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1 Introduction

Identifying the causal impact of some variables XT on y is difficult in the best of circumstances, but
faces seemingly insurmountable problems in observational data, where XT is not manipulable by the
researcher and cannot be randomly assigned. Nevertheless, estimating such an impact or “treatment
effect” is the goal of much research, even much research that carefully states all findings in terms
of associations rather than causal effects. I will call the variables XT the “treatment” or treatment
variables, and the term simply denotes variables of interest—they need not be binary (0/1) nor have
any medical or agricultural application.

Experimental research designs offer the most plausibly unbiased estimates, but experiments are
frequently infeasible due to cost or moral objections—no one proposes to randomly assign smoking to
individuals to assess health risks, or to randomly assign marital status to parents so as to measure
the impacts on their children. Four types of quasi-experimental research designs offering approaches to
causal inference using observational data are discussed below:

• ordinary regression and panel methods,

• matching and reweighting estimators,

• instrumental variables (IV) and related methods,

• and regression discontinuity (RD) designs,

in rough order of increasing internal validity (Shadish, Cook, and Campbell 2002). Each has strengths
and weaknesses discussed below. In practice, the data often dictate the method, but it is incumbent
upon the researcher to discuss and check (insofar as possible) the assumptions that allow causal inference
with these models, and to qualify conclusions appropriately. Checking those assumptions is the focus of
this paper.

A short summary of these methods and their properties is in order before we proceed. To eliminate
bias, the regression and panel methods typically require confounding variables to be either measured di-
rectly or to be invariant along at least one dimension in the data, e.g. invariant over time. The matching
and reweighting estimators require that selection of treatment XT depend only on observable variables,
both a stronger and weaker condition. Instrumental variables (IV) methods require extra variables that
affect XT but not outcomes directly, and throw away some information in XT to get less efficient and
biased estimates that are, however, consistent (i.e. approximately unbiased in sufficiently large samples).
Regression discontinuity (RD) methods require that treatment XT exhibit a discontinuous jump at a
particular value (the “cutoff”) of an observed assignment variable, and provide estimates of the effect
of XT for individuals with exactly that value of the assignment variable. To get plausibly unbiased
estimates, then, one needs to either give up some efficiency or generalizability (or both, especially for
IV and RD) or to make strong assumptions about the process determining XT .

1.1 Identifying a causal effect

Consider an example to fix ideas. Suppose that for people suffering from depression, the impact of
mental health treatment on work is positive. However, those who seek mental health treatment (or seek
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more of it) are less likely to work, even conditional on all other observable characteristics, because their
depression is more severe (in ways not measured by any data we can see). As a result, we estimate the
impact of treatment on work, incorrectly, as being negative.

A classic example of an identification problem is the effect of college on earnings (Card 1999, 2001).
College is surely nonrandomly assigned, and there are various important unobserved factors, including
the alternatives available to individuals, their time preferences, the prices and quality of college options,
academic achievement (often “ability” in economics parlance), and access to credit. Suppose college
graduates earn 60 and others earn 40 on average. One simple (implausible but instructive) story might
be that college has no real effect on productivity or earnings, but those who pass a test S that grants
entry to college have productivity of 60 on average and go to college. Even in the absence of college, they
would earn 60 if they could signal (see Spence 1973) productivity to employers via another means (e.g.
by merely reporting the result of test S). In this case, extending college to a few people who failed test
S would not improve their productivity at all and might not affect their earnings (if employers observed
the result of test S).

If we could see the outcome for each individual case when treated and not treated (assuming a single
binary treatment XT ), or an outcome y for each of the possible levels of XT , we could calculate the
treatment effect for each individual i and compute an average. Of course, this is not possible: each
individual gets some level of XT , or some history of XT in a panel setting. So we must compare indi-
viduals i and j with different XT to estimate an average treatment effect, but when XT is nonrandomly
assigned we have no guarantee that individuals i and j are comparable in their response to treatment,
or what their outcome would have been given another XT , even on average. The notion of “potential
outcomes,” due to Rubin (1974), is known as the Rubin causal model. Holland (1986) provided the
classic exposition of this now dominant theoretical framework for causal inference, and Rubin (1990)
clarified the debt that the Rubin causal model owes to Neyman (1923) and Fisher (1918, 1925).

In all the models discussed in this paper, we assume that the effect of treatment is on individual
observations, and does not spill over onto other units. This is called the stable-unit-treatment-value
assumption (SUTVA) by Rubin (1986). Often, this may be only approximately true, e.g., the effect of
a college education is not only on the earnings of the recipient, since each worker participates in a labor
market with other graduates and non-graduates.

What is the most common concern about observational data? If XT is correlated with some other
variable XU that also has a causal impact on y, but we do not measure XU , we might assess the impact
of XT as negative even though its true impact is positive. Sign reversal is an extreme case, sometimes
called Simpson’s paradox, though it is not a paradox and Simpson (1951) pointed out the possibility
long after Yule (1903). More generally, the estimate of the impact of XT may be biased and inconsistent
when XT is nonrandomly assigned. I.e. even if the sign of the estimated impact is not the opposite
of the true impact, our estimate need not be near the true causal impact on average, nor approach
it asymptotically. This central problem is usually called omitted variable bias or selection bias
(here selection refers to the non-random selection of XT , not selection on the dependent variable as in
heckman and related models).

1.2 Sources of Bias and Inconsistency

The selection bias (or omitted variable bias) in an ordinary regression arises from endogeneity (a regressor
is said to be endogenous if it is correlated with the error), a condition that also occurs if the explanatory
variable is measured with error, or in a system of “simultaneous equations” (e.g. suppose work also has
a causal impact on mental health, or higher earnings cause increases in education; in this case, it is not
clear what impact, if any, our single-equation regressions identify).

Often a suspected type of endogeneity can be reformulated as a case of omitted variables, perhaps
with a unobservable (as opposed to merely unobserved) omitted variable, about which we can nonetheless
make some predictions from theory to sign the likely bias.

The formula for omitted variable bias in linear regression is instructive. With a true model

y = β0 +XTβT +XUβU + ε

where we regress y on XT but leave out XU (for example, because we cannot observe it), the estimate
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of βT has bias
E(β̂T )− βT = δβU

where δ is the coefficient of an auxiliary regression of XU on XT (or the matrix of coefficients of
stacked regressions when XU is a matrix containing multiple variables) so the bias is proportional to
the correlation of XU and XT and to the effect of XU (the omitted variables) on y.

In nonlinear models, such as a probit or logit regression, the estimate will be biased and incon-
sistent even when XT and XU are uncorrelated, though Wooldridge (2002, p.471) demonstrates that
some quantities of interest may still be identified under additional assumptions.

1.3 Sensitivity Testing

The wonderfully plain-English exposition by Manski (1995; 2007) demonstrates how a causal effect
can be bounded under very unrestrictive assumptions, and then the bounds can be narrowed under
more restrictive parametric assumptions. Given how sensitive the quasi-experimental methods are to
assumptions (selection on observables, exclusion restrictions, exchangeability, etc.), some kind of sensi-
tivity testing is order no matter what method is used. Rosenbaum (2002) provides a wealth of detail on
formal sensitivity testing, particularly for matching methods.

Lee (2005) advocates another very useful method of bounding treatment effects, used in Liebbrandt,
Levinsohn, and McCrary (2005).

1.4 Systems of Equations

Some of the techniques discussed here to address selection bias are also used in the simultaneous equa-
tions setting. The literature on structural equations models is extensive, and a system of equations may
encode a very complicated conceptual causal model, with many “causal arrows” drawn to and from
many variables. The present exercise of identifying the causal impact of some limited set of variables
XT on a single outcome y can be seen as restricting our attention in such a complicated system to just
one equation, and identifying just some subset of causal effects.

For example, in a simplified supply and demand system:

lnQsupply = eslnP + aTransportCost + εs

lnQdemand = edlnP + bIncome + εd

where price (lnP) is endogenously determined by a market-clearing condition lnQsupply = lnQdemand, our
present enterprise limits us to identifying only the demand elasticity ed using factors that shift supply to
identify exogenous shifts in price faced by consumers (exogenous relative to the second equation’s error
εs), or identifying only the supply elasticity es using factors that shift demand to identify exogenous
shifts in price faced by firms (exogenous relative to the first equation’s error εs).

