for
never-improvers and always-improvers. For these two types of individuals, mediator status
does not change regardless of treatment assignment. That is, if we know the true PS
parameter values, the direct effect of treatment assignment in the SEM approach can be
expressed in terms of PS parameters as

(19)

(20)

where d represents the difference between the two direct effects (i.e., interaction effect). If
γn = γa, then d = 0 (i.e., constant effect holds). If γn does not equal γa (i.e., constant effect
does not hold), according to the conventional SEM's definition, neither c nor c + d can be
interpreted as direct effect because it is not constant across different levels of M. From the
PS perspective, individuals belonging to different principal strata may have heterogeneous
characteristics (because they are not randomly assigned to different mediator status).
Because never-improvers and always-improvers belong to qualitatively different
subpopulations, direct effects may differ for these two types of individuals.

If causal effects of treatment assignment for forward- and backward-improvers (their
potential mediator status changes depending on the treatment assignment status) are
different from those for never-improvers and always-improvers, this suggests that there may
be indirect effects of treatment assignment because, in that case, the differences in the
outcome across assignment conditions may be partly due to the change in mediator status
(for related discussions, see Rubin, 2004, and Mealli & Rubin, 2003). The effect of the
mediator on the outcome conditional on treatment assignment can be expressed as

(21)

(22)

where b can be used to define the indirect effect if γf − γn = γf − γa. According to the
conventional SEM definition, if γf − γn ≠ γf − γa, neither b + d nor b can be used to define
the indirect effect because it is not constant across different levels of X.

The effect of treatment assignment on the mediator in the SEM approach can be expressed
in terms of PS parameters as

(23)

Then, if γn = γa (i.e., d = 0), the indirect effect in the SEM approach can be expressed in
terms of PS parameters as
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(24)

If we know the true SEM parameter values, we can also obtain PS parameter values on the
basis of translatability between PS and SEM parameters. The effects of treatment
assignment for never-improvers and always-improvers in the PS approach can be expressed
in terms of SEM parameters as

(25)

(26)

The effects of treatment assignment for forward-improvers in the PS approach can be
expressed in terms of SEM parameters as

(27)

From the PS perspective, whether the mediator status changes because of the treatment
assignment can be inferred by looking at the proportions of forward- (πf) and backward-
improvers (πb), whose potential mediator status changes depending on which treatment
condition they are assigned to. In particular, a large proportion of forward-improvers can be
considered as evidence of positive effect of treatment assignment on a mediator. Given the
spirit of mediational processes, the existence of backward-improvers (i.e., negative effect of
treatment assignment on a mediator) may not be welcomed. However, in the context of
mediational processes, we cannot confidently exclude the possibility of having this category
of individuals. For example, in comparing a standard treatment and a new treatment, some
individuals' mediator status may improve under the standard treatment condition but not
under the new treatment condition. If we know true SEM parameter values, principal strata
proportions in the PS approach can be expressed in terms of SEM parameters as

(28)

(29)

(30)

where the SEM parameter αm is the mean of the binary mediator (i.e., proportion of
individuals whose mediator status improved) in the control condition. The SEM parameter a
is the difference between the proportion of individuals whose mediator status improved in
the treatment condition and the proportion of individuals whose mediator status improved in
the control condition.

In the possible presence of backward-improvers, the effect of treatment assignment for this
stratum of individuals would be also of concern because this effect is more likely to be
harmful than treatment assignment effects for other strata of individuals. In the PS approach,
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the treatment assignment effect for backward-improvers can be explicitly addressed with a
designated parameter (γb). In the SEM approach, we do not make an explicit distinction
between forward- and backward-improvers. In other words, if the effect of changing the
mediator from 0 to 1 is b, the effect of changing the mediator from 1 to 0 is −b. Given that,
γb can be expressed as

(31)

Simulation Studies
On the basis of the connection between the SEM and PS parameters, as shown in Equations
19–31, comparing the SEM and PSAIR models is quite straightforward if we know the true
situation. However, what should be the most plausible and realistic situation is usually
unclear, which is a fundamental problem in comparing models that operate under different
identifying assumptions. In other words, which approach performs better depends on which
situation we are looking at. Further, to properly examine the relative performance of the two
approaches, we need to know detailed information on all involved parameters, which is not a
likely situation in reality. Given that, in this section, we employ Monte Carlo simulations to
further clarify the relation between the two approaches rather than to show superiority of
one approach. In line with the previous sections, we focus on a randomized trial setting with
a continuous outcome, a binary treatment assignment, and a binary mediator.

The PS model before assuming any identifying assumptions is used as the base (data
generation) model for Monte Carlo simulations. This choice was made to fully describe the
true setting before involving any SEM and PS model assumptions (i.e., ignorability is more
difficult to address if we choose the SEM model as the base model as multiple sensitivity
analyses would be required). Population mean and average causal effect parameters in the
true PS model are presented in Table 3. On the basis of true PS parameter values, true SEM
parameter values can be obtained as shown in Equations 19–24.

The PSAIR model is used as an example of the PS approach in which a particular set of
identifying assumptions are imposed. The key parameter γf is estimated in the PSAIR model
on the basis of Equation 10. The key parameters of interest (a, b, c) are estimated in the
SEMBK model on the basis of linear equations shown in Equations 1–2. Because the
mediator is binary, it is also possible to use a logistic or probit regression model instead of a
linear regression model in Equation 1. Whether we use a linear or a logistic (or probit)
regression model to capture the effect of treatment assignment on the mediator does not
affect conclusions of simulation studies presented in this article (i.e., estimates of b have the
same coverage rates and power, although they are on different scales). The same model in
Equation 1 is used to estimate πf and πa in the PSAIR model, given that these parameters are
equivalent to SEM parameters a and αm under monotonicity, as shown in Equations 28 and
29. Once πf and πa (or, a and αm) are identified, πn can also be identified as shown in
Equation 30. A computationally more demanding finite mixture approach (e.g., Jo, 2002b;
Little & Yau, 1998) can also be employed for this purpose. However, in the absence of
covariates, the two methods yield practically identical results (i.e., very close parameter and
standard error estimates). In the presence of covariates, the latter approach is known to be
generally more efficient. To focus on understanding of connection between the PS and SEM
approaches, we limit our discussions in this article to unconditional models. Including
covariates in the analyses does not change general conclusions of this study.

Once PS and SEM parameters are estimated using the PSAIR and SEMBK models, PS
parameter estimates are translated to SEM parameter estimates, and SEM parameter
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estimates are translated to PS parameter estimates on the basis of the CMT approach
represented in Equations 19–31. At the end of this section, we consider a setting in which
constant effect does not hold. Because whether a constant effect is assumed matters in this
case, the PSIg (= SEMMac) model is additionally employed as an analysis model. The
indirect effect (ab) estimates is not reported when the PSIg (= SEMMac) model is employed.