See [R] reg3 for alternative approaches that can simultaneously identify parameters in multiple
equations, and Heckman and Vytlacil (2004) and Goldberger and Duncan (1973) for more detail.

1.5 Average Treatment Effects

In an experimental setting, typically the only two quantities to be estimated are the sample average
treatment effect (SATE) or the population average treatment effect (PATE), both estimated via a
difference in averages across treatment groups (equal in expectation to the mean of individual treatment
effects over the full sample). In a quasi-experimental setting, several other average treatment effects
are commonly estimated: the average treatment effect on the treated (ATT), the average treatment
effect on the untreated (ATU) or control group (ATC), and a variety of local average treatment effects
(LATE), local to some range of values or some subpopulation. In fact, one can imagine constructing at
least 2N different average treatment effect (ATE) estimates in a sample of N observations, restricting
attention to two possible weights for each observation. Allowing a variety of weights and specifications
leads to infinitely many LATE estimators, not all of which would be sensible.
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For many decision problems, a highly relevant effect estimate is the marginal treatment effect (MTE),
either the ATE for the marginal treated case—the expected treatment effect for the case that would
get treatment with a small expansion of the availability of treatment—or the average effect of a small
increase in a continuous treatment variable. Measures of comparable marginal treatment effects for
several options can be used to decide where a marginal dollar (or metaphorical marginal dollar, including
any opportunity costs and currency translations) should be spent. In other words, with finite resources,
we care more about budget-neutral improvements in effectiveness than the effect of a unit increase in
treatment, so we can choose among treatment options with equal cost. Quasi-experimental methods,
especially IV and RD, often estimate such marginal treatment effects directly.

If the effect of a treatment XT varies across individuals, i.e. it is not the case that βi = β for
all i, then the ATE for different subpopulations will differ and we should expect different consistent
estimators to converge to different quantities. This problem is larger than the selection bias issue. Even
in the absence of endogenous selection of XT (but possibly with some correlation between XT

i and
βi, itself now properly regarded as a random variable) in a linear model, ordinary least squares (OLS)
will not in general be consistent for the average over all i of individual effects βi. Only with strong
distributional assumptions can we proceed, e.g. if we assume βi is normally distributed then the ATE
may be consistently estimated by xtmixed or xtrc, or if we assume XT is normally distributed then
the ATE may be consistently estimated by OLS.

2 Regression and Panel Methods

If an omitted variable can be measured, or proxied by another variable, then an ordinary regression may
yield an unbiased estimate. In the case where ordinary least squares is unbiased, or at least consistent, it
would nearly always be preferred, since it produces the most efficient estimates (ignoring issues around
weights or non-independent errors). The measurement error entailed in a proxy for an unobservable
could actually exacerbate bias, rather than reducing it, however. In addition, one is usually concerned
that cases with differing XT may differ in other ways even conditional on all other observables XC

(“control” variables). Nonetheless, a sequence of ordinary regressions that add or drop variables can be
instructive as to the nature of various forms of omitted variable bias in the data at hand.

A complete discussion of panel methods would not fit in any one book, much less this article. The
idea can be illuminated with one short example using linear regression, however.

Suppose a model of the form
y = β0 +XTβT +XUβU + ε

where we do not observe XU . Suppose the omitted variables XU vary only across groups, where group
membership is indexed by i, so a representative observation can be written:

yit = β0 +XT
itβT + ui + εit

where ui = XU
i βU . Then we can eliminate the bias arising from omission of XU by differencing:

yit − yis = (XT
it −XT

is)βT + (εit − εis)

using various definitions of s.
The idea of using panel methods to identify a causal impact is to use an individual i as its own

control group, by including information from multiple points in time. In fact, the second dimension of
the data indexed by t need not be time, but it is a convenient viewpoint.

A fixed-effect (FE) model such as xtreg, fe i(id) or areg, a(id) effectively subtracts off the
within-i mean values of each variable, so for example XT

is = X̄T
i = 1

Ni

∑Ni

s=1X
T
is, and the model

yit − ȳi = (XT
it − X̄T

i)βT + (εit − ε̄i)

can be estimated via OLS. This is also called the “within estimator” and is equivalent to a regression
that includes an indicator variable for each group i, allowing for a different intercept term for each
group.
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An alternative to the FE model is to use the first difference (FD), i.e. s = (t− 1) or

yit − yi(t−1) = (XT
it −XT

i(t−1))βT + (εit − εi(t−1))

which is just reg d.y d.x in tsset data, or xtivreg2 y x, fd (Schaffer and Stillman 2007), which
offers additional standard error (SE) corrections beyond cluster and robust.

A third option is to use the long difference (LD), keeping only two observations per group. For a
balanced panel, if t = b is the last observation and t = a is the first, the model is:

yib − yia = (XT
ib −XT

ia)βT + (εib − εia)

producing only one observation per group (the difference of the first and last observations).
Figure 1 shows the interpretation of these three types of estimates by showing a single panel’s

contribution to the estimated effect of an indicator variable that is one for all t > 3 (t in 0, ..., 10) and
zero elsewhere, e.g. a policy that comes into effect at some point in time. The FE estimate compares
the mean outcomes before and after; the FD estimate compares the outcome just prior to and just after
the change in policy; and the LD estimate compares outcomes well before and well after the change in
policy.

FE=1

FD=0.5

LD=1.2

0

.5

1

1.5

 

 Pre Post  

 

Figure 1: A Single Panel’s Contributions to Various Estimates

Clearly, one must impose some assumptions on the speed with which XT affects y, or have some
evidence as to the right time frame for estimation. This type of choice comes up frequently when stock
prices are supposed to have adjusted to some news, especially given the frequency of data available;
economists believe the new information is capitalized in prices, but not instantaneously. Taking a
difference in stock prices between 3:01pm and 3pm is inappropriate, but taking a long difference over a
year is clearly inappropriate as well, since new information arrives continuously.

In panel models, one must usually think carefully about within-panel trends (note that we cannot
usually obtain consistent estimates of within-panel trends for the same reason we cannot usually obtain
consistent estimates of fixed effects; the number of parameters increases linearly in the number of panels
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N) and the frequency of measurement. Baum (2006) discussed some filtering techniques to get different
frequency “signals” from noisy data. A very simple method used in Baker, Benjamin, and Stanger
(1999) is often attractive, as it offers a easy way to decompose any variable Xt into two orthogonal
components: a high-frequency component (Xt−Xt−1)/2 and a low-frequency component (Xt +Xt−1)/2
that together sum to Xt.

A facile example of all three (FE, FD, and LD) is

webuse grunfeld, clear
xtreg inv ks, fe cl(com)
reg d.inv d.ks, cl(com)
su time, meanonly
gen t=time if time==r(min) | time==r(max)
tsset com t
reg d.inv d.ks, cl(com)

Clearly, different assumptions about the error process apply in each case, in addition to assumptions
about the speed with which XT affects y, and the FD and LD models require an ordered t index (such
as time). The cluster option used above should be considered nearly de rigeur in panel models, to
allow for errors that may be correlated within group, and not identically distributed across groups. The
performance of the cluster-robust estimator is quite good with 50 or more clusters, or fewer if the clusters
are large and balanced (Nichols and Schaffer 2007). In the LD case, the cluster option is equivalent
to the robust option, since each group is represented by one observation.

Having eliminated bias due to unobservable heterogeneity across i units, it is often tempting to
difference or demean again. For example, it is common to include indicator variables for t in fixed-
effects models, for example:

webuse grunfeld, clear
qui tab year, gen(d)
xtreg inv ks d*, fe cl(com)

thus creating a two-way fixed-effects model. If individuals i are observed in different settings j, for
example students who attend various schools or workers who reside in various locales over time, we can
also include indicator variables for j in a fixed-effects model. Thus we can consider various n-way fixed-
effects models, though models with large numbers of dimensions for fixed effects may rapidly become
unstable or computationally challenging to estimate.

The LD, FD, and FE estimators use none of the cross-sectional differences across groups (individuals)
i, which can lead to lower efficiency (relative to an estimator that exploits cross-sectional variation),
and they also drop any variables that do not vary over t within i, so the coefficients on some variables
of interest may not be estimated with these methods.

The random-effects estimator (RE) available from xtreg exploits cross-sectional variation and reports
coefficients on variables that do not vary over t within i, but requires strong assumptions about error
terms that are often violated in practice. In particular, for RE to be unbiased in situations where FE
is unbiased, we must assume that uit is uncorrelated with XT

it (which contradicts our starting point
above, where we worried about a XU correlated with XT ). There is no direct test of this assumption
about an unobservable disturbance term, but hausman and xtoverid (Schaffer and Stillman 2006) offer
a test that the coefficients estimated in both the RE and FE models are the same:

webuse grunfeld, clear
egen ik=max(ks*(year==1935)), by(com)
xtreg inv ks ik, re cl(com)
xtoverid

where a rejection casts doubt on whether RE is unbiased when FE is.
Various other [XT] entries, such as [XT] xtmixed and [XT] xthtaylor, offer a variety of other

panel methods that generally make further assumptions about the distribution of disturbances and
sources of endogeneity. Typically, there is a tradeoff between improved efficiency bought by making
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assumptions about the data-generating process versus robustness to various violations of assumptions.
See also Griliches and Hausman (1986) for additional considerations related to all of the above panel
methods. Rothstein (2007) offers a useful applied examination of identifying assumptions in FE models
and correlated random effects models.

Generally, panel methods eliminate the bias due to some unobserved factors and not others. Consid-
ering the FE, FD, and LD models, it is often hard to believe that all of the selection on unobservables
is due to time-invariant factors.

3 Matching Estimators

In the case of a single discrete set of treatments XT we wish to compare means or proportions much
as we would in an experimental setting. We may be able to include indicators and interactions for
factors (in XC) that affect selection into the treatment group (defined by XT = 1, say), to estimate the
impact of treatment within groups of identical XC using a fully saturated regression. There are also
matching estimators (Cochran and Rubin 1973; Stuart and Rubin 2007) which compare observations
with like XC by pairing observations that are close by some metric (see also Imai and van Dyk, 2004,
for generalizations of matching estimators). A set of alternative approaches involve reweighting so the
joint or marginal distributions of XC are identical for different groups.

Matching or reweighting approaches can give consistent estimates of a huge variety of average treat-
ment effects, but only under the assumptions that the selection process depends on observables, and
that the model used to match or reweight is a good one. In some sense, we push the problems associated
with observational data from estimating the effect of XT on y down onto estimating the effect of XC

on XT . For this reason, estimates based on reweighting or matching are unlikely to convince someone
unconvinced by OLS results. Selection on observables is not the type of selection most critics have in
mind.

3.1 Nearest Neighbor Matching

Nearest Neighbor Matching pairs observations in the treatment and control groups and computes the
difference in outcome y for each pair, then the mean difference across pairs. The Stata implementation
nnmatch was described by Abadie et al. (2004). Imbens (2004) covered details of Nearest Neighbor
Matching methods. The downside to Nearest Neighbor Matching is that it can be computationally
intensive, and bootstrapped standard errors are infeasible owing to the discontinuous nature of matching
(Abadie and Imbens, 2006).

3.2 Propensity score matching

Propensity score matching essentially estimates each individual’s propensity to receive a binary treat-
ment (via a probit or logit) as a function of observables and matches individuals with similar propen-
sities. As Rosenbaum and Rubin (1983) showed, if the propensity were known for each case, it would
incorporate all the information about selection and propensity score matching could achieve optimal
efficiency and consistency. In practice, the propensity must be estimated and selection is not only on
observables, so the estimator will be both biased and inefficient.

Morgan and Harding (2006) provide an excellent overview of practical and theoretical issues in
matching, and comparisons of nearest neighbor matching and propensity score matching. Their exposi-
tions of different types of propensity score matching, and simulations showing when it performs badly,
are particularly helpful. Stuart and Rubin (2007) offer a more formal but equally helpful discussion of
best practices in matching.

Typically, one treatment case is matched to several control cases, but one-to-one matching is also com-
mon, and may be preferred (Glazerman, Levy, and Myers 2003). One Stata implementation psmatch2
(Leuven and Sianesi, 2003) is available from SSC (ssc desc psmatch2) and has a useful help file, and
there is another Stata implementation described by Becker and Ichino (2002) (findit pscore in Stata).
psmatch2 will perform one-to-one (nearest neighbour or within caliper, with or without replacement),
k-nearest neighbors, radius, kernel, local linear regression, and Mahalanobis matching.
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Propensity score methods typically assume a common support, i.e. the range of propensities to
be treated is the same for treated and control cases, even if the density functions have quite different
shapes. In practice, it is rarely the case that the ranges of estimated propensity scores are the same, but
they do nearly always overlap, and generalizations about treatment effects should probably be limited
to the smallest connected area of common support.

Often a density estimate below some threshold greater than zero defines the end of common support—
see Heckman, Ichimura, and Todd (1997) for more discussion. This is because the common support is
the range where both densities are nonzero, but the estimated propensity scores take on a finite number
of values, so the empirical densities will be zero almost everywhere. Generally, we need to use a kernel
density estimator like kdensity to obtain smooth estimated densities of the propensity score for both
treatment and control groups, but then areas of zero density will have positive density estimates. Thus
some small value f0 is redefined to be effectively zero, and the smallest connected range of estimated
propensity scores λ̂ with f̂(λ̂) ≥ f0 for both treatment and control groups is used in the analysis, and
observations outside this range are discarded.

Regardless of whether the estimation or extrapolation of estimates is limited to a range of propensities
or ranges of XC variables, the analyst should present evidence on how the treatment and control groups
differ, and which subpopulation is being studied. The standard graph here is an overlay of kernel density
estimates of propensity scores for treatment and control groups, easy in Stata with twoway kdensity.

3.3 Sensitivity Testing

Matching estimators have perhaps the most detailed literature on formal sensitivity testing. Rosenbaum
(2002) provides a comprehensive treatment of formal sensitivity testing. Rosenbaum bounds on treat-
ment effects may be constructed using psmatch2 and rbounds, a user-written command due to DiPrete
and Gangl (2004), who compare Rosenbaum bounds in a matching model to IV estimates. sensatt
by Nannicini (2006) and mhbounds by Becker and Caliendo (2007) are additional Stata programs for
sensitivity testing in matching models.

3.4 Reweighting

The propensity score can also be used to reweight treatment and control groups so the distribution of
XC looks the same in both groups. The basic idea is to use a probit or logit regression of treatment
on XC to estimate the conditional probability λ̂ of being in the treatment group and to use the odds
λ̂/(1 − λ̂) as a weight. This is like inverting the test of randomization used in experimental designs to
make the group status look as if it were randomly assigned.

As Morgan and Harding (2006) point out, all the matching estimators can also be thought of various
reweighting schemes whereby treatment and control observations are reweighted to allow causal inference
on the difference in means. Note that a treatment case i matched to k cases in an interval, or k nearest
neighbors, contributes yi − k−1

∑k
1 yj to the estimate of a treatment effect, and one could just as easily

rewrite the estimate of a treatment effect as a weighted mean difference.
The reweighting approach leads to a whole class of weighted least squares estimators, and is connected

to techniques described by DiNardo, Fortin, and Lemieux (1996), Autor, Katz, and Kearney (2005),
Liebbrandt, Levinsohn, and McCrary (2005), and Machado and Mata (2005), and these techniques
are related to various decomposition techniques in Blinder (1973), Oaxaca (1973), Yun (2004, 2005ab),
Gomulka and Stern (1990), and Juhn, Murphy, and Pierce (1991, 1993). DiNardo (2002) usefully
outlines some connections between propensity score methods and the decomposition techniques.