The current study employs a ML estimation approach for all analyses, although simpler
estimation methods (e.g., ordinary least squares) will also yield similar results. For ML
estimation of the SEM and PS models, the Mplus program (Version 5.1; Muthén & Muthén,
1998–2008) was used. Parametric standard errors are computed from the information matrix
of the ML estimator under the assumption of normally distributed outcomes. For parameter
estimates that involve more than one parameter (e.g., ab and γT/πf), standard errors were
calculated using the delta method (e.g., Sobel, 1982), which is embedded in the Mplus
program. However, it is also possible to employ more efficient ways of estimating standard
errors that have been previously suggested (MacKinnon, Fritz, Williams, & Lockwood,
2007; MacKinnon et al., 2002; MacKinnon, Lockwood, & Williams, 2004; Shrout &
Bolger, 2002). The delta method was chosen here because it is computationally less
demanding, especially in the context of Monte Carlo simulations. For Mplus codes used for
data generation and SEM and PS model analyses, see the supplemental materials.

As summarized in Table 3, the base model involves 12 populations values: four proportions
(πn, πf, πb, πa) and eight means (μn0,μf0,μb0,μa0,μn1,μf1,μb1,μa1). Depending on assumptions
that we impose on these parameters, the resulting model will be differently identified, and
the results will be sensitive to violation of these identifying assumptions. To causally
interpret PS and SEM parameter estimates on the basis of the SEMBK model, ignorability
and constant effect are assumed. To causally interpret PS and SEM parameter estimates on
the basis of the PSAIR model, monotonicity and the exclusion restriction are assumed. To
causally interpret PS and SEM parameter estimates on the basis of the PSIg (= SEMMac)
model, ignorability is assumed.

Ignorability of mediator status means that individuals with the same mediator value (M) and
the same treatment assignment status (X) have the same potential outcome values (Y). This
implies at the average level that

(32)

(33)

(34)

(35)

Constant effect means that the effect of treatment assignment conditional on the mediator
value (direct effect) is the same for individuals with different mediator values. This implies
at the average level that

(36)
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Monotonicity means that there are no backward-improvers. That is,

(37)

Exclusion restriction means that there is no effect of treatment assignment for individuals
who would not change their mediator status regardless of the treatment assignment status.
This implies at the average level that

(38)

which is a stronger form of the constant effect assumption shown in Equation 36.

When Both SEMBK and PSAIR Assumptions Hold
In the first simulation setting, all of the SEM and PSAIR assumptions shown in Equations
32–38 are satisfied. True values employed for principal stratum proportions are πn = 0.4, πf
= 0.4, πb = 0.0, and πa = 0.2. The continuous outcome Y is normally distributed with
variance of 1.0. True values employed for outcome means are μn0 = μf0 = 1.0, μa0 = 1.5, μn1
= 1.0, and μf1 = μa1 = 1.5. According to these true mean values, true average causal
treatment effect values (see Table 3) in the PSAIR model are obtained as γn = μn1 – μn0 = 0.0,
γf = μf1 – μf0 = 0.5, and γa = μa1 – μa0 = 0.0. Then, according to Equations 19–24, true SEM
parameter values are obtained as a = 0.4, b = 0.5, and c = 0.0. According to Equation 29, the
true value of the SEM parameter αm = 0.2. This parameter is closely related to principal
stratum proportions in the PS approach, although it is not considered a key parameter in the
SEM approach.

Table 5 shows the results from the SEMBK and PSAIR analyses. The Monte Carlo simulation
results presented in this article are based on 500 replications with a sample size of 500. Once
SEM and PS parameters are estimated using the SEMBK and PSAIR models, SEM and PS
parameter estimates can be translated back and forth according to Equations 19–31. For
example, the γf estimate can be obtained using SEM parameter estimates on the basis of

Equation 27 as , where d is fixed at zero according to
the constant effect assumption (see the γf estimate in the SEMBK model in Table 5). The b
estimate can be obtained using PSAIR parameter estimates on the basis of Equation 22 as

, where γa is fixed at zero according to the exclusion
restriction (see the b estimate in the PSAIR model in Table 5). In summarizing analysis
results with the simulated data, coverage is defined as the proportion of replications out of
500 replications in which the true parameter values are covered by the nominal 95%
confidence interval of the parameter estimates. Power is defined as the proportion of
replications out of 500 replications in which parameter estimates are significantly different
from zero (significance level = .05, two-sided). In this article, power is reported if the
coverage rate is at least 0.900 (i.e., Type I error rate is not greater than twice the nominal
rate). Given the medium range sample size (i.e., 500), coverage rates may fluctuate
somewhat around the nominal rate (i.e., coverage rate = 0.95, Type I error rate = 0.05). It
was necessary to set the acceptable limit of this fluctuation when reporting power because
some bias is expected in parameter estimation due to violation of underlying assumptions.
Information on power is not useful and misleading when parameter estimates are seriously
biased. However, depending on the research context, practically acceptable Type I error
rates may vary in the presence of possible bias. Table 5 shows that the SEMBK and PSAIR
models show very close key parameter estimates with good coverage rates, indicating
compatibility of the two models. This also confirms that the SEM parameters are properly
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interpreted in the PS framework. Whereas coverage rates are very close between the two sets
of parameters, power to detect an indirect effect is different in the two models. That is, the
effect b in the SEMBK model (power = 1.000) is detected with greater power compared with
the effect γf in the PSAIR model (power = 0.586). This implies an advantage of using the
SEM model when its identifying assumptions hold, although both the SEM and PSAIR
parameters (b and γf) are positioned to capture a mathematically equivalent quantity.

When SEMBK Assumptions Hold
When SEMBK assumptions (ignorability, constant effect) hold, PSAIR assumptions can be
violated only in certain ways. That is, either monotonicity or the exclusion restriction can be
violated, but both of them cannot be violated at the same time. If both are violated at the
same time, at least one of the SEMBK assumptions is also violated.

When only monotonicity is violated (ignorability, constant effect, and exclusion restriction
hold), the relation between γf and γb is straightforward. That is, γb = –γf. Under this
condition, violation of monotonicity does not lead to bias in the estimation of the average
causal treatment effect γf as pointed out in Angrist et al. (1996), although it leads to bias in
the estimation of principal strata proportions. In the simulation setting that satisfies this
condition, true values employed for principal stratum proportions are πn = 0.3,πf = 0.4,πb =
0.1, and πa = 0.2. True values employed for outcome means are μn0 = μf0 = 1.0, μb0 = μa0 =
1.5, μn1 = μb1 = 1.0, and μf1 = μa1 = 1.5. According to these true mean values, the true
average causal treatment effect values in the PSAIR model are obtained as γn = μn1 – μn0 =
0.0, γf = μf1 – μf0 = 0.5, γb = μb1 – μb0 = −0.5, and γa = μa1 – μa0 = 0.0. Then, according to
Equations 19–24, true SEM parameter values are obtained as a = 0.3, b = 0.5, and c = 0.0.
According to Equation 29, the true value of the SEM parameter αm = 0.3.