The dfl (Azevedo 2005), oaxaca (Jann 2005b), and jmpierce (Jann 2005a) programs on SSC offer
Stata implementations for some of the latter. The decomposition techniques seek to attribute observed
differences in an outcome y both to differences in XC variables and differences in the associations
between XC variables and y, and they are most useful for comparing two distributions where the binary
variable defining which group an observation belongs to is properly considered exogenous, e.g. sex or
calendar year. See also Rubin (1986).

The reweighting approach is particularly useful in combining matching-type estimators with other
methods, e.g. fixed-effects regression. After constructing weights w = λ̂/(1 − λ̂) (or the product of
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weights w = w0λ̂/(1− λ̂) where w0 is an existing weight on the data used in the construction of λ̂) that
equalize the distributions of XC , other commands can be run on the reweighted data, e.g. areg for a
fixed-effect estimator.

3.5 Examples

Imagine the outcome is wage and the treatment variable is union membership. One can imagine reweight-
ing union members to have distributions of education, age, race/ethnicity, and other job and demographic
characteristics equivalent to nonunion workers (or a subset of nonunion workers). One could compare
otherwise identical persons within occupation and industry cells using a regression approach or nnmatch
with exact matching on some characteristics. An example comparing several regressions with propensity
score matching is:

webuse nlswork, clear
xi i.race i.ind i.occ
loc x "union coll age ten not_s c_city south nev_m _I*"
reg ln_w union
reg ln_w ‘x’
g u=uniform()
sort u
psmatch2 ‘x’, out(ln_w) ate
tw kdensity _ps if _tr || kdensity _ps if !_tr
g w=_ps/(1-_ps)
reg ln_w ‘x’ [pw=w] if _ps<.3
reg ln_w ‘x’ [pw=w]

where the estimated union wage premium is about 13% in a regression, but about 15% in the matching
estimate of the average benefit to union workers (the ATT) and about 10% on average for everyone (the
ATE). The reweighted regressions give different estimates: for the more than 70% of individuals who
are unlikely to be unionized (propensity under 30%), the wage premium is about 9%, and for the full
sample, it is about 18%.

Arguably none of these estimates of wage premia correspond to a readily specified thought ex-
periment, such as “what is the estimated effect on wages of being in a union for a randomly chosen
individual?” (the ATE) or “what is the estimated effect on wages of being in a union for an individual
just on the margin of being in a union or not?” (the LATE). DiNardo and Lee (2002) offer a much
more convincing set of causal estimates of the LATE using an regression discontinuity (RD) design (see
below).

We could also have estimated the wage premium of a college education by simply leaving switching
coll and union in the above syntax (to find a wage premium of 25% in a regression or 27% using
psmatch2). We could use data from Card (1995ab) on education and wages:

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
g byte coll=educ>15
loc x "coll age exper* smsa* south mar black reg662-reg669"
reg lw ‘x’
psmatch2 ‘x’, out(lw) ate

to find a college wage premium of 29% using a regression or 30% using psmatch2. We return to this
example in the next section using an Instrumental Variables method.

4 Instrumental Variables

An alternative to panel methods and matching estimators is to find another set of variables Z correlated
with XT but not correlated with the error term, e.g. e in

y = XTβT +XCβC + e
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so Z must satisfy E(Z ′e) = 0 and E(Z ′XT ) 6= 0. The variables Z are called excluded instruments,
and a class of Instrumental Variables (IV) methods can then be used to consistently estimate an impact
of XT on y.

Various interpretations of the IV estimate have been advanced, typically as the Local Average Treat-
ment Effect, or LATE (Angrist, Imbens and Rubin; 1996), meaning the effect of XT on y for those
who are induced by their level of Z to have higher XT . For the college graduate example, this might be
the average gain Ei[yi(t)− yi(0)] over all those i in the treatment group with Z = 1 (where Z might be
“lived close to a college” or “received a Pell grant”), arising from an increase from XT = 0 to XT = t in
treatment, i.e. the wage premium due to college averaged over those who were induced to go to college
by Z.

The instrumental variables estimators are in general only as good as the excluded instruments used,
so naturally criticisms of the predictors in a standard regression model become criticisms of the excluded
instruments in an IV model.

Also, the IV estimators are still biased, but consistent, and are much less efficient than OLS, so
failure to reject the null should not be taken as acceptance of the alternative. That is, one should
never compare the IV estimate only to a zero effect, but also to other plausible values, including the
OLS estimate. Some other common pitfalls discussed below include improper exclusion restrictions
(addressed via overidentification tests) and weak identification (addressed via diagnostics and robust
inference).

It is worth repeating that IV estimators are biased in finite samples, and are only justified for
very large samples. Nelson and Startz (1990) showed how strange the finite sample behavior of an IV
estimator can be, and Bound, Jaeger, and Baker (1995) showed that even very large samples of millions
of observations are insufficient for asymptotic justifications to apply in the presence of weak instruments
(see also Stock and Yogo 2005).

4.1 Key assumptions

Because IV can lead one astray if any of the assumptions is violated, anyone using an IV estimator
should conduct and report tests of:

• instrument validity (overidentification or overid tests),

• endogeneity,

• identification,

• presence of weak instruments,

• and misspecification of functional form (RESET).

Further discussion and suggestions on what to do when a test is failed appear in the relevant sections
below.

4.2 Forms of IV

The standard IV estimator in a model

y = XTβT +XCβC + e

where we have Z satisfying E(Z ′e) = 0 and E(Z ′XT ) 6= 0 is

β̂IV =

 β̂IV
T

β̂IV
C

 = (X ′PZX)−1X ′PZy

(ignoring weights), where X = (XTXC) and PZ is the projection matrix Za(Z ′aZa)−1Z ′a with Za =
(ZXC). The idea is, we use the component of XT along Z, which is exogenous, as the only source of
variation in XT that we use to estimate the effect on y.
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These estimates are easily obtained in Stata 6 through 9 with the syntax ivreg y xc* (xt* = z*),
where xc* are all exogenous “included instruments” XC and xt* are endogenous variables XT . In Stata
10, the syntax is ivregress 2sls y xc* (xt* = z*). For Stata 9 and above, the ivreg2 command
of Baum, Schaffer, and Stillman (2007) would be written

ivreg2 y xc* (xt* = z*)

Example data for trying out these commands can be easily generated, e.g.

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
ren lw y
ren nearc4 z
ren educ xt
ren exper xc

The standard IV estimator is equivalent to 2 or 3 forms of two-stage estimators. The first, which
gave rise to the moniker Two-Stage Least Squares (2SLS), has you regress XT on XC and Z and
predict X̂T , then regress y on X̂T and XC , and the coefficient on X̂T is β̂IV

T , so:

foreach xt of varlist xt* {
reg ‘xt’ xc* z*
predict ‘xt’_hat
}
reg y xt*_hat xc*

will give the same estimates as the above IV commands, but the reported standard errors will be wrong
as Stata will use X̂T rather than XT to compute them. Even though IV is not implemented in these
two stages, the conceptual model of these first-stage and second-stage regressions is pervasive, and the
properties of said first-stage regressions are central to the section on identification and weak instruments
below.

The second two-stage estimator that generates identical estimates is a control-function approach.
Regress each variable in XT on the other variables in XT and XC and Z to predict the errors v̂T =
XT − X̂T , then regress y on XT , v̂T , and XC , and you will find that the coefficient on XT is β̂IV

T , and
tests of significance on each v̂T are tests of endogeneity of each XT . Thus:

cap drop *_hat
unab xt : xt*
foreach v of loc xt {
loc otht: list xt-v
reg ‘v’ xc* z* ‘otht’
predict v_‘xt’, resid
}
reg y xt* xc* v_*

will give the IV estimates, though again the standard errors will be wrong. However, the tests of
endogeneity (given by the reported p-values on variables v * above) will be correct. A similar approach
works for nonlinear models such as probit or poisson (help ivprobit and findit ivpois for relevant
commands). The tests of endogeneity in nonlinear models given by the control-function approach are
also quite robust (see e.g. Wooldridge, 2002, p.474 or p.665).