Table 6 shows that the SEMBK and PSAIR models generated very close SEM and PS
parameter estimates and coverage rates, indicating that the two models are still compatible
when faced with violation of monotonicity. In both models, principal strata proportions are
estimated on the basis of Equations 28–30. These proportion estimates show low coverage
rates, which is expected given that πb = 0.1 (i.e., monotonicity is violated) in the simulation
setting. Other than that, both SEM and PS parameters are well estimated with good coverage
rates in the SEMBK and PSAIR models. As in Table 5, power to detect an indirect effect is
different in the two models because the effect b in the SEMBK model (power = 1.0) is
detected with much greater power compared with the effect γf in the PSAIR model (power =
0.382). This again implies that the SEM model will detect an indirect effect with greater
power as long as its identifying assumptions hold.

Unlike violation of monotonicity, violation of the exclusion restriction actually results in
biased parameter estimates in the PSAIR model even if SEMBK assumptions hold. How
violation of the exclusion restriction affects PS parameter estimates has been discussed in
several articles (e.g., Angrist et al., 1996; Hirano, Imbens, Rubin, & Zhou, 2000; Jo, 2002a).
As shown in Equations 36 and 38, the exclusion restriction is a stronger form of the constant
effect assumption. Therefore, if SEMBK assumptions hold and the exclusion restriction is
violated, the violation only affects the PSAIR model. In the simulation setting that satisfies
this condition, true values employed for principal stratum proportions are πn = 0.4, πf = 0.4,
πb = 0.0, and πa = 0.2. True values employed for outcome means are μn0 = μf0 = 1.0, μa0 =
1.3, μn1 = 1.2, and μf1 = μa1 = 1.5. According to these true mean values, true average causal
treatment effect values in the PSAIR model are obtained as γn = μn1 – μn0 = 0.2, γf = μf1 – μf0
= 0.5, and γa = μa1 – μa0 = 0.2. Then, according to Equations 19–24, true SEM parameter
values are obtained as a = 0.4, b = 0.3, and c = 0.2. According to Equation 29, the true value
of the SEM parameter αm = 0.2.
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Table 7 shows that the PSAIR model overestimated the PS parameter γf and SEM parameters
related to γf (i.e., b and ab) with coverage rates much lower than the nominal rate. The
results imply that indirect effect estimates of the PSAIR model need to be interpreted with
caution when plausibility of the exclusion restriction (i.e., no direct effect of treatment on
the outcome) is questionable. For the same parameters, the SEMBK model generated
estimates with good coverage rates. Power has little meaning for these parameters in the
PSAIR model and therefore is not reported in Table 7. In both models, parameters πf and a
were estimated with good coverage rates.

When PSAIR Assumptions Hold
When PSAIR assumptions (monotonicity, exclusion restriction) hold, the only possible
combination of violation of SEMBK assumptions is violation of ignorability. Because the
exclusion restriction is a stronger form of the constant effect assumption, constant effect
holds if exclusion restriction holds. In the simulation setting that satisfies this condition, true
values employed for principal stratum proportions are πn = 0.4, πf = 0.4, πb = 0.0, and πa =
0.2. True values employed for outcome means are μn0 = 1.0, μf0 = 1.2, μa0 = 1.9, μn1 = 1.0,
μf1 = 1.7, and μa1 = 1.9. According to these true mean values, true average causal treatment
effect values in the PSAIR model are obtained as γn = μn1 − μn0 = 0.0, γf = μf1 − μf0 = 0.5,
and γa = μa1 − μa0 = 0.0. Then, according to Equations 19–24, true SEM parameter values
are obtained as a = 0.4, b = 0.5, and c = 0.0. According to Equation 29, the true value of the
SEM parameter αm = 0.2.

Table 8 shows that, given violation of ignorability, the SEMBK model misestimated SEM
parameters b, c, ab, and the PS parameter γf with coverage rates much lower than the
nominal rate. As shown in Equations 32–35, ignorability is a strong assumption that imposes
restrictions on multiple parameters. In the presence of pretreatment covariates, conditional
ignorability is usually a preferred assumption. Conditional ignorability is still unverifiable
but weaker than the ignorability assumption. As shown in Tables 5–7, having smaller
(compared with those of the PSAIR model) standard errors is an advantage in the SEMBK
model when its identifying assumptions hold. Table 8 shows that this property may work as
a disadvantage when its identifying assumptions are violated because it will provide biased
estimates with greater statistical significance. In particular, the b estimates in the SEM
model show an extremely low coverage rate (0.198) because of the combination of
overestimation of the parameter and small standard errors. The results imply that parameter
estimates of the SEMBK model need to be interpreted with caution. As long as mediator
values are not randomly assigned to individuals, the plausibility of ignorability is
questionable. For the same parameters, the PSAIR model generated estimates with good
coverage rates. In both models, parameters πf and a were estimated with good coverage
rates.

When Both SEMBK and PSAIR Assumptions Are Violated
In practice, SEMBK and PSAIR assumptions can be simultaneously violated (i.e.,
combinations of monotonicity, exclusion restriction, ignorability, and constant effect
violations), which results in higher dimensional interactions among violated assumptions in
creating bias. In this case, it is unlikely that consistent conclusions can be reached about the
simultaneous impact of these violations. That is, relative performance of different models
may vary depending not only on directions and sizes of deviations from employed
assumptions but also on interactions among violated assumptions.

One example of multiple violations of assumptions is shown in Table 9. In this simulation
setting, all of the SEMBK and PSAIR assumptions are violated (i.e., monotonicity, exclusion
restriction, ignorability, constant effect). Because the constant effect assumption is violated
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in this setting, the SEMBK and SEMMac (or PSIg) models may result in different parameter
estimates. Therefore, both models are employed to analyze simulated data in this setting.
True values employed for principal stratum proportions are πn = 0.3, πf = 0.4, πb = 0.1, and
πa = 0.2. The existence of backward-improvers (πb = 0.1) indicates that treatment
assignment has some negative effect on the mediator. True values employed for outcome
means are μn0 = 1.0, μf0 = 1.2, μb0 = 1.0, μa0 = 1.6, μn1 = 0.9, μb1 = 0.6, μf1 = 1.7, μa1 = 1.8.
On the basis of these true mean values, γn=μn1−μn0=−0.1, γf=μf1−μf0 = 0.5, γb = μb1 −μb0 =
−0.4, and γa = μa1 − μa0 = 0.2. This set of parameter values indicates some negative effect
of treatment assignment on never-improvers, some positive effect of treatment assignment
on always-improvers. The absolute size of γb (effect size = 0.4) is nearly as big as that of γf
(effect size = 0.5), indicating that treatment assignment has a substantially negative effect on
the outcome for backward-improvers. By using Equations 19–24, true SEM parameter
values are obtained as a = 0.3, b = 0.3, c=−0.1, and d = 0.3. According to Equation 29, the
true value of the SEM parameter αm = 0.3.

Table 9 shows that all three models generated substantially biased estimates for SEM
parameters, which was expected given that all three models violate some of the identifying
assumptions. The average effect of treatment assignment conditional on the mediator (c) is
estimated with bias both in the SEMBK and SEMMac (or PSIg) models (this parameter is
fixed in the PSAIR model). The interaction effect d is also estimated with bias in the SEMMac
(or PSIg) model (this parameter is fixed in the PSAIR and SEMBK models). This indicates
that violation of constant effect cannot be properly tested on the basis of observed data given
a possible violation of ignorability. The effect b is estimated with bias in the PSAIR and
SEMBK models but not in the SEMMac model. The good coverage of b estimates can be
explained by cancellation of biases being combined in this specific example. However,
biases due to multiple violations can also accumulate, and therefore b estimates in the
SEMMac can be more biased depending on the setting. In all three models, PS parameters are
estimated with substantial bias except for the parameter γf in the PSAIR model. The
reasonable coverage rate of γf estimates in the PSAIR model can be seen as another example
of cancellation of biases when terms are combined. However, γf can be estimated with more
bias in the PSAIR model depending on the setting.

Conclusions
To examine the relation between the SEM and PS approaches in identifying causal
mediation effects, we employed the CMT approach in this article. In this approach, PS
parameter estimates and SEM parameter estimates are translated back and forth across the
PS and SEM models, enabling a complete comparison between the two modeling
approaches. This approach is possible because of the close conceptual connection between
SEM and PS parameters. From the CMT approach perspective, what affects our inference is
the choice of identifying assumptions, not the modeling framework itself. The PSIg and
SEMMac models show an ultimate example in which the two approaches completely
converge into the same model when the same identifying assumptions are employed even
though they start from different modeling approaches.

Despite the close connection between their parameters, the SEM and PS approaches differ
significantly in terms of the choice of identifying assumptions. In the SEM approach, which
focuses on observed mediator status, there is little room for flexibility because the
assumption of ignorability always has to be present. In the PS approach, however, many
different sets of identifying assumptions can be employed because there are no inherently
embedded assumptions. From the CMT approach perspective, the relative inflexibility of the
SEM approach is not necessarily a problem given translatability between SEM and PS
parameters. That is, SEM parameter estimates can be restructured using PS parameter
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estimates. In this way, SEM modeling is possible using diverse identifying assumptions
borrowing from the open structure of the PS approach. For example, there is no clear reason
to exclude the possibility of employing monotonicity and the exclusion restriction
assumptions when plausibility of the ignorability assumption is highly suspect. The PS
parameters estimated using the PSAIR model can be translated into SEM parameter
estimates, which provide the same interpretation as that of the SEMBK model estimates.

Translatability is also a useful property from the PS approach perspective because it
facilitates communication between the PS framework and the more conventional modeling
framework that does not involve potential outcomes. Adopting SEM's ignorability
assumption, which supports comparisons across different principal strata, may seem like a
self-contradictory choice in the PS approach, which has been developed emphasizing the
fact that individuals in different principal strata are not comparable. However, in situations
in which the plausibility of monotonicity and the exclusion restriction are questionable,
ignorability or conditional ignorability can be a helpful alternative assumption. Further
consideration of mediational processes dealt with in the SEM approach, which tend to be
more general than mediational processes commonly dealt with in the PS approach, is also
likely to broaden PS modeling practice and to facilitate development of alternative models
and sensitivity analysis methods.

Monte Carlo simulations employed in this study demonstrated how the choice of identifying
assumptions affects the quality of parameter estimates under known conditions (i.e., we
know which assumptions are violated). However, when analyzing real data, making a choice
among competing sets of assumptions and different results is not an easy task. Even if we
know relative plausibility of these assumptions, successful decision making is still not
guaranteed because assumptions with higher plausibility do not necessarily result in less
biased estimates (Jo, 2008). Further, even if we choose the set of identifying assumptions
that provide the least biased parameter estimates, it is possible that the chosen results will be
closer, but not close enough, to the truth. These are fundamental difficulties that arise when
identification of causal effects relies on assumptions about quantities we do not observe.
Naturally, good sensitivity analysis methods are critical to effectively assess causal
mediation effects.

Given that translation between the SEM and PS approaches is possible, the next logical step
will be to develop improved sensitivity analysis methods that consider both approaches'
perspectives. To properly estimate bias due to violations of identifying assumptions, we
need to understand the bias mechanisms, which can be highly complex in practice. For
example, ignorability can be violated in many different ways because it involves multiple
restrictions as shown in Equations 32–35. Monotonicity and the exclusion restriction can be
simultaneously violated. In these situations, the resulting bias mechanisms may involve high
dimensional interactions between violated assumptions that produce different magnitudes of
bias depending on the degree of the violation of each assumption. Therefore, without
knowing the exact bias mechanisms, it is hard to estimate bias quantities and corresponding
causal effects. Another important component in sensitivity analysis is science-based
information (expert knowledge) on plausible ranges of deviations from identifying
assumptions. If possible ranges of deviations and bias mechanisms are known, possible
ranges of causal effects can also be estimated. Much research is needed to develop efficient
sensitivity analysis methods that facilitate probing the multiple assumptions and
perspectives of the PS and SEM approaches to mediation analysis.
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Figure 1.
Conceptual framework of mediational process. X = experimental (treatment) condition
assignment status; M = mediator; Y = outcome.
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Figure 2.
Assumptions to identify causal effects in the structural equation modeling approach. In this
hypothetical setting, 6 individuals are randomly assigned either to the treatment or to the
control condition. Y = outcome; M = mediator; X = treatment assignment; a = the effect of
treatment assignment on M; b = the effect of M on Y conditional on the effect of X on Y; c =
the direct effect of X on Y conditional on the effect of M on Y; ab = a × b, which is the
indirect effect of X on Y. In this illustrative example, c = 1.0, b = 1.0, and a takes one of the
three values (0, 1, 2). Panel A shows the assumption of ignorability (i.e., 6 individuals with
different M values are comparable on all measured and unmeasured covariates). In Panel B,
constant effect implies that treatment assignment effect is the same across different M
values. In Panel C, linearity implies that the relation between Y and M is linear. Panel D
shows how the total effect is partitioned into the direct (c) and indirect (ab) effects.
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Table 1

Comparison Between the SEM and PS Approaches

Aspect SEM approach PS approach

Key modeling difference Focus on observed mediator status Focus on potential mediator status