The third two-stage version of the IV strategy, which applies in the case of one endogenous variable
and one excluded instrument, is sometimes called the Wald estimator. First regress XT on XC and Z
(let π̂ be the estimated coefficient on Z), then regress y on Z and XC , (let γ̂ be the estimated coefficient
on Z), and the ratio of coefficients on Z (γ̂/π̂) is β̂IV , so:

reg xt z xc*
loc p=_b[z]
reg y z xc*
loc g=_b[z]
di ‘g’/‘p’
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will give the same estimate as the IV command ivreg2 y xc* (xt=z). The regression of y on Z and
XC is sometimes called the reduced form regression, though this name is often applied to other
regressions, so I will avoid using the term.

The generalized method of moments (GMM), limited-information maximum likelihood (LIML), and
continuously-updated GMM estimation (CUE) forms of IV are discussed at length in Baum, Schaffer,
and Stillman (2007) and various implementations are available from the ivregress and ivreg2 com-
mands. Some forms of IV may be expressed as k-class estimation, available from ivreg2, and there are
many other forms of IV models, including official Stata commands such as ivprobit, treatreg, and
ivtobit, and user-written additions such as qvf (Hardin, Schmiediche, and Carroll, 2003), jive (Poi,
2006), and ivpois (on SSC).

4.3 Finding Excluded Instruments

The hard part of IV is finding a suitable Z matrix. The excluded instruments in Z have to be strongly
correlated with the endogenous XT and uncorrelated with the unobservable error e. But note that the
problem we wish to solve is that the endogenous XT is correlated with the unobservable error e. A
good story is the crucial element in any plausible IV specification. We the readers need to believe that
Z is strongly correlated with the endogenous XT but has no direct impact on y (is uncorrelated with
the unobservable error e), since the assumptions are not directly testable. However, the tests discussed
in the following sections can help buttress a convincing story, and should be reported in any case.

In general, specification search in the first stage regressions of XT on some Z does not bias estimates
or inference, nor does using generated regressors. However, it is easy to produce counterexamples to
this general rule. For example, taking Z = XT + ν where ν is a small random error will produce strong
identification diagnostics, and might pass overidentification tests described in the next section, but will
not improve estimates (and could lead to substantially less accurate inference).

If some Z are weak instruments, then regressing XT on Z to get X̂T and using X̂T as the excluded
instruments in an IV regression of y onXT andXC will likewise produce strong identification diagnostics,
but will not improve estimates or inference. Hall, Rudebusch, and Wilcox (1996) reported that choosing
instruments based on measures of the strength of identification could actually increase bias and size
distortions.

4.4 Exclusion Restrictions in IV

The exclusion restrictions E(Z ′e) = 0 cannot be directly tested, but if there are more excluded instru-
ments than endogenous regressors, an overidentification (overid) test is feasible and the result should
be reported. If there as exactly as many excluded instruments as endogenous regressors, the equation
is exactly identified, and no overid test is feasible.

However, if Z is truly exogenous, it is likely also true that E(W ′e) = 0, where W contains Z and
squares and cross products of Z. Thus there is always a feasible overid test using an augmented set of
excluded instruments (though E(W ′e) = 0 is a stronger condition than E(Z ′e) = 0, only in the case
where we reject the overid null for each element of W not in Z do we not gain anything by augmenting
the set of excluded instruments). For example, if you have two good excluded instruments, you might
multiply them together, and square each, to produce five excluded instruments. Testing the three extra
overidentification restrictions is like a RESET test of excluded instruments. In addition, interactions
of Z and XC may be good candidates for excluded instruments. For reasons discussed below, adding
excluded instruments willy-nilly is a bad idea, and with many weak instruments, LIML or CUE is
preferred to standard IV/2SLS.

Baum, Schaffer, and Stillman (2007) discuss the implementation of overid tests in ivreg2 (see also
overid from Baum, Schaffer, Stillman, and Wiggins, 2006). Passing the overid test (i.e. failing to reject
the null of zero correlation) is neither necessary nor sufficient for instrument validity (E(Z ′e) = 0), but
rejecting the null in an overid test should lead you to reconsider your IV strategy, and perhaps to look
for different excluded instruments.
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4.5 Tests of Endogeneity

Even if we have an excluded instrument that satisfies E(Z ′e) = 0 there is no guarantee that E(XT ′ε) 6= 0
as we have been assuming, and if E(XT ′ε) = 0 we prefer ordinary regression to IV. So we should test the
null that E(XT ′ε) = 0 (a test of endogeneity), though this test requires instrument validity (E(Z ′e) = 0),
so it should follow any feasible overid tests.

Baum, Schaffer, and Stillman (2007) describe several methods to test the endogeneity of a variable
in XT , including the endog option of ivreg2 and the standalone ivendog command (both available
from SSC, with excellent help files). Section 4.2 above also shows how the control function form of IV
can be used to test endogeneity of a variable in XT .

4.6 Identification and Weak Instruments

Even if we have an excluded instrument that satisfies E(Z ′e) = 0 there is no guarantee that E(Z ′XT ) 6=
0. This is the second of the two crucial assumptions, and presents problems of various sizes in almost
all IV specifications. The extent to which E(Z ′XT ) 6= 0 determined the strength of identification.
Baum, Schaffer, and Stillman (2007) describe tests of identification, which amount to tests of the rank
of E(Z ′XT ). These rank tests address the concern that a number of excluded instruments may generate
exogenous variation in one endogenous variable and be uncorrelated with another endogenous variable,
so the equation is not identified even though it satisfies the order condition (the number of excluded
instruments is at least as great as the number of endogenous variables). For example, if we have two
endogenous variables X1 and X2 and three excluded instruments, all three excluded instruments may be
correlated with X1 and not with X2. The identification tests look at the least partial correlation, or the
minimum eigenvalue of the Cragg-Donald statistic (Stock and Yogo 2005), for example, and measures
of whether at least one endogenous variable has no correlation with the excluded instruments.

Even if we reject the null of underidentification and conclude E(Z ′XT ) 6= 0, we can still face a
“weak instruments” problem if some elements of E(Z ′XT ) are close to zero. The IV estimate is always
biased, but is less biased than OLS to the extent that identification is strong. In the limit of weak
instruments, there would be no improvement over OLS in terms of bias and the bias would be 100%
of OLS, and in the other limit, the bias would be zero percent of the OLS bias (though this would
require that the correlation between XT and Z be perfect, which is impossible since XT is endogenous
and Z is exogenous). In applications, you’d like to know where you are on that spectrum, even if only
approximately.

There is also a distortion in the size of hypothesis tests. If you believe you are incorrectly rejecting
a null hypothesis about 5% of the time (i.e. you have chosen a size α = 0.05), you may actually face a
size of 10% or 20% or more.

Stock and Yogo (2005) reported rule-of-thumb critical values to measure the extent of both of these
problems. Their Table 1 shows the value of a statistic measuring the predictive power of the excluded
instruments that will imply a limit of the bias to some percentage of OLS. For two endogenous variables
and three excluded instruments (n=2, K2 = 5) the minimum value to limit the bias to 20% of OLS is
5.91. ivreg2 reports these values as Stock-Yogo weak ID test critical values: one set for various
percentages of “maximal IV relative bias” (largest bias relative to OLS) and one set for “maximal IV
size” (the largest size of a nominal 5% test).

The key point is that all IV and IV-type specifications can suffer from bias and size distortions, not
to mention inefficiency and sometimes failures of exclusion restrictions. The Stock and Yogo (2005)
approach measures how strong identification is in your sample, and ranktest (Kleibergen and Schaffer
2007) offers a way forward for cases where errors are not assumed to be independently and identically
distributed, but neither provides solutions in the event that weak instruments appear to be a problem.
A further limitation is that these identification statistics only apply to the linear case, not the nonlinear
analogs, including those estimated via generalized linear models (GLM). In practice, researchers should
report the identification statistics for the closest linear analog, i.e. run ivreg2 and report the output
alongside the output from treatreg or qvf or the like.