Key strength Compatibility with the mediational
process theory

Clarity in underlying assumptions necessary for
causal interpretation

Frequent context Very general, theory-based mediation Treatment noncompliance

Fixed assumptions for causal
interpretation

Ignorability of mediator status None

Frequently used assumptions for causal
interpretation

Ignorability, constant effect, linearity Monotonicity, exclusion restriction

Key method of checking validity of causal
effect estimates

Test the fit of the model to the data Test sensitivity of estimates to violating underlying
assumptions

Note. SEM = structural equation modeling; PS = principal stratification.
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Table 3

Mean Potential Values and Average Causal Effects Given Principal Strata

Proportions of principal strata

Mean potential outcome

Average causal effect given CX = 0 X = 1

π n μ n0 μ n1 γn = μn1 − μn0

π f μ f0 μ f1 γf = μf1 − μf0

π b μ b0 μ b1 γb = μb1 − μb0

π a μ a0 μ a1 γa = μa1 − μa0

Note. X = experimental (treatment) condition assignment status; C = principal stratum membership; n = never-improver; f = forward-improver; b =
backward-improver; a = always-improver.
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Table 4

Mean Potential Values and Average Causal Effects Under Ignorability

Proportions of principal strata

Mean potential outcome

Average causal effect given CX = 0 X = 1

π n μn0 = μ0,0 μn1 = μ0,1 γn = μ0,1 − μ0,0

π f μf0 = μ0,0 μf1 = μ1,1 γf = μ1,1 − μ0,0

π b μb0 = μ1,0 μb1 = μ0,1 γb = μ0,1 − μ1,0

π a μa0 = μ1,0 μa1 = μ1,1 γa = μ1,1 − μ1,0

Note. X = experimental (treatment) condition assignment status; C = principal stratum membership; n = never-improver; f = forward-improver; b =
backward-improver; a = always-improver.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jo Page 34

Ta
bl

e 
5

W
he

n 
A

ll 
of

 th
e 

SE
M

B
K

 a
nd

 P
S A

IR
 M

od
el

 A
ss

um
pt

io
ns

 H
ol

d

SE
M

BK
 m

od
el

PS
AI

R 
m

od
el

T
ru

e 
va

lu
e

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

SE
M

 p
ar

am
et

er

a
0.

40
0.

39
7

0.
04

0
0.

93
6

1.
00

0
0.

39
7

0.
04

0
0.

93
6

1.
00

0

b
0.

50
0.

49
6

0.
10

0
0.

95
6

1.
00

0
0.

49
7

0.
22

9
0.

94
2

0.
58

6

c
0.

00
0.

00
1

0.
09

8
0.

93
8

0.
06

2
0.

00
0

ab
0.

20
0.

19
7

0.
04

5
0.

93
8

1.
00

0
0.

19
8

0.
09

2
0.

93
8

0.
56

6

d
0.

00
0.

00
0

0.
00

0

α 
m

0.
20

0.
20

1
0.

02
8

0.
96

4
1.

00
0

0.
20

1
0.

02
8

0.
96

4
1.

00
0

PS
 p

ar
am

et
er

π 
n

0.
40

0.
40

2
0.

02
8

0.
93

0
1.

00
0

0.
40

2
0.

02
8

0.
93

0
1.

00
0

π 
f

0.
40

0.
39

7
0.

04
0

0.
93

6
1.

00
0

0.
39

7
0.

04
0

0.
93

6
1.

00
0

π 
b

0.
00

0.
00

0
0.

00
0

π 
a

0.
20

0.
20

1
0.

02
8

0.
96

4
1.

00
0

0.
20

1
0.

02
8

0.
96

4
1.

00
0

γ 
n

0.
00

0.
00

1
0.

09
8

0.
93

8
0.

06
2

0.
00

0

γ 
f

0.
50

0.
49

7
0.

10
8

0.
94

4
0.

99
6

0.
49

7
0.

22
9

0.
94

2
0.

58
6

γ 
b

−
0.

49
5

0.
16

6

γ 
a

0.
00

0.
00

1
0.

09
8

0.
93

8
0.

06
2

0.
00

0

N
ot

e.
 S

EM
 =

 st
ru

ct
ur

al
 e

qu
at

io
n 

m
od

el
in

g;
 B

K
 m

od
el

 =
 B

ar
on

 a
nd

 K
en

ny
's 

(1
98

6)
 m

od
el

; P
S 

= 
pr

in
ci

pa
l s

tra
tif

ic
at

io
n;

 A
IR

 m
od

el
 =

 A
ng

ris
t, 

Im
be

ns
, a

nd
 R

ub
in

's 
(1

99
6)

 m
od

el
; a

 =
 th

e 
ef

fe
ct

 o
f t

re
at

m
en

t
as

si
gn

m
en

t X
 o

n 
th

e 
m

ed
ia

to
r M

; b
 =

 th
e 

ef
fe

ct
 o

f M
 o

n 
ou

tc
om

e 
Y 

co
nd

iti
on

in
g 

on
 X

; c
 =

 th
e 

ef
fe

ct
 o

f X
 o

n 
Y 

co
nd

iti
on

in
g 

on
 M

; a
b 

= 
th

e 
in

di
re

ct
 e

ff
ec

t (
= 

a 
× 

b)
; d

 =
 th

e 
in

te
ra

ct
io

n 
ef

fe
ct

 (h
ow

 m
uc

h 
th

e
ef

fe
ct

 o
f X

 in
cr

ea
se

s [
or

 d
ec

re
as

es
] a

s t
he

 v
al

ue
 o

f M
 in

cr
ea

se
s b

y 
on

e 
un

it)
; α

m
 =

 th
e 

m
ea

n 
of

 M
 in

 th
e 

co
nt

ro
l c

on
di

tio
n;

 π
n 

= 
th

e 
pr

op
or

tio
n 

of
 n

ev
er

-im
pr

ov
er

s;
 π

f =
 th

e 
pr

op
or

tio
n 

of
 fo

rw
ar

d-
im

pr
ov

er
s;

π b
 =

 th
e 

pr
op

or
tio

n 
of

 b
ac

kw
ar

d-
im

pr
ov

er
s;

 π
a 

= 
th

e 
pr

op
or

tio
n 

of
 a

lw
ay

s-
im

pr
ov

er
s;

 γ
n 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 n

ev
er

-im
pr

ov
er

s;
 γ

f =
 th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 fo

rw
ar

d-
im

pr
ov

er
s;

 γ
b 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 b

ac
kw

ar
d-

im
pr

ov
er

s;
 γ

a 
= 

th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 a
lw

ay
s-

im
pr

ov
er

s.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jo Page 35

Ta
bl

e 
6

W
he

n 
O

nl
y 

M
on

ot
on

ic
ity

 Is
 V

io
la

te
d

SE
M

BK
 m

od
el

PS
AI

R 
m

od
el

T
ru

e 
va

lu
e

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

SE
M

 p
ar

am
et

er

a
0.

30
0.

29
7

0.
04

2
0.

94
2

1.
00

0
0.

29
7

0.
04

2
0.

94
2

1.
00

0

b
0.

50
0.

50
0

0.
09

4
0.

96
0

1.
00

0
0.

49
7

0.
31

2
0.

94
8

0.
38

2

c
0.

00
0.

00
0

0.
09

4
0.

93
8

0.
06

2
0.

00
0

ab
0.

15
0.

14
8

0.
03

5
0.

93
8

1.
00

0
0.

14
8

0.
09

2
0.

93
8

0.
36

8

d
0.

00
0.

00
0

0.
00

0

α 
m

0.
30

0.
30

1
0.

03
0

0.
96

8
1.

00
0

0.
30

1
0.

03
0

0.
96

8
1.

00
0

PS
 p

ar
am

et
er

π 
n

0.
30

0.
40

2
0.

03
0

0.
06

6
0.

40
2

0.
03

0
0.

06
6

π 
f

0.
40

0.
29

7
0.

04
2

0.
32

4
0.

29
7

0.
04

2
0.

32
4

π 
b

0.
10

0.
00

0
0.

00
0

π 
a

0.
20

0.
30

1
0.

03
0

0.
05

4
0.

30
1

0.
03

0
0.

05
4

γ 
n

0.
00

0.
00

0
0.

09
4

0.
93

8
0.

06
2

0.
00

0

γ 
f

0.
50

0.
49

9
0.

11
1

0.
95

8
0.

99
4

0.
49

7
0.

31
2

0.
94

8
0.

38
2

γ 
b

−
0.

50
−
0.

50
0

0.
15

2
0.

93
8

0.
88

2

γ 
a

0.
00

0.
00

0
0.

09
4

0.
93

8
0.

06
2

0.
00

0

N
ot

e.
 S

EM
 =

 st
ru

ct
ur

al
 e

qu
at

io
n 

m
od

el
in

g;
 B

K
 m

od
el

 =
 B

ar
on

 a
nd

 K
en

ny
's 

(1
98

6)
 m

od
el

; P
S 

= 
pr

in
ci

pa
l s

tra
tif

ic
at

io
n;

 A
IR

 m
od

el
 =

 A
ng

ris
t, 

Im
be

ns
, a

nd
 R

ub
in

's 
(1

99
6)

 m
od

el
; a

 =
 th

e 
ef

fe
ct

 o
f t

re
at

m
en

t
as

si
gn

m
en

t X
 o

n 
th

e 
m

ed
ia

to
r M

; b
 =

 th
e 

ef
fe

ct
 o

f M
 o

n 
ou

tc
om

e 
Y 

co
nd

iti
on

in
g 

on
 X

; c
 =

 th
e 

ef
fe

ct
 o

f X
 o

n 
Y 

co
nd

iti
on

in
g 

on
 M

; a
b 

= 
th

e 
in

di
re

ct
 e

ff
ec

t (
= 

a 
× 

b)
; d

 =
 th

e 
in

te
ra

ct
io

n 
ef

fe
ct

 (h
ow

 m
uc

h 
th

e
ef

fe
ct

 o
f X

 in
cr

ea
se

s [
or

 d
ec

re
as

es
] a

s t
he

 v
al

ue
 o

f M
 in

cr
ea

se
s b

y 
on

e 
un

it)
; α

m
 =

 th
e 

m
ea

n 
of

 M
 in

 th
e 

co
nt

ro
l c

on
di

tio
n;

 π
n 

= 
th

e 
pr

op
or

tio
n 

of
 n

ev
er

-im
pr

ov
er

s;
 π

f =
 th

e 
pr

op
or

tio
n 

of
 fo

rw
ar

d-
im

pr
ov

er
s;

π b
 =

 th
e 

pr
op

or
tio

n 
of

 b
ac

kw
ar

d-
im

pr
ov

er
s;

 π
a 

= 
th

e 
pr

op
or

tio
n 

of
 a

lw
ay

s-
im

pr
ov

er
s;

 γ
n 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 n

ev
er

-im
pr

ov
er

s;
 γ

f =
 th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 fo

rw
ar

d-
im

pr
ov

er
s;

 γ
b 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 b

ac
kw

ar
d-

im
pr

ov
er

s;
 γ

a 
= 

th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 a
lw

ay
s-

im
pr

ov
er

s.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jo Page 36

Ta
bl

e 
7

W
he

n 
O

nl
y 

Ex
cl

us
io

n 
R

es
tri

ct
io

n 
Is

 V
io

la
te

d

SE
M

BK
 m

od
el

PS
AI

R 
m

od
el

T
ru

e 
va

lu
e

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

SE
M

 p
ar

am
et

er

a
0.

40
0.

39
7

0.
04

0
0.

93
6

1.
00

0
0.

39
7

0.
04

0
0.

93
6

1.
00

0

b
0.

30
0.

29
6

0.
10

0
0.

95
6

0.
82

6
0.

80
5

0.
23

5
0.

39
6

c
0.

20
0.

20
1

0.
09

8
0.

93
8

0.
52

8
0.

00
0

ab
0.

12
0.

11
8

0.
04

2
0.

93
8

0.
82

4
0.

31
8

0.
09

0
0.

40
8

d
0.

00
0.

00
0

0.
00

0

α 
m

0.
20

0.
20

1
0.

02
8

0.
96

6
1.

00
0

0.
20

1
0.

02
8

0.
96

6
1.

00
0

PS
 p

ar
am

et
er

π 
n

0.
40

0.
40

2
0.

02
8

0.
93

0
1.

00
0

0.
40

2
0.

02
8

0.
93

0
1.

00
0

π 
f

0.
40

0.
39

7
0.

04
0

0.
93

6
1.

00
0

0.
39

7
0.

04
0

0.
93

6
1.

00
0

π 
b

0.
00

0.
00

0
0.

00
0

π 
a

0.
20

0.
20

1
0.

02
8

0.
96

6
1.

00
0

0.
20

1
0.

02
8

0.
96

6
1.

00
0

γ 
n

0.
20

0.
20

1
0.

09
8

0.
93

8
0.

52
8

0.
00

0

γ 
f

0.
50

0.
49

7
0.

10
8

0.
94

4
0.

99
6

0.
80

5
0.

23
5

0.
76

6

γ 
b

−
0.

09
5

0.
16

6

γ 
a

0.
20

0.
20

1
0.

09
8

0.
93

8
0.