If you suspect weak instruments may be producing large bias or size distortions, you have several
options. You can find better excluded instruments, possibly simply by transforming your existing in-
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struments. You can use LIML or CUE which are more robust to many weak instruments than standard
IV. Perhaps best of all, you can conduct inference that is robust to weak instruments; with one endoge-
nous variable, use condivreg (Mikusheva and Poi 2006), or with more than one, use tests described by
Anderson and Rubin (1949) and Baum, Schaffer, and Stillman (2007, sections 7.4 and 8).

4.7 Functional Form Tests in IV

As Baum, Schaffer, and Stillman (2007, section 9) and Wooldridge (2002, p.125) discuss, the RESET
test regressing residuals on predicted y and powers thereof is properly a test of a linearity assumption,
or a test of functional form restrictions. ivreset performs the IV version of the test in Stata. A
more informative specification check is the graphical version of RESET: predict X̂T after the first stage
regressions, then compute forecasts ŷ = XT β̂IV

T +XC β̂C and ŷf = X̂T β̂IV
T +XC β̂C and graph a scatter

of the residuals ε̂ = y − ŷ against ŷf .

ivreg2 y xc* (xt = z*), first
quietly regress xt xc* z*
predict xhat
quietly regress y xhat xc*
predict ehat, resid
predict yhatf
drop xhat
ren xt xhat
predict yhat
scatter ehat yhatf, name(f)
scatter ehat yhat, name(y)
scatter ehat xhat, name(x)

Any unmodeled nonlinearities may be apparent as a pattern in the scatterplot.

4.8 Standard Errors in IV

The largest issue in IV estimation is often that the variance of the estimator is much larger than ordinary
regression. Just as with ordinary regression, the standard errors are asymptotically valid for inference
under the restrictive assumptions that the disturbances are independently and identically distributed.
Getting standard errors robust to various violations of these assumptions is easily accomplished using the
ivreg2 command described in Baum, Schaffer, and Stillman (2007). Many other commands estimating
IV models offer no equivalent robust SE estimates, but it may be possible to assess the size and direction
of SE corrections using the nearest linear analog, in the spirit of using estimated design effects in the
survey regression context.

4.9 Inference in IV

Assuming we have computed consistent standard errors, and the best IV estimate we can, using a good
set of Z and XC variables, there remains the question of how we interpret the estimates and tests.
Typically, IV identifies a particular LATE, namely the effect of an increase in XT due to an increase in
Z. If XT were college and Z an exogenous source of financial aid, then the IV estimate of the effect of
XT on wages would be the college wage premium for those who were induced to attend college by being
eligible for the marginally more generous aid package.

Angrist and Krueger (1991) estimated the effect of education on earnings using compulsory schooling
laws as a justification for quarter of birth as Z. Even if the critiques of Bound, Jaeger, and Baker (1995)
did not apply, the identified effect would be for an increase in education due to being forced to remain
in school a few months more. That is, the measured wage effect of an additional year of education is
for the eleventh grade, roughly, and only for those who would have dropped out if not for compulsory
schooling laws.
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Sometimes, a LATE of this form is exactly the estimate desired, but if we cannot reject that the IV
estimate differs from the OLS estimate, or the IV confidence region includes the OLS confidence region,
we may not have improved estimates, but merely produced noisier ones. Only in the case where the IV
estimate differs can we hope to ascertain the nature of selection bias.

4.10 Examples

We can use the data from Card (1995ab) to estimate the impact of education on wages, where nearness
to a college is posited as a source of exogenous variation in educational attainment:

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
loc x "exper* smsa* south mar black reg662-reg669"
reg lw educ ‘x’
ivreg2 lw ‘x’ (educ=nearc2 nearc4), first endog(educ)
ivreg2 lw ‘x’ (educ=nearc2 nearc4), gmm
ivreg2 lw ‘x’ (educ=nearc2 nearc4), liml

to find the return to an additional year of education is about 7% using ordinary regression or 16%
or 17% using IV methods. The Sargan statistic fails to reject that excluded instruments are valid,
the test of endogeneity is marginally significant (giving different results at the 95% and 90% levels),
and the Anderson-Rubin and Stock-Wright tests of identification strongly reject that the model is
underidentified.

The test for weak instruments is the F-test on the excluded instruments in the first-stage regression,
which at 7.49 with a p-value of 0.0006 seems to indicate that the excluded instruments influence educa-
tional attainment, but the size of Wald tests on educ that we specify as 5% might be roughly 25%. To
construct an Anderson-Rubin confidence interval, we can

g y=.
foreach beta in .069 .0695 .07 .36 .365 .37 {
qui replace y=lw-‘beta’*educ
qui reg y ‘x’ nearc2 nearc4
di as res "Test of beta=" ‘beta’
test nearc2 nearc4
}

giving a confidence interval of (.07,.37); see also Nichols (2006, p.18) and Baum, Schaffer, and Stillman
(2007, p.30). Thus, the IV confidence region includes the OLS estimate, and nearly includes the OLS
confidence interval, so the evidence on selection bias is very weak. Still, if we accept the exclusion
restrictions as valid, the evidence does not support a story where omitting ability (causing both increased
wages and increased education) leads to positive bias. If anything, the bias seems likely to be negative,
perhaps due to unobserved heterogeneity in discount rates or credit market failures. In the latter case,
the omitted factor may be a social or economic disadvantage observable by lenders.

A similar set of conclusions apply if we model the education response as a binary treatment college:

g byte coll=educ>15
reg lw coll ‘x’
treatreg lw ‘x’, treat(coll=nearc2 nearc4)
ivreg2 lw ‘x’ (coll=nearc2 nearc4), first endog(coll)
ivreg2 lw ‘x’ (coll=nearc2 nearc4), gmm
ivreg2 lw ‘x’ (coll=nearc2 nearc4), liml

These regressions also indicate that the OLS estimate may be biased downward, though the OLS con-
fidence interval is contained in the treatreg confidence interval and each of the IV intervals, so we
cannot conclude much with confidence.
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5 Regression Discontinuity Designs

The idea of the regression discontinuity (RD) design is to exploit an observable discontinuity in the level
of treatment related to an assignment variable Z, so the level of treatment XT jumps discontinuously
at some value of Z, the “cutoff.” Let Z0 denote the cutoff. In the neighborhood of Z0, under some
often plausible assumptions, a discontinuous jump in the outcome y can be attributed to the change
in the level of treatment. Near Z0, the level of treatment can be treated as if it is randomly assigned.
For this reason, the RD design is generally regarded as having the greatest internal validity of the
quasi-experimental estimators.

Examples include share of votes received in a US Congressional election by the Democratic candidate
as Z, which induces a clear discontinuity in XT , the probability of a Democrat occupying office the
following term, andXT may affect various outcomes y, if Democratic and Republican candidates actually
differ in close races (Lee 2001). DiNardo and Lee (2002) use the share of votes received for a union as Z,
and unions may may affect the survival of a firm (but do not seem to). They point out that the union
wage premium y can be consistently estimated only if survival is not affected (no differential attrition
around Z0), and they find negligibly small effects of unions on wages.

The standard treatment of RD is Hahn, Todd, and van der Klaauw (2001), who clarified the link
to IV methods. Recent working papers by Imbens and Lemieux (2007) and McCrary (2007) focused on
some important practical issues related to RD designs. Both papers are forthcoming in the Journal of
Econometrics along with other useful papers on RD.

Many authors stress a distinction between “sharp” and “fuzzy” RD. In sharp RD designs, the
level of treatment rises from zero to one at Z0, as in the case where treatment is having a Democratic
representative in the US Congress, or establishing a union, and a winning vote share defines Z0. In fuzzy
RD designs, the level of treatment increases discontinuously, or the probability of treatment increases
discontinuously, but not from zero to one, so we may want to deflate by the expected increase in XT at
Z0 in constructing our estimate of the causal impact of a one-unit change in XT .

In sharp RD designs, the jump in y at Z0 is the estimate of the causal impact of XT . In a fuzzy RD
design, the jump in y divided by the jump in XT at Z0 is the local Wald estimate (equivalent to a local
IV estimate) of the causal impact. Note that the local Wald estimate reduces to the jump in y at Z0

in a sharp RD design as the jump in XT is one, so the distinction between fuzzy and sharp RD is not
that sharp.