52
8

0.
00

0

N
ot

e.
 S

EM
 =

 st
ru

ct
ur

al
 e

qu
at

io
n 

m
od

el
in

g;
 B

K
 m

od
el

 =
 B

ar
on

 a
nd

 K
en

ny
's 

(1
98

6)
 m

od
el

; P
S 

= 
pr

in
ci

pa
l s

tra
tif

ic
at

io
n;

 A
IR

 m
od

el
 =

 A
ng

ris
t, 

Im
be

ns
, a

nd
 R

ub
in

's 
(1

99
6)

 m
od

el
; a

 =
 th

e 
ef

fe
ct

 o
f t

re
at

m
en

t
as

si
gn

m
en

t X
 o

n 
th

e 
m

ed
ia

to
r M

; b
 =

 th
e 

ef
fe

ct
 o

f M
 o

n 
ou

tc
om

e 
Y 

co
nd

iti
on

in
g 

on
 X

; c
 =

 th
e 

ef
fe

ct
 o

f X
 o

n 
Y 

co
nd

iti
on

in
g 

on
 M

; a
b 

= 
th

e 
in

di
re

ct
 e

ff
ec

t (
= 

a 
× 

b)
; d

 =
 th

e 
in

te
ra

ct
io

n 
ef

fe
ct

 (h
ow

 m
uc

h 
th

e
ef

fe
ct

 o
f X

 in
cr

ea
se

s [
or

 d
ec

re
as

es
] a

s t
he

 v
al

ue
 o

f M
 in

cr
ea

se
s b

y 
on

e 
un

it)
; α

m
 =

 th
e 

m
ea

n 
of

 M
 in

 th
e 

co
nt

ro
l c

on
di

tio
n;

 π
n 

= 
th

e 
pr

op
or

tio
n 

of
 n

ev
er

-im
pr

ov
er

s;
 π

f =
 th

e 
pr

op
or

tio
n 

of
 fo

rw
ar

d-
im

pr
ov

er
s;

π b
 =

 th
e 

pr
op

or
tio

n 
of

 b
ac

kw
ar

d-
im

pr
ov

er
s;

 π
a 

= 
th

e 
pr

op
or

tio
n 

of
 a

lw
ay

s-
im

pr
ov

er
s;

 γ
n 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 n

ev
er

-im
pr

ov
er

s;
 γ

f =
 th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 fo

rw
ar

d-
im

pr
ov

er
s;

 γ
b 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 b

ac
kw

ar
d-

im
pr

ov
er

s;
 γ

a 
= 

th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 a
lw

ay
s-

im
pr

ov
er

s.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jo Page 37

Ta
bl

e 
8

W
he

n 
O

nl
y 

Ig
no

ra
bi

lit
y 

Is
 V

io
la

te
d

SE
M

BK
 m

od
el

PS
AI

R 
m

od
el

T
ru

e 
va

lu
e

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

E
st

im
at

e
SE

C
ov

er
ag

e
Po

w
er

SE
M

 p
ar

am
et

er

a
0.

40
0.

39
7

0.
04

0
0.

93
6

1.
00

0
0.

39
7

0.
04

0
0.

93
6

1.
00

0

b
0.

50
0.

77
6

0.
10

0
0.

19
8

0.
49

2
0.

23
2

0.
94

4
0.

56
2

c
0.

00
−
0.

11
1

0.
09

8
0.

78
8

0.
00

0

ab
0.

20
0.

30
8

0.
05

1
0.

42
4

0.
19

7
0.

09
5

0.
95

2
0.

52
8

d
0.

00
0.

00
0

0.
00

0

α 
m

0.
20

0.
20

1
0.

02
8

0.
96

4
1.

00
0

0.
20

1
0.

02
8

0.
96

4
1.

00
0

PS
 p

ar
am

et
er

π 
n

0.
40

0.
40

2
0.

02
8

0.
93

0
1.

00
0

0.
40

2
0.

02
8

0.
93

0
1.

00
0

π 
f

0.
40

0.
39

7
0.

04
0

0.
93

6
1.

00
0

0.
39

7
0.

04
0

0.
93

6
1.

00
0

π 
b

0.
00

0.
00

0
0.

00
0

π 
a

0.
20

0.
20

1
0.

02
8

0.
96

4
1.

00
0

0.
20

1
0.

02
8

0.
96

0
1.

00
0

γ 
n

0.
00

−
0.

11
1

0.
09

8
0.

78
8

0.
00

0

γ 
f

0.
50

0.
66

5
0.

10
8

0.
66

6
0.

49
2

0.
23

2
0.

94
4

0.
56

2

γ 
b

−
0.

88
7

0.
16

7

γ 
a

0.
00

−
0.

11
1

0.
09

8
0.

78
8

0.
00

0

N
ot

e.
 S

EM
 =

 st
ru

ct
ur

al
 e

qu
at

io
n 

m
od

el
in

g;
 B

K
 m

od
el

 =
 B

ar
on

 a
nd

 K
en

ny
's 

(1
98

6)
 m

od
el

; P
S 

= 
pr

in
ci

pa
l s

tra
tif

ic
at

io
n;

 A
IR

 m
od

el
 =

 A
ng

ris
t, 

Im
be

ns
, a

nd
 R

ub
in

's 
(1

99
6)

 m
od

el
; a

 =
 th

e 
ef

fe
ct

 o
f t

re
at

m
en

t
as

si
gn

m
en

t X
 o

n 
th

e 
m

ed
ia

to
r M

; b
 =

 th
e 

ef
fe

ct
 o

f M
 o

n 
ou

tc
om

e 
Y 

co
nd

iti
on

in
g 

on
 X

; c
 =

 th
e 

ef
fe

ct
 o

f X
 o

n 
Y 

co
nd

iti
on

in
g 

on
 M

; a
b 

= 
th

e 
in

di
re

ct
 e

ff
ec

t (
= 

a 
× 

b)
; d

 =
 th

e 
in

te
ra

ct
io

n 
ef

fe
ct

 (h
ow

 m
uc

h 
th

e
ef

fe
ct

 o
f X

 in
cr

ea
se

s [
or

 d
ec

re
as

es
] a

s t
he

 v
al

ue
 o

f M
 in

cr
ea

se
s b

y 
on

e 
un

it)
; α

m
 =

 th
e 

m
ea

n 
of

 M
 in

 th
e 

co
nt

ro
l c

on
di

tio
n;

 π
n 

= 
th

e 
pr

op
or

tio
n 

of
 n

ev
er

-im
pr

ov
er

s;
 π

f =
 th

e 
pr

op
or

tio
n 

of
 fo

rw
ar

d-
im

pr
ov

er
s;

π b
 =

 th
e 

pr
op

or
tio

n 
of

 b
ac

kw
ar

d-
im

pr
ov

er
s;

 π
a 

= 
th

e 
pr

op
or

tio
n 

of
 a

lw
ay

s-
im

pr
ov

er
s;

 γ
n 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 n

ev
er

-im
pr

ov
er

s;
 γ

f =
 th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 fo

rw
ar

d-
im

pr
ov

er
s;

 γ
b 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t e
ff

ec
t f

or
 b

ac
kw

ar
d-

im
pr

ov
er

s;
 γ

a 
= 

th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 a
lw

ay
s-

im
pr

ov
er

s.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jo Page 38

Ta
bl

e 
9

W
he

n 
N

on
e 

of
 th

e 
SE

M
B

K
 a

nd
 P

S A
IR

 M
od

el
 A

ss
um

pt
io

ns
 H

ol
d

SE
M

BK
 m

od
el

PS
AI

R 
m

od
el

SE
M

M
ac

(=
 P

S I
g)

 m
od

el

T
ru

e 
va

lu
e

E
st

im
at

e(
SE

)
C

ov
er

ag
e[

Po
w

er
]

E
st

im
at

e(
SE

)
C

ov
er

ag
e[

Po
w

er
]

E
st

im
at

e(
SE

)
C

ov
er

ag
e[

Po
w

er
]

SE
M

 p
ar

am
et

er

a
0.

30
0.

29
7 

(0
.0

42
)

0.
94

2 
[1

.0
00

]
0.

29
7 

(0
.0

42
)

0.
94

2 
[1

.0
00

]
0.

29
7 

(0
.0

42
)

0.
94

2 
[1

.0
00

]

b
0.

30
0.

61
7 

(0
.0

96
)

0.
09

6
0.

56
2 

(0
.3

19
)

0.
86

4
0.

29
4 

(0
.1

39
)

0.
95

0 
[0

.5
80

]

c
−
0.

10
−
0.

01
6 

(0
.0

96
)

0.
84

0
0.

00
0

−
0.

28
3 

(0
.1

26
)

0.
68

0

ab
0.

09
0.

18
3 

(0
.0

39
)

0.
30

4
0.

16
7 

(0
.0

95
)

0.
86

0

d
0.

30
0.

00
0

0.
00

0
0.

60
7 

(0
.1

91
)

0.
65

4

α 
m

0.
30

0.
30

1 
(0

.0
30

)
0.

96
8 

[1
.0

00
]

0.
30

1 
(0

.0
30

)
0.

96
8 

[1
.0

00
]

0.
30

1 
(0

.0
30

)
0.

96
8 

[1
.0

00
]

PS
 p

ar
am

et
er

π 
n

0.
30

0.
40

2 
(0

.0
30

)
0.

06
6

0.
40

2 
(0

.0
30

)
0.

06
6

0.
40

2 
(0

.0
30

)
0.

06
6

π 
f

0.
40

0.
29

7 
(0

.0
42

)
0.

32
4

0.
29

7 
(0

.0
42

)
0.

32
4

0.
29

7 
(0

.0
42

)
0.

32
4

π 
b

0.
10

0.
00

0
0.

00
0

0.
00

0

π 
a

0.
20

0.
30

1 
(0

.0
30

)
0.

05
4

0.
30

1 
(0

.0
30

)
0.

05
4

0.
30

1 
(0

.0
30

)
0.

05
4

γ 
n

−
0.

10
−
0.

01
6 

(0
.0

96
)

0.
84

0
0.

00
0

−
0.

28
3 

(0
.1

26
)

0.
68

0

γ 
f

0.
50

0.
60

2 
(0

.1
14

)
0.

87
4

0.
56

2 
(0

.3
19

)
0.

94
4 

[0
.4

42
]

0.
61

8 
(0

.1
12

)
0.

81
0

γ 
b

−
0.

40
−
0.

63
3 

(0
.1

55
)

0.
66

4
−
0.

57
7 

(0
.1

54
)

0.
75

2

γ 
a

0.
20

−
0.

01
6 

(0
.0

96
)

0.
39

2
0.

00
0

0.
32

4 
(0

.1
43

)
0.

86
4

N
ot

e.
 S

EM
 =

 st
ru

ct
ur

al
 e

qu
at

io
n 

m
od

el
in

g;
 B

K
 m

od
el

 =
 B

ar
on

 a
nd

 K
en

ny
's 

(1
98

6)
 m

od
el

; M
ac

 m
od

el
 =

 M
ac

A
rth

ur
 m

od
el

 (K
ra

em
er

 e
t a

l.,
 2

00
8)

; P
S 

= 
pr

in
ci

pa
l s

tra
tif

ic
at

io
n;

 A
IR

 m
od

el
 =

 A
ng

ris
t,

Im
be

ns
, a

nd
 R

ub
in

's 
(1

99
6)

 m
od

el
; I

g 
m

od
el

 =
 ig

no
ra

bi
lit

y 
m

od
el

; a
 =

 th
e 

ef
fe

ct
 o

f t
re

at
m

en
t a

ss
ig

nm
en

t X
 o

n 
th

e 
m

ed
ia

to
r M

; b
 =

 th
e 

ef
fe

ct
 o

f M
 o

n 
ou

tc
om

e 
Y 

co
nd

iti
on

in
g 

on
 X

; c
 =

 th
e 

ef
fe

ct
 o

f X
 o

n 
Y

co
nd

iti
on

in
g 

on
 M

; a
b 

= 
th

e 
in

di
re

ct
 e

ff
ec

t (
= 

a 
× 

b)
; d

 =
 th

e 
in

te
ra

ct
io

n 
ef

fe
ct

 (h
ow

 m
uc

h 
th

e 
ef

fe
ct

 o
f X

 in
cr

ea
se

s [
or

 d
ec

re
as

es
] a

s t
he

 v
al

ue
 o

f M
 in

cr
ea

se
s b

y 
on

e 
un

it)
; α

m
 =

 th
e 

m
ea

n 
of

 M
 in

 th
e 

co
nt

ro
l

co
nd

iti
on

; π
n 

= 
th

e 
pr

op
or

tio
n 

of
 n

ev
er

-im
pr

ov
er

s;
 π

f =
 th

e 
pr

op
or

tio
n 

of
 fo

rw
ar

d-
im

pr
ov

er
s;

 π
b 

= 
th

e 
pr

op
or

tio
n 

of
 b

ac
kw

ar
d-

im
pr

ov
er

s;
 π

a 
= 

th
e 

pr
op

or
tio

n 
of

 a
lw

ay
s-

im
pr

ov
er

s;
 γ

n 
= 

th
e 

av
er

ag
e 

ca
us

al
tre

at
m

en
t e

ff
ec

t f
or

 n
ev

er
-im

pr
ov

er
s;

 γ
f =

 th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 fo
rw

ar
d-

im
pr

ov
er

s;
 γ

b 
= 

th
e 

av
er

ag
e 

ca
us

al
 tr

ea
tm

en
t e

ff
ec

t f
or

 b
ac

kw
ar

d-
im

pr
ov

er
s;

 γ
a 

= 
th

e 
av

er
ag

e 
ca

us
al

 tr
ea

tm
en

t
ef

fe
ct

 fo
r a

lw
ay

s-
im

pr
ov

er
s;

 P
ow

er
 is

 re
po

rte
d 

if 
th

e 
co

ve
ra

ge
 ra

te
 is

 a
t l

ea
st

 0
.9

.

Psychol Methods. Author manuscript; available in PMC 2010 August 25.