Some authors, e.g. Shadish, Cook, and Campbell (2002, 229), seem to characterize as fuzzy RD a
wider class of problems where the cutoff itself may not be sharply defined, but without a true disconti-
nuity, there can be no RD. The fuzziness in fuzzy RD arises only from probabilistic assignment of XT

in the neighborhood of Z0.

5.1 Key assumptions and tests

The assumptions that allow us to infer a causal effect on y due to an abrupt change in XT at Z0 are
that the change in XT at Z0 is truly discontinuous, Z is observed without error (Lee and Card 2007), y
is a continuous function of Z at Z0 in the absence of treatment (for individuals), and that individuals
are not sorted across Z0 in their responsiveness to treatment. None of these assumptions can be directly
tested, but there are diagnostic tests that should always be employed.

The first is to test the null that no discontinuity in treatment occurs at Z0, since without identifying
a jump in XT we will be unable to claim to identify the causal impact of said jump. The second is to
test that there are no other extraneous discontinuities in XT or y away from Z0, since this would call
into question whether the functions would be smooth through Z0 in the absence of treatment. The third
and fourth test that predetermined characteristics and the density of Z exhibit no jump at Z0, since
these call into question the exchangeability of observations on either side of Z0. Then the estimate itself
usually supplies a test that the treatment effect is nonzero (y jumps at Z0 because XT jumps at Z0).

Abusing notation somewhat so that ∆ is an estimate of the discontinuous jump in a variable, we can
enumerate these tests as:

• (T1) ∆XT (Z0) 6= 0
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• (T2) ∆XT (Z 6= Z0) = 0 and ∆y(Z 6= Z0) = 0

• (T3) ∆XC(Z0) = 0

• (T4) ∆f(Z0) = 0

• (T5) ∆y(Z0) 6= 0 or
(

∆y(Z0)
∆XT (Z0)

)
6= 0

5.2 Methodological choices

Estimating the size of a discontinuous jump can be accomplished by comparing means in small bins of Z
to the left and right of Z0, or via a regression with various powers of Z, an indicator D for Z > Z0, and
interactions of all Z terms with D (estimating a polynomial in Z on both sides of Z0, and comparing the
intercepts at Z0). However, since the goal is to compute an effect at precisely one point (Z0) using only
the closest observations, the standard approach is to use local linear regression, which minimizes bias
(Fan and Gijbels 1996). In Stata 10, this is done with the lpoly command; users of previous versions
can use locpoly (Gutierrez, Linhart, and Pitblado 2003).

Having chosen to use local linear regression, other key issues are the choice of bandwidth and kernel.
Various techniques are available for choosing bandwidths (see e.g. Fan and Gijbels 1996, Stone 1974,
1977), and the triangle kernel has good properties in the RD context, due to being boundary optimal
(Cheng et al. 1997).

There are several rule-of-thumb bandwidth choosers and cross-validation techniques for automating
bandwidth choice, but none is foolproof. McCrary (2007) contains a useful discussion of bandwidth
choice, and claims that there is no substitute for visual inspection comparing the lpoly smooth with
the pattern in a scatter graph. Because different bandwidth choices can produce different estimates,
the researcher should report at least three estimates as an informal sensitivity test: one using the
preferred bandwidth, and estimates using twice and half the preferred bandwidth.

5.3 (T1) XT jumps at Z0

The identifying assumption is that XT jumps at Z0 due to some known legal or program design rules,
but we can test that assumption easily enough. The standard approach to computing standard errors
is to bootstrap the local linear regression, which requires wrapping the estimation in a program, for
example,

program discont, rclass
version 10
syntax [varlist(min=2 max=2)] [, *]
tokenize ‘varlist’
tempvar z f0 f1
qui g ‘z’=0 in 1
local opt "at(‘z’) nogr k(tri) deg(1) ‘options’"
lpoly ‘1’ ‘2’ if ‘2’<0, gen(‘f0’) ‘opt’
lpoly ‘1’ ‘2’ if ‘2’>=0, gen(‘f1’) ‘opt’
return scalar d=‘=‘f1’[1]-‘f0’[1]’
di as txt "Estimate: " as res ‘f1’[1]-‘f0’[1]
eret clear
end

In the program, the assignment variable Z is assumed to be defined so that the cutoff Z0 = 0 (easily
done with a single replace or generate command subtracting Z0 from Z). The triangle kernel is used,
and the default bandwidth is chosen by lpoly, which is probably suboptimal for this application. The
local linear regressions are computed twice, once using observations on one side of the cutoff, for Z < 0,
and once for Z ≥ 0. The estimate of the jump uses only the predictions at the cutoff Z0 = 0, so these
are the only values computed by lpoly.

We can easily generate data to try this example program out:
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ssc inst rd, replace
net get rd
use votex if i==1
ren lne y
ren win xt
ren d z
foreach v of varlist pop-vet {
ren ‘v’ xc_‘v’
}
bs r(d): discont y z

In a more elaborate version of this program called rd (which also supports earlier versions of Stata),
available by typing ssc inst rd, replace in Stata, the default bandwidth is selected to include at
least 30 observations in estimates at both sides of the boundary; other options are also available. Try
findit bandwidth to find more sophisticated bandwidth choosers for Stata. The key point is to use
the at() option so that the difference in local regression predictions can be computed at Z0.

A slightly more elaborate version of this program would save local linear regression estimates at a
number of points, and offer a graph:

program discont2, rclass
version 10
syntax [varlist(min=2 max=2)] [, s(str) Graph *]
tokenize ‘varlist’
tempvar z f0 f1 se0 se1 ub0 ub1 lb0 lb1
su ‘2’, meanonly
local N=round(100*(r(max)-r(min)))
cap set obs ‘N’
qui g ‘z’=(_n-1)/100 in 1/50
qui replace ‘z’=-(_n-50)/100 in 51/‘N’
local opt "at(‘z’) nogr k(tri) deg(1) ‘options’"
lpoly ‘1’ ‘2’ if ‘2’<0, gen(‘f0’) se(‘se0’) ‘opt’
qui replace ‘f0’=. if ‘z’>0
qui g ‘ub0’=‘f0’+1.96*‘se0’
qui g ‘lb0’=‘f0’-1.96*‘se0’
lpoly ‘1’ ‘2’ if ‘2’>=0, gen(‘f1’) se(‘se1’) ‘opt’
qui replace ‘f1’=. if ‘z’<0
qui g ‘ub1’=‘f1’+1.96*‘se1’
qui g ‘lb1’=‘f1’-1.96*‘se1’
return scalar d=‘=‘f1’[1]-‘f0’[1]’
return scalar f1=‘=‘f1’[1]’
return scalar f0=‘=‘f0’[1]’
forv i=1/50 {
return scalar p‘i’=‘=‘f1’[‘i’]’
}
forv i=51/‘N’ {
return scalar n‘=‘i’-50’=‘=‘f0’[‘i’]’
}
di as txt "Estimate: " as res ‘f1’[1]-‘f0’[1]
if "‘graph’"!="" {
la var ‘z’ "Assignment Variable"
loc lines "|| line ‘f0’ ‘f1’ ‘z’"
loc a "tw rarea ‘lb0’ ‘ub0’ ‘z’ || rarea ‘lb1’ ‘ub1’ ‘z’"
‘a’ || sc ‘1’ ‘2’, mc(gs14) leg(off) sort ‘lines’
}
if "‘s’"!="" {
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ren ‘z’ ‘s’‘2’
ren ‘f0’ ‘s’‘1’0
ren ‘lb0’ ‘s’‘1’lb0
ren ‘ub0’ ‘s’‘1’ub0
ren ‘f1’ ‘s’‘1’1
ren ‘lb1’ ‘s’‘1’lb1
ren ‘ub1’ ‘s’‘1’ub1
}
eret clear
end

In this version, the local linear regressions are computed at a number of points (in the example, the
maximum of Z is assumed to be 0.5, so the program uses hundredths as a convenient unit for Z) on
either side of the cutoff Z0 = 0, but the estimate of a jump still uses only the two estimates at Z0 = 0.
Note that the s() option in the above program saves the local linear regression predictions (and lpoly
confidence intervals) to new variables that can then be graphed. Graphs of all output are advisable, to
assess the quality of the fit for each of several bandwidths. This program may also be bootstrapped,
though recovering the standard errors around each point estimate from bootstrap for graphing the fit
is much more work.

5.4 (T2) y and XC continuous away from Z0

While we need only assume continuity at Z0, and need no assumption that the outcome and treatment
variables are continuous at values of Z away from the cutoff Z0 (i.e. ∆XT (Z 6= Z0) = 0 and ∆y(Z 6=
Z0) = 0), it is reassuring if we fail to reject the null of a zero jump at various values of Z away from
the cutoff Z0 (or reject the null only in 5% of cases or so). Having defined a program discont, we can
easily randomly choose 100 placebo cutoff points Zp 6= Z0, without replacement in the example below,
and test the continuity of XT and y at each.

bys z: g f=_n>1 if z!=0
g u=uniform()
sort f u
replace u=(_n<=100)
levelsof z if u, loc(p)
foreach val of local p {
cap drop newz
g newz=z-‘val’
bootstrap r(d), reps(100): discont y znew
bootstrap r(d), reps(100): discont xt znew
}

5.5 (T3) XC continuous around Z0

If we can regard an increase in treatment XT as randomly assigned in the neighborhood of the cutoff Z0,
then predetermined characteristics XC such as race or sex of treated individuals should not exhibit a
discontinuity at the cutoff Z0. This is equivalent to the standard test of randomization in an experimental
design, using a test of the equality of the mean of every variable in XC across treatment and control
groups (see help hotelling in Stata), or the logically equivalent test that all the coefficients on XC

in a regression of XT on XC are zero. As in the experimental setting, in practice the tests are usually
done one at a time with no adjustment for multiple hypothesis testing (see help mtest in Stata).

In the RD setting, this is simply a test that the measured jump in each predetermined XC is zero at
the cutoff Z0, or ∆XC(Z0) = 0 for all XC . If we fail to reject that the measured jump in XC is zero, for
all XC , we have some additional evidence that observations on both sides of the cutoff are exchangeable,
at least in some neighborhood of the cutoff, and we can treat them as if they were randomly assigned
treatment in that neighborhood.
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Having defined the programs discont and discont2, we can simply type:

foreach v of varlist xc* {
bootstrap r(d), reps(100): discont ‘v’ z
discont2 ‘v’ z, s(h)
sc ‘v’ z, mc(gs14) sort || line h‘v’0 h‘v’1 hz, name(‘v’)
drop hz
}

5.6 (T4) Density of Z continuous at cutoff

McCrary (2007) gives an excellent account of a violation of exchangability of observations around the
cutoff. If individuals have preferences over treatment and can manipulate assignment, for instance by
altering their Z or misreporting it, then individuals close to Z0 may shift across the boundary. For
example, some non-randomly selected subpopulation of those who are nearly eligible for food stamps
may misreport income, while those who are eligible do not. This creates a discontinuity in the density
of Z at Z0. McCrary (2007) points out that the absence of a discontinuity in the density of Z at Z0

is neither necessary nor sufficient for exchangability, but a failure to reject the null hypothesis that the
jump in the density of Z at Z0 is zero is reassuring nonetheless.

McCrary (2007) discussed a test in detail, and advocated a bandwidth chooser. We can also adapt
our existing program to the purpose by using kdensity commands to estimate the density to the left
and right of Z0:

kdensity z if z<0, gen(f0) at(z) tri nogr
count f0 if z>=0
replace f0=f0/r(N)*‘=_N’/4
kdensity z if z>=0, gen(f1) at(z) tri nogr
count f1 if z<0
replace f1=f1/r(N)*‘=_N’/4
generate f=cond(z>=0,f1,f0)
bootstrap r(d), reps(100): discont f z
discont2 f z, s(h) g

Alternatively, we could wrap the kdensity estimation inside the program that estimates the jump,
so that both are bootstrapped together; this approach is taken by rd available from ssc inst rd,
replace.

5.7 (T5) Treatment Effect Estimator

Having defined the program discont, we can simply:

bootstrap r(d), reps(100): discont y z

to get an estimate of the treatment effect in a “sharp” RD setting where XT jumps from zero to one at
Z0. For a “fuzzy” RD design, we wish to compute the jump in y scaled by the jump in XT at Z0, or the
local Wald estimate, for which we need to modify our program to estimate both discontinuities. The
program rd available from ssc inst rd, replace does this, but the idea is illustrated in the program
below, using the previously defined discont program twice.

prog lwald, rclass
version 10
syntax varlist [, w(real .06) ]
tokenize ‘varlist’
di as txt "Numerator"
discont ‘1’ ‘3’, bw(‘w’)
loc n=r(d)
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return scalar numerator=‘n’
di as txt "Denominator"
discont ‘2’ ‘3’, bw(‘w’)
loc d=r(d)
return scalar denominator=‘d’
return scalar lwald=‘n’/‘d’
di as txt "Local Wald Estimate:" as res ‘n’/‘d’
eret clear
end

This program takes three arguments, the variables y, XT , and Z, assumes Z0 = 0, and uses a
hardwired default bandwidth of 0.06. Note that the default bandwidth selected by lpoly is inappropriate
for these models, since we do not use a Gaussian kernel, and are interested in boundary estimates. The
rd program on SSC is similar in spirit to the above, though it offers more options, particularly with
regard to bandwidth selection.

5.8 Examples

Voting examples abound. A novel estimate in Nichols and Rader (2007) measures the effect of electing
as a Representative a Democratic incumbent versus a Republican incumbent on a district’s receipt of
federal grants:

ssc inst rd, replace
net get rd
use votex if i==1
rd lne d, gr
bs: rd lne d, x(pop-vet)

The above estimates that the marginally victorious Democratic incumbent brings roughly 20% less to
his home district than a marginally victorious Republican incumbent. However, we cannot reject the
null of zero difference, and that is true for a variety of bandwidth choices (Figure 2 shows the small
insignificant effect). Note that the above is a sharp RD design, but the Wald estimator can be used to
estimate effect, since the jump in win at 50% of vote share is one, and dividing by one has no impact
on estimates.

Many good examples of fuzzy RD designs concern educational policy or interventions (e.g. van der
Klaauw 2002 or Ludwig and Miller 2005). Many educational grants are awarded using deterministic
functions of predetermined characteristics, lending themselves to evaluation using RD. For example,
some US Department of Education grants to states are awarded to districts with poverty (or near-
poverty) rates above a threshold, as determined by data from a prior Census, which satisfies all of the
requirements for RD, though the size of the discontinuity in funding may often be insufficient to identify
an effect. In many cases, a power analysis is warranted to determine the minimum detectable effect.

Returning to the Card (1995ab) example of the effect of education on earnings, we can imagine
exploiting a discontinuity in the availability of college to residents of certain US states at the state
boundary. College applicants who live 4.8 miles and 5 miles from a college may look very similar in
various observable characteristics, but if a state boundary separates them at 4.9 miles from the college,
and the college is a state institution, they may face very different probabilities of admission or tuition
costs. The data in Card (1995ab) do not support this strategy, of course, since we would need to know the
exact locations of all individuals relative to state boundaries, but it helps to clarify the assumptions that
justify the IV approach. We need to assume that location relative to colleges is randomly sprinkled over
potential applicants, which seems questionable (Black 1999), especially when one considers including
parental education in the model.
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Figure 2: RD Example

6 Conclusions

In many circumstances, exploring data using quasi-experimental methods is the only option for esti-
mating a causal effect, when experiments are infeasible, and may sometimes be preferred even when an
experiment is feasible, particularly if a marginal treatment effect is of interest. However, the methods
can suffer a number of severe problems when assumptions are violated, even weakly. For this reason,
the details of implementation are frequently crucial, and a kind of cookbook or checklist for verifying
essential assumptions are satisfied has been provided above for the interested researcher. As the topics
discussed continue to be active research areas, this cookbook should be taken merely as a starting point
for further explorations of the applied econometric literature on the relevant subjects.
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